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Preface

Let X and Y be Banach spaces. The main goal of this monograph is to study bounded
linear operators G : X −→ Y satisfying that for every other bounded linear operator
T : X −→ Y there is a modulus-one scalar ω such that the norm equality

‖G+ω T‖= 1+‖T‖ (SPE)

holds. In this case, G is said to be a spear operator.

Our main motivation to develop this study is the case when X = Y and G is the
identity operator Id, for which the study goes back to the 1970’s, when J. Duncan,
C. McGregor, J. Pryce, and A. White proved that for T : X −→ X bounded and
linear, the existence of a modulus-one scalar ω such that the norm equality

‖ Id+ω T‖= 1+‖T‖ (aDE)

holds, is equivalent to the equality between the numerical radius of T and its norm.
The list of spaces for which the identity is a spear operator (they are called spaces
with numerical index 1) contains all C(K) spaces and L1(µ) spaces, as well as some
spaces of analytic functions and vector-valued functions, which motivated the inten-
sive study of this class of spaces in the past decades. The equation (aDE) is named
as the alternative Daugavet equation, as it is a variant of the Daugavet equation:

‖ Id+T‖= 1+‖T‖. (DE)

This latter norm equality for operators takes its name from a 1963 result by I. Dau-
gavet saying that every compact linear operator T on C[0,1] satisfies (DE), a prop-
erty which is shared by weakly compact operators on the space C(K) when K is
perfect, by weakly compact operators on the space L1(µ) when µ is atomless, and
by weakly compact operators on the disk algebra A(D). The Daugavet equation has
been deeply studied in several environments by many mathematicians in the last
decades, and there are variants of it for polynomials and for Lipschitz operators be-
tween Banach spaces. The Daugavet equation is also related to the numerical range
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of operators: an operator T satisfies (DE) if and only if the norm of T coincides
with the supremum of the real part of the values of the numerical range of T . Let us
recall that the concepts of numerical range and numerical radius of operators played
an important role in operator theory, particularly in the classification of operator
algebras and in the study of the geometry of their unit balls.

An extension of the Daugavet equation to operators between different Banach
spaces is another motivation for our study. An operator G : X −→ Y is said to be a
Daugavet center if the norm equality

‖G+T‖= 1+‖T‖

holds for all rank-one bounded (and then for all weakly compact) linear operators
T : X −→ Y .

The study of spear operators has been initiated recently by a paper by M. Ardalani
from where the name is taken. For general operators G, a concept of numerical range
of operators with respect to G is also introduced in this seminal work, and there is
a relation between (SPE) and numerical ranges, analogous to the commented one
for the case of (aDE). But, actually, such a new numerical range is deeply related
to an intrinsic concept of numerical range of elements which takes its roots in the
work by H. Bohnenblust and S. Karlin of the 1950’s. This relation allows us to say
that a spear operator is geometrically unitary in the strongest possible form. These
concepts provide also a natural motivation for the study of spear operators.

Let us comment that, as we will see here, the extension to general operators
produces other important examples of operators which are spear different from the
identity. One of the most striking ones is the Fourier transform on the L1 space on a
locally compact Abelian group; another example is the inclusion of a unital uniform
algebra into the space of bounded continuous functions on its Choquet boundary.

The property of G being a spear operator is formulated in terms of all bounded
linear operators between two Banach spaces, which leads to many difficulties for its
study in abstract spaces, and also in concrete ones. It would be much more conve-
nient to have a geometric definition of this property (in terms of G). Unfortunately a
description of this property in pure geometrical terms has not been discovered until
now, even for the case when G = Id. In order to manage this difficulty for this latter
case, two other Banach space properties were introduced: the alternative Daugavet
Property (aDP in short) and lushness. These two properties are of geometric nature,
the aDP is weaker and lushness is stronger than the fact that the identity is a spear
operator. On the other hand, in some classes of Banach spaces these properties are
equivalent (say, in Asplund spaces, in spaces with the Radon-Nikodým property
and, more generally, in the so called SCD spaces introduced in 2010). The study of
these two properties has been crucial in the development of the theory in the case
when G = Id. So, now naturally appears the task of re-constructing the theory of
the aDP and lushness in such a way that it could be applied to spear operators. The
definition of the aDP is easy to explain: we just require the equation (SPE) to be
satisfied by rank-one operators, and so it can be written in terms of G and the ge-
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ometry of the domain and range spaces. On the other hand, the definition of a lush
operator is more tricky: a norm-one operator G : X −→ Y is lush if for every ε > 0,
every x0 ∈ X with ‖x0‖6 1, and every y ∈Y with ‖y‖= 1, there is a subset F of the
unit ball of X such that the distance of x0 to the absolutely closed convex hull of F is
not bigger than ε and that ‖Gx+y‖> 2−ε for every x which belongs to the convex
hull of F . Lush operators are spear operators and spear operators (trivially) have the
aDP. We will study these three properties for general operators here. On this way,
we not only transfer the known results to the new setting, but in fact do much more.
Namely, we introduce a unified approach to a huge number of previously known
results, substantially simplify the system of notations and, in many cases, present
the general results for operators G in a more clear way than it was done earlier for
the identity operator. To do so it has been crucial to study the concepts of spear set
and target operator which are newly introduced in this book. Another very important
concept for us is the one of SCD set. A bounded subset A of a Banach space is said
to be slicely countably determined (SCD in short) if there is a sequence {Sn : n∈N}
of slices of A such that if B intersects all the Sn’s, then the closed convex hull of B
contains A. Separable Radon-Nikodým bounded convex sets and separable bounded
convex sets not containing `1-sequences, are the basic examples of SCD sets. One
of the main utilities for us of SCD sets is that an aDP operator for which the unit ball
of its domain is SCD is actually a lush operator and, in particular, a spear operator.
Let us also mention that the aDP and lushness are separably determined properties,
while we do not know whether the concept of spear operator is. This separable de-
termination allows us to use the full power of the theory of SCD sets and operators,
a task which is crucial in the development of the subject. In particular, it allows to
show that an operator G : X −→ Y which has the aDP is actually lush whenever X
has the Radon-Nikodým property or X does not contain copies of `1.

Another motivation to study spear operators between different spaces was the
potential applicability of the extended theory to the study of non-linear Lipschitz
spears. Namely, the standard technique of Lipschitz-free spaces reduces equation
(aDE) for a non-linear Lipschitz map T : X −→ X to an analogous equation for the
linearization of T , but this linearization acts from the Lipschitz-free space F(X) to
X . Hence, in order to use this technique, we are in need of studying equation (SPE)
instead of (aDE), that is, to study spear operators between two different spaces.

Outline of the book

The first chapter contains an overview of the known results for the identity, that is,
about Banach spaces with numerical index 1, and it also contains the notation and
terminology we will need along the book in section 1.1. The concepts and main
results on numerical ranges of operators and numerical index of Banach spaces are
compiled in section 1.2; moreover, we also present there the concepts of numerical
ranges with respect to an operator (intrinsic and approximate spatial) and their re-
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lationship with spear operators, Daugavet centers, and the aDP. We next expose the
properties which are stronger than the numerical index 1 and which are related to the
extremal structure of the unit ball (section 1.3), the Daugavet property and the al-
ternative Daugavet property (section 1.4), and lush spaces (section 1.5). The section
which is most important for the rest of the book is the one devoted to slicely count-
ably determined Banach spaces (section 1.6). Here, the concepts, the examples, the
main results, and also the applications for Banach spaces with numerical index 1
are presented; the ideas presented here will be used profusely along the book. We
finish the chapter with a pair of diagrams which present the relationship between
the concepts presented in the chapter.

In chapter 2 we recall the concept of spear vector and introduce the new concept
of spear set. These concepts are used here as “leitmotiv” to give a unified presenta-
tion of the concepts of spear operator, lush operator, alternative Daugavet property,
and other notions that we will introduce here for operators. We collect some proper-
ties of spear sets and vectors, together with some (easy) examples of spear vectors.

Chapter 3 includes the main definitions of the manuscript for operators: spear-
ness, the alternative Daugavet property, and lushness. We start presenting some
preliminary results and easy examples of spear operators in section 3.1. Next, in
section 3.2 we study bounded linear operators G : X −→Y with the alternative Dau-
gavet Property (aDP). We give several characterizations of them (some of them in
terms of spear sets) and prove that this is a separably determined property. Sec-
tion 3.3 starts with the definition of target operator for G. This is a property for
operators T : X −→ Y ensuring that there is a modulus-one scalar ω such that
‖G+ω T‖ = 1+ ‖T‖. Interestingly, if G has the aDP and the operator T is SCD,
then T is a target for G, and this will be frequently used to deduce important results.
Our new concept of target operator naturally plays an analogous role that the one
played by strong Daugavet operators in the study of the Daugavet property and in
the study of Daugavet centers. Let us say that even for the case G= IdX , this concept
is new and provides with non-trivial new results. We characterize target operators
for a given operator G, show that this property is separably determined, and prove
that if G has the aDP, then every operator whose restriction to separable subspaces
is SCD is a target for G. In section 3.4, we introduce the notion of lush operator,
which generalizes the concept of lush space. This generalization is closely con-
nected with target operators from the previous section, which, on the one hand, re-
duces some results about lush spaces to results from the previous section, and on the
other hand, gives more motivation for the study of target operators. We give several
characterizations of lush operators, prove that this property is separably determined,
show that the aDP and lushness are equivalent when every separable subspace of
the domain space is SCD (so, for instance, when the domain is Asplund, has the
Radon-Nikodým Property, or does not contain copies of `1), and present some suffi-
cient conditions for lushness which will be used in the chapter about examples and
applications. Besides, we prove that lush operators with separable domain fulfill a
stronger version of lushness which has to do with spear functionals.
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Chapter 4 is devoted to present some examples in classical Banach spaces.
Among other results, we show that the Fourier transform is lush, we characterize
operators from L1(µ) spaces which have the aDP, and we study lushness, spearness
and the aDP for operators which arrive to spaces of continuous functions. In partic-
ular, we show that every uniform algebra isometrically embeds by a lush operator
into the space of bounded continuous functions on a normal Hausdorff topological
space (for unital algebras, this space is just its Choquet boundary). Also, we present
here a family of spear operators which are not lush.

Next, we devote chapter 5 to provide further results on our properties. We char-
acterize lush operators when the domain space has the Radon-Nikodým Property
or the codomain space is Asplund, and we get better results when the domain or
the codomain is finite-dimensional or when the operator has rank-one. Further, we
study the behaviour of lushness, spearness and the aDP with respect to the oper-
ation of taking adjoint operators; in particular, we show that these properties pass
from an operator to its adjoint if the domain has the Radon-Nikodým Property or
the codomain is M-embedded; we also show that the aDP and spearness pass from
an operator to its adjoint when the codomain is L-embedded.

In chapter 6 we provide with some isomorphic and isometric consequences of the
properties as, among others, that the dual of the domain of an operator with the aDP
and infinite rank contains `1 in the real case, and that lush operators always attain
their norm, a property which is not shared by aDP operators. Besides, many results
showing that the aDP, spearness and lushness do not combine well with rotundity or
smoothness properties are also presented.

We study Lipschitz spear operators in chapter 7. These are just the spear vec-
tors of the space of Lipschitz operators between two Banach spaces endowed with
the Lipschitz norm. The main result here is that every (linear) lush operator is a
Lipschitz spear operator, a result which can be applied, for instance, to the Fourier
transform. We also provide with analogous results for aDP operators and for Dau-
gavet centers.

A collection of stability results for our properties is given in chapter 8. We include
results for various operations like absolute sums, vector-valued function spaces, and
ultraproducts. The results we got are, in most cases, extensions of previously known
results for the case of the identity, but some results are new even in this case.

Finally, we complete the book with a collection of open problems in chapter 9.
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Chapter 1

Historical introduction: a walk on the results for
Banach spaces with numerical index 1

Maybe every Functional Analysis course contains the famous formula

‖T‖= sup{|〈T x,x〉| : x ∈ H, ‖x‖= 1} (1.1)

for the norm of a selfadjoint operator T in a Hilbert space H, which is one of the
cornerstones of selfadjoint operators theory. In general, for non-selfadjoint operators
the above formula is no longer true, but the right hand side of (1.1) still makes
sense and is called the numerical radius v(T ) of T . In complex Hilbert spaces the
following inequality [51, Page 114] holds true for every T ∈ L(H)

1
2
‖T‖6 v(T )6 ‖T‖,

which means, in particular, that the numerical radius is an equivalent norm on the
space L(H) of operators.

There is a natural way to extend the concept of numerical radius to operators on
an arbitrary Banach space X using the action of a functional on an element instead
of the inner product: for a bounded linear operator T : X −→ X , its numerical radius
is

v(T ) := sup{|x∗(T x)| : x ∈ X , x∗ ∈ X∗, ‖x‖= ‖x∗‖= x∗(x) = 1}. (1.2)

Surprisingly, in some important Banach spaces X (like C(K) or L1(µ)) one has
v(T ) = ‖T‖ for ALL bounded linear operators T : X −→ X so, in some sense, in
these spaces every operator behaves like a selfadjoint one. Such spaces of numerical
index 1 can be characterized equivalently [38] as those spaces X where for every
bounded linear operator T : X −→ X there is a modulus-one scalar ω such that

‖ Id+ω T‖= 1+‖T‖. (1.3)

1



2 1 Historical introduction

There is a rich and actively developing theory devoted to numerical index 1
spaces and their interplay with two other related classes of Banach spaces: spaces
with the alternative Daugavet property and lush spaces.

In this book we extend and rebuild this theory on the basis of the recently intro-
duced concept of spear operator [7]: a norm-one linear operator G : X −→Y satisfy-
ing that for every other bounded linear operator T : X −→Y , there is a modulus-one
scalar ω such that the norm equality

‖G+ω T‖= 1+‖T‖

holds true.

The current introductory chapter is addressed to present the main results on Ba-
nach spaces with numerical index 1 using a somehow historical perspective. After
giving the notation and terminology that we will use all along the book, we present
the definitions and main results about numerical ranges, numerical radius, and nu-
merical indices; the main geometrical properties implying numerical index 1 which
have to do with the extremal estructure of the unit ball, the Daugavet property and
the alternative Daugavet property, and lush spaces. Finally, we present the concepts
and main examples of slicely countably determined (SCD) sets, spaces, and op-
erators and their relationship with numerical index 1 spaces. We finish with two
diagrams relating the notions presented in the chapter. Some proofs are included to
give the reader the flavour of how to use the involved properties.

We think that this chapter will help to put the reader in the perspective of how
is the situation for Banach spaces with numerical index 1 for a better understanding
of the general theory of spear operators. Nevertheless, the results given here are
not needed in the rest of the book with the only exceptions of the notation and
terminology (section 1.1) and of the content of section 1.6 about SCD sets, spaces
and operators, since these concepts will be crucial in the study of the relationship
between spearness, lushness, and the aDP.

1.1 Notation and terminology

We first present the notation which is standard and next some new notation and
terminology that is important for the main part of the book.

Standard notation and terminology

By K we denote the scalar field (R or C), and we use the standard notation
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T := {ω ∈K : |ω|= 1}

for its unit sphere. We use the notation Re(·) to denote the real part function, which
is nothing more than the identity when we are dealing with real numbers.

We use the letters X , Y , Z for Banach spaces over K and by subspace we always
mean closed subspace. In some cases, we have to distinguish between the real and
the complex case, but for most results this difference is insignificant. The closed
unit ball and unit sphere of X are denoted respectively by BX and SX . We denote
the Banach space of all bounded linear operators from X to Y by L(X ,Y ), and write
L(X) for L(X ,X). The identity operator is denoted by Id, or IdX if it is necessary to
precise the space. The dual space of X is denoted by X∗, and JX : X −→ X∗∗ denotes
the natural isometric inclusion of X into its bidual X∗∗.

For a subset A⊂ X and for x ∈ X we write

TA := {ωa : ω ∈ T, a ∈ A} and Tx := {ωx : ω ∈ T}.

A subset A of X is said to be rounded if TA = A.

Given A ⊂ X , we denote by convA or conv(A) the convex hull of A, by conv A
or conv(A) the closed convex hull, by aconvA or aconv(A) its absolutely convex
hull, i.e. aconv(A) = conv(TA), and by aconv(A) the absolutely closed convex hull
of A. We say that A ⊂ BX is norming for Z ⊂ X∗ if ‖ f‖ = supx∈A | f (x)| for every
f ∈ Z or, equivalently, BX = aconvσ(X ,Z)(A) where σ(X ,Z) is the topology on X of
the pointwise convergence for the elements of Z. For x∗0 ∈ X∗ and y0 ∈ Y , we write
x∗0⊗ y0 to denote the rank-one operator given by [x∗0⊗ y0](x) = x∗0(x)y0 for every
x ∈ X .

We write X = Y ⊕1 Z and X = Y ⊕∞ Z to mean that X is, respectively, the `1-
sum and the `∞-sum of Y and Z, i.e. every element x ∈ X has unique representation
x = y+ z with y ∈ Y , z ∈ Z, and ‖x‖ = ‖y‖+ ‖z‖ if we speak about `1-sum, and
‖x‖ = max{‖y‖,‖z‖} if we speak about `∞-sum. In the first case, we say that Y is
an L-summand of X ; in the second case, we say that Y is an M-summand of X .

Let A⊂ X be a non-empty subset. A point x∈ A is said to be extreme if it does not
belong to the relative interior of any non-void straight line segment whose endpoints
are in A. In other words, for every u,v ∈ A and 0 < λ < 1, if x = λu+(1−λ )v, then
u = v = x. We denote by ext(A) (or extA) the set of extreme points of A.

A slice of A is a not empty part of A that is cut out by a hyperplane. Given x∗ ∈ X∗

and α > 0, denote the corresponding slice as

Slice(A,x∗,α) :=
{

x ∈ A : Rex∗(x)> supA
(
Rex∗

)
−α

}
.

A face of A is a (non-empty) subset of the form

Face(A,x∗) :=
{

x ∈ A : Rex∗(x) = supA
(
Rex∗

)}
,
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where x∗ ∈ X∗ is such that its real part attains its supremum on A. In Figure 1.1, F
is face and S is a slice.

If A⊂ X∗ and the functional defining the slice or the face is taken in the predual,
i.e. x∗ = x ∈ X ≡ JX (X) ⊂ X∗∗, then Slice(A,x,α) is called a w∗-slice of A and
Face(A,x) is called a w∗-face of A.

A point x ∈ BX is said to be strongly extreme if given a sequence (yn)n∈N in X
such that ‖x± yn‖ −→ 1, we have that limyn = 0.

A point x∈ A is denting if it belongs to slices of A of arbitrarily small diameter. If
X is a dual space and the corresponding small slices can be chosen to be w∗-slices,
then the point is called w∗-denting. Observe that denting points are strongly extreme
points, strongly extreme points are extreme points, and none of the implications
reverses in general (see [77], for instance), although they are obviously the same
notion if A is norm compact. A typical example of extreme point that is not denting
is 1[0,1] ∈ BC[0,1] (here and in the sequel 1A stays, as usual, for the characteristic
function of a set A). In Figure 1.1, a is a denting point and b is not.

S

F

a

b

Fig. 1.1 Slice, face, denting, and not denting points

We write dent(A) to denote the set of denting points of A. We say that A is
dentable (in the sense of Ghoussoub-Godefroy-Maurey-Schachermayer [45, §III])
if A = conv

(
dentA

)
[45, Proposition III.3]. The concept of Radon-Nikodým set was

originally defined in terms of the validity of the Radon-Nikodým theorem for vector
measures, but we will use the following equivalent definition (see [11, §5] or [20,
§2]): a closed convex set A ⊂ X possesses the Radon-Nikodým property (RNP in
short), if all its closed convex bounded subsets are dentable. In particular, the whole
space X also may have this property. Typical examples of spaces with the RNP are
reflexive spaces and separable dual spaces (in particular, `1), and typical examples
of spaces that do not enjoy this property are c0 and L1[0,1].

We will mention also the so-called Asplund property, a concept related to differ-
entiability of convex continuous functions, which can be equivalently reformulated
in terms of separability and duality [20, §5]. A separable closed convex bounded
subset A of a Banach space X has the Asplund property if and only if the semi-
normed space (X∗,ρA) is separable, where
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ρA(x∗) = sup{|x∗(a)| : a ∈ A} (x∗ ∈ X∗).

A Banach space X is an Asplund space if for every separable subspace Y ⊂ X the
dual space Y ∗ is separable. X is an Asplund space if and only if X∗ has the Radon-
Nikodým property. Of course, separable closed convex bounded subsets of Asplund
spaces have the Asplund property.

Recall that a Banach space X is said to be strictly convex if extBX = SX , and
smooth if the mapping x 7−→ ‖x‖ is Gâteaux differentiable at every point of X \{0}
(equivalently, for each 0 6= x ∈ X there is a unique x∗ ∈ SX∗ with x∗(x) = ‖x‖). If
moreover, the mapping x 7−→ ‖x‖ is Fréchet differentiable at every point of X \{0},
then X is said to be Fréchet smooth.

We will mention many times the expression operator that do not fix copies of
some special Banach space E, say operator that do not fix copies of `1, or of c0, etc.
All this terminology comes from the following definition: T ∈ L(X ,Y ) fixes a copy
of a Banach space E, if there is a subspace Z ⊂ X such that Z is isomorphic to E
and the restriction of T to Z is an isomorphism between Z and T (Z).

Finally, we recall some common notation for (vector-valued) function spaces.
Given a Hausdorff topological space Ω and a Banach space X , we write Cb(Ω ,X) to
denote the Banach space of all bounded continuous functions from Ω to X , endowed
with the supremum norm. In the case when X =K, we just write Cb(Ω)≡Cb(Ω ,K).
If K is a compact Hausdorff topological space and X is a Banach space, we write
C(K,X) = Cb(K,X) which is the Banach space of all continuous functions from
K into X endowed with the supremum norm, and we just write C(K) = C(K,K).
Given a positive measure space (Ω ,Σ ,µ) and a Banach space X , L∞(µ,X) is the
Banach space of all (clases of) strongly measurable functions from Ω into X which
are essentially bounded, endowed with the essential supremum norm

‖ f‖∞ = inf{c > 0: ‖ f (t)‖X 6 c for a.e. t ∈Ω}

and we just write L∞(µ) = L∞(µ,K). The Banach space of all (clases of) Bochner-
integrable functions from Ω into X , endowed with the integral norm

‖ f‖1 =
∫

Ω

‖ f (t)‖X dµ(t),

is denoted by L1(µ,X). We simply write L1(µ) = L1(µ,K). Recall that an element
A ∈ Σ is an atom if µ(A) 6= 0 and for every B ∈ Σ with B⊂ A it holds that µ(B) = 0
or µ(A \B) = 0. We say that µ is atomless if it does not contain atoms, and it is
called purely atomic whether every measurable set B with µ(B) 6= 0 contains an
atom. When µ is the counting measure on a set Γ , then we write `∞(Γ ) = L∞(µ)
and `1(Γ ) = L1(µ). If moreover Γ is a finite set of n-elements, we simply denote
these spaces as `n

∞ and `n
1 respectively.
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Specific notation and terminology

For a subset A⊂ X we write ‖A‖ := sup{‖x‖ : x ∈ A} if A is bounded and ‖A‖= ∞

if it is unbounded. Observe that this function has the following properties:

‖λA‖= |λ |‖A‖, ‖A+B‖6 ‖A−C‖+‖C+B‖, ‖A−B‖>
∣∣‖A−C‖−‖B−C‖

∣∣,
for every λ ∈ K and every bounded subsets A, B, C of X . The diameter of a
(bounded) set A⊂ X can be calculated as diam(A) = ‖A−A‖. We will also denote

‖F± x‖ := max{‖F + x‖, ‖F− x‖}.

Given B⊂ BX , F ⊂ BX∗ and ε > 0, we define

gSlice(B,F,ε) :=
{

x ∈ B : sup
x∗∈F

Rex∗(x)> 1− ε

}
and we call it a generalized slice of B (observe that it is a union of slices when
non-empty). We also define

gFace(B,F) :=
{

x ∈ B : sup
x∗∈F

Rex∗(x) = 1
}
,

and call it a generalized face of B. If F = {z∗}, then we just write

gSlice(B,F,ε) = gSlice(B,z∗,ε)

(which is a slice of B when non-empty). The following easy results about general-
ized slices will be frequently used.

Remark. Let X be a Banach space, let B ⊂ BX be a rounded set, let A ⊂ BX∗ be a
set, and let z∗ ∈ SX∗ . Then:

(a) aconv
(
gSlice(B,A,ε)

)
= conv

(
gSlice(B,TA,ε)

)
;

(b) if Rez∗ attains its supremum on B, then

gFace(B,Tz∗) =
{

x ∈ B : |z∗(x)|= 1
}
= TFace(B,z∗).

We will introduce more notation on the way.

1.2 Numerical range, numerical radius, and numerical index

Our aim here is to give a short account on numerical ranges which will be very
useful for the motivation and better understanding of the concepts of spear vector
and spear operator.
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The numerical range of a linear operator on a normed linear space is a subset of
the scalar field, constructed in such a way that it is related both to the algebraic and
the norm structures of the operator. For an operator on a Hilbert space, the numerical
range has a very natural definition which was introduced, for finite-dimensional
spaces, by O. Toeplitz in 1918 [118] as follows. Let H denote a Hilbert space with
scalar product 〈,〉. The numerical range of T ∈ L(H) is the set W (T ) of scalars
defined by

W (T ) = {〈T x,x〉 : x ∈ SH}.

Observe that the numerical range of an operator is the image of SH by the action of
the quadratic form associated to the operator and, for this, it is sometimes called the
field of values of the operator.

An excellent account of the Hilbert space numerical range and its properties
can be found in a book of P. Halmos [51] about Hilbert spaces, and in a book of
K. Gustafson and D. Rao [50] about numerical range.

An extension of the concept of numerical range to elements of unital Banach al-
gebras was used in 1955 by H. Bohnenblust and S. Karlin [13] to relate geometrical
and algebraic properties of the unit, and in the development of Vidav’s characteriza-
tion of C∗-algebras. Later on, in the 1960’s, F. Bauer and G. Lumer gave independent
but related extensions of Toeplitz’s numerical range to bounded linear operators on
arbitrary Banach spaces, which do not use the algebraic structure of the space of
operators. All these notions are essential to define and study when an operator on
a general Banach space is hermitian, skew-hermitian, dissipative, etc., and in the
study and classification of operator algebras (see the fundamental F. Bonsall and
J. Duncan books [15, 16], the survey paper [67], and the sections 2.1 and 2.9 of the
recent book [23]).

In the 1985 paper [101], the following abstract notion of numerical range, which
had already appeared implicitly in the aforementioned 1950’s paper [13], was de-
veloped. We refer to sections 2.1 and 2.9 of the very recent book [23] for more
information and background.

Given a Banach space Z and a distinguished element u∈ SZ , we define the numer-
ical range and the numerical radius of z ∈ Z with respect to (Z,u) as, respectively,

V (Z,u,z) :=
{

z∗(z) : z∗ ∈ Face(SZ∗ ,u)
}
, v(Z,u,z) := max

{
|λ | : λ ∈V (Z,u,z)

}
.

Then, the numerical index of (X ,u) is

N(X ,u) := inf
{

v(Z,u,z) : z ∈ SZ
}
= max

{
k > 0: k‖z‖6 v(Z,u,z) ∀z ∈ Z

}
.

With this notation, u ∈ SZ is a vertex if v(Z,u,z) 6= 0 for every z ∈ Z \ {0} (that
is, Face(SZ∗ ,u) separates the points of Z), u ∈ SZ is a geometrically unitary ele-
ment if the linear hull of Face(SZ∗ ,u) equals the whole space Z∗ or, equivalently, if
N(X ,u) > 0 (see e.g. [23, Theorem 2.1.17]). By Definition 2.1, u ∈ SZ is a spear
vector if ‖u+Tz‖ = 1+ ‖z‖ for every z ∈ Z. By the Hahn-Banach Theorem, for
z ∈ Z we have that
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supReV (Z,u,z) = ‖z‖ if and only if ‖u+ z‖= 1+‖z‖ (1.4)

Therefore,

v(Z,u,z) = ‖z‖ if and only if ∃ω ∈ T with ‖u+ω z‖= 1+‖z‖. (1.5)

As a consequence,

u is a spear vector ⇐⇒ N(Z,u) = 1. (1.6)

So, spear vectors are geometrically unitary elements (in the strongest possible way!),
geometrically unitary elements are vertices, and vertices are extreme points. None
of these implications reverses (see [23, Section 2.1]). Let us also comment that the
celebrated Bohnenblust-Karlin Theorem [13] states that algebraic unitary elements
of a unital complex Banach algebra (i.e. invertible elements u such that u and u−1

have norm one) are geometrically unitary, see [108] for a detailed account on this.
Finally, let us mention that the concept of spear vector appeared, without name, in
the paper [80] by Å. Lima about intersection properties of balls. It had also appeared
tangentially in the monograph [81] by J. Lindenstrauss about extension of compact
operators.

We then have an easy way to define the numerical range of an operator: given a
Banach space X and T ∈ L(X), the algebra numerical range or intrinsic numerical
range of T is just

V (T ) :=V (L(X), Id,T ).

As in order to study this concept we have to deal with the (wild) dual of L(X),
there are other concepts of numerical range which simplify such a task. The (Bauer)
spatial numerical range of T is defined as

W (T ) :=
⋃

x∈SX
V (X ,x,T x) =

{
x∗(T x) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1

}
.

It is a classical result that the two numerical ranges are related as follows:

conv
(
W (T )

)
=V (L(X), Id,T ) (1.7)

(see e.g. [23, Proposition 2.1.31]), so they produce the same numerical radius of
operators. Namely, the numerical radius of T ∈ L(X) can be computed as

v(T ) := sup{|λ | : λ ∈V (T )}= sup{|λ | : λ ∈W (T )}= v(L(X), Id,T ),

which in its turn equals to the quantity given in the basic definition (1.2). It is clear
that v is a seminorm on L(X), and v(T ) 6 ‖T‖ for every T ∈ L(X). Quite often, v
is actually a norm and it is equivalent to the operator norm ‖ · ‖. Thus it is natural
to consider the so called numerical index of the space X , namely the constant n(X)
defined by

n(X) := inf{v(T ) : T ∈ SL(X)}= N(L(X), Id).
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Equivalently, n(X) is the greatest constant k > 0 such that k‖T‖ 6 v(T ) for every
T ∈ L(X). Note that 0 6 n(X) 6 1, and n(X) > 0 if and only if v and ‖ · ‖ are
equivalent norms (i.e. Id is geometrically unitary). Thanks to (1.6) and (1.7), the
following result holds.

Proposition 1.1. Let X be a Banach space. Then, n(X) = 1 if and only if Id is a
spear element of L(X) (that is, ‖ Id+TT‖= 1+‖T‖ for every T ∈ L(X)).

The concept of numerical index of a Banach space was first suggested by
G. Lumer in a lecture to the North British Functional Analysis Seminar in 1968.
At that time, it was known that in a complex Hilbert space (of dimension greater
than 1) ‖T‖ 6 2v(T ) for all T ∈ L(H). The real case is different. In a real Hilbert
space H with dimension greater than 1 it is easy to build a norm-one operator T
such that T x is orthogonal to x for every x ∈ SH , so W (T ) = {0}. In other words,
for a Hilbert space H of dimension greater than 1, n(H) = 1/2 if H is complex, and
n(H) = 0 if it is real. G. Lumer [87] proved that ‖T‖ 6 4v(T ) for every bounded
linear operator T on a complex Banach space X , so n(X) > 1/4, and so, the nu-
merical radius is an equivalent norm in the space of all bounded operators. In 1970,
B. Glickfeld [46] improved this estimate by just writing in terms of the numerical
radius an inequality due to F. Bohnenblust and S. Karlin [13].

Theorem 1.2 ([46, Theorem 1.4]). Let X be a complex Banach space. Then

‖T‖6 e v(T )

for all T ∈ L(X). Equivalently, n(X)> e−1.

Glickfeld also proves in [46] that e−1 is the best possible constant in a strong
sense: there is a complex Banach space X and T ∈ L(X) such that ‖T‖ = 1 and
v(T ) = e−1. Therefore, n(X) = e−1 and the infimum defining n(X) is attained. Fi-
nally, J. Duncan, C. McGregor, J. Pryce, and A. White [38] determined (also in
1970) the range of variation of the numerical index.

Theorem 1.3 ([38, Theorems 3.5 and 3.6]). For every t ∈ [0,1] (resp. t ∈ [e−1,1]),
there is a real (resp. complex) Banach space X such that n(X) = t. Actually, X can
be taken to be two-dimensional.

The somehow surprising appearance of the number e in this world was due to the
use of holomorphic techniques in the proof of the inequality by Bohnenblust and
Karlin (see [13] for details). An elementary and direct proof of Theorem 1.2 can be
found in [110, Proposition 1.3].

Computing the numerical index of concrete spaces may be hard. For instance, the
numerical index of `p for p 6= 1,2,∞ is yet unknown, even though it is known that
it cannot be zero [96]. However, there are some classical spaces whose numerical
indexes have been calculated in the literature. In [38], the authors gave the first
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example of a Banach space such that the norm and the numerical radius coincide for
all operators on it, that is, a space with numerical index 1: C(K) for every compact
Hausdorff topological space K [38, Theorem 2.1]. To find new examples, we can
look at the relation between the numerical indexes of a Banach space and its dual.

It is clear that W (T )⊂W (T ∗) for every bounded linear operator T on a Banach
space X , where T ∗ is the adjoint of T . There is also a result by G. Lumer [87,
Lemma 12] showing that conv W (T ) = conv W (T ∗). Therefore,

v(T ) = v(T ∗)

for every T ∈ L(X). Moreover, by using a refinement of the Bishop-Phelps theorem
which enables to approximate pairs (x,x∗) ∈ SX ×SX∗ with x∗(x) close to 1 by pairs
(y,y∗) ∈ SX ×SX∗ with y∗(y) = 1 (this refinement is called now the Bishop-Phelps-
Bollobás theorem), B. Bollobás [14] proved that, actually, one has that

W (T )⊂W (T ∗)⊂W (T ).

We can now state:

Proposition 1.4 ([38, Proposition 1.3]). The inequality n(X∗)6 n(X) holds true for
every Banach space X.

Back to the examples, [38, Theorem 2.2] gives us two families of Banach spaces
with numerical index 1: L-spaces and M-spaces. Indeed, the dual of an L-space
and the bidual of an M-space are isometric to a space of continuous functions on
some compact Hausdorff topological space, and the above proposition applies. In
particular, every L1(µ) space possesses numerical index 1.

It is natural to ask for the behavior of the numerical index under some operations.
It is shown in [98] that the numerical index of a c0-, `1-, or `∞-sum of Banach spaces
can be computed in the expected way. Given an arbitrary family {Xλ : λ ∈ Λ} of
Banach spaces, let us denote by [⊕λ∈Λ Xλ ]c0

(resp. [⊕λ∈Λ Xλ ]l1 , [⊕λ∈Λ Xλ ]l∞ ) the
c0-sum (resp. `1-sum, `∞-sum) of the family.

Proposition 1.5 ([98, Proposition 1]). Let {Xλ : λ ∈ Λ} be a family of Banach
spaces. Then

n
(
[⊕λ∈Λ Xλ ]c0

)
= n
(
[⊕λ∈Λ Xλ ]l1

)
= n
(
[⊕λ∈Λ Xλ ]l∞

)
= inf

λ

n(Xλ ).

An analogous result is known for spaces of vector-valued functions.

Theorem 1.6 ([98, Theorems 5 and 8] and [100, Theorem 2.3]). Let K be a com-
pact Hausdorff space, and let (Ω ,Σ ,µ) be a σ -finite positive measure space. Then

n(C(K,X)) = n(L1(µ,X)) = n(L∞(µ,X)) = n(X)

for every Banach space X.
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Let us finally mention one further example of a Banach space with numerical
index 1, namely the disk algebra (see [30, Theorem 3.3]). It actually follows from
[124] that all uniform algebras have numerical index 1. We will speak about the
extension of this result to the so-called C-rich subspaces later.

As an application of Proposition 1.5, one can exhibit an example of a real Banach
space X such that the numerical radius is a norm in L(X), but it is not equivalent
to the operator norm, i.e. n(X) = 0 (see [98, Example 2.b]); in other words, the
identity is a vertex of the unit ball of L(X) but it is not geometrically unitary (see
[23, Proposition 2.1.39]).

An useful application of the numerical range of operators is the following char-
acterization of the generator of a uniformly continuous semigroup of isometries of
a real Banach space. We refer to [110, Theorem 1.4] for an elementary proof.

Proposition 1.7. Let X be a real Banach space and let T ∈ L(X). Then, the follow-
ing are equivalent:

(i) v(T ) = 0,
(ii) exp(ρ T ) is a surjective isometry for every ρ ∈ R+, i.e. T is the generator of a

uniformly continuous one-parameter semigroup of isometries.

With this result in mind, the following terminology is understandable. Given a
Banach space X , the group of all surjective isometries on X is called the Lie group
of X and the subspace of all T ∈ L(X) with v(T ) = 0 is called the Lie algebra of X
and its elements are called skew-hermitian operators; the result above can be read
as that the Lie algebra of X is the tangent space to the Lie group of X . See more
details in the already cited paper [110]

1.2.1 Numerical ranges with respect to a given operator

Let now X , Y be Banach spaces and let us deal with numerical ranges with respect
to a fixed operator G ∈ L(X ,Y ) with ‖G‖ = 1. First, the intrinsic numerical range
of T ∈ L(X ,Y ) with respect to G is easy to define: just consider

V (L(X ,Y ),G,T ) =
{

Φ(T ) : Φ ∈ L(X ,Y )∗, ‖Φ‖= Φ(G) = 1
}
,

and so we have the corresponding numerical radius v(L(X ,Y ),G,T ) and numerical
index N(L(X ,Y ),G). Observe that by (1.6), N(L(X ,Y ),G) = 1 if and only if G is
a spear element of L(X ,Y ) (i.e. G is a spear operator: for every T ∈ L(X ,Y ) there
is ω ∈ T such that ‖G+ω T‖ = 1+ ‖T‖). There are two notions which are also
connected to numerical ranges: Daugavet centers [18, 17] and the aDP. An operator
G ∈ L(X ,Y ) is a Daugavet center if

‖G+T‖= 1+‖T‖
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for every rank-one operator T ∈L(X ,Y ). Observe that T satisfies the above equation
if and only if ‖T‖ = supReV (L(X ,Y ),G,T ), see (1.4). An operator G ∈ L(X ,Y )
has the alternative Daugavet property (aDP in short) if for every T ∈ L(X ,Y ) of
rank-one, there is ω ∈ T such that

‖G+ω T‖= 1+‖T‖.

Observe that T satisfies this equality if and only if ‖T‖= v(L(X ,Y ),G,T ), see (1.5).

Let us observe that the definition of intrinsic numerical range forces us to deal
with the dual of L(X ,Y ), which is not a nice task. On the other hand, the possible
extension of the definition of spatial numerical range to this setting has many prob-
lems as, for instance, it is empty if G does not attain its norm; moreover, even in the
case when G is an isometric embedding, it does not always have a good behavior,
see [95]. Very recently, a new notion has appeared [7]: the approximated spatial
numerical range of T ∈ L(X ,Y ) with respect to G is defined by

W̃G(T ) :=
⋂

ε>0

{
y∗(T x) : y∗ ∈ SY ∗ , x ∈ SX , Rey∗(Gx)> 1− ε

}
.

We then have the corresponding numerical radius and numerical index:

vG(T ) = sup
{
|λ | : λ ∈ W̃G(T )

}
, nG(X ,Y ) = inf

{
vG(T ) : T ∈L(X ,Y ), ‖T‖= 1

}
.

The relationship between these two numerical ranges is analogous to the one for the
identity operator [93, Theorem 2.1]:

conv
(
W̃G(T )

)
=V (L(X ,Y ),G,T )

for every norm-one G ∈ L(X ,Y ) and every T ∈ L(X ,Y ). Therefore, both concepts
produce the same numerical radius of operators and so, the same numerical index
of G, the same concepts of vertex and geometrically unitary elements. In particular,
G ∈ L(X ,Y ) is a spear operator if and only if N

(
L(X ,Y ),G

)
= 1 if and only if

nG(X ,Y ) = 1. We will give a direct proof of this fact in Proposition 3.2. Analogous
results for Daugavet centers and the aDP also hold.

1.3 Banach spaces with numerical index 1 in relation to
geometry of the extreme points and the faces of the unit ball

A Banach space X has numerical index 1 if and only if for every T ∈L(X) the norm
of T can be evaluated as

‖T‖= sup{|x∗(T x)| : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}.

The guiding open question on these spaces is the following.
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Problem 1.8. Find necessary and sufficient conditions for a Banach space to have
numerical index 1 which do not involve operators.

It is also natural to ask what are the consequences of this property on the ge-
ometry (or the topology) of a Banach space. For instance, is it possible to find an
infinite-dimensional reflexive Banach space having numerical index 1? Or, which
infinite-dimensional Banach spaces have (or can be re-normed to have) the prop-
erty?

In 1971, C. McGregor [102, Theorem 3.1] gave a characterization of numerical
index 1 spaces in the finite-dimensional case.

Theorem 1.9 ([102, Theorem 3.1]). A finite-dimensional space X satisfies n(X) = 1
if and only if

|x∗(x)|= 1 for every x ∈ ext(BX ) and every x∗ ∈ ext(BX∗) . (1.8)

This implies easily that in the real case all such spaces must be polyhedral, that is,
their unit balls are polyhedrons. Moreover, the only (up to isometry) real space of
dimension 2 with numerical index 1 is `2

1 ≡ `2
∞ whose unit ball is a square but, the

bigger the dimension is, the greater the variety of examples of numerical index 1
spaces is.

It is not clear how to extend McGregor’s result to arbitrary Banach spaces. If
we use literally (1.8) in the infinite-dimensional context, we do not get a sufficient
condition, since the set ext(BX ) may be empty and this does not imply numerical
index 1 (e.g. ext

(
Bc0(`2)

)
= /0 but n(c0(`2))< 1). One could reformulate McGregor’s

condition in a natural way: |x∗∗(x∗)| = 1 for every x∗ ∈ ext(BX∗) and every x∗∗ ∈
ext(BX∗∗). It is easy to show that this condition is sufficient to ensure n(X) = 1.
Unfortunately, this condition is not necessary. Even more, there is a space X having
n(X)= 1 and such that for every x∗ ∈ SX∗ there is an x∗∗ ∈ ext(BX∗∗) with |x∗∗(x∗)|<
1 [64, Remarks 4.2.c], see Example 4.27.

Necessary conditions in the spirit of McGregor’s result were given in 1999 by
G. López, M. Martín, and R. Payá [84]. The key idea was considering denting points
instead of general extreme points.

Proposition 1.10 ([84, Lemma 1]). Let X be a Banach space with numerical in-
dex 1. Then:

(i) |x∗∗(x∗)|= 1 for every x∗∗ ∈ ext(BX∗∗) and every w∗-denting point x∗ ∈ BX∗ .
(ii) |x∗(x)|= 1 for every x∗ ∈ ext(BX∗) and every x ∈ dent(BX ).

Let us comment that, like McGregor original result, the conditions in Proposi-
tion 1.10 are not sufficient in the infinite-dimensional context. Indeed, the space
X = C([0,1], `2) does not have numerical index 1, while BX has no denting points
and there are no w∗-denting points in BX∗ . Actually, all the slices of BX and the
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w∗-slices of BX∗ have diameter 2 (see [71, Lemma 2.2 and Example on p. 858], for
instance).

The above proposition can be combined with a useful sufficient condition for a
real Banach space to contain a subspace isomorphic either to c0 or to `1, which fol-
lows easily from Rosenthal’s `1-Theorem [109] and Fonf’s Theorem on containment
of c0 [41].

Proposition 1.11 ([84, Proposition 2]). Let X be a real Banach space and assume
that there is an infinite set A ⊂ SX such that |x∗(a)| = 1 for every a ∈ A and all
x∗ ∈ ext(BX∗). Then X contains (an isomorphic copy of) c0 or `1.

A proof of this result will be given in Proposition 2.11.j.

The way to use Proposition 1.11 and Lemma 1.10 should be clear: take a real
Banach space with numerical index 1 and infinitely many denting points (or w∗-
denting points in its dual), and you obtain that the Banach space (or the dual)
contains isomorphic copies of c0 or `1. A natural (isomorphic) assumption on an
infinite-dimensional Banach space providing a lot of denting points is the Radon-
Nikodým property. On the other hand, if X is an Asplund space (equivalently X∗ has
the RNP), then BX∗ is the weak-star closed convex hull of its w∗-strongly exposed
(hence w∗-denting) points (see [103]). Therefore, we get:

Theorem 1.12 ([84, Theorem 3]). Let X be an infinite-dimensional real Banach
space with n(X) = 1. If X has the RNP, then X contains `1. If X is an Asplund
space, then X∗ contains `1.

Note that the second part of the above theorem does not follow directly from the
first one, because we require only n(X) = 1 instead of more restrictive assumption
n(X∗) = 1.

Some interesting consequences of the above theorem are obtained by using the
relationship between the RNP, containment of c0 or `1, reflexivity, etc. For in-
stance, an Asplund space cannot contain `1, so if X is a real Asplund space sat-
isfying the RNP, and n(X) = 1, then X is finite-dimensional. As a special case,
a reflexive or quasi-reflexive real Banach space with numerical index 1 must be
finite-dimensional. Actually, if the quotient X∗∗/X is separable, it is known (see
[37, pp. 219]) that X has the RNP and it is an Asplund space. Therefore, if X is an
infinite-dimensional real Banach space with n(X) = 1, then X∗∗/X is non-separable.
All these results can be understood as necessary conditions for a Banach space to
be re-normable with numerical index 1. We emphasize the following.

Corollary 1.13. An infinite-dimensional real Asplund space with the RNP cannot
be re-normed to have numerical index 1.

Unfortunately, it is not known how to extend the above results to the complex
case. There, the knowledge of Banach spaces with numerical index 1 is too poor.
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It even remains to be an open question whether an infinite-dimensional reflexive
complex space may have numerical index 1.

In the remaining part of this section we discuss various sufficient conditions for
a Banach space to have numerical index 1.

The eldest of these properties was introduced in the fifties by O. Hanner [52]:
a real Banach space has the intersection property 3.2 (3.2.I.P. in short) if every
collection of three mutually intersecting closed balls has nonempty intersection. The
3.2.I.P. was systematically studied by J. Lindenstrauss [81] and Å. Lima [79], and
typical examples of spaces with this property are L1(µ) and their isometric preduals.
The fact that an infinite-dimensional real Banach space with the 3.2.I.P. cannot be
reflexive was known to J. Lindenstrauss and R. Phelps in 1968 [82, Corollary 2.4].

Another isometric property, weaker than the 3.2.I.P. but still ensuring numerical
index 1, was introduced by R. Fullerton in 1960 [42]. A real or complex Banach
space is said to be a CL-space if its unit ball is the absolutely convex hull of ev-
ery maximal convex subset of the unit sphere. If the unit ball is merely the closed
absolutely convex hull of every maximal convex subset of the unit sphere, we say
that the space is an almost-CL-space (J. Lindenstrauss [81] and Å. Lima [80]). Both
definitions appeared only for real spaces, but they extend literally to the complex
case. Let us remark that the complex space `1 is an almost-CL-space which is not a
CL-space [99, Proposition 1], but we do not know if such an example exists in the
real case.

Problem 1.14. Is there any real almost-CL-space which is not a CL-space?

In 1990, M. Acosta proved that real CL-spaces have numerical index 1 (see [2]
and [3, Teorema 5.5]). The result was extended to both real and complex almost-CL-
spaces in [88, Proposition 12]. A demonstration of a stronger result can be found in
Proposition 1.40 of Section 1.5.

Proposition 1.15. If X is an almost-CL-space, then n(X) = 1.

In the converse direction, the basic examples of Banach spaces with numeri-
cal index 1 are known to be almost-CL-spaces (see [99] and [16, Theorem 32.9]).
Moreover, all finite-dimensional spaces with numerical index 1 are CL-spaces [80,
Corollary 3.7], and a Banach space with the Radon-Nikodým property and numeri-
cal index 1 is an almost-CL-space [89, Theorem 1]. Nevertheless, there are Banach
spaces with numerical index 1 which are not almost-CL-spaces. Actually, this hap-
pens with the space given in Example 1.42 in Section 1.5 below (see [21, Exam-
ple 3.4]).

Let us also comment that it is easy to show, using Proposition 1.11, that the dual
of every infinite-dimensional real almost-CL-space contains a copy of `1, with no
isomorphic assumption on the space [99, Theorem 5].

To finish this section, we cite a result obtained by S. Reisner in 1991 [107], which
emphasizes the difference between spaces with the 3.2.I.P. and CL-spaces. In 1981,
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A. Hannsen and Å. Lima had given a structure theorem for real finite-dimensional
spaces with the 3.2.I.P. [53]: any such space is obtained from the real line by re-
peated `1- and `∞-sums. That is, it can be constructed in a finite sequence of steps,
using only one type of “brick”, which is the real line, and two “construction tools”,
`1- and `∞-sums. In [107], Reisner proved that nothing similar can be expected for
CL-spaces. He showed that it does not exist a finite set of “bricks” which is suf-
ficient to construct all finite-dimensional real CL-spaces by `1- and `∞-sums (see
[107, Section 3] for details).

For more information and background on CL-spaces and 3.2.I.P. we refer the
interested reader to [6], and to the already mentioned [42, 53, 79, 80, 81, 107]. In
section 1.5 we are going to speak about a some more general sufficient condition –
lushness – which is now the “mainstream” of the numerical index 1 spaces theory.

1.4 Daugavet Property and alternative Daugavet Property: slices
come into play.

In frames of approximation theory, it is often significant whether for a given sub-
space Y of a Banach space X there is a norm-one linear projection P ∈ L(X). It is
usually a good exercise for students to find an example of Y ⊂ X where such a norm-
one projection does not exist. An easy solution is the subspace Y of X = C[0,1],
consisting of functions satisfying the condition f (0) = 0. In 1963, I. Daugavet [31]
discovered the following effect: for every compact operator T ∈L(C[0,1]) the iden-
tity

‖ Id+T‖= 1+‖T‖, (1.9)

called now the Daugavet equation, holds true. The proof can be easily generalized
to perfect compact Hausdorff topological spaces K (K is called perfect if it does not
have isolated points). An evident corollary of this is that every projection on a finite-
codimensional subspace of C[0,1] has at least norm 2. On the other hand, if K is not
perfect, i.e. if K has an isolated point τ , then (1.9) is not true for the following very
simple rank-one operator T ∈ L(C(K)): [T f ](t) =− f (t)1{τ} for t ∈ K, f ∈C(K).

Remark that (1.9) for T implies the same equation for αT for all α > 0 (see
Remark 2.2). This observation enables us to consider only operators of norm 1 in
the demonstration of results like Daugavet’s theorem.

The reader noticed immediately the analogy between (1.9) and the characteriza-
tion (1.3) of operators having numerical index 1. Nevertheless, the theories of the
Daugavet equation and the one of numerical index 1 spaces, were being developed
by different people and independently one from the other. Only at the beginning
of the 21st century, the exchange of ideas and methods between these two theories
started, which enriched the theories enormously.
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Before passing to the connections with numerical index 1 spaces, let us speak
about the development of the Daugavet equation theory. We do not pretend to
present here the complete picture, our goal is to give some historical comments
to explain the relations to general Banach space theory, and to concentrate on those
concepts and results that are of importance for this book.

On the initial stage of this study, a number of authors generalized the Daugavet’s
theorem mainly in two directions: to some other spaces and to wider classes of oper-
ators. For example, C. Foiaş and I. Singer [40] extended the Daugavet’s theorem to
almost diffuse operators in C(K) on perfect compact K, and L. Weis and D. Werner
[123] demonstrated the Daugavet equation for operators on C(K) not fixing a copy
of C[0,1]. The same equation (1.9) holds true for compact operators in L1[0,1],
which was demonstrated first (in a more general setting) by G. Lozanovskii [85] in
1966. In fact, as remarked A. Pełczyński (published in [40] with his permission), the
Daugavet’s type theorem for L1(µ) with atomless µ follows easily from the C(K)
case by a duality argument: the dual space of L1(Ω ,Σ ,µ) is isometric to C(K) for a
very abstract perfect compact K, so (1.9) holds true for adjoint compact operators on
L1(Ω ,Σ ,µ)∗, but since the norm of an operator and the one of its adjoint coincide,
and adjoints of compact operators are again compact, the proof is over.

An important step was done by A. Plichko and M. Popov [105] in 1990 when
they introduced narrow operators in spaces of measurable functions. In the case
of operators defined on L1(µ), the corresponding class of PP-narrow operators is
defined as follows: an operator T ∈ L(L1(µ),X) is said to be PP-narrow, if for
every A ∈ Σ of positive measure and every ε > 0 there is a partition A = B∪C
with µ(B) = µ(C) = 1

2 µ(A) such that ‖T (1B−1C)‖ < ε . They demonstrated that
for every atomless measure µ , all PP-narrow operators T ∈ L(L1(µ)) satisfy (1.9).
This result is applicable, in particular, to operators not fixing copies of L1[0,1].
Much more information and recent developments may be found in the monograph
[106] by M. Popov and B. Randrianantoanina.

Motivated by the above results, V. Kadets and M. Popov [69] introduced the
concept of narrow operator on C[0,1]. This concept is easily extendable to arbitrary
sup-normed spaces Cb(Ω) [27]. Afterwards, this extended definition appeared to be
of high importance for the numerical index theory, so we are going to speak about
it in more detail.

Definition 1.16. Let Ω be a Hausdorff topological space and let X be a Banach
space. An operator T ∈L(Cb(Ω),X) is said to be C-narrow whether for every ε > 0
and every non-void open subset U ⊂ Ω there is f ∈ SCb(Ω) with f (Ω) ⊂ [0,1],
supp( f )⊂U and ‖T f‖< ε .

Remark that in the original definition, an operator T ∈ L(C[0,1],X) is said to be
C-narrow if for every non-void open subset U ⊂ [0,1] the restriction of T on the
subspace of those functions with support inside U is not bounded from below, that
is, for every ε > 0 and every non-void open subset U ⊂ [0,1] there is a function
f ∈ SC[0,1] with supp( f )⊂U and ‖T f‖< ε . This apparently weaker definition turns
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out to be equivalent to the one given above, as the next useful lemma demonstrates
that the hypothesis f (Ω) ⊂ [0,1] in Definition 1.16 can be omitted when the topo-
logical space Ω is normal. It was proved originally in [69] for C[0,1] and for real
scalars. The demonstration below follows the same idea but, formally speaking, it
is extracted from [12], where the result is proved in the setting of spaces C(K,Y ) of
vector-valued continuous functions on a compact K.

Lemma 1.17. Let Ω be a normal Hausdorff topological space. Then, an operator
T ∈ L(Cb(Ω),X) is C-narrow whether for every ε > 0 and every non-void open
subset U ⊂Ω there is g ∈ SCb(Ω) with supp(g)⊂U and ‖T g‖< ε .

Proof. Without loss of generality, we may and will assume that ‖T‖= 1. For every
r > 0 write V (r) = {t ∈ K : |t − 1| < r} to denote the r-neighborhood of 1 in the
scalar field K. Let us fix ε > 0 and an open set U in Ω . Using the hypothesis,
we find a function f1 ∈ SCb(Ω) with supp( f1) ⊂U and ‖T f1‖ < ε

2 . Multiplying, if
necessary, f1 by a modulus-one scalar, we may assume that there is a point t1 ∈U
where f1(t1) is real and f (t1) > 1

2 . Put U1 = U and define U2 = f−1
1 (V ( 1

2 )). Then,
t1 ∈ U2, so U2 6= /0 and we may apply the hypothesis to U2 and ε

2 and obtain, as
above, a t2 ∈ U2 and a function f2 ∈ SCb(Ω) with supp( f2) ⊂ U2, f2(t2) > 3

4 , and
‖T f2‖ < ε

2 . We denote U3 = f−1
2 (V ( 1

4 )) and continue the process. In the jth step,
we get a non-empty open set U j = f−1

j−1(V ( 1
2 j−1 ))⊂U j−1 and apply the hypothesis

to obtain a function f j corresponding to U j and ε

2 .

Choose n ∈ N such that 4
n < ε

2 and put f = 1
n ( f1 + f2 + · · ·+ fn). Now, us-

ing Urysohn’s Lemma, we may find a continuous function g j : Ω −→ [0,1] which
equals 1 on U j+1 and equals 0 outside of U j. Writing g = 1

n (g1+ · · ·+gn), we obtain
a positive function g∈ SCb(Ω) with supp(g)⊂U . We claim that ‖ f −g‖< ε

2 . Indeed,
by our construction, if t ∈Ω \U1, then |[ f −g](t)|= 0. For t ∈Un+1, we have

|[ f −g](t)|=
∣∣∣1
n

[
( f1−g1)+ · · ·+( fn−gn)

]
(t)
∣∣∣

=
∣∣∣1
n

(
( f1(t)−1)+ · · ·+( fn(t)−1)

)∣∣∣
6

1
n

(1
2
+ · · ·+ 1

2n

)
<

1
n
<

ε

2
.

Finally, if t ∈Uk \Uk+1 for k ∈ {1, . . . ,n}, then

|[ f −g](t)|=
∣∣∣1
n

[
( f1−g1)+ · · ·+( fn−gn)

]
(t)
∣∣∣

=
∣∣∣1
n

(
( f1(t)−1)+ · · ·+( fk−1(t)−1)+( fk(t)−gk(t))+gk+1(t)

)∣∣∣
6

1
n

(1
2
+ · · ·+ 1

2k−1 +2+1
)
<

4
n
<

ε

2
,

which demonstrates our claim. Moreover,
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‖T f‖6 1
n
(‖T f1‖+‖T f2‖+ · · ·+‖T fn‖)<

ε

2
.

Thus ‖T (g)‖= ‖T (g− f )‖+‖T (g)‖< ε

2 +
ε

2 = ε and we are done. ut

A typical example of C-narrow operator is an operator on C[0,1] which does not
fix copies of C[0,1], but the class of C-narrow operators on C[0,1] contains also
some operators fixing copies of C[0,1].

We state now the expected result:

Theorem 1.18 ([69]). Let K be a perfect compact, then every C-narrow operator
T ∈ L(C(K)) satisfies the Daugavet equation.

The proof of this result will be given in Proposition 1.30.

The concept of C-rich subspace of C[0,1] was introduced in the same paper [69].
In the sequel we will need the analogous definition for C(K) spaces and for Cb(Ω)
spaces.

Definition 1.19. Let Ω be a Hausdorff topological space. A subspace X of Cb(Ω)
is said to be C-rich, if the quotient map q : Cb(Ω)−→Cb(Ω)/X is C-narrow.

Observe that if Ω is completely regular, then Cb(Ω) is C-rich in itself.

It is known [69] that in C-rich subspaces of C[0,1] the Daugavet equation is valid
for operators not fixing copies of C[0,1].

Using the definition of C-narrow operator (and Lemma 1.17) one can reformulate
C-richness of a subspace X ⊂Cb(Ω) without using the notion of quotient space:

Proposition 1.20. Let Ω be a Hausdorff topological space. A subspace X of Cb(Ω)
is C-rich if and only if for every non-void open subset U ⊂ Ω and for every ε > 0
there are f ∈ SX and g ∈ SCb(Ω) with g(Ω)⊂ [0,1], supp(g)⊂U and ‖ f −g‖< ε .
Moreover, the hypothesis g(Ω)⊂ [0,1] can be omitted if Ω is normal (in particular,
if it is compact).

It is easy to get examples from the above proposition. We need some notation:
given a Hausdorff compact topological space K and a closed subset L of K, we write
C0(K||L) for the subspace of C(K) consisting of those continuous functions on K
which are zero on L. If K \L is dense, then Urysohn’s Lemma gives that C0(K||L)
and every subspace of C(K) containing it are C-rich.

Corollary 1.21. Let K be a compact Hausdorff topological space and let L be a
closed subspace of K such that K \ L is dense. Then, every subspace X of C(K)
containing C0(K‖L) is C-rich.

The following definition will be useful in the next section. Given a compact Haus-
dorff topological space K, a nowhere-dense closed subset L of K, and a subspace
E ⊂C(L), we write
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CE(K‖L) := { f ∈C(K) : f |L ∈ E}.

By the corollary above, all these spaces are C-rich in C(K).

The spaces C[0,1] and L1[0,1] appear in the Banach space theory in many in-
stances when an example of a space with some “bad” property is needed. For in-
stance, both of them are not isomorphic to a dual space. In 1992, P. Wojtaszczyk
discovered that the validity of the Daugavet equation for rank-one operators is the
common reason for C[0,1] and L1[0,1] to be non-dual (or, to be more precise, to be
spaces without the Radon-Nikodým property).

It was discovered in 1993 [59] that another common feature of C[0,1] and L1[0,1]
– the absence of an unconditional basis – also follows from the Daugavet equation
for compact operators. Let us show this.

Assume that in a Banach space X the Daugavet equation takes place for compact
operators, assume also that X has an unconditional basis (en)n∈N and denote (e∗n)n∈N
the corresponding biorthogonal functionals. Then the identity operator on X can be
represented as the point-wise unconditionally convergent sum of rank-one operators
Tn = e∗n⊗ en:

Id = ∑
n∈N

Tn.

Denote by Fin(N) the set of finite subsets of N. By the well-known properties of
unconditional bases (deduced from properties of unconditionally convergent series
and the Banach-Steinhaus uniform boundedness principle, see, for example, the be-
ginning of the proof of [83, Proposition 1.c.6]), the quantity

α = sup

{∥∥∥∥∑
n∈A

Tn

∥∥∥∥ : A ∈ Fin(N)

}

is finite. Also, whenever B⊂ N, then∥∥∥∥∑
n∈B

Tn

∥∥∥∥6 sup

{∥∥∥∥∑
n∈A

Tn

∥∥∥∥ : A ∈ Fin(N), A⊂ B

}
6 α.

Let ε > 0 and pick A0 ∈ Fin(N) such that ‖∑n∈A0
Tn‖ > α − ε . Then, from our

assumption, we obtain that

0 =

∥∥∥∥∥Id−∑
n∈N

Tn

∥∥∥∥∥>
∥∥∥∥Id− ∑

n∈A0

Tn

∥∥∥∥−∥∥∥∥ ∑
n/∈A0

Tn

∥∥∥∥
(1.9)
= 1+

∥∥∥∥ ∑
n∈A0

Tn

∥∥∥∥−∥∥∥∥ ∑
n/∈A0

Tn

∥∥∥∥> 1+
∥∥∥∥ ∑

n∈A0

Tn

∥∥∥∥−α > 1− ε.

This contradiction completes the proof.
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The isomorphic consequences of the validity of the Daugavet equation for some
“good” class of operators in a given space motivated V. Kadets, R. Shvidkoy,
G. Sirotkin, and D. Werner to introduce in 2000 [71] the following Banach space
property and to launch its study.

Definition 1.22. A Banach space X has the Daugavet property if the Daugavet equa-
tion (1.9) holds true for every rank-one operator T ∈ L(X).

The selection of the class of rank-one operators (instead of, say, compact ones) in
the above definition allows to reformulate it in a purely geometrical language.

Theorem 1.23 ([71, Lemma 2.2]). Let X be a Banach space. The following asser-
tions are equivalent:

(i) X has the Daugavet property,
(ii) for every x ∈ SX , for every ε > 0, and for every slice S of the unit ball BX there

is some y ∈ S such that
‖x+ y‖> 2− ε. (1.10)

After this reformulation, the Daugavet property starts to be one more property of
the unit ball, which is a quite traditional type of properties considered in the Banach
space theory. Taking a z ∈ S and applying Theorem 1.23 to x = −z, we get that for
a Banach space X with the Daugavet property, every slice of BX has diameter 2. In
particular, X fails the Radon-Nikodým property, a fact originally due to Wojtaszczyk
[126].

Item (ii) of Theorem 1.23 easily implies the following stronger version:

(iii) For every x ∈ SX , for every ε > 0, and for every slice S1 of the unit ball BX there
is another slice S2 ⊂ S1 such that (1.10) holds true for all y ∈ S2.

Applying this property (iii) step-by-step to the element x1 and the slice S1, then to
x2 and S2, etc., one gets the following.

Proposition 1.24. Let X be a Banach space with the Daugavet property. Then for
every finite subset of A⊂ SX , every slice S of the unit ball BX , and every ε > 0, there
is y ∈ S such that (1.10) holds true for all x ∈ A.

After some play with epsilons and ε-nets, one even gets the following.

Lemma 1.25 ([71, Lemma 2.8]). If X is a Banach space with the Daugavet prop-
erty, then for every finite-dimensional subspace Y of X, every ε > 0 and every slice
S of BX there is another slice S1 ⊂ S of BX such that

‖y+ tx‖> (1− ε0)(‖y‖+ |t|) ∀y ∈ Y, ∀x ∈ S1, ∀t ∈ R. (1.11)

This leads to the presence of a number of subspaces isomorphic to `1 in every
space with the Daugavet property.



22 1 Historical introduction

Proposition 1.26. Let X be a Banach space with the Daugavet property. Then for
every sequence Sn, n = 0,1, . . . of slices of the unit ball BX and every ε > 0, there
are elements xn ∈ Sn such that the sequence (xn)

∞
n=0 is ε-equivalent to the canonical

basis of `1; namely, for every a = (an) ∈ `1

(1− ε)
∞

∑
n=0
|an|6

∥∥∥ ∞

∑
n=0

anxn

∥∥∥6 ∞

∑
n=0
|an|.

Surprisingly, although Definition 1.22 deals only with rank-1 operators, it implies
the validity of the Daugavet equation for much wider classes of operators. Recall,
that T ∈ L(X ,Y ) is called a strong Radon-Nikodým operator, if T (BX ) is a Radon-
Nikodým set. We present the corresponding result with the proof, in order to enable
the reader to feel the flavor of the geometry of slices technique, which will appear
very often in this book.

Theorem 1.27 ([71, Theorem 2.3]). If a Banach space X possesses the Daugavet
property, then the Daugavet equation remains valid for all strong Radon-Nikodým
operators in X, in particular, for all compact and all weakly compact operators.

Proof. Let T ∈ L(X) be a strong Radon-Nikodým operator with ‖T‖ = 1. Then
K = T (BX ) has the RNP and, therefore, coincides with the closed convex hull of its
denting points. So, for every ε > 0 there is a denting point x0 of K with

‖x0‖> sup{‖y‖ : y ∈ K}− ε = 1− ε,

and for some 0 < δ < ε there is a slice S = {y ∈ K : Rey∗(y) > 1− δ} of K con-
taining x0 and having diameter < ε; here y∗ ∈ X∗ and supy∈K Rey∗(y) = 1. Consider
x∗ = T ∗y∗. By construction, ‖x∗‖= 1 and

T (Slice(BX ,x∗,δ )) = {T x : x ∈ BX , Rex∗(x)> 1−δ}
={T x : x ∈ BX , Rey∗(T x)> 1−δ} ⊂ S.

Now, by Theorem 1.23, we may select an element y0 ∈ Slice(BX ,x∗,δ ) such that∥∥y0+x0/‖x0‖
∥∥> 2−ε and hence ‖x0+y0‖> 2−2ε . But Ty0 ∈ S, so ‖Ty0−x0‖<

ε , and we have

‖ Id+T‖> ‖[Id+T ](y0)‖> ‖y0 +Ty0‖> ‖y0 + x0‖− ε > 2−3ε,

as desired. ut

An analogous result for operators not fixing copies of `1 was demonstrated by
R. Shvidkoy [115]; the proof needs an extension of Theorem 1.23 in which weak
open sets instead of slices are considered.

In [72] two more classes of operators related to the Daugavet property were in-
troduced. The definition is a bit technical, but very useful in frames of this theory.
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Definition 1.28. Let X , E be Banach spaces.

(a) An operator T ∈ L(X ,E) is said to be a strong Daugavet operator if for every
two elements x,y ∈ SX and for every ε > 0 there is an element z ∈ SX such that
‖z+ x‖> 2− ε and ‖T z−Ty‖< ε .

(b) An operator T ∈ L(X ,E) is said to be narrow if for every x,y ∈ SX , ε > 0 and
every slice S of the unit ball of X containing y, there is an element z ∈ S such
that ‖x+ z‖> 2− ε and ‖T z−Ty‖< ε .

Every narrow operator is strong Daugavet, and there is an easy connection be-
tween strong Daugavet operators and the Daugavet equation.

Theorem 1.29 ([72, Lemma 3.2]). Let X be a Banach space. If T ∈L(X) is a strong
Daugavet operator, then T satisfies the Daugavet equation.

Proof. We assume without loss of generality that ‖T‖= 1. Given ε ∈ (0,1/2), pick
y ∈ SX such that ‖Ty‖> 1− ε . If x = Ty/‖Ty‖ and z is chosen according to Defini-
tion 1.28, then

2− ε < ‖z+ x‖6 ‖z+Ty‖+ ε 6 ‖z+T z‖+2ε,

hence
‖ Id+T‖> ‖[Id+T ](z)‖= ‖z+T z‖> 2−3ε,

which proves the result. ut

One can guess that narrow operators are related to C-narrow and PP-narrow in-
troduced earlier. As an easy illustration, let us demonstrate the following.

Proposition 1.30. Let E be a Banach space and let Ω be a Hausdorff topological
space. Then, every C-narrow operator T ∈ L(Cb(Ω),E) is a strong Daugavet op-
erator.

Observe that this result, together with Theorem 1.29, provides a proof of Theo-
rem 1.18.

Proof (of Proposition 1.30). Consider two arbitrary functions x,y ∈ Cb(Ω) with
‖x‖= ‖y‖= 1 and fix ε > 0. Our goal is to find z ∈ SCb(Ω) such that

‖z+ x‖> 2− ε and ‖T z−Ty‖< ε.

Remark that the condition z ∈ SCb(Ω) can be relaxed to ‖z‖ 6 1+ ε: if we divide
such a z by its norm, we get what we need with a little bit spoiled ε , which is not
significant.

Denote δ = ε/2. Without loss of generality, we assume that supt∈Ω Rex(t) = 1
(this can be achieved by multiplying x and y by the same modulus-one constant).
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Denote U = (Rex)−1((1−δ ,+∞)). By continuity of y, there is an open subset V ⊂
U and c ∈C such that |c|6 1 and |y(t)−c|< δ for all t ∈V . From the definition of
C-narrow operator, there is a non-negative function g ∈ SCb(Ω) with sup(g)⊂V and
‖T g‖< δ . Consider z = y+(1− c)g. For t ∈Ω \V we have |z(t)|= |y(t)|6 1; for
t ∈V we have

|z(t)|= |y(t)− c+ c+(1− c)g(t)|6 δ + |c+(1− c)g(t)|
= δ + |g(t)+ c(1−g(t))|6 δ +g(t)+(1−g(t))6 1+δ ,

consequently ‖z‖< 1+ ε . Further, ‖T z−Ty‖= |1− c|‖T g‖< 2δ 6 ε , and finally

‖z+ x‖> sup
t∈V

Re
(
x(t)+ z(t)

)
> 1−δ + sup

t∈V
Re
(
y(t)+(1− c)g(t)

)
> 1−2δ + sup

t∈V
Re
(
c+(1− c)g(t)

)
> 2−2δ = 2− ε,

finishing thus the proof. ut

Note that if Ω is a normal space and has no isolated points, then for every
non-void open subset U ⊂ Ω we have that the subspace of all f ∈ Cb(Ω) with
supp( f ) ⊂U is infinite-dimensional. Thus every rank-1 operator on Cb(Ω) is evi-
dently C-narrow, and Proposition 1.30 together with Theorem 1.29 gives a demon-
stration of the Daugavet property of Cb(Ω).

One can say more [72]: for operators on C(K) with perfect K, the classes of
C-narrow and narrow operators coincide, and although for operators on L1(µ) with
atomless measure µ the classes of PP-narrow and narrow operators are not the same,
every PP-narrow operator is narrow in the new sense. Also, all operators not fixing
copies of `1 and strong Radon-Nikodým operators acting from a space with the
Daugavet property are narrow. Finally, let us mention that although the class of
narrow operators is not closed under ordinary sums, the sum of operators not fixing
copies of `1 or of strong Radon-Nikodým operators is again narrow.

Analogously to Definition 1.19, the general concept of rich subspace of a Banach
space X with the Daugavet property comes in the following natural way:

Definition 1.31. A subspace Y of a Banach space X with the Daugavet property is
said to be rich if the quotient map q : X −→ X/Y is narrow.

It is demonstrated in [72] that every rich subspace Y ⊂ X shares the Daugavet
property of X . In particular, every subspace Y ⊂ X of finite codimension in a Banach
space with the Daugavet property X also has the Daugavet property. The following
result demonstrates that the concept of richness is very natural.

Theorem 1.32 ([72, Theorem 5.12]). For subspace Y of a Banach space X with the
Daugavet property, the following conditions are equivalent:

(i) Y is rich.
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(i) Every subspace E ⊂ X containing Y possesses the Daugavet property.

A detailed survey of the development of the Daugavet equation theory until 2001
can be found in [125]. Besides, the Daugavet equation has been deeply studied in
several environments by many mathematicians in the last decades, see the recent
papers [5, 19, 65, 112] and references therein, for instance. We finally would like to
mention that the Daugavet equation (1.9) is, in some sense, the only possible norm-
equality that can be satisfied by all rank-one operators in a Banach space, see [62]
for details.

Let us go to the relationship with Banach spaces with numerical index 1. As we
already mentioned, v(T ) = ‖T‖ if and only the following equality holds

‖ Id+TT‖= 1+‖T‖ (1.12)

(see [97, Lemma 2.3] for an explicit proof). Therefore, it was known since 1970
that every bounded linear operator on C(K) or L1(µ) satisfies (1.12), a fact that was
rediscovered and reproved in some papers from the eighties and nineties as the ones
by Y. Abramovich [1], J. Holub [56], and K. Schmidt [114].

This latest equation was named as the alternative Daugavet equation by M. Martín
and T. Oikhberg in [97], where the following property was introduced.

Definition 1.33. A Banach space X is said to have the alternative Daugavet property
(aDP for short) if every rank-one operator on X satisfies (1.12).

As before, in the above definition it is sufficient to consider operators T of norm
1 (see Remark 2.2).

Let us comment that, contrary to the Daugavet property, the aDP depends upon
the base field (e.g. C has aDP as a complex space but not as a real space). For more
information on the alternative Daugavet property we refer to the already cited paper
[97] and also to [91]. From the former one we take the following list of geometric
characterizations.

Proposition 1.34 ([97, Propositions 2.1 and 2.6]). Let X be a Banach space. Then,
the following assertions are equivalent.

(i) X has the alternative Daugavet property.
(ii) For all x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0, there is some x ∈ SX such that

|x∗0(x)|> 1− ε and ‖x+ x0‖> 2− ε.

(ii∗) For all x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0, there is some x∗ ∈ SX∗ such that

|x∗(x0)|> 1− ε and ‖x∗+ x∗0‖> 2− ε.

(iii) BX = conv
(
T
[
BX \

(
x+(2− ε)BX

)])
for every x ∈ SX and every ε > 0 (see

Figure 1.2 below).
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(iii∗) BX∗ = convw∗
(
T
[
BX∗ \

(
x∗+(2−ε)BX∗

)])
for every x∗ ∈ SX∗ and every ε > 0.

(iv) BX∗⊕∞X∗∗ = convw∗({(x∗,x∗∗) : x∗ ∈ ext(BX∗) , x∗∗ ∈ ext(BX∗∗) , |x∗∗(x∗)|= 1}
)
.

x

−x

BX \ (x+(2− ε)BX )

Fig. 1.2 `2
∞ has the alternative Daugavet property

Analogously to Theorem 1.27, if X possesses the aDP, then (1.12) remains true
for all strong Radon-Nikodým operators in X , in particular for all compact and all
weakly compact operators [97, Theorem 2.2].

It is clear that both spaces with the Daugavet property and spaces with numerical
index 1 have the alternative Daugavet property. Both converses are false: the space
c0⊕1 C([0,1], `2) has the alternative Daugavet property but fails the Daugavet prop-
erty and its numerical index is not 1 [97, Example 3.2]. Nevertheless, under certain
isomorphic conditions, the alternative Daugavet property forces the numerical index
to be 1.

Proposition 1.35 ([84, Remark 6]). Let X be a Banach space with the alternative
Daugavet property. If X has the Radon-Nikodým property or X is an Asplund space,
then n(X) = 1.

With this result in mind, one realizes that the necessary conditions for a real Ba-
nach space to be renormed with numerical index 1 given in Section 1.3 (namely The-
orem 1.12 and Corollary 1.13), can be written in terms of the alternative Daugavet
property. Even more, in the proof of Proposition 1.10 given in [84], only rank-one
operators are used and, therefore, it can be also written in terms of the alternative
Daugavet property.

Proposition 1.36 ([84, Lemma 1 and Remark 6]). Let X be a Banach space with the
alternative Daugavet property. Then,
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(a) |x∗∗(x∗)|= 1 for every x∗∗ ∈ ext(BX∗∗) and every w∗-denting point x∗ ∈ BX∗ .
(b) |x∗(x)|= 1 for every x∗ ∈ ext(BX∗) and every denting point x ∈ BX .

Proposition 1.37 ([97, Remark 2.8]). Let X be an infinite-dimensional real Banach
space with the alternative Daugavet property. If X has the Radon-Nikodým property,
then X contains `1. If X is an Asplund space, then X∗ contains `1. In particular,
X∗∗/X is not separable.

There is a natural reason why it is difficult to find characterizations of Banach
spaces with numerical index 1 that do no involve operators, namely, it is not easy
to construct noncompact operators on an abstract Banach space. Thus, when one
uses the assumption that a Banach space has numerical index 1, only the alterna-
tive Daugavet property can be easily exploited. Of course, things are easier if one
is working in a context where the alternative Daugavet property ensures numerical
index 1, as it happens with Asplund spaces and spaces with the Radon-Nikodým
property. Therefore, it would be desirable to find more isomorphic properties ensur-
ing that the alternative Daugavet property implies numerical index 1. Such a very
general property called SCD will appear a few pages later in Section 1.6.

Let us remark that, on the other hand, it is not possible to find isomorphic prop-
erties ensuring that the alternative Daugavet property and the Daugavet property are
equivalent.

Proposition 1.38 ([97, Corollary 3.3]). Let X be a Banach space with the aDP. Then
there exists a Banach space Y , isomorphic to X, which has the aDP but fails the
Daugavet property.

Indeed, if X fails the Daugavet property then we can take Y = X . In the opposite
case, we take a one-codimensional subspace Z ⊂ X and consider Y = Z⊕1 K.

1.5 Lush spaces and the duality problem for the numerical index

As we already mentioned in Proposition 1.4

n(X∗)6 n(X) (1.13)

for every Banach space X . The question if this is actually an equality had been
around from the beginning of the subject (see [73, pp. 386], for instance). Let us
comment some partial results which led to think that the answer could be positive.
Namely, it is clear that n(X) = n(X∗) for every reflexive space X , and this equality
also holds whenever n(X∗) = 1, in particular when X is an L- or an M-space. It
is also true that n(X) = n(X∗) when X is a C∗-algebra or a von Neumann algebra
predual [73]. Moreover, if X is L-embedded in its bidual, then n(X) = n(X∗); if X is
an M-ideal of its bidual and n(X) = 1, then n(X∗) = n(X∗∗) = 1 [92].
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Nevertheless, in 2007 K. Boyko, V. Kadets, M. Martín, and D. Werner [22] an-
swered the question in the negative by giving an example of a Banach space whose
numerical index equals 1 and it is strictly greater than the numerical index of its
dual. The answer was given in three steps: at first, a new sufficient condition for
n(X) = 1 (called lushness) was introduced, at second, it was demonstrated that all
C-rich subspaces of C(K) are lush, and finally, the example in question (which is a
C-rich subspace of a C(K) space) was constructed. In this section we will review all
these steps, and afterwards present some results and applications of lush spaces that
were obtained in the last decade.

Definition 1.39. We say that a Banach space X is lush if for every x,y ∈ SX and
every ε > 0, there exists y∗ ∈ SY ∗ such that y ∈ Slice(BX ,y∗,ε) and

dist
(
x,conv

(
T Slice(BX ,y∗,ε)

))
< ε.

Evidently, every almost-CL-space is lush. The proof of the fact that almost-CL-
spaces have numerical index 1 can be straightforwardly extended to lush spaces.

Proposition 1.40. Let X be a lush Banach space. Then, n(X) = 1.

Proof. For T ∈L(X) with ‖T‖= 1, and 0< ε < 1/2 fixed, we take x0 ∈ SX such that

‖T x0‖> 1− ε , and we apply the definition of lushness to x0 and y0 =
T x0

‖T x0‖
to get

y∗ ∈ SY ∗ with y0 ∈ Slice(BX ,y∗,ε) and x1, . . . ,xn ∈ Slice(BX ,y∗,ε), θ1, . . . ,θn ∈ T
such that a convex combination z = ∑λkθkxk of the elements θ1x1, . . . ,θnxn approx-
imates x0 up to ε. Then

|y∗(T z)|=
∣∣∣∣y∗(y0)− y∗

(
T
(

x0

‖T x0‖
− z
))∣∣∣∣> 1−4ε.

On the other hand, y∗(T z) is a convex combination of y∗(θ1T x1), . . . ,y∗(θnT xn), so
there is an index j such that

|y∗(T x j)|= |y∗(θ jT x j)|> 1−4ε.

Now, we have

‖ Id+TT‖> max
ω∈T

∣∣y∗([Id+ω T ](x j)
)∣∣> max

ω∈T

∣∣y∗(x j)+ωy∗(T x j)
∣∣

= |y∗(x j)|+ |y∗(T x j)|> 2−5ε.

This shows that n(X) = 1 by Proposition 1.1. ut

The demonstration of the following theorem (in a generalized form) will be given
in Section 4, Theorem 4.6.
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Theorem 1.41. Let Ω be a Hausdorff topological space and let X be a C-rich sub-
space of Cb(Ω). Then, X is lush and, therefore, n(X) = 1.

We are now able to present the promised example of a Banach space with numer-
ical index 1 and whose dual does not share the property.

Example 1.42. Let us consider the countable compact subset of R given by

K =
{

1− 1
n+1 : n ∈ N

}
∪
{

2− 1
n+1 : n ∈ N

}
∪
{

3− 1
n+1 : n ∈ N

}
∪{1,2,3}

and define the Banach space

X =
{

f ∈C(K) : f (1)+ f (2)+ f (3) = 0
}
.

Then, X is C-rich in C(K) (so n(X) = 1) and n(X∗)< 1.

Proof. Consider L = {1,2,3} ⊂ K and observe that U = K \L is open and dense in
K. Then, as C0(K‖L) ⊂ X ⊂C(K), it follows from Corollary 1.21 that X is C-rich
in C(K) and so Theorem 1.41 gives us that n(X) = 1. Let us show that n(X∗) < 1.
Write ν = δ1 + δ2 + δ3 ∈C(K)∗ and observe that X = kerν . Since K is countable,
every measure µ on K is purely atomic and can be written as µ = ∑t∈K atδt with
‖µ‖ = ∑t∈K |at |. Consequently, C(K)∗ can be written as C(K)∗ = Y ⊕1 Z, where Y
consists of measures concentrated on isolated points of K, and Z = span{δ1,δ2,δ3}.
Now,

X∗ =
[
C(K)∗]/span{ν}= Y ⊕1 (Z/span{ν}),

where in the last equality we have used that ν ∈ Z. By Proposition 1.5,

n(X∗)6 n(Z/span{ν}).

But Z/span{ν} is isometric to the two-dimensional space W = `3
1/span{(1,1,1)}

and it routinely follows from Theorem 1.9 that n(W ) < 1, so the proof is done.
Actually, in the real case the unit ball of W is a hexagon (its unit ball has 6 extreme
points, see Figure 1.3) and n(W ) = 1/2 by [94, Theorem 1]. ut

Remark that the same space gives an example of an Asplund space that has nu-
merical index 1, but is not an almost-CL-space [22, Example 3.4].

With just a little bit of work, Example 1.42 can be pushed out to produce even
better counterexamples.

Proposition 1.43 ([22, Examples 3.3]).

(a) There exists a real Banach space X such that n(X) = 1 and n(X∗) = 0.
(b) There exists a complex Banach space X such that n(X) = 1 and n(X∗) = 1/e.
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(1,1)

Fig. 1.3 The unit ball of W

Let us comment that the example X given in [22, Examples 3.3] which is shown
in item (a) above satisfies that n(X) = 1, n(X∗) = 0 but the only operator T ∈L(X∗)
with v(T ) = 0 is T = 0. Therefore, as shown in Proposition 1.7, both X and X∗ fail
to have one-parameter uniformly continuous semigroup of isometries. It is not too
complicated to get a better result with the ideas of this section.

Example 1.44 ([90]). Let K = [0,1]× [0,1], let L = [0,1]×{0} (which is closed
and nowhere dense in K), and consider E = `2 viewed as a subspace of C(L). Then
the space X = CE(K‖L) has numerical index 1 but there are infinitely many lin-
early independent operators T ∈ L(X∗) with v(T ) = 0. In particular, X fails to have
one-parameter uniformly continuous semigroups of isometries, while X∗ contains
infinitely many of them; equivalently, the Lie algebra of X is trivial while the one of
X∗ is infinite-dimensional.

The idea of the proof is the following. On the one hand, X is C-rich in C(K) by
Corollary 1.21, so n(X) = 1 by Theorem 1.41. On the other hand,

X∗ ≡C0(K‖L)∗⊕1 E∗

(see the proof of [90, Theorem 3.3] for the details), so every operator in L(E∗) with
numerical radius 0 naturally extends to an operator on X∗ with numerical radius 0
[90, Proposition 2.4]. But now, we just recall that there are infinitely many linearly
independent operators with numerical radius zero in E∗ ≡ `2.

Squeezing the above construction and using hard topological constructions,
P. Koszmider, M. Martín, and J. Merí [76] provided in 2011 with the following
surprising example.

Example 1.45 ([76, Example 6.3]). There exists a real Banach space X whose only
surjective isometries are± Id but such that X∗ admits infinitely many one-parameter
uniformly continuous semigroups of isometries.
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Actually, the space X above is constructed as a space CE(K‖L) where K is a
compact Hausdorff topological space constructed in the same paper with “exotic”
topological properties, see [76, Theorem 6.1] for the details.

Once we know that the numerical index of a Banach space and the one of its
dual do not coincide, another natural question could be if two isometric preduals of
a given Banach space should have the same numerical index. The answer is again
negative.

Proposition 1.46 ([22, Examples 3.6]). There is a Banach space Z (in fact Z ' `1)
with two isometric preduals X1 and X2 such that n(X1) and n(X2) are not equal.

A very useful example of C-rich subspace comes from the inclusion c0 ⊂ `∞

and some topological argument. Namely, `∞ =C(βN), where βN is the Stone-Čech
compactification of N. Then, N is a dense open subset of βN, c0 =C0(βN‖[βN\N])
and Corollary 1.21 applies. This example leads to the following renorming theorem
which, to the best of our knowledge, is the only general renorming theorem for
numerical index 1 spaces that is known by now. The statement below is a little bit
generalized version of the original [21, Corollary 3.6.].

Recall that a countable norming system of functionals of a Banach space X is a
bounded subset {x∗n : n ∈ N} of X∗ for which there is a constant K > 0 such that

‖x‖6 K sup
n∈N

∣∣x∗n(x)∣∣ (x ∈ X).

Banach spaces with a countable norming system of functionals are those for which
there is a bounded subset of the dual with non-empty interior which is weak-star
separable or, equivalently, those which are isomorphic to closed subspaces of `∞,
see [33, p. 254] for instance.

Proposition 1.47 (extended [21, Corollary 3.6]). Every Banach space containing
an isomorphic copy of c0 and possessing a countable norming system of functionals
(in particular, every separable space containing a copy of c0) can be equivalently
renormed to be lush and, in particular, to have numerical index 1.

Proof. Let X be a Banach space containing an isomorphic copy of c0 and possess-
ing a countable norming system of functionals. Then, the Lindenstrauss-Rosenthal
theorem [83, Theorem 2.f.12(i)] implies that X is isomorphic to a closed subspace
X1 of `∞ containing the canonical copy of c0 inside `∞ (see [61, Lemma 4.2] for de-
tails). This X1 is a C-rich subspace of `∞ by Corollary 1.21, so it is lush by Theorem
1.41. ut

The multiple applications of lushness motivated a detailed study of this property
in the last decade. In the following we present some of the most important results
obtained. We start with one of the main features of lushness: it is a separably deter-
mined property.
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Proposition 1.48 ([21, Theorem 4.2]). A Banach space X is lush if and only if every
separable subspace E ⊂ X is contained in a separable lush subspace Y ⊂ X.

This result becomes very useful when it is combined with the following fact
about separable lush spaces.

Theorem 1.49 ([63, Theorem 4.3] and [78, Proposition 2.1]). Let X be a separable
lush space. Then, there exists a Gδ subset K̃ of SX∗ which is norming for X and
satisfies that

BX = aconv
(
Face(BX ,x∗)

)
for every x∗ ∈ K̃.

The above two results combined provide with the following result.

Corollary 1.50 ([63, Corollary 4.9]). The dual of every infinite-dimensional real
lush space contains a copy of `1.

Indeed, let X be an infinite-dimensional real lush space. By Proposition 1.48 and
the lifting property of `1, we may suppose that the space is separable. Once in this
case, it is an easy consequence of Theorem 1.49 that

|x∗∗(x∗)|= 1

for every x∗ ∈ K̃ and every x∗∗ ∈ ext(BX∗∗) (use Lemma 2.5.b). As X is infinite-
dimensional and K̃ is norming for X , it has infinite cardinal, and then Proposition
1.11 gives us that X∗ contains c0 or `1. But a dual space contains `∞ (hence `1) at
the moment it contains c0. See Theorem 6.1 for a detailed proof of a more general
result.

As it happens for Banach spaces with numerical index 1 and for the aDP, lushness
has good stability properties under some usual Banach space operations. The next
proposition summarizes the known results, which can be found in [21, Corollary
4.4, Proposition 5.1, Theorem 5.2, and Proposition 5.3] and [104, Proposition 1,
Theorem 2, Theorem 3].

Proposition 1.51. Let X be a Banach space, let {Xn : n ∈ N} be a countable family
of Banach spaces, let K be a compact Hausdorff topological space, U be a free
ultrafilter on N, and let E = (Rn,‖ · ‖) be a Banach space with an absolute norm.

(a) E is lush if and only if for every collection X1,X2, . . . ,Xn of lush spaces, their
E-direct sum X =

[
X1⊕X2⊕ . . .⊕Xn

]
E is lush.

(b) Lushness is inherited by L-summands and M-ideals (in particular, by M-
summands).

(c) If Xn is lush for every n ∈ N, so are (Xn)U , [⊕n∈NXn]c0
, [⊕n∈NXn]`1

, and
[⊕n∈NXn]`∞

.
(d) If X is lush, so is C(K,X).
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C-rich subspaces of C(K) spaces form the most important class of lush spaces.
The next result shows that, in the real case, C-richness can be characterized in terms
of lushness when K is perfect.

Proposition 1.52 ([64, Theorem 6.2]). Let K be a perfect compact space and let Y
be a subspace of the real space C(K). Then, Y is C-rich if and only if every subspace
Z ⊂ X containing Y is lush.

It is also remarked in [64] that the situation for L1[0,1] is completely different to
that of C(K), as no one-codimensional subspace of L1[0,1] is lush.

To conclude our review about lush spaces, we recall two kinds of obstructive
results concerning them. The first one shows that, in the real case, lush spaces cannot
be strictly convex nor smooth, unless they are one-dimensional [63, Corollary 4.6].
The second one asserts that the only lush separable rearrangement invariant space
on [0,1] is L1[0,1] and that the only lush separable rearrangement invariant spaces
on N are c0 and `1 [66, Theorem 3.3 and Theorem 4.2].

Most of the results presented above will be demonstrated in a more general form
and mainly with simplified proofs in the main part of our book. Let us only re-
mark that, although all classical spaces possessing numerical index 1 are lush, with
some effort one can construct an example of non-lush space X with n(X) = 1 [64,
Theorem 4.1], a fact that will be proved and generalized in subsection 4.3.1 of this
book.

Lushness property has been also used to study polynomial numerical indices of
Banach spaces [44, 75, 78]. Let us finally say that lushness is surprisingly related
to the study of Tingley’s problem about extensions of surjective isometries between
unit spheres of Banach spaces [117] and to the study of norm attaining operators
[28, 74].

1.6 Slicely countably determined sets, spaces, and operators

One of the milestones of the theory was reached in the 2010 paper “Slicely count-
ably determined Banach spaces” by A. Avilés, V. Kadets, M. Martín, J. Merí, and
V. Shepelska [9], where a very general additional condition was found, ensuring, in
particular, that the alternative Daugavet property implies lushness (and hence im-
plies numerical index 1).

Definition 1.53 ([9]). Let X , Y be Banach spaces, A ⊂ X be a bounded subset. A
countable family {Un : n ∈ N} of non-empty subsets of A is called determining for
A if for each B⊂ X that intersects all the Un with n ∈ N, it holds that A⊂ conv(B).
The set A is said to be slicely countably determined (SCD in short) if there exists
a countable family of slices which is determining for A. The space X is said to be
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slicely countably determined (or SCD in short) if every convex bounded subset of
X is SCD. Finally, a bounded linear operator T ∈ L(X ,Y ) is an SCD operator if
T (BX ) is an SCD subset of Y .

Note that every SCD set is clearly separable. Also, it follows routinely from the
definition that a bounded set is SCD if and only if its closure is, see [9, Remark 2.7].
Let us further remark that the Hahn-Banach separation theorem leads to the follow-
ing reformulation of the definition of determining sequence.

Lemma 1.54 ([9, Proposition 2.2] and [68, Lemma 1.2]). Let X be a Banach space
and let A⊂ X be a bounded set. A sequence {Vn : n ∈ N} of non-empty subsets of A
is determining for A if every slice of A contains one of the Vn.

It is routine to show that we may replace in the definition of an SCD set the se-
quence of slices by a sequence of convex combinations of slices. Now, a well-known
result of J. Bourgain (see [119, Lemma 7.3], for instance) shows that every relatively
weakly open subset of a convex bounded subset contains a convex combination of
slices. Therefore, for convex sets, we may replace in the definition of an SCD set the
sequence of slices by a sequence of relatively weakly open subsets.

Proposition 1.55 ([9, Proposition 2.18]). Let X be a Banach space and let A⊂ X be
a bounded and convex set. If there exits a determining sequence of relatively weakly
open subsets of A, then A is SCD.

This result is not true for non-convex sets, see [68, Proposition 2.6]. On the other
hand, we will show in Proposition 7.17 that a bounded set A is SCD if and only if
conv(A) is SCD.

The next result contains the main examples of SCD and non-SCD convex sets,
spaces, and operators.

Examples 1.56 ([9]). Let X , Y be Banach spaces.

(a) A separable convex bounded subset A of X is SCD provided:
(a.1) A has the convex point of continuity property; in particular, A has the

Radon-Nikodým property.
(a.2) A does not contain `1-sequences; in particular, A is Asplund.

(b) The following conditions on X imply that every separable subspace of X is
SCD:

(b.1) X has the convex point of continuity property; in particular, X has the
Radon-Nikodým Property.

(b.2) X does not contain copies of `1; in particular, X is Asplund.
(c) If a Banach space has the Daugavet property, then its unit ball is not an SCD

set. Indeed, it follows from Proposition 1.26 that given x0 ∈ SX and a sequence
of slices (Sn)n∈N of SX we can find xn ∈ Sn for each n ∈ N so that the sequence
(xn)

∞
n=0 is equivalent to the canonical basis of `1, and consequently x0 does not
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belong to the closed linear hull of {xn : n ∈ N}. In particular, the unit balls of
C[0,1] and L1[0,1] are not SCD sets.

(d) The following conditions on an operator T ∈ L(X ,Y ) guarantee that its restric-
tion to every separable subspace of X is SCD:

(d.1) T does not fix any copy of `1.
(d.2) T (BX ) has the convex point of continuity property; in particular, T is a

strong Radon-Nikodým operator.

Let us comment that the proofs of the fact that the main examples given in (a)
are SCD sets are of different nature. For (a.1) and for separable Asplund sets, the
proofs are elementary, see [9, Proposition 2.8, Example 2.9, Example 2.12]. On the
other hand, for subsets which do not contain copies of `1 the proof is involved and
needs a highly non-trivial result by S. Todorčević: if a separable bounded convex set
A does not contain `1 sequences, then A admits a countable π-base of the relative
weak topology (i.e. a family of relatively weakly open subsets of A such that any
other relatively weakly open subset of A contains one elements of the family). Now,
this countable family of weakly open subsets is determining by Lemma 1.54 and
then, Proposition 1.55 shows that A is SCD. See the proof of [9, Theorem 2.22] for
the details.

Another class of examples: the unit ball of every space with a 1-unconditional
basis is SCD [66, Theorem 3.1] and the unit ball of a locally uniformly rotund sep-
arable Banach space is also SCD [9, Example 2.10]. It is an open question whether
every Banach space with an unconditional basis is an SCD space.

The main applications of the SCD property in our context are the following.

Proposition 1.57 ([9, §4]). Let X be a Banach space. If X is separable, has the aDP
and BX is SCD, then X is lush. If X is non-separable, has the aDP, and BY is SCD
for every separable subspace Y of X, then X is lush. In particular, if X has the aDP
and it has the convex point of continuity property, the Radon-Nikodým Property, or
it does not contain copies of `1, then X is lush.

Proposition 1.58 ([9, §5]). Let X be a Banach space with the aDP. Then, for every
T ∈ L(X) such that T (BY ) is SCD for every separable subspace Y of X, one has
‖ Id+TT‖ = 1+‖T‖. In particular, this happens if T (BX ) has the convex point of
continuity property, the Radon-Nikodým Property, or if T does not fix copies of `1.

Observe that SCD sets are separable, and we do not know whether numerical
index 1 is separably determined. However, the aDP and lushness are (see Proposition
3.7 and Theorem 3.14 for generalizations of these facts), facts which were crucial
in the way the results above were proved.

From these results we may provide with the more general necessary condition
for a real Banach space to be renormed with numerical index 1 that we know.
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Corollary 1.59 ([9, Corollary 4.9]). Let X be a real infinite-dimensional Banach
space. If X admits an equivalent norm with the aDP (in particular, with numeri-
cal index 1), then X∗ contains `1.

Indeed, if X itself contains `1, then X∗ contains `1. Otherwise, Proposition 1.57
gives that X can be renormed to be lush and, once in this case, Corollary 1.50 gives
that X∗ contains `1. Let us comment that this result will be generalized in Theorem
6.1.

The applications of SCD sets to the theory of Daugavet equation are of the same
nature. For example, the following results are shown in [9, Proposition 5.8 and The-
orem 5.11]: if X possesses the Daugavet property, T ∈ L(X ,Y ) and T (BX ) is SCD,
then the operator T is a strong Daugavet operator; if, moreover, all convex closed
subsets of T (BX ) are SCD, then T is narrow . More applications in this vein can be
found in [17, Section 3] and [65, Theorems 3.4 and 3.7].
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1.7 A pair of diagrams

We finish the introduction with a pair of diagrams. The first one shows the rela-
tionships between the properties of a norm-one operator G ∈ L(X ,Y ) that we have
presented so far.�� ��lush −−−−→

�� ��spear operator −−−−→
�� ��aDP ←−−−−

�� ��Daugavet centery�� ��geom. unitary −−−−→
�� ��vertex −−−−→

�� ��extreme point .

None of the implications above reverses, and Daugavet centers and spear opera-
tors do not imply each other.

When the above diagram is particularized to the case when G = Id, we have in-
troduced many more properties. The relationship between all of them is summarized
in the diagram below. �� ��3.2.I.P.y�� ��CL-spacey�� ��almost-CL-spacey�� ��lush space ←−−−−

�� ��C-rich subspacey x�� ��numerical index 1

�



�
	C-rich subspace,

perfect compacty y�



�
	alternative

Daugavet property ←−−−−
�� ��Daugavet property

Again, none of the implications above can be reversed, and the Daugavet property
and numerical index 1 do not imply each other. On the other hand, lush spaces and
spaces with the alternative Daugavet property are equivalent for Banach spaces with
the Radon-Nikodým property and for Banach spaces not containing copies of `1.





Chapter 2

Spear vectors and spear sets

The following definition will be crucial in our further discussion.

Definition 2.1 ([7, Definition 4.1]). Let X be a Banach space. An element z ∈ SX is
a spear vector (or spear) if ‖z+Tx‖= 1+‖x‖ for every x ∈ X . We write Spear(X)
to denote the set of all elements of a Banach space X which are spear.

Fig. 2.1 Spear vectors in the real spaces `3
1, `3

∞ and `2
2⊕1 R, respectively.

As we commented in section 1.2, z ∈ Spear(X) if and only if N(X ,z) = 1. In
particular, the definition was motivated in [7] by the fact that IdX is a spear element
of L(X) if and only if X has numerical index 1. As we already mentioned in the
introduction, the concept of spear vector appeared, without name, in the paper [80]
by Å. Lima about intersection properties of balls. It had also appeared tangentially
in the monograph [81] by J. Lindenstrauss about extension of compact operators.

Observe that we are dealing with the norm-equation

‖x+ y‖= ‖x‖+‖y‖

which is obviously true for collinear vectors looking in the same direction, being
the converse result true in strictly convex spaces, but not in general Banach spaces.
Let us emphasize here that this equality for a pair of vectors is equivalent to the
same statements for all positive multiples of the vectors, which allows us to use
only norm-one elements in the definition of spear vector.

39
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Remark 2.2. Let X be a Banach space.

(a) If x,y ∈ X satisfy that ‖x+ y‖= ‖x‖+‖y‖, then

‖ax+by‖= a‖x‖+b‖y‖

for every a,b > 0.
(b) z ∈ SX is a spear vector if and only if ‖z+Tx‖= 2 for every x ∈ SX .

Indeed, by symmetry we may assume a > b. Then,

‖ax+by‖= ‖a(x+ y)− (a−b)y‖> a‖(x+ y)‖− (a−b)‖y‖= a‖x‖+b‖y‖.

Observe that geometrically speaking, x,y ∈ SX satisfy ‖x+ y‖ = 2 if and only if
the whole segment

[x,y] := {tx+(1− t)y : t ∈ [0,1]}

connecting x and y belongs to SX .

The next notion extends the definition of spear from vectors to sets.

Definition 2.3. Let X be a Banach space. F ⊂ BX is called a spear set if

‖F +Tx‖= 1+‖x‖

for every x ∈ X .

Observe that if F ⊂ BX is a spear set, then every subset of BX containing F is also
a spear set. In particular, if a subset F of BX contains a spear vector, then F is a spear
set. On the other hand, it is not true that every spear set contains a spear vector: in
every Banach space X , F = SX is obviously a spear set, but there are Banach spaces
containing no spear vectors at all (for instance, a two-dimensional Hilbert space, see
Example 2.12.f).

We start the exposition with the following fundamental result.

Theorem 2.4. Let X be a Banach space, let F be a subset of BX and let A ⊂ BX∗

with BX∗ = convw∗(A ). The following statements are equivalent:

(i) ‖F + x‖= 1+‖x‖ for every x ∈ X.
(ii) BX∗ = convw∗(gSlice(A ,F,ε)) for every ε > 0.

(iii) BX∗ = convw∗(gSlice(extBX∗ ,F,ε)) for every ε > 0.
(iv) gFace(extBX∗ ,F) is a dense subset of (extBX∗ ,w∗).

If X = Y ∗ is a dual Banach space, this is also equivalent to

(v) BY = conv(gSlice(SY ,F,ε)) for every ε > 0.

Moreover, remark that the set gFace(extBX∗ ,F) is Gδ , a fact which makes item (iv)
more applicable.
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Previously to give the proof of the theorem, we recall some properties of the set
of extreme points of compact convex sets which will be needed here and all along
the book. When A ⊂ X is convex and it is compact in a locally convex Hausdorff
topology τ , then the set extA of its extreme points, outside of being not empty and
generating the whole A as the τ-closure of its convex hull (Krein-Milman theorem),
has many good topological properties which are less known as the following ones
which we will profusely use all along the book.

Lemma 2.5. Let X be a Banach space and let A ⊂ X∗ convex and weak-star com-
pact.

(a) (Choquet’s Lemma) If x∗ ∈ extA, then for every weak-star neighborhood U of
x∗ in A there is a w∗-slice S of A such that x∗ ∈ S ⊂U. In other words, the w∗-
slices of A containing x∗ form a base of the relative weak-star neighborhoods
of x∗ in A.

(b) (Milman’s Theorem) If D⊂ A satisfies that convw∗(D)⊃ A, then Dw∗ ⊃ extA.
(c) (extA,w∗) is a Baire space, so the intersection of every sequence of Gδ dense

subsets of extA is again (Gδ ) dense.

These are well-known results which can be found, for instance, in the volume
2 of the Lectures on Analysis by G. Choquet [29]. Concretely, assertion (a) can be
found in [29, p. 107]; (b) is an immediate consequence of (a) and Hahn-Banach
separation Theorem; (c) appears in [29, p. 146, Theorem 27.9].

Proof (of Theorem 2.4). (i)⇒ (ii): Given ε > 0, we just have to check that every w∗-
slice S of BX∗ intersects gSlice(A ,F,ε). We can assume that S = Slice(BX∗ ,x0,δ )
for x0 ∈ SX and ε > δ > 0. Using (i) and the condition on A , we can find x∗0 ∈A
and z0 ∈ F such that

Rex∗0(z0)+Rex∗0(x0)> 2−δ .

In particular, Rex∗0(z0)> 1−δ and Rex∗0(x0)> 1−δ , so x∗0 ∈ S∩gSlice(A ,F,ε).

(ii) ⇒ (i): Given x ∈ SX and ε > 0, the hypothesis allows us to find x∗ ∈
gSlice(A ,F,ε) such that Rex∗(x) > 1− ε . Also, by definition of gSlice(A ,F,ε),
there is z ∈ F such that Rex∗(z)> 1− ε . Now,

‖F + x‖> ‖z+ x‖> Rex∗(z)+Rex∗(x)> 2−2ε,

and the arbitrariness of ε gives the result.

The equivalence between (i) and (iii) is just a particular case of the already proved
equivalence between (i) and (ii) since A = extBX∗ satisfies the condition above by
the Krein-Milman Theorem.

(iii) ⇒ (iv): For each ε > 0, gSlice(extBX∗ ,F,ε) is a relatively weak-star open
subset of extBX∗ , as it can be written as union of w∗-slices. Moreover, condi-
tion (iii) together with Milman’s Theorem (see Lemma 2.5.b) yields that the set
gSlice(extBX∗ ,F,ε) is weak-star dense in extBX∗ . Using that the set (extBX∗ ,w∗) is
a Baire space (see Lemma 2.5.c), we conclude that
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gFace(extBX∗ ,F) =
⋂

n∈N
gSlice(extBX∗ ,F,1/n) (2.1)

satisfies the properties above.

(iv)⇒ (iii): Given ε > 0, since gFace(extBX∗ ,F)⊂ gSlice(extBX∗ ,F,ε) we de-
duce that this last set is also dense in (extBX∗ ,w∗), and so using the Krein-Milman
Theorem we conclude that

BX∗ = convw∗(extBX∗)⊂ convw∗(gSlice(extBX∗ ,F,ε)).

Finally, if X = Y ∗, (v) is a particular case of (ii) with A = SY by Goldstine’s
Theorem.

The “moreover” part follows from equation (2.1). ut

Now we may present a characterization of spear sets which is an easy conse-
quence of the above theorem and the fact that ‖F +Tx‖ = ‖TF + x‖ for every set
F and every vector x.

Corollary 2.6. Let X be a Banach space and let A ⊂ BX∗ with convw∗(A ) = BX∗ .
For F ⊂ BX , the following assertions are equivalent:

(i) F is a spear set, i.e. ‖F +Tx‖= 1+‖x‖ for each x ∈ X.
(ii) BX∗ = aconvw∗(gSlice(A ,F,ε)) for every ε > 0.

(iii) gFace(extBX∗ ,TF) is a dense Gδ subset of (extBX∗ ,w∗).

If X = Y ∗ is a dual Banach space, this is also equivalent to

(iv) BY = aconv(gSlice(SY ,F,ε)) for every ε > 0.

The following result is of interest in the complex case.

Proposition 2.7. Let X be a Banach space. If F ⊂ BX is a spear set, then

‖F± x‖2 > 1+‖x‖2

for every x ∈ X.

Proof. Let x ∈ X and ε > 0. Using Corollary 2.6.ii, we get that

‖F± x‖2 > sup
{
|x∗(z)± x∗(x)|2 : z ∈ F, x∗ ∈ gSlice(SX∗ ,F,ε)

}
> sup

{
|x∗(z)|2 + |x∗(x)|2 : z ∈ F, x∗ ∈ gSlice(SX∗ ,F,ε)

}
> sup

{
(1− ε)2 + |x∗(x)|2 : x∗ ∈ gSlice(SX∗ ,F,ε)

}
= (1− ε)2 +‖x‖2,

giving the result. ut
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The case in which a spear set is a singleton coincides, of course, with the concept
of spear vector of Definition 2.1. Most of the assertions of the next corollary follow
from Corollary 2.6 and the fact that

gFace(extBX∗ ,Tz) = {x∗ ∈ extBX∗ : |x∗(z)|= 1}

is weak-star closed. The other ones are consequences of the general results of the
theory of numerical range spaces (see section 1.2) and we have taken them from
[23, Section 2.1].

Corollary 2.8. Let X be a Banach space and let A ⊂ BX∗ with BX∗ = convw∗(A ).
The following assertions are equivalent for z ∈ SX :

(i) z ∈ Spear(X) (that is, ‖z+Tx‖= 1+‖x‖ for every x ∈ X).
(ii) BX∗ = aconvw∗(Slice(A ,z,ε)) for each ε > 0.

(iii)R If X is a real space, BX∗ = conv
(
Face(SX∗ ,z)∪−Face(SX∗ ,z)

)
.

(iii)C If X is a complex space, int(BX∗)⊂ aconv
(
Face(SX∗ ,z)

)
;

in particular, BX∗ = aconv
(
Face(SX∗ ,z)

)
.

(iv) |x∗(z)|= 1 for every x∗ ∈ extBX∗ , i.e. extBX∗ ⊂ T Face(SX∗ ,z).

If X = Y ∗ is a dual Banach space and z = y∗ ∈ SY ∗ , this is also equivalent to:

(v) BY = aconv
(
Slice(SY ,y∗,ε)

)
for every ε > 0.

Proof. The equivalence between (i), (ii) and (iv) is just a particular case of Corollary
2.6, as it is the equivalence with (v) when X is a dual space.

(iv) ⇒ (iii) is contained in [23, Theorem 2.1.17] (both in the real and in the
complex case), but we give the easy argument here. By (iv) and the Krein-Milman
theorem,

BX∗ = aconvw∗(Face(SX∗ ,z)). (2.2)

In the real case, we have that the set

aconv(Face(SX∗ ,z)) = conv
(
Face(SX∗ ,z)∪−Face(SX∗ ,z)

)
is weak-star compact as so is Face(SX∗ ,z), and the result follows from (2.2). In the
complex case, for 0 < ρ < 1 we take n ∈N such that (1−ρ)BC ⊂ conv{z1, . . . ,zn},
where {z1, . . . ,zn} are the nth roots of 1 in C. Then we have

(1−ρ)aconv(Face(SX∗ ,z)) = (1−ρ)conv(BC Face(SX∗ ,z))

⊂ conv(
⋃n

k=1 zk Face(SX∗ ,z)) .

Since conv(
⋃n

k=1 zk Face(SX∗ ,z)) is weak-star compact and is contained in the set
aconv(Face(SX∗ ,z)), it follows from (2.2) that (1− ρ)BX∗ ⊂ aconv(Face(SX∗ ,z)),
and this gives the result moving ρ ↓ 0.

The implication (iii)⇒ (ii) is immediate taking A = SX∗ . ut
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We would like to comment that the complex case of (iii) in the Corollary above
can not be improved to get that the whole unit ball is inside the absolutely convex
hull, see [23, Example 2.1.18] for an example.

The next surprising result about spear vectors of a dual space appeared literally
in [4, Corollary 3.5] and it is also consequence of the earlier [48, Theorem 2.3] us-
ing Corollary 2.8.iii. In both cases, the main tool is the use of norm-to-weak upper
semicontinuity of the duality and pre-duality mappings. We include here an adapta-
tion of the proof of [48, Theorem 2.3] to our particular situation which avoids the
use of semicontinuities (which, on the other hand, are automatic in our context, see
[23, Fact 2.9.3 and Theorem 2.9.18]).

Theorem 2.9 ([48, Theorem 2.3], [4, Corollary 3.5]). Let X be a Banach space and
let z∗ ∈ SX∗ . Then, z∗ ∈ Spear(X∗) if and only if BX = aconv

(
Face(SX ,z∗)

)
.

Proof. The “if” part follows immediately from Corollary 2.8.v, so we just have to
prove the “only if” part. To simplify, we will denote F = gFace(SX ,{z∗}) (which
we do not know a priori if it is non-empty) and F∗∗ = Face(SX∗∗ ,z∗) 6= /0.

Claim 1. If A ⊂ BX∗∗ satisfies supA Rez∗ = 1, then dist(A,F∗∗) = 0. Indeed, let
ε > 0 and a∗∗ ∈ A with Rez∗(a∗∗) > 1− ε . Since BX∗∗ = aconv

(
F∗∗
)

by Corollary
2.8.iii, we can find x∗∗1 , . . . ,x∗∗m ∈ F∗∗ and λ1, . . . ,λm ∈ [0,1] with ∑

m
k=1 λk = 1, and

θ1, . . . ,θm ∈ T such that∥∥∥∥∥a∗∗−
m

∑
n=1

λnθnx∗∗n

∥∥∥∥∥< ε, so
m

∑
n=1

λn Reθn = Rez∗
(

m

∑
n=1

λnθnx∗∗n

)
> 1−2ε.

Therefore,

dist(A,F∗∗)6

∥∥∥∥∥a∗∗−
m

∑
n=1

λnx∗∗n

∥∥∥∥∥6 ε +

∥∥∥∥∥ m

∑
n=1

λnθnx∗∗n −
m

∑
n=1

λnx∗∗n

∥∥∥∥∥
6 ε +

m

∑
n=1

λn|1−θn|6 ε +
m

∑
n=1

λn
√

2(1−Reθn)

6 ε +

√
m

∑
n=1

2λn(1−Reθn)6 ε +
√

4ε.

Since ε > 0 was arbitrary, the claim is proved.

Claim 2. Given x0 ∈ BX with dist(x0,F∗∗) < ε , the set A = BX ∩ (x0 + εBX )
satisfies that supA Rez∗ = 1. Indeed, let x∗∗0 ∈ F∗∗ with ‖x∗∗0 − x0‖ < ε . Using the
Principle of Local Reflexivity [39, Theorem 6.3], we have that for each δ > 0 we
can find an element xδ ∈X such that ‖xδ‖6 1, Rez∗(xδ )> 1−δ , and ‖xδ −x0‖< ε .

Claim 3. F 6= /0 (so, F = Face(SX ,z∗)) and if A ⊂ BX satisfies supA Rez∗ = 1,
then dist(A,F) = 0. Indeed, let A0 = A and fix ε > 0. By Claim 1, we have that
dist(A0,F∗∗) = 0, so taking x0 ∈ A0 with dist(x0,F∗∗) < ε

2 , A1 = BX ∩ (x0 +
ε

2 BX )
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satisfies that supA1
Rez∗ = 1. Repeating the process with A1, we can find x1 ∈ A1

such that A2 := BX ∩ (x1 +
ε

4 BX ) satisfies supA2
Rez∗ = 1. Iterating this process, we

will have a Cauchy sequence (xn)n∈N whose limit z∈ BX satisfies that dist(z,A)6 ε

and that z∗(z) = 1, so z ∈ F .

Claim 4. BX = aconv(F). Indeed, given a slice S of BX , Corollary 2.8.v shows
that supTS Rez∗ = 1, so Claim 3 provides that dist(TS,F) = 0. It is now routine to
show that S∩TF 6= /0 for every slice S of BX . ut

Figure 2.2 illustrates the characterization of a spear vector z∗ ∈ SX∗ in terms of
Face(SX ,z∗) for the dual pairs (`3

∞, `
3
1), (`

3
1, `

3
∞), and (`2

2⊕∞ R, `2
2⊕1 R).

Fig. 2.2 Spear functionals and faces of the unit ball

The following proposition collects all the properties of spear vectors we know.
In order to prove it, we need the following technical lemma which will be also used
later.

Lemma 2.10. Let X be a Banach space and let (Fn)n∈N be a decreasing sequence
of spear sets of X such that diam(Fn) tends to zero. If z ∈

⋂
n∈N Fn, then z is a spear

element.

Proof. For every x ∈ X we can write

‖z+Tx‖> ‖Fn +Tx‖−‖Fn− z‖= 1+‖x‖−‖Fn− z‖.

But the hypothesis implies that limn ‖Fn− z‖= 0. ut

Proposition 2.11. Let X be a Banach space. Then:

(a) ‖z± x‖2 > 1+‖x‖2 for each z ∈ Spear(X) and every x ∈ X.
(b) Every z ∈ Spear(X) is a strongly extreme point of BX .

In particular, Spear(X)⊂ extBX .
(c) JX

(
Spear(X)

)
⊂ Spear(X∗∗). In particular, JX

(
Spear(X)

)
⊂ extBX∗∗ .

(d) Spear(X) is norm-closed and rounded.
(e) If dim(X)> 2, then Spear(X) is nowhere-dense in (SX ,‖ · ‖).
(f) If BX = conv(Spear(X)), then Spear(X∗) = extBX∗ .
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(g) If BX∗ = convw∗(Spear(X∗)), then x ∈ SX is a spear element if and only if x is a
strongly extreme point of BX if and only if x ∈ extBX∗∗ .

(h) If X is strictly convex and dim(X)> 2, then Spear(X) = /0 = Spear(X∗).
(i) If X is smooth and dim(X)> 2, then Spear(X) = /0.

If X is a real space, we can add:

(j) If Spear(X) is infinite, then X contains a copy of c0 or `1.
(k) If z∗ ∈ Spear(X∗) and x∗ ∈ X∗ is norm-attaining with ‖z∗−x∗‖< 1+‖x∗‖, then

z∗+ x∗ is norm-attaining and ‖z∗+ x∗‖= 1+‖x∗‖.
(l) If X is smooth and dim(X)> 2, then Spear(X∗) = /0.

Proof. (a) is given by Proposition 2.7, and (b) is an obvious consequence of it.

(c). Fixed z ∈ Spear(X), we have that BX∗ = aconv‖·‖
(
Face(SX∗ ,z)

)
by Corol-

lary 2.8.iii so, using Goldstine’s Theorem for X∗, we obtain that

BX∗∗∗ = aconvσ(X∗∗∗,X∗∗)JX∗
(
Face(SX∗ ,z)

)
and, a fortiori,

BX∗∗∗ = aconvσ(X∗∗∗,X∗∗)(Face(SX∗∗∗ ,JX (z))
)
.

Now, Milman’s Theorem (see Lemma 2.5.b) gives that

ext(BX∗∗∗)⊂ T Face(SX∗∗∗ ,JX (z))
σ(X∗∗∗,X∗∗)

.

Then, Corollary 2.8.iv gives that JX (z)∈ Spear(X∗∗). An alternative proof is the fol-
lowing: for z ∈ Spear(X) we have that |x∗(z)|= 1 for every x∗ ∈ ext(BX∗) by Corol-
lary 2.8.iv, and so |x∗∗∗(JX (z))|= 1 for every x∗∗∗ ∈ ext(BX∗∗∗) by [113, Proposition
3.5], so JX (x) ∈ Spear(X∗∗) by using again Corollary 2.8.iv.

(d). Given a norm-convergent sequence (xn)n∈N in Spear(X), apply Lemma 2.10
to the family of sets Fn := {xm : m > n}.

(e). Fixed e∗0 ∈ extBX∗ , take an element x0 ∈ kere∗0 ∩ SX . Given z ∈ Spear(X),
there exists θ0 ∈ T such that ‖z+θ0x0‖ = 2 and so ‖z+ δθ0x0‖ = 1+ δ for every
δ > 0 by Remark 2.2. Then, for each δ > 0, v = (z+δθ0x0)/(1+δ ) belongs to SX ,
satisfies ‖v− z‖6 2δ , and |e∗0(v)|= (1+δ )−1 6= 1, so v is not a spear by Corollary
2.8.iv.

(f). Fix e∗ ∈ extBX∗ and x∗ ∈ X∗. The hypothesis implies that for every ε > 0 we
can find z ∈ Spear(X) with |x∗(z)|> ‖x∗‖− ε . Since |e∗(z)|= 1 (as z is a spear) we
conclude that ‖Te∗+x∗‖> |e∗(z)|+ |x∗(z)|> 1+‖x∗‖−ε . This gives that extBX∗ ⊂
Spear(X∗) and the equality follows from (b).

(g). If we assume that x ∈ extBX∗∗ , then |x∗(x)| = 1 for each x∗ ∈ Spear(X∗)
by Corollary 2.8.iv. But Milman’s theorem (see Lemma 2.5.c) applied to our as-
sumption gives that Spear(X∗) is weak-star dense in extBX∗ , so we conclude that
|x∗(x)|= 1 for every x∗ ∈ extBX∗ , which implies that x is a spear by Corollary 2.8.iv.
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(h). If x0 ∈ Spear(X), we have that ‖x0+Tx‖= 2 for every x∈ SX . If X is strictly
convex, this implies that SX ⊂ Tx0 and so dim(X) = 1. Next, suppose that there
exists z∗ ∈ Spear(X∗), so BX = aconv(Face(SX ,z∗)) by Theorem 2.9. If dim(X)> 2
then Face(SX ,z∗) contains at least two points, so X is not strictly convex.

(i). If X is smooth, the set Face(SX∗ ,z) is a singleton for every z ∈ SX . If there
is z ∈ Spear(X), then the above observation and Corollary 2.8.iii imply that X∗ is
one-dimensional, so X is one-dimensional as well.

(j) is just a reformulation of [84, Proposition 2], but we include the short argu-
ment for completeness. Suppose that X does not contain `1. Then, by Rosenthal’s
`1-Theorem [36, Chapter XI] there is a weakly Cauchy sequence (xn)n∈N of distinct
members of Spear(X). Write Y for the closed linear span of {xn : n ∈ N} and ob-
serve that, obviously, xn ∈ Spear(Y ) for every n ∈N. Therefore, by Corollary 2.8.iv,
the fact that the sequence (xn)n∈N is weakly Cauchy and that we are in the real case,
we have that ext(BY ∗) =

⋃
n∈N
(
En∪−En

)
where

En :=
{

y∗ ∈ ext(BY ∗) : y∗(xk) = 1 for k > n
}

(n ∈ N).

As {xn : n ∈ N} separates the points of Y ∗, each En is finite, so ext(BY ∗) must be
countable. Fonf’s Theorem [41] gives then that X ⊃ c0, finishing the proof.

The proof of (k) is based on ideas of [80]. Let F = Face(SX∗∗ ,z∗). By Corollary
2.8.iii, we have that BX∗∗ = conv(F ∪−F). Let x∗ ∈ X∗ attain its norm at x ∈ SX ,
i.e. x∗(x) = ‖x∗‖, and suppose that ‖z∗− x∗‖< 1+‖x∗‖. We can write

x = (1−λ )x∗∗1 −λx∗∗2

for some 06 λ 6 1 and x∗∗1 ,x∗∗2 ∈F . If 0< λ 6 1, then x∗∗2 (x∗) =−‖x∗‖ necessarily,
which is not possible as |x∗∗2 (x∗)−x∗∗2 (z∗)|6 ‖x∗−z∗‖< 1+‖x∗‖. Therefore, λ = 0
and we get that x = x∗∗1 ∈ F ∩SX , so [z∗+ x∗](x) = 1+‖x∗‖.

(l). Suppose that there exists z∗ ∈ Spear(X∗). By (j), we can take a norm-attaining
functional x∗0 ∈ SX∗ with 0 < ‖z∗− x∗0‖< 2, such that z∗+ x∗0 is norm-attaining and
‖z∗+x∗0‖= 2. Hence there is x0 ∈ SX with x∗0(x0) = z∗(x0) = 1, which means that X
is not smooth. ut

Below we list the known examples of spear vectors from [7] and some easy-to-
check generalizations of those examples.

Example 2.12.

(a) Let X1, X2 be Banach spaces and let X = X1⊕1 X2. Then, (z1,z2) ∈ Spear(X) if,
and only if, either z1 ∈ Spear(X1) and z2 = 0 or z1 = 0 and z2 ∈ Spear(X2). The
proof is straightforward. As a consequence, if the linear span of z ∈ SX is an
L-summand of a Banach space X , then z ∈ Spear(X). Observe that the converse
result does not hold; indeed, just note that C(∆), where ∆ is the Cantor set,
contains a lot of spear vectors (see item (c) below), but contains no proper L-
summand by Behrends L-M Theorem (see [54, Theorem I.1.8] for instance).
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(b) Let (Ω ,Σ ,µ) be a positive measure space and let X be a Banach space. Then

Spear(L1(µ,X)) =

{
x
1A

µ(A)
: x ∈ Spear(X) , A ∈ Σ atom, µ(A)< ∞

}
.

Indeed, every function of the given form belongs to {e1A : e ∈ X} which is
an L-summand isometric to X , and this function is a spear in that L-summand,
so it is a spear vector by (a). To see the converse, let f ∈ SL1(µ,X) be a spear
vector and let A := {t ∈ Ω : ‖ f (t)‖ > 0} ∈ Σ (this is an abuse of notations,
as f formally is an equivalence class of functions). If A is not an atom, then
we can find B⊂ A with µ(B),µ(A\B) 6= 0 and so f can be written as a convex
combination of norm-one functions, which contradicts that f is an extreme point
of the unit ball. Hence A is an atom, and moreover µ(A)< ∞ since f is nonzero
on A. Thus f must be then of the form f = x1A/µ(A) where x ∈ SX . If x is not
spear, then there is y ∈ SX with ‖x+Ty‖ < 2, so g = y1A/µ(A) satisfies that
‖ f +Tg‖= ‖x+Ty‖< 2 leading to a contradiction.
As a particular case, we deduce the already known result [7, p. 170] that if Γ is
an arbitrary set, then

Spear
(
`1(Γ )

)
=
{

θeγ : θ ∈ T, γ ∈ Γ
}
,

where eγ is the function on Γ with value one at γ and zero on the rest.
(c) Let K be a compact Hausdorff space and X is a Banach space. Then,

Spear(C(K,X)) = { f ∈C(K,X) : f (t) ∈ Spear(X) for all t ∈ K}.

To see the equality, notice first that if f satisfies the condition that f (t) is spear
for each t ∈ K, then for each g ∈C(K,X) we have that

‖ f +Tg‖∞ = max
t∈K
‖ f (t)+Tg(t)‖= max

t∈K

(
1+‖g(t)‖

)
= 1+‖g‖∞.

For the converse, assume that f is spear but there is t0 ∈ K, y0 ∈ SX and δ > 0
such that ‖ f (t0)+Ty0‖< 2(1−δ ). Since f is continuous, there exists an open
subset U ⊂ K such that ‖ f (t)+Ty0‖< 2(1−δ ) for each t ∈U . By Urysohn’s
lemma there is g∈ SC(K) with g(K)⊂ [0,1] and supp(g)⊂U . Then h := g⊗x∈
C(K,X) has norm-one and moreover

‖ f +Th‖∞ = max
t∈K
‖ f (t)+Th(t)‖= max

t∈U
‖ f (t)+Tg(t)y0‖< 2−δ .

In particular, we deduce the following result from [7, p. 170]

Spear
(
C(K)

)
=
{

f ∈C(K) : | f (t)|= 1 for every t ∈ K
}
.

That is, again spear vectors coincide with extreme points of the unit ball.
(d) Let (Ω ,Σ ,µ) be a positive measure space and let g ∈ L∞(µ). Then,
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Spear(L∞(µ)) = {g ∈ L∞(µ) : |g(t)|= 1 for µ-almost every t} .

Indeed, suppose that g ∈ Spear(L∞(µ)) and there exists a measurable subset A
with µ(A)> 0 such that |g(t)|< 1 for every t ∈ A. Then we have that

A =
⋃

n∈N
{t ∈ A : |g(t)|6 1−1/n},

so there exists n∈N such that the measurable set B := {t ∈ A : |g(t)|6 1−1/n}
has positive measure. Now,

‖g+T1B‖∞ 6 2−1/n < 2 = 1+‖1B‖∞

and thus g is not a spear vector, a contradiction. Conversely, suppose that
|g(t)| = 1 for almost every t ∈ Ω . For f ∈ L∞(µ,Y ) and ε > 0, there is A ∈ Σ

with µ(A) > 0 such that | f (t)| > ‖ f‖∞− ε for every t ∈ A. By the hypothesis,
there is A′ ∈ Σ , A′ ⊂ A, µ(A′) > 0 such that |g(t)| = 1 for every t ∈ A′. Now,
using the compactness of T we can give a lower bound for ‖g+T f‖∞. Indeed,
fixed an ε-net Tε of T we can find an element θ1 ∈Tε and a subset A′′ of A′ with
positive measure such that |g(t)+θ1 f (t)| > 1+ | f (t)|(1− ε) for every t ∈ A′′.
Therefore, we can write

‖g+T f‖∞ > inf
t∈A′′
|g(t)+θ1 f (t)|

> inf
t∈A′′

1+ | f (t)|(1− ε)> 1+(‖ f‖− ε)(1− ε)

and the arbitrariness of ε gives ‖g+T f‖∞ > 1+‖ f‖.
(e) It will be proved in Corollary 4.22 that the vector-valued version of (d) is also

valid. Let (Ω ,Σ ,µ) be a measure space, let X be a Banach space and let g ∈
L∞(µ,X). Then g∈Spear(L∞(µ,X)) if and only if g(t)∈Spear(X) for µ-almost
every t. Actually, the proof of the “if” part is just a straightforward adaptation
of the corresponding one for (d).

(f) The space Lp(µ) contains no spear vector if 1 < p < ∞ and dim(Lp(µ)) > 2
(use Proposition 2.11.h, for instance).

(g) Let X1, X2 be Banach spaces and let X = X1⊕∞ X2. Then, (z1,z2)∈ Spear(X) if,
and only if, z1 ∈ Spear(X1) and z2 ∈ Spear(X2). The proof is straightforward.

As an application of examples (b) and (e) above and Theorem 2.9, we get easily
the following well-known old result (see [99] for an exposition which also covers
the complex case).

Corollary 2.13. Let X be a Banach space such that either X or X∗ is isometri-
cally isomorphic to an L1(µ) space. Then, BX = aconv

(
Face(SX ,x∗)

)
for every

x∗ ∈ ext(BX∗).

This result can be read as that X is an almost-CL-space when X or X∗ is isomet-
rically isomorphic to an L1(µ) space.





Chapter 3

Three definitions for operators: spearness, the
alternative Daugavet property, and lushness

This is the main chapter of our manuscript, as we introduce and deeply study the
main definitions: the one of spear operator, the weaker of operator with the alterna-
tive Daugavet property, and the stronger lush operator.

3.1 A first contact with spear operators

Even though it has been already given, we formally state the definition of spear
operator as it is the main concept of the manuscript.

Definition 3.1. Let X , Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one op-
erator. We say that G is a spear operator if the norm equality

‖G+TT‖= 1+‖T‖

holds for every T ∈ L(X ,Y ), that is, if G ∈ Spear
(
L(X ,Y )

)
.

We would like now to list some of the equivalent reformulations of the concept of
spear operator which one can get particularizing the results of the previous chapter.
We will also include a characterization in terms of numerical radius that comes
from section 1.2 and follows from [93]. We include anyway a direct proof using the
results of the previous chapter.

Proposition 3.2. Let X, Y be Banach spaces, let G ∈L(X ,Y ) be a norm-one opera-
tor and let A ⊂ BL(X ,Y )∗ such that BL(X ,Y )∗ = convw∗(A ). The following assertions
are equivalent:

(i) G is a spear operator.
(ii) |ζ (G)| = 1 for every ζ ∈ ext

(
BL(X ,Y )∗

)
, i.e. Face(SL(X ,Y )∗ ,G) is norming for

L(X ,Y ).

51
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(iii) For every ε > 0, the set Slice(A ,G,ε) is norming for L(X ,Y ).
(iv) For every ε > 0,

‖T‖= sup
{
|y∗(T x)| : y∗ ∈ SY ∗ , x ∈ SX , Rey∗(Gx)> 1− ε

}
for every T ∈ L(X ,Y ).

(v) nG(X ,Y ) = 1, that is, vG(T ) = ‖T‖ for every T ∈ L(X ,Y ).

Proof. (i), (ii), and (iii) are equivalent by Corollary 2.8. To get the equivalence with
(iv), we consider A = {y∗⊗ x : y∗ ∈ SY ∗ , x ∈ SX} as a subset of the unit ball of
L(X ,Y )∗ (indeed, [y∗⊗ x](T ) = y∗(T x) for every T ∈ L(X ,Y )) and observe that A
is rounded and norming for L(X ,Y ), so BL(X ,Y )∗ = convw∗(A ). Then, (iv) is just
a reformulation of (iii) for this set A ; conversely, it is shown in Corollary 2.8 that
the property (iii) for just one particular set A is sufficient to get that G is a spear
operator.

That (iv) is equivalent to (v) follows routinely from the definition of numerical
radius with respect to G. ut

We next present some examples of spear operators which may help to better
understand the definition and see how far from the Identity a spear operator can be.
The first family appeared in [7, Theorem 4.2], but we will include an easy proof
using the results of chapter 2.

Proposition 3.3. Let Γ be an arbitrary set, let X, Y be Banach spaces, and let
(eγ)γ∈Γ be the canonical basis of `1(Γ ) (as defined in Example 2.12.b).

(a) G ∈ L(`1(Γ ),Y ) is a spear operator if and only if G(eγ) ∈ Spear(Y ) ∀γ ∈ Γ .
(b) G ∈ L(X ,c0(Γ )) is a spear operator if and only if G∗(eγ) ∈ Spear(X∗) ∀γ ∈Γ .

Proof. (a). We fix T ∈ L(`1(Γ ),Y ) and ε > 0. As B`1(Γ ) = aconv
(
{eγ : γ ∈ Γ }

)
, it

follows that
‖T‖= sup

γ∈Γ

‖Teγ‖

for every T ∈ L(`1(Γ ),Y ). If Geγ ∈ Spear(Y ), it follows from Corollary 2.8 that
Aγ := Slice(SY ∗ ,Geγ ,ε) is norming for Y so, together with the previous equality,
we get that

‖T‖= sup
γ∈Γ

sup
y∗∈Aγ

|y∗(Teγ)|= sup
{
|y∗(Teγ)| : y∗ ∈ SY ∗ , γ ∈ Γ , Rey∗(Geγ)> 1−ε

}
.

It now follows from Proposition 3.2 that G is a spear operator. For the necessity,
suppose that there is ξ ∈ Γ such that G(eξ ) /∈ Spear(Y ) and find y0 ∈ SY such that
‖G(eξ )+Ty0‖< 2. We then consider the norm-one operator T ∈L(`1(Γ ),Y ) given
by T (eξ ) = y0 and T (eγ) = 0 if γ 6= ξ . Therefore,

‖G+TT‖= sup
γ∈Γ

‖G(eγ)+TT (eγ)‖< 2,
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so G is not a spear operator.

Let us prove (b). The sufficiency of the condition is given by the obvious fact that
G is a spear operator when G∗ is (as taking adjoint preserves the norm) and the result
in (a). For the necessity, we may give an argument dual to the one of the case (a).
Suppose that there is ξ ∈ Γ such that G∗(eξ ) /∈ Spear(X∗) and find x∗0 ∈ SX∗ such
that ‖G∗(eξ )+Tx∗0‖< 2. We then consider the norm-one operator T ∈L(X ,c0(Γ ))
given by [T x](ξ ) = x∗0(x) and [T x](γ) = 0 if γ 6= ξ for every x ∈ X , and observe that
T ∗(eξ ) = x∗0 and T ∗(eγ) = 0 for γ 6= ξ . Therefore,

‖G+TT‖= ‖G∗+TT ∗‖= sup
γ∈Γ

‖G∗(eγ)+TT ∗(eγ)‖< 2,

so G is not a spear operator. ut

This result will be improved in Example 5.5. More involved examples of spear
operators, lush operators, operators with the aDP. . . will appear in chapters 4, 5, 7.

The following observations follow straightforwardly from the definition of spear
operator.

Remark 3.4. Let X ,Y be Banach spaces and let G ∈ L(X ,Y ).

(i) Composing with isometric isomorphisms preserves spearness: Let X1, Y1 be
Banach spaces, and let Φ1 ∈ L(X1,X) and Φ2 ∈ L(Y,Y2) be isometric isomor-
phisms. Then G ∈ Spear

(
L(X ,Y )

)
if and only if Φ2GΦ1 ∈ Spear

(
L(X1,Y1)

)
.

(ii) We may restrict the codomain of a spear operator keeping the property of being
spear operator: If G is a spear operator and Z is a subspace of Y containing
G(X), then G : X −→ Z is a spear operator. On the other hand, the extension of
the codomain does not always preserve spears: the map j : K−→K⊕∞K given
by j(x) = (x,0) for every x ∈K, is not a spear operator.

(iii) As an easy consequence of (i) and (ii), we get that the following assertions are
equivalent: (a) X has numerical index 1 (i.e. IdX is a spear), (b) there exists a
Banach space Z and an isometric isomorphism which is a spear in L(X ,Z) or
L(Z,X), (c) there exists a Banach space W and an isometric embedding of X
into W which is a spear operator.

3.2 Alternative Daugavet Property

We start presenting the definition of the alternative Daugavet property for an oper-
ator, which extends the analogous definition for a Banach space (through the Iden-
tity).

Definition 3.5. Let X , Y be Banach spaces. We say that G ∈ L(X ,Y ) has the alter-
native Daugavet property (aDP in short), if the norm equality
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‖G+TT‖= 1+‖T‖ (aDE)

holds for every rank-one operator T ∈ L(X ,Y ).

Substituting T = 0 in (aDE) we deduce that if G has the aDP then ‖G‖= 1.

The following fundamental result characterizes the aDP of an operator in terms
of the behaviour of the operator with respect to slices, spear sets. . .

Theorem 3.6. Let G∈L(X ,Y ) be a norm-one operator between two Banach spaces
X, Y , let B ⊂ BX with BX = conv(B) and let A ⊂ BY ∗ with BY ∗ = convw∗(A ). The
following assertions are equivalent:

(i) G has the aDP.
(ii) G(S) is a spear set for every slice S of B.

(ii∗) G∗(S∗) is a spear set for every w∗-slice S∗ of A .
(iii) For every y0 ∈ SY and ε > 0

BX = conv
(
{x ∈B : ‖Gx+Ty0‖> 2− ε}

)
.

(iv) For every x∗0 ∈ X∗, the set{
y∗ ∈ extBY ∗ : ‖G∗y∗+Tx∗0‖= 1+‖x∗0‖

}
is a dense Gδ set in (extBY ∗ ,w∗).

Proof. (i)⇒ (ii): Let S= Slice(B,x∗0,ε) be a slice of B with x∗0 ∈ SX∗ and 0< ε < 1.
Given any 0 6= y0 ∈ Y consider the rank-one operator T = x∗0⊗ y0 ∈ L(X ,Y ) which
satisfies that ‖T‖= ‖y0‖. Since ‖G+TT‖= ‖G∗+TT ∗‖, for every 0< δ < 1 there
exists y∗0 ∈ SY ∗ such that

‖G∗y∗0 +Ty∗0(y0)x∗0‖> 1+‖y0‖(1− εδ ). (3.1)

Using a rotation on y∗0 if necessary, we can assume that 0 6 y∗0(y0) 6 ‖y0‖. Using
the hypothesis on B, we deduce from (3.1) the existence of some x0 ∈B satisfying

|y∗0(Gx0)|+ y∗0(y0)Rex∗0(x0)> 1+‖y0‖(1− εδ )

and, in particular,

‖Gx0 +Tx∗0(x0)y0‖> 1+‖y0‖(1− εδ ).

Since ‖Gx0‖6 1, we deduce from the first inequality that

Rex∗0(x0)> 1− εδ > 1− ε.

Hence x0 ∈ S and so
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‖G(S)+Ty0‖> ‖Gx0 +Ty0‖> ‖Gx0 +Tx∗0(x0)y0‖− εδ‖y0‖
> 1+‖y0‖(1− εδ )−‖y0‖εδ > 1+‖y0‖(1−2εδ ).

(ii) ⇒ (iii): Given y0 ∈ SY , ε > 0 and a slice S of B, since G(S) is a spear set,
we can find x ∈ TS with ‖Gx+ y0‖ > 2− ε , which means that every slice S of B
intersects the set

T{x ∈B : ‖Gx+ y0‖> 2− ε}= {x ∈B : ‖Gx+Ty0‖> 2− ε}.

Therefore

BX = conv(B)⊂ conv
(
{x ∈B : ‖Gx+Ty0‖> 2− ε}

)
.

(iii) ⇒ (i): Let T ∈ L(X ,Y ) be a rank-one operator. By Remark 2.2, we may
and do suppose that ‖T‖ = 1. Then, it is of the form T = x∗0⊗ y0 for some y0 ∈ SY
and x∗0 ∈ SX∗ . Given ε > 0, the hypothesis implies that Slice(B,x∗0,ε) intersects
{x ∈B : ‖Gx+Ty0‖> 2− ε}, so there exists x0 ∈ Slice(B,x∗0,ε) and θ0 ∈ T such
that ‖G(x0)+θ0y0‖> 2− ε . Hence

‖G+TT‖> ‖Gx0 +θ0x∗0(x0)y0‖
> ‖Gx0 +θ0y0‖− |x∗0(x0)−1|> 2−2ε.

(ii) ⇒ (iv): We may and do suppose that ‖x∗0‖ = 1. Given ε > 0, the set
G
(
Slice(B,x∗0,ε)

)
is a spear of BY by hypothesis, which by Corollary 2.6.iii means

that the set gFace
(
extBY ∗ ,TG

(
Slice(B,x∗0,ε)

))
is a dense Gδ set in the Baire space

(extBY ∗ ,w∗). Hence,⋂
m∈N

gFace
(
extBY ∗ ,TG

(
Slice(B,x∗0,1/m)

))
is also dense in extBY ∗ , and it is easy to check that⋂
m∈N

gFace
(
extBY ∗ ,TG

(
Slice(B,x∗0,1/m)

))
=
{

y∗ ∈ extBY ∗ : ‖G∗y∗+Tx∗0‖= 2
}
.

(iv) ⇒ (ii∗): Fix x∗0 ∈ X∗. If S∗ is any w∗-slice of BY ∗ , then S∗ ∩ extBY ∗ is a
non-empty open subset of (extBY ∗ ,w∗). By hypothesis, S∗ contains an element of
{y∗ ∈ extBY ∗ : ‖G∗y∗+Tx∗0‖= 1+‖x∗0‖}, so ‖G∗(S∗)+Tx∗0‖= 1+‖x∗0‖.

(ii∗)⇒ (i): Let T = x∗0⊗y0, where x∗0 ∈ X∗ and y0 ∈ SY , be an arbitrary rank-one
operator. Given any ε > 0 put S∗ = Slice(A ,y0,ε). Notice that for every y∗ ∈ S∗,

‖T ∗y∗− x∗0‖= ‖y∗(y0)x∗0− x∗0‖< ‖x∗0‖ε,

so using that G∗(S∗) is a spear, we deduce that
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‖G+TT‖= ‖G∗+TT ∗‖> ‖G∗(S∗)+Tx∗0‖−‖x∗0‖ε = 1+(1− ε)‖x∗0‖,

so ‖G+TT‖= 1+‖T‖, giving (i). ut

The next result shows that the aDP is separably determined, and will be very
useful in the next section where we deal with SCD operators.

Proposition 3.7. Let X, Y be Banach spaces and let G ∈ L(X ,Y ). Then, G has the
aDP if and only if for every separable subspaces X0 ⊂ X and Y0 ⊂ Y , there exist
separable subspaces X∞, Y∞ satisfying X0 ⊂ X∞ ⊂ X and Y0 ⊂Y∞ ⊂Y and such that
G(X∞)⊂ Y∞ and G|X∞

: X∞ −→ Y∞ has the aDP.

Proof. Suppose first that G has the aDP. Pick a sequence (xn)n∈N of SX with
supn ‖Gxn‖ = 1 and consider X1 = span(X0 ∪{xn : n ∈ N}) and Y1 = Y0 +G(X1),
both separable subspaces. By Theorem 3.6.iii, we have that

BX1 ⊂ conv({x ∈ SX : ‖Gx+Ty1‖> 2− ε}) for every y1 ∈ SY1 and ε > 0.

But since BX1 and SY1 are separable, it is easy to deduce the existence of a countable
set A1 ⊂ SX such that

BX1 ⊂ conv({x ∈ A1 : ‖Gx+Ty1‖> 2− ε}) for every y1 ∈ SY1 and ε > 0.

Define then X2 = span(X1∪A1) and Y2 = Y1 +G(X2), which are again separable.
Repeating the same process as above, we can construct an increasing sequence of
closed separable subspaces Xn ⊂ X and G(Xn)⊂ Yn ⊂ Y such that

BXn ⊂ conv
(
{x ∈ SXn+1 : ‖Gx+Tyn‖> 2− ε}

)
for every yn ∈ SYn and ε > 0.

This implies that X∞ :=
⋃

n∈N Xn and Y∞ :=
⋃

n∈NYn, satisfy that

BX∞
⊂ conv({x ∈ SX∞

: ‖Gx+Ty‖> 2− ε}) for every y ∈ SY∞
and ε > 0,

which means that G : X∞ −→ Y∞ has the aDP by using again Theorem 3.6.iii.

Conversely, take a non-null rank-one operator T ∈ L(X ,Y ), consider a separable
subspace X0 ⊂ X such that ‖G|X0‖= ‖G‖= 1 and ‖T |X0‖= ‖T‖, and write

Y0 = G(X0)+T (X0).

By hypothesis, there are separable subspaces X0 ⊂ X∞ ⊂ X and Y0 ⊂ Y∞ ⊂ Y such
that G|X∞

: X∞ −→Y∞ has norm one and has the aDP. As T is rank-one and T |X0 6= 0,
it follows that T (X)⊂ T (X0)⊂Y0 ⊂Y∞ and ‖T |X∞

‖= ‖T‖. Then we may apply that
G|X∞

has the aDP to get that ‖G|X∞
+TT |X∞

‖= 1+‖T‖. But, clearly,

‖G+TT‖> ‖G|X∞
+TT |X∞

‖= 1+‖T‖,

and the reverse inequality is always true, so G has the aDP. ut



3.3 Target operators 57

As we did for spear operators, we may directly deduce from the definition the
following three elementary results about operators with the aDP.

Remark 3.8. Let X ,Y be Banach spaces and G ∈ L(X ,Y ).

(i) The composition with isometric isomorphisms preserves the aDP: If X1, Y1 are
Banach spaces and Φ1 ∈ L(X1,X), Φ2 ∈ L(Y,Y2) are isometric isomorphisms,
then, G ∈ L(X ,Y ) has the aDP if and only if Φ2GΦ1 ∈ L(X1,Y1) has the aDP.

(ii) If G has the aDP and Z is a subspace of Y containing G(X), then G : X −→ Z
has the aDP. However, the property of aDP is not preserved by extending the
codomain of the operator, as the same example of Remark 3.4 shows.

(iii) As an easy consequence of (i) and (ii), we have that the following statements are
equivalent: (a) X has the aDP, (b) there exist a Banach space Z and an isometric
isomorphism in L(X ,Z) or in L(Z,X) which has the aDP, (d) there exist a
Banach space W and an isometric embedding G ∈ L(X ,W ) which has the aDP.

3.3 Target operators

Our goal in this section is to present and study the concept of target operator, which
will be the key in the next section to relate the aDP and lushness so, in particular, to
relate the aDP and spear operators. As far as we know, this is a new concept even in
the particular case in which G is the identity operator of a Banach space.

Definition 3.9. Let X , Y , Z be Banach spaces and let G ∈ L(X ,Y ) be a norm-one
operator. We say that T ∈L(X ,Z) is a target for G if each x0 ∈ BX has the following
property:

For every ε > 0 and every y ∈ SY , there is F ⊂ BX such that

conv(F)⊂ {x ∈ BX : ‖Gx+ y‖> 2− ε} and dist
(
T x0,T

(
aconv(F)

))
< ε.

(3)

Remark that if F satisfies (3), then there is a finite subset of F satisfying the same
condition.

At the end of the section we will include a result characterizing spear vectors in
terms of target operators which will allow to better understand this definition, see
Proposition 3.24. Next, we provide with several characterizations of this kind of
operators which will be very useful in the sequel.

Proposition 3.10. Let X, Y , Z be Banach spaces, let G ∈ L(X ,Y ) with ‖G‖= 1, let
T ∈L(X ,Z), and let A ⊂ BY ∗ with convw∗(A ) = BY ∗ . Given x0 ∈ BX , the following
assertions are equivalent:

(i) x0 satisfies (3).
(ii) For every ε > 0 and y ∈ SY there is y∗ ∈ Slice(A ,y,ε) such that
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dist
(
T x0,T

(
aconvgSlice(SX ,G∗y∗,ε)

))
< ε.

(iii) For every ε > 0, the set

Dε
T (A ,x0) =

{
y∗ ∈A : dist

(
T x0,T (aconvgSlice(SX ,G∗y∗,ε))

)
< ε
}

intersects every w∗-slice of A .

Proof. (i)⇒ (ii): Let ε > 0 and y∈ SY . Fixed 0 < δ < 1 such that δ 2+δ + δ

1−δ
< ε ,

by (3) in Definition 3.9, we can find F = {x1, . . . ,xn} ⊂ BX , λ1, . . . ,λn > 0 with
∑λk = 1, and θ1, . . . ,θn ∈ T such that∥∥∥∥∥ n

∑
k=1

λkG(xk)+ y

∥∥∥∥∥> 2−δ
2 and

∥∥∥∥∥T x0−
n

∑
k=1

λkθkT (xk)

∥∥∥∥∥< δ
2. (3.2)

Let a∗ ∈A be such that

Rea∗
(

n

∑
k=1

λkG(xk)+ y

)
> 2−δ

2.

Then Rea∗(y)> 1−δ 2 > 1−ε and, moreover, J = {k : Rea∗(Gxk)> 1−δ} satis-
fies

1−δ ∑
k/∈J

λk = ∑
k∈J

λk +(1−δ )∑
k/∈J

λk >
n

∑
k=1

λk Rea∗(Gxk)> 1−δ
2.

Hence, we get that
∑
k/∈J

λk < δ .

This, together with the right-hand side inequality of (3.2), implies that∥∥∥∥∥T x0−∑
k∈J

λk

∑ j∈J λ j
θkT (xk)

∥∥∥∥∥6 δ
2 +

∥∥∥∥∥ n

∑
k=1

λkθkT xk−∑
k∈J

λk

∑ j∈J λ j
θkT xk

∥∥∥∥∥
6 δ

2 +δ +

∥∥∥∥∥∑k∈J
λkθkT xk−∑

k∈J

λk

∑ j∈J λ j
θkT xk

∥∥∥∥∥
6 δ

2 +δ +

∣∣∣∣1− 1
∑k∈J λk

∣∣∣∣
6 δ

2 +δ +
δ

1−δ
< ε.

(ii) ⇒ (iii): statement (ii) claims that Dδ
T (A ,x0) intersects Slice(A ,y,δ ) for

every y∈ SY and every δ > 0. Since for every ε > 0, Dε
T (A ,x0) contains Dδ

T (A ,x0)
for every 0 < δ < ε , we conclude the result.
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(iii)⇒ (i): Given y ∈ SY and ε > 0, Dε
T (A ,x0) intersects Slice(A ,y,ε). Taking

an element y∗ in such intersection, by definition of Dε
T (A ,x0), we can find a finite

set F ⊂ gSlice(SX ,G∗y∗,ε) such that

dist(T x0,T (aconv(F)))< ε.

But the condition F ⊂ gSlice(SX ,G∗y∗,ε) yields that every x ∈ conv(F) satisfies

‖Gx+ y‖> Rey∗(Gx)+Rey∗(y)> 2−2ε,

which finishes the proof. ut

We can improve the previous Proposition when considering A as the set of ex-
treme points of the dual unit ball, as the following result shows.

Theorem 3.11. Let X, Y , Z be Banach spaces, let G ∈ L(X ,Y ) with ‖G‖ = 1 and
let T ∈ L(X ,Z). Then, an element x0 ∈ BX satisfies (3) if and only if the set

DT (x0) :=
{

y∗ ∈ extBY ∗ : T x0 ∈ T
(
aconvgSlice(SX ,G∗y∗,ε)

)
for every ε > 0

}
is a dense (Gδ ) subset of (extBY ∗ ,w∗).

Proof. Assume first that x0 satisfies (3). By the Krein-Milman theorem, we may
use Proposition 3.10.iii with A = ext(BY ∗). Thus, using Lemma 2.5.a, we have that
Dε

T (extBY ∗ ,x0) intersects every weak-star open subset of extBY ∗ . In other words,
Dε

T (extBY ∗ ,x0) is a dense subset of (extBY ∗ ,w∗). Since

DT (x0) =
⋂

m∈N
D

1/m
T (extBY ∗ ,x0),

we just have to show that Dε
T (extBY ∗ ,x0) is open and then apply Lemma 2.5.c.

Indeed, notice that for every a∗0 ∈ Dε
T (ext(BY ∗),x0) we can find a finite subset F of

gSlice(SX ,G∗a∗0,ε) such that dist(T x0,T (aconv(F)))< ε . The set

U :=
⋂
x∈F

gSlice(ext(BY ∗),Gx,ε)

is a relatively weak-star open subset of ext(BY ∗), which contains y0 by definition.
Also U ⊂ Dε

T (ext(BY ∗),x0), since F ⊂ gSlice(SX ,G∗y∗,ε) for every y∗ ∈ U . So,
Dε

T (extBY ∗ ,x0) is open as desired.

For the converse implication, notice that if DT (x0) is dense in (extBY ∗ ,w∗), then
assertion (iii) of Proposition 3.10 immediately holds for A = ext(BY ∗), and so x0
satisfies (3). ut

One of the main applications of target operators is the following result.



60 3 Spearness, the aDP and lushness

Proposition 3.12. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one
operator. If T ∈ L(X ,Y ) is a target for G, then

‖G+TT‖= 1+‖T‖.

Proof. By Remark 2.2, we can assume that ‖T‖ = 1. For 0 < ε < 1, take x0 ∈ BX
with ‖T x0‖> 1−ε and write y0 := T x0/‖T x0‖. By Proposition 3.10.ii, there exists
y∗0 ∈ Slice(SY ∗ ,y0,ε) with

dist
(
T x0,T

(
aconvgSlice(SX ,G∗y∗0,ε)

))
< ε.

We can then find n ∈ N and elements xk ∈ gSlice(SX ,G∗y∗0,ε), θk ∈ T, λk > 0 for
k = 1, . . . ,n, such that

n

∑
k=1

λk = 1 and

∥∥∥∥∥T x0−T

(
n

∑
k=1

λkθkxk

)∥∥∥∥∥< ε.

Since |y∗0(T x0)| > 1− ε , a standard convexity argument leads to the existence of
some k ∈ {1, . . . ,n} with |y∗0(T xk)|> 1−2ε . Therefore

‖G+TT‖> |y∗0(Gxk)|+ |y∗0(T xk)|> 2−3ε,

and the proof finishes. ut

The following observations can be proved directly from the definition of target,
but they follow easier from Proposition 3.10.

Remark 3.13. Let X , Y , Z, Z1, Z2 be Banach spaces and let G ∈ L(X ,Y ) be a norm-
one operator.

(a) If T ∈ L(X ,Z) is a target for G, then λT is a target for G for every λ ∈K.
(b) Let T1 ∈ L(X ,Z1) and T2 ∈ L(X ,Z2) be operators such that ‖T2x‖ 6 ‖T1x‖ for

every x ∈ X . If T1 is a target for G, then so is T2.

Target operators are separably determined, and this fact will be crucial in the
study of the relationship with the aDP and SCD.

Theorem 3.14. Let X, Y , Z be Banach spaces, let G ∈ L(X ,Y ) be a norm-one op-
erator and consider T ∈ L(X ,Z). Then, T is a target for G if and only if for every
separable subspaces X0 ⊂ X and Y0 ⊂ Y , there exist separable subspaces X∞, Y∞

satisfying X0 ⊂ X∞ ⊂ X and Y0 ⊂Y∞ ⊂Y and such that G|X∞
∈ L(X∞,Y∞) has norm

one and T |X∞
∈ L(X∞,Z) is a target for G|X∞

.

Proof. Let us assume first that T is a target for G.

Claim: given separable subspaces X̃ ⊂ X and Ỹ ⊂ Y , we can find a countable set
B ⊂ BX with the following property (P): given x0 ∈ BX̃ , y0 ∈ SỸ and ε > 0, there
exists F ⊂ B with
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conv(F)⊂ {x ∈ BX : ‖Gx+ y‖> 2− ε} and dist(T x0,T (aconv(F)))< ε.

Indeed, fixing C0 and D0 countable dense subsets of BX̃ and BỸ respectively,
we can apply the definition of target operator to construct a countable set B ⊂ BX
satisfying the property (P) for all x0 ∈C0, y0 ∈D0 and ε ∈Q+. But using the density
of C0 and D0, it turns out that B has the same property for each x0 ∈ BX̃ , y0 ∈ BỸ
and ε > 0.

Now we prove the theorem. First, we may and do assume that ‖G|X0‖= ‖G‖= 1.
Put X1 = X0 and Y1 = span(Y0∪G(X0)), both separable Banach spaces. Using the
claim, we deduce the existence of a countable set B1 ⊂ BX with the property (P)
for X1 and Y1. Define X2 = span(X1∪B1) and Y2 = span(Y1∪G(X2)). Repeating
this process inductively, we construct increasing sequences of closed separable sub-
spaces Xn ⊂ X and G(Xn)⊂Yn ⊂Y such that BXn+1 has the property (P) above for Xn

and Yn. Taking X∞ :=
⋃

n∈N Xn and Y∞ :=
⋃

n∈NYn, we conclude the result, as G|X∞

and T |X∞
satisfy the definition of target operator by construction.

Let us check the converse implication. Given x0 ∈ BX and y0 ∈ SY we can find
separable subspaces x0 ∈ X∞ ⊂ X and y0 ∈ Y∞ ⊂ Y with the properties above, so
applying the definition of target for T |X∞

, G|X∞
and the previous elements we get the

result. ut

We need one more ingredient to be able to present the main result about the
relationship between target operators and SCD operators.

Proposition 3.15. Let X, Y , Z be Banach spaces and let G∈L(X ,Y ) be a norm-one
operator. Let T ∈ L(X ,Z) be an operator such that the set

DT :=
{

y∗ ∈ extBY ∗ : T (BX )⊂ T (aconvgSlice(BX ,G∗y∗,ε)) for every ε > 0
}

is dense in (extBY ∗ ,w∗). Then, T is a target for G, and in the case of Z =Y , we have
‖G+TT‖= 1+‖T‖.

Proof. In the notation of Theorem 3.11, the inclusion DT ⊂DT (x0) holds for every
x0 ∈ BX and the same Theorem gives that T is a target for G. If Z =Y , an application
of Proposition 3.12 implies that ‖G+TT‖= 1+‖T‖. ut

The converse of the above result holds for operators with separable image.

Proposition 3.16. Let X, Y , Z be Banach spaces and let G∈L(X ,Y ) be a norm-one
operator. Suppose that T ∈ L(X ,Z) is a target for G such that T (X) is separable.
Then,

DT :=
{

y∗ ∈ extBY ∗ : T (BX )⊂ T (aconvgSlice(BX ,G∗y∗,ε)) for every ε > 0
}

is a dense Gδ subset of (extBY ∗ ,w∗).
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Proof. Since T is a target for G, for every x0 ∈ BX we have by Theorem 3.11 that
the set

DT (x0) :=
{

y∗ ∈ extBY ∗ : T x0 ∈ T
(
aconv(gSlice(SX ,G∗y∗,ε))

)
for every ε > 0

}
is a dense Gδ subset of (extBY ∗ ,w∗). If we choose a sequence (xn)n∈N in BX so that
(T xn)n∈N is dense in T (BX ), then DT =

⋂
n∈NDT (xn). Since all DT (xn,extBY ∗) are

dense Gδ subsets of (extBY ∗ ,w∗), so is DT (see Lemma 2.5.c). ut

Theorem 3.17. Let X, Y , Z, Z1 be Banach spaces and let G ∈ L(X ,Y ) be an oper-
ator with the aDP. If for T ∈ L(X ,Z) there is an SCD operator T1 ∈ L(X ,Z1) such
that ‖T x‖ 6 ‖T1x‖ for every x ∈ X, then T is a target for G. In the case of Z = Y ,
we have ‖G+TT‖= 1+‖T‖.

Proof. By Remark 3.13 we may assume that T is an SCD operator and that ‖T‖6 1.
Let
{

Ŝn : n ∈ N
}

be a determining family of slices for T (BX ). Then,

Sn := T−1(Ŝn)∩SX

is a slice of SX for each n ∈ N. Since G has the aDP, Theorem 3.6.ii tells us that
G(Sn) is a spear set for every n ∈ N, which implies that gFace(extBY ∗ ,TG(Sn)) is a
dense Gδ set in (extBY ∗ ,w∗) by Corollary 2.6.iii. As (extBY ∗ ,w∗) is a Baire space
(see Lemma 2.5.c), we deduce that the intersection⋂

n∈N
gFace(extBY ∗ ,TG(Sn))

is weak-star dense in extBY ∗ . Observe that, by Proposition 3.15, it suffices to show
that this intersection is contained in DT . Given y∗0 belonging to this intersection,
we have that for every n ∈ N and ε > 0, G(Sn)∩TSlice(BY ,y∗0,ε) 6= /0. Therefore,
Sn∩TgSlice(BX ,G∗y∗0,ε) 6= /0, and so T (TgSlice(BX ,G∗y∗0,ε))∩ Ŝn 6= /0. Using that
the family

{
Ŝn : n ∈ N

}
is determining for T (BX ), we conclude that

T (BX )⊂ conv
(
T (TgSlice(BX ,G∗y∗0,ε))

)
= T

(
aconv

(
gSlice(BX ,G∗y∗0,ε)

))
and, therefore, y∗0 ∈DT . ut

As a consequence of the previous results, we may present a class of operators
which is a two-sided operator ideal consisting of operators T satisfying the condition
‖G+TT‖= 1+‖T‖ whenever G has the aDP. Let us recall the needed definitions
which we borrow from [9] and [70]. Let X , Y be Banach spaces, an operator T ∈
L(X ,Y ) is hereditarily SCD if T (BX ) is a hereditarily SCD set, that is, if every
convex subset B of T (BX ) is SCD. Obviously, hereditarily SCD operators are SCD.
The operator T is HSCD-majorized if there is a Banach space Z and a hereditarily
SCD operator T̃ ∈ L(X ,Z) such that ‖T x‖ 6 ‖T̃ x‖ for every x ∈ X . It is shown
in [70, Theorem 3.1] that the class of HSCD-majorized operators is a two sided
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operator ideal. By Examples 1.56, this ideal contains those operators with separable
range such that the image of the unit ball has the Radon-Nikodým Property, or the
convex point of continuity property, or it is an Asplund set, and those operators with
separable rank which do not fix copies of `1.

Corollary 3.18. Let X, Y , Z be Banach spaces and let G ∈ L(X ,Y ) be an operator
with the aDP. If T ∈ L(X ,Z) is a HSCD-majorized operator then T is a target for
G. In the case of Z = Y , we have ‖G+TT‖= 1+‖T‖.

Corollary 3.19. Let X, Y be Banach spaces and let G∈L(X ,Y ) be an operator with
the aDP. Then, the class of operators T ∈ L(X ,Y ) satisfying ‖G+TT‖= 1+‖T‖
contains the component in L(X ,Y ) of the two-sided operator ideal formed by the
HSCD-majorized operators.

Even in the case when G = Id, the result above is new.

Corollary 3.20. Let X be a Banach space with the alternative Daugavet property.
Then, the class of operators T ∈L(X) satisfying ‖ Id+TT‖= 1+‖T‖ contains the
component in L(X) of the two-sided operator ideal formed by the HSCD-majorized
operators.

We can extend Theorem 3.17 to the non-separable setting in the following way.

Proposition 3.21. Let X, Y , Z be Banach spaces and let G ∈ L(X ,Y ). If G has
the aDP and T ∈ L(X ,Z) satisfies that T (BX0) is an SCD set for every separable
subspace X0 of X, then T is a target for G. Therefore, if Z = Y then ‖G+TT‖ =
1+‖T‖.

Proof. Our aim is to use Theorem 3.14 to deduce that T is a target for G. To do
so let us fix separable subspaces X0 ⊂ X and Y0 ⊂ Y . By Proposition 3.7 we can
find separable subspaces X0 ⊂ X∞ ⊂ X and Y0 ⊂ Y∞ ⊂ Y such that G(X∞)⊂ Y∞ and
G|X∞

: X∞ −→ Y∞ has norm one and the aDP. Now, as T |X∞
: X∞ −→ Z is SCD,

Theorem 3.17 tells us that T |X∞
is a target for G|X∞

and we can apply Theorem 3.14
to get that T is a target for G. ut

Using the known results about SCD sets (see Examples 1.56), we may provide
with the following consequence.

Corollary 3.22. Let X, Y , Z be Banach spaces and let G ∈ L(X ,Y ). Suppose that G
has the aDP and T ∈ L(X ,Z) satisfies that T (BX ) has one of the following proper-
ties: Radon-Nikodým Property, Asplund Property, convex point of continuity prop-
erty or absence of `1-sequences. Then, T is a target for G. Therefore, if Z = Y then
‖G+TT‖= 1+‖T‖.

Proof. In [9, §5] (see Examples 1.56) it is shown that any of the previous properties
implies that the requirements of Proposition 3.21 are satisfied. ut



64 3 Spearness, the aDP and lushness

To finish the discussion about which operators are targets for a given aDP op-
erator, we may also extend Corollary 3.19 to operators with non separable range
as follows. Given two Banach spaces X and Y , consider the class of those oper-
ators T ∈ L(X ,Y ) such that for every separable subspace X0 of X , T |X0 is HSCD-
majorized. As a consequence of the cited result [70, Theorem 3.1], this class is a two
sided operator ideal. Therefore, extending straightforwardly the proof of Proposition
3.21, we get the following result.

Corollary 3.23. Let X, Y be Banach spaces and let G∈L(X ,Y ) be an operator with
the aDP. The class of operators T ∈ L(X ,Y ) satisfying ‖G+TT‖ = 1+‖T‖ con-
tains the component in L(X ,Y ) of the two-sided operator ideal of those operators
such that their restrictions to separable subspaces are HSCD-majorized. Moreover,
this ideal contains those operators for which the image of the unit ball has one of
the following properties: Radon-Nikodým Property, Asplund Property, convex point
of continuity property, or absence of `1-sequences.

We finish this section with two results concerning elements satisfying property
(3) in Definition 3.9.

Proposition 3.24. Let X be a Banach space and let x0 ∈ BX . Then, x0 is a spear
vector if and only if x0 belongs to extBX∗∗ and satisfies (3) with G = T = IdX .

Proof. Using Theorem 3.11, x0 has property (3) for G = T = IdX if and only if

D(x0) :=
{

x∗ ∈ extBX∗ : x0 ∈ aconv
(
gSlice(SX ,x∗,ε)

)
for every ε > 0

}
is dense in (extBX∗ ,w∗). If x0 is a spear, then x0 ∈ extBX∗∗ by Proposition 2.11.b.
Moreover, the definition of spear yields that |x∗(x0)|= 1 for each x∗ ∈ extBX∗ , and
so D(x0) = extBX∗ .

Let us see the converse. If x0 ∈ extBX∗∗ then for each x∗ ∈D(x0) and ε > 0, we
have that x0 is an extreme point of aconvσ(X∗∗,X∗)(gSlice(SX ,x∗,ε)

)
. By Milman’s

Theorem (see Lemma 2.5.b), we deduce that x0 ∈ gSlice(SX ,Tx∗,ε)
σ(X∗∗,X∗)

, and
so |x∗(x0)|> 1−ε . Since ε > 0 is arbitrary and D(x0) is weak-star dense in extBX∗ ,
we conclude that |x∗(x0)|= 1 for each x∗ ∈ extBX∗ , which means that x0 is a spear
by Corollary 2.8.iv. ut

Proposition 3.25. Let X, Y , Z be Banach spaces and let G∈L(X ,Y ) be a norm-one
operator. Given T ∈ L(X ,Z), the set of points x0 ∈ BX satisfying (3) in Definition
3.9 is absolutely convex and closed.

Proof. Let B be the set of points satisfying (3) for G and T . Fixed x0 ∈ aconv(B),
ε > 0, and y∈ SY , there is a finite subset F ⊂ B with dist(x0,aconv(F))< ε . By The-
orem 3.11, we have that

⋂
b∈F DT (b,extBY ∗) is a dense Gδ subset of (extBY ∗ ,w∗).

Take any
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y∗ ∈

[⋂
b∈F

DT (b,extBY ∗)

]
∩gSlice(BY ∗ ,y,ε).

Then, T b belongs to T
(
aconvgSlice(SX ,G∗y∗,ε)

)
for each b ∈ F , and so

dist
(
T x0,T

(
aconvgSlice(SX ,G∗y∗,ε)

))
6 ‖T‖dist(x0,aconv(F))< ‖T‖ε.

A straightforward normalization gives that x0 satisfies (3) for G and T , so x0 ∈ B
and B = aconv(B), as desired. ut

3.4 Lush operators

We start with the definition of lush operator, which generalizes the concept of lush
space when applied to the Identity.

Definition 3.26. Let X , Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one
operator. We say that G is lush if IdX is a target for G.

From the definition of target (or better from Remark 3.13.b), it follows immedi-
ately the following observation.

Remark 3.27. G is lush if and only if every operator whose domain is X is a target
for G. In particular, every lush G is a spear operator, that is,

‖G+TT‖= 1+‖T‖

for every T ∈ L(X ,Y ).

Let us summarize the results of the previous section when applied to lushness.

Proposition 3.28. Let X, Y be Banach spaces, let A ⊂ BY ∗ with convw∗(A ) = BY ∗

and let B ⊂ BX with aconv(B) = BX . Then the following assertions are equivalent
for a norm-one operator G ∈ L(X ,Y ):

(i) G is lush.
(ii) For every x0 ∈B, y ∈ SY and ε > 0 there is F ⊂ BX such that

conv(F)⊂ {x ∈ BX : ‖Gx+ y‖> 2− ε} and dist(x0,aconv(F))< ε.

(iii) For every x0 ∈B, y ∈ SY and ε > 0 there exists y∗ ∈ Slice(A ,y,ε) such that

dist
(
x0,aconv(gSlice(SX ,G∗y∗,ε))

)
< ε.

(iv) For every x0 ∈B, the set
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D(x0) =
{

y∗ ∈ extBY ∗ : x0 ∈ aconv
(
gSlice(SX ,G∗y∗,ε)

)
for every ε > 0

}
is a dense (Gδ ) subset of (extBY ∗ ,w∗).

(v) For every x0 ∈B, every y ∈ SY and every ε > 0, there exists y∗ ∈ ext(BY ∗) such
that

y ∈ Slice(SY ,y∗,ε) and x0 ∈ aconv
(
gSlice(SX ,G∗y∗,ε)

)
.

(vi) For every separable subspaces X0 ⊂ X and Y0 ⊂ Y , we can find separable sub-
spaces X0 ⊂ X∞ ⊂ X and Y0 ⊂ Y∞ ⊂ Y such that G(X∞) ⊂ Y∞, ‖G|X∞

‖ = 1 and
G|X∞

: X∞ −→ Y∞ is lush.

Proof. The equivalences are consequence of Proposition 3.10, Theorem 3.11 and
Theorem 3.14, together with Proposition 3.25 to pass from B to BX = aconv(B).

ut

Next, we get from the previous sections some conditions for an operator having
the aDP to be lush. The main result in this line is the next one, which follows from
Theorem 3.17 applied to T = IdX .

Theorem 3.29. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one
operator. Suppose that BX is SCD. Then, G has the aDP if and only if G is lush.

As all the properties involved in the above result are separably determined, we
have the following generalization.

Corollary 3.30. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one
operator. Suppose that BX0 is SCD for every separable subspace X0 ⊂ X. Then, G
has the aDP if and only if G is lush.

Proof. Since every lush operator is a spear, it has in particular the aDP. The converse
is consequence of Proposition 3.21 applied to T = IdX . ut

The most interesting particular cases of the above results are summarized in the
next corollary, which uses the examples of SCD spaces provided in Examples 1.56.

Corollary 3.31. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one op-
erator. Suppose that X has one of the following properties: Radon-Nikodým Prop-
erty, Asplund Property, convex point of continuity property or absence of isomorphic
copies of `1. Then, G has the aDP if and only if G is lush.

A result of this kind for the codomain space will be given in Proposition 5.3: if
G ∈ L(X ,Y ) has the aDP and Y is Asplund, then G is lush.

Our next aim is to provide the following sufficient conditions for an operator to
be lush which will be used in the next chapters.
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Proposition 3.32. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one
operator. Then, each of the following conditions ensures G to be lush.

(a) The set
{

y∗ ∈ BY ∗ : G∗y∗ ∈ Spear(X∗)
}

is norming for Y .
(b) The set

{
y∗ ∈ extBY ∗ : G∗y∗ ∈ Spear(X∗)

}
is dense in (extBY ∗ ,w∗).

(c) BX = conv
{

x ∈ BX : Gx ∈ Spear(Y )
}

.

Proof. The fact that (a) implies lushness follows from Proposition 3.28.v, as The-
orem 2.9 gives that BX = aconv

(
Face(SX ,G∗y∗)

)
for every y∗ ∈ BY ∗ such that

G∗y∗ ∈ Spear(X∗). Condition (b) is a particular case of condition (a). Finally,
by using Corollary 2.8.iv, condition (c) implies that every y∗ ∈ ext(BY ∗) satisfies
BX = aconv

(
Face(SX ,G∗y∗)

)
, so G∗y∗ is a spear vector by (the easy part of) Theo-

rem 2.9. ut

We do not know whether the conditions (a) or (b) above are necessary for lush-
ness in general, but they are when the domain space is separable as the following
deep result shows. We will see later that they are also necessary when the codomain
is an Asplund space (see Proposition 5.3).

Theorem 3.33. Let X be a separable Banach space and let Y be a Banach space. If
G ∈ L(X ,Y ) is lush, then the set Ω =

{
y∗ ∈ extBY ∗ : G∗y∗ ∈ Spear(X∗)

}
is a Gδ

dense subset of (extBY ∗ ,w∗). In other words, if G is lush, there exists a Gδ dense
subset Ω of (extBY ∗ ,w∗) such that

BX = aconv
(
Face(SX ,G∗y∗)

)
for every y∗ ∈Ω .

Proof. This is consequence of Proposition 3.16 and the characterization of spear
vectors given in Corollary 2.8. The last part is a consequence of Theorem 2.9. ut

On the other hand, condition (c) of Proposition 3.32 is not in general necessary
for lushness: consider X = Y = c0 and G = Id, which is lush as c0 is a lush space,
but Spear(Y ) is empty as Bc0 contains no extreme points. We will see later that
condition (c) is necessary when the domain space has the Radon-Nikodým Property
(see Proposition 5.2).

We finish the section with some elementary observations analogous to the ones
given for spear operators and for operators with the aDP.

Remark 3.34. Let X ,Y be Banach spaces and G ∈ L(X ,Y ).

(i) The composition with isometric isomorphisms preserves lushness: If X1, Y1 are
Banach spaces and Φ1 ∈ L(X1,X), Φ2 ∈ L(Y,Y1) are isometric isomorphisms,
then, G ∈ L(X ,Y ) is lush if and only if Φ2GΦ1 ∈ L(X1,Y1) is lush.

(ii) If G is lush and Z is a subspace of Y containing G(X), then G : X −→ Z is lush.
However, lushness is not preserved by extending the codomain of the operator,
as the same example of Remark 3.4 shows.
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(iii) As an easy consequence of (i) and (ii), we have that the following statements
are equivalent: (a) X is lush, (b) there exist a Banach space Z and an isometric
isomorphism in L(X ,Z) or in L(Z,X) which is lush, (d) there exist a Banach
space W and an isometric embedding G ∈ L(X ,W ) which is lush.



Chapter 4

Some examples in classical Banach spaces

Our aim here is to present examples of operators which are lush, spear, or have the
aDP, defined in some classical Banach spaces. One of the most intriguing examples
is the Fourier transform on L1, which we prove that is lush. Next, we study a number
of examples of operators arriving to spaces of continuous functions. In particular, it
is shown that every uniform algebra is lush-embedded into a space of bounded con-
tinuous functions. Finally, examples of operators acting from spaces of integrable
functions are studied.

4.1 Fourier transform

Let H be a locally compact Abelian group and let σ be the Haar measure on H.
The dual group Γ of H is the set of all continuous homomorphisms γ : H −→ T
endowed with a topology that makes it a locally compact group (see [111, §1.2] for
the details). If L1(H) is the space of σ -integrable functions over H, and C0(Γ ) is
the space of continuous functions on Γ which vanish at infinity, then the Fourier
transform F : L1(H)−→C0(Γ ) is defined as

F ( f ) : Γ −→ C,
[
F ( f )

]
(γ) =

∫
H

f (x)γ(x−1)dσ(x).

Theorem 4.1. Let H be a locally compact Abelian group and let Γ be its dual group.
Then, the Fourier transform F : L1(H) −→ C0(Γ ) is lush. In particular, F is a
spear operator, that is,

‖F +TT‖= 1+‖T‖

for every T ∈ L(L1(H),C0(Γ )).

Proof. For each γ ∈ Γ , F ∗(δγ) corresponds to the function g ∈ L∞(H) ≡ L1(H)∗

given by g(x) = γ(x−1) for every x ∈ H. Hence, |g(x)| = 1 for every x ∈ H, and so

69
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F ∗(δγ) is a spear of L∞(H)≡ L1(H)∗ by Example 2.12.d. As T{δγ : γ ∈ Γ } is the
set of extreme points of BC0(Γ )∗ , Proposition 3.32.b shows that F is lush. ut

4.2 Operators arriving to sup-normed spaces

Our goal here is to study various families of operators arriving to spaces of contin-
uous functions. We start with a general result.

Proposition 4.2. Let X be a Banach space, let L be a locally compact Hausdorff
topological space and let G ∈ L(X ,C0(L)) be a norm-one operator. Consider the
following statements:

(i) The set
{

t ∈ L : G∗δt ∈ Spear(X∗)
}

is dense in L.
(ii) G is lush.

(iii) G is a spear operator.
(iv) G has the aDP.
(v) {G∗δt : t ∈U} is a spear set of BX∗ for every open subset U ⊂ L.

Then (i)⇒ (ii)⇒ (iii)⇒ (iv)⇔ (v).

Besides, we have the following:

(a) If L is scattered, then all of the statements are equivalent.
(b) If X is separable, then (i)⇔ (ii).

Proof. The implications (ii)⇒ (iii)⇒ (iv) are clear. Using that

ext
(
BC0(L)∗

)
= T{δt : t ∈ L},

we conclude easily (i)⇒ (ii) from Proposition 3.32. Let us prove (iv)⇒ (v). Given
an open subset U ⊂ L, take h : L−→ [0,1] in C0(L) with ‖h‖∞ = 1 and supp(h)⊂U .
Then, for 0 < ε < 1, the weak-star slice S := Slice(extBC0(L)∗ ,h,ε) is contained in
T{δt : t ∈ U}, and since G∗(S) is a spear set by Theorem 3.6, we deduce that so
does {G∗δt : t ∈U}. To check that (v)⇒ (iv), notice that for every weak-star slice
S of extBC0(L)∗ , we can find an open subset V ⊂ L such that {δt : t ∈V} ⊂ TS, and
thus G∗(S) is a spear set whenever {G∗δt : t ∈V} is.

(a). L is scattered if and only if C0(L) is Asplund (see [8, Comment after Corol-
lary 2.6], for instance). Notice that G∗ : C0(L)∗ −→ X∗ is weak-star to weak-star
continuous, so we just have to prove that given an open set U ⊂ L, there exists t ∈U
such that G∗δt is a spear. Since G∗(U) is weak-star fragmentable (see [39, Theorem
11.8] for the definition and relation between Asplundness and fragmentability), for
each ε > 0 there exists a weak-star open set V satisfying that V ∩G∗(U) has diam-
eter less than ε . Now, since G∗ is weak-star continuous, we can find an open set
W ⊂ L with G∗(W ) ⊂ V ∩G∗(U). Because of the local compactness of L, we can
select W in such a way that W is compact. In particular G∗(W ) is a closed spear set
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with diameter less than ε . It is clear that we can iterate this process to construct a
decreasing sequence

(
Wn
)

n∈N of open subsets of U such that diam
(
G∗(Wn)

)
tends

to zero. Since G∗(Wn) is a spear set by (v), it follows then from Lemma 2.10 that an
element t ∈

⋂
n Wn ⊂U must satisfy that G∗δt is a spear.

(b). If X is separable, the result follows from Theorem 3.33. ut

Let us mention that (a) is also a particular case of Proposition 5.3 in the next chap-
ter, using the stated above equivalence between L being scattered and C0(L) being
Asplund. In the more restrictive case in which L has the discrete topology (which
is trivially scattered), the result will be also proved, with a different approach, in
Example 5.5.

The next result characterizes lush spaces. We need some notation. Let Ω be a
completely regular Hausdorff topological space and denote by Cb(Ω) the Banach
space of all scalar bounded and continuous functions on Ω endowed with the supre-
mum norm.

Theorem 4.3. Let X be a Banach space. Then, X is lush if and only if the canonical
inclusion J : X −→Cb(extBX∗) is lush.

Recall that for a completely regular Hausdorff topological space Ω the corre-
sponding Cb(Ω) can be canonically seen as a C(K) space by taking K = βΩ , the
Stone-Čech compactification of Ω . Since Ω is a dense subset of βΩ , we have that
the set T{δt : t ∈Ω} is dense in (ext(BCb(Ω)∗),w∗).

Proof. Since J is an isometry, it easily follows that IdX is lush whenever J is lush
(see Remark 3.34). Let us see the converse implication. The space Ω := extBX∗ en-
dowed with the weak-star topology is completely regular. As we mentioned before,
the set

A := T{δx∗ : x∗ ∈Ω}

is dense in (ext(Cb(Ω)∗),w∗) so, in particular,

BCb(Ω)∗ = convw∗(A ).

By Proposition 3.10, J is lush if and only if for every x0 ∈ BX and ε > 0 the set

Dε(A ,x0)= {θδx∗ : θ ∈ T, x∗ ∈Ω , dist(x0,aconv(gSlice(BX ,J∗(θδx∗),ε)))< ε}

intersects every w∗-slice of A , or equivalently, if it is dense in (A ,w∗) (as the slices
form a basis of the weak-star topology by Lemma 2.5.a). Notice that J∗(θδx∗) = θx∗

and, moreover, gSlice(BX ,θx∗,ε) = θ−1 gSlice(BX ,x∗,ε), thus

Dε(A ,x0) = T{δx∗ : x∗ ∈Ω , dist(x0,aconv(gSlice(BX ,x∗,ε)))< ε} .

Using that X is lush, we have for every ε > 0 that
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Ω ⊂ {x∗ ∈Ω : dist(x0,aconv(gSlice(BX ,x∗,ε)))< ε}w∗
,

or equivalently

{δx∗ : x∗ ∈Ω} ⊂ {δx∗ : x∗ ∈Ω , dist(x0,aconv(gSlice(BX ,x∗,ε)))< ε}w∗
.

Therefore, Dε(A ,x0) is dense in (A ,w∗) for each ε > 0 and we can then conclude
that J is lush. ut

The following very general result will allow us to deduce many other interesting
examples.

Theorem 4.4. Let Γ be a non empty set and let Γ ∈A ⊂P(Γ ). Let X ⊂Y ⊂ `∞(Γ )
be Banach spaces satisfying the following properties:

(i) For every y ∈ SY , ε > 0 and A ∈ A , there exist b ∈ K and U ∈ A such that
A⊃U,

|b|= sup
t∈A
|y(t)| and |y(t)−b|< ε whenever t ∈U .

(ii) For each A ∈A there is h ∈ `∞(Γ ) such that

h(Γ )⊂ [0,1], supp(h)⊂ A, ‖h‖∞ = 1 and dist(h,X)< ε.

Then, the inclusion J : X −→ Y is lush.

Proof. Fix x ∈ SX , y ∈ SY and 0 < ε < 1. Since Γ ∈ A , we can find A ∈ A and
b ∈ T such that

|y(t)−b|< ε

9
for each t ∈ A.

Again by (i) we can find U ∈A such that A⊃U , and a ∈D with |a|= supt∈A |x(t)|
such that

|x(t)−a|< ε

9
for each t ∈U .

By (ii), there is h ∈ `∞(Γ ), with h(Γ ) ⊂ [0,1], supp(h) ⊂ U , ‖h‖∞ = 1 and
dist(h,X)< ε/9. Let us fix x0 ∈ X with ‖h− x0‖∞ < ε/9.

We claim that for each γ ∈K with |a+ γb|= 1 one has that

‖x+ γbx0‖∞ 6 1+
ε

3
.

Indeed, the conditions |a + γb| = 1, |b| = 1 and |a| 6 1 imply that |γ| 6 2. We
distinguish two cases: if t /∈U then h(t) = 0 which gives |x0(t)| < ε/9, so we get
that

|x(t)+ γbx0(t)|6 1+
ε

3
.

On the other hand, if t ∈U then
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|x(t)+ γbx0(t)|6 |x(t)−a|+ |a(1−h(t))+h(t)(a+ γb)|+ |b||γ||x0(t)−h(t)|

<
ε

9
+1+

2ε

9
= 1+

ε

3
.

This finishes the proof of the claim.

Observe that 0 belongs to the convex hull of the set {γ ∈ K : |a+ γb| = 1} as
|a|6 1= |b|. We can then find γ1,γ2 ∈{γ ∈K : |a+γb|= 1} and 06 λ 6 1 such that
λγ1+(1−λ )γ2 = 0. Take t0 ∈U with h(t0)> 1−ε/9, pick θ0,θ1,θ2 ∈T satisfying
θ1
(
x(t0)+ γ1bx0(t0)

)
> 0, θ2

(
x(t0)+ γ2bx0(t0)

)
> 0 and θ0y(t0)> 0. Define

x1 = θ1
x+ γ1bx0

1+ ε/3
and x2 = θ2

x+ γ2bx0

1+ ε/3
.

By the claim above, we have that x j ∈ BX . Besides, we can write(
1+

ε

3

)
|x j(t0)|= |x(t0)+ γ jbx0(t0)|

> |a+ γ jb|− |x(t0)−a|− |γ j||b||x0(t0)−1|> 1− 5ε

9
.

Moreover, x j(t0)> 0 and for every µ ∈ [0,1] we have that

µx1(t0)+(1−µ)x2(t0)>
1−5ε/9
1+ ε/3

= 1− 8ε

9+3ε
> 1− 8ε

9
.

Therefore, we can estimate as follows∥∥y+θ
−1
0 J

(
µx1 +(1−µ)x2

)∥∥> ∣∣θ0y(t0)+µx1(t0)+(1−µ)x2(t0)
)∣∣

= |y(t0)|+µx1(t0)+(1−µ)x2(t0)

> 1− ε

9
+1− 8ε

9
= 2− ε

and, moreover,

dist(x,aconv({x1,x2}))6 ‖x− (λθ
−1
1 x1 +(1−λ )θ−1

2 x2)‖=
∥∥∥∥x− x

1+ ε/3

∥∥∥∥6 ε.

This shows that J is lush by (ii) of Proposition 3.28 with F = {x1,x2}. ut

For the convenience of the reader, let us recall next the concept of C-rich sub-
space from Definition 1.19 avoiding the use of C-narrow operators (see also Propo-
sition 1.20).

Definition 4.5. Let Ω be a Hausdorff topological space. A closed subspace X ⊂
Cb(Ω) is called C-rich if for every ε > 0 and every open subset U ⊂Ω , there exists
h ∈ SCb(Ω) such that h(Ω)⊂ [0,1], supp(h)⊂U and d(h,X)< ε . Moreover, if Ω is
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a normal Hausdorff space (in particular, if it is a compact Hausdorff space) then we
can omit the condition h(Ω)⊂ [0,1].

Remark. If Ω is a completely regular Hausdorff space, then Cb(Ω) is C-rich in
itself. Indeed, we have by definition that for every open subset U ⊂ Ω and x ∈U
there is a continuous function h : Ω −→ [0,1] such that supp(h)⊂U and h(x) = 1.

The main tool in the rest of the section will be the following.

Theorem 4.6. Let Ω be a Hausdorff topological space. If X ⊂Cb(Ω) is C-rich, then
the inclusion J : X −→Cb(Ω) is lush. In particular, we have ‖J +TT‖ = 1+ ‖T‖
for every T ∈ L(X ,Cb(Ω)).

Proof. We just have to check that the hypothesis of Theorem 4.4 are satisfied for
X ⊂ Cb(Ω) ⊂ `∞(Ω) and taking as A the family of all open subsets of Ω . Hy-
pothesis (i) is satisfied by just using the continuity, while (ii) is consequence of the
C-richness of X . ut

Remark 4.7. Let us observe that there are natural inclusions J : X −→Cb(Ω) which
are lush without X being a C-rich subspace of Cb(Ω). For instance, using Theorem
4.3 we deduce that the inclusion

J : `1 −→C(TN), (an)n∈N 7−→
[
(zn)n∈N 7−→

∞

∑
n=1

anzn

]
is lush. However, J(`1) is not C-rich in C(TN). Indeed, we argue by contradiction.
Let δ > 0, consider the open set U = {z ∈ TN : |z1 − 1| < δ}, and suppose that
h ∈C(TN) and a ∈ `1 satisfy that

h(TN)⊂ [0,1], ‖h‖∞ = 1, supp(h)⊂U and ‖J(a)−h‖∞ < δ .

Taking supremum over all z ∈ TN \U , we deduce that

(1− δ

2 )|a1|+ ∑
n62
|an|6 sup

|z1−1|>δ

Re(a1z1)+ ∑
n62
|an|6 sup

|z1−1|>δ

|J(a)(z)|< δ . (4.1)

While ‖h‖∞ = 1 implies that

‖a‖`1 = ∑
n>1
|an|> 1−δ . (4.2)

Taking δ > 0 small enough, (4.2) and (4.1) contradict each other.

Let us present some applications of Theorem 4.6. First, it was shown in [69,
Proposition 1.2] that if K is a perfect compact Hausdorff topological space, then
every finite-codimensional subspace of C(K) is C-rich, but this is not always the
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case when K has isolated points. Actually, finite-codimensional C-rich subspaces
of general C(K) spaces were characterized in [22, Proposition 2.5] in terms of the
supports of the functionals defining the subspace. We recall that the support of an
element F ∈C(K)∗ (represented by the regular measure µF ) is

supp(F) :=
⋂
{C ⊂ K : C closed, |µF |(K \C) = 0} .

We include the proof of this result for the convenience of the reader.

Corollary 4.8. Let K be a compact Hausdorff topological space, consider function-
als F1, . . . ,Fn ∈ C(K)∗ and let Y =

⋂n
i=1 kerFi. If

⋃n
i=1 supp(Fi) does not intersect

the set of isolated points of K, then the natural inclusion J : Y −→C(K) is lush. In
particular, if K is perfect, then for every finite-codimensional subspace Y of C(K),
the inclusion J : Y −→C(K) is lush.

Proof. We only have to show that Y is C-rich and then apply Theorem 4.6. We
fix a nonempty open subset U of K and ε > 0, and we may consider two cases.
Case 1: U contains an isolated point of K (say, τ). Then h = 1{τ} ∈ SC(K) is a
positive U-supported function which lies in Y , so the requirements of Definition
4.5 are fulfilled. Case 2: U does not contain isolated points of K. In this case one
can find a sequence of disjoint open subsets Un ⊂ U and a sequence of functions
hn ∈ SC(K) with supp(hn) ⊂Un for every n ∈ N. Denote by q : C(K) −→ C(K)/Y
the natural quotient map. Since {hn} tends weakly to 0, {q(hn)} tends weakly to
0. But C(K)/Y is finite-dimensional, so ‖q(hn)‖ −→ 0 as well, and we can select
n ∈ N with ‖q(hn)‖< ε and supp(hn)⊂Un ⊂U , and Definition 4.5 is fulfilled. ut

For C[0,1] we may even go to smaller subspaces, using a result of [69]: if X
is a subspace of C[0,1] such that C[0,1]/X does not contain isomorphic copies of
C[0,1], then X is C-rich in C[0,1] [69, Proposition 1.2 and Definition 2.1].

Corollary 4.9. Let X be a subspace of C[0,1] such that C[0,1]/X does not contain
isomorphic copies of C[0,1] (in particular, if C[0,1]/X is reflexive). Then, the inclu-
sion J : X −→C[0,1] is lush.

To get more results, we may use the spaces CE(K‖L) presented in section 1.4.
We only have to call Corollary 1.21 to be able to apply Theorem 4.6.

Corollary 4.10. Let K be a compact Hausdorff topological space and let L be a
closed nowhere dense subset of K. Then, for every subspace E of C(L), the inclusion
J : CE(K‖L)−→C(K) is lush.

This applies, in particular, to the inclusion J : X −→ `∞ for every c0 ⊂ X ⊂ `∞.

Let us now go to present the main part of this section. Recall that a uniform
algebra (on a compact Hausdorff topological space K) is a closed subalgebra A ⊂
C(K) that separates the points of K. We refer to [32] for background.
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Theorem 4.11. Let K be a compact Hausdorff topological space and let A be a
uniform algebra on K. Then, there exists a subset Ω ⊂ K such that A ⊂ Cb(Ω)
(isometrically) is C-rich, and so the inclusion J : A−→Cb(Ω) is lush. Moreover, if
A is unital, then Ω is just its Choquet boundary.

Proof. If A is a unital uniform algebra, then consider Ω ⊂ K to be the Choquet
boundary of A. Given 0 < ε < 1 and U ⊂K with U ∩Ω 6= /0, take 0 < η < ε/4 small
enough so that every z ∈ C with |z|+(1−η)|1− z| 6 1 satisfies that | Imz| < ε/2.
By [24, Lemma 2.5], there exists f ∈ A and t0 ∈U ∩Ω such that f (t0) = ‖ f‖∞ = 1,
| f (t)|< η for each t ∈ K \U and

| f (t)|+(1−η)|1− f (t)|6 1 for each t ∈ K.

Put C := K \U and B = {t ∈U : | f (t)| > 2η}. These are disjoint compact subsets
of K, so there exists ϕ : K −→ [0,1] continuous such that ϕ|C ≡ 0 and ϕ|B ≡ 1. The
element h := |Re f | ·ϕ : K −→ [0,1] belongs to SC(K) and satisfies supp(h) ⊂ U .
We just have to check that ‖h− f‖∞ < ε . Indeed, if t ∈ B then |1− f (t)| < 1, so
Re f (t)> 0 and so |h(t)− f (t)|= | Im f (t)|6 ε; on the other hand, if t ∈ K \B then
|h(t)− f (t)| 6 4η < ε . The restriction h|Ω satisfies the definition of C-rich for the
given ε > 0 and U ∩Ω ⊂Ω .

If A is not unital, then we can repeat the same argument as above but now using
[24, Lemma 2.7] and taking Ω as the set Γ0 ⊂ K that appears in the referenced
lemma. ut

The Choquet boundary of the disk algebra A(D) is T (see [32, Proposition
4.3.13], for instance), so by the previous result we have the following consequence.

Corollary 4.12. The natural inclusion J : A(D)−→C(T) is lush.

Another family of interesting C-rich subspaces is the following. Let H be an
infinite compact Abelian group, let σ be the Haar measure on H, let Γ be the dual
group of H, let M(H) be the space of all regular Borel measures on H and, finally,
let F : M(H) −→ Cb(Γ ) be the Fourier-Stieltjes transform, which is the natural
extension of the classical Fourier transform of section 4.1 (see [111, §1.3]). For
Λ ⊂ Γ , the space of Λ -spectral continuous functions is defined by

CΛ (H) =
{

f ∈C(H) :
[
F ( f )

]
(γ) = 0 ∀γ ∈ Γ \Λ

}
,

and similarly it is defined the space of Λ -spectral measures MΛ (H). These spaces
are known to be precisely the closed translation invariant subspaces of C(H) and
M(H), respectively. A subset Λ of Γ is said to be a semi-Riesz set [124, p. 126]
if all elements of MΛ are diffuse (i.e. if they map singletons to 0). Semi-Riesz sets
include Riesz sets, defined as those Λ ⊂Γ such that MΛ ⊂ L1(σ); the chief example
of a Riesz subset of the dual group Γ =Z of H =T is Λ =N. We refer to [54, §IV.4]
for background. It is shown in [86, Theorem 4.13] that Γ \Λ−1 is a semi-Riesz set if
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and only if CΛ (H) is C-rich in C(H). Therefore, we have the following consequence
of Theorem 4.6.

Corollary 4.13. Let H be an infinite compact Abelian group and let Λ be a sub-
set of the dual group Γ of H. If Γ \Λ−1 is a semi-Riesz set, then the inclusion
J : CΛ (H)−→C(H) is lush.

Remark 4.14. It is proved in [124, Theorem 3.7] that if Γ \Λ−1 is a semi-Riesz set,
then CΛ (H) is nicely embedded into C(H), that is, the natural isometric embedding
J : CΛ (H) −→ C(H) satisfies that for every t ∈ H, ‖J∗δt‖ = 1 and the linear span
of J∗δt is an L-summand in X∗ (this is actually a straightforward consequence of
the definition of semi-Riesz set). Then, it follows immediately from Example 2.12.a
that J∗δt ∈ Spear(CΛ (H)∗) for every t ∈ H, so J is lush by Proposition 3.32.a. This
is thus an alternative elementary proof of Corollary 4.13 which does not need the
more complicated [86, Theorem 4.13].

Let us also comment that it was proved in [124, Proof of Theorem 3.3] that
unital function algebras are nicely embedded into Cb(Ω), where Ω is the Choquet
boundary of the algebra, so Theorem 4.11, in the unital case, and Corollary 4.12,
can be also proved by using the argument above.

We next provide with more applications of Theorem 4.4. The following definition
appears in [60, Definition 3.2] for vector-valued spaces of continuous functions.

Definition 4.15. Let K be a compact Hausdorff topological space. We say that a
closed subspace X ⊂ `∞(K) is a C(K)-superspace if it contains C(K) and for each
x ∈ X , every open subset U ⊂K and each ε > 0, there are an open subset V ⊂U and
an element θ ∈K such that

|θ |= sup
t∈U
|x(t)| and |x(t)−θ |< ε for each t ∈V .

The result for C(K)-superspaces is the following.

Corollary 4.16. Let K be a compact Hausdorff topological space. If X is a C(K)-
superspace, then the inclusion J : C(K)−→ X is lush.

Proof. Using Theorem 4.4 for the inclusions C(K)⊂ X ⊂ `∞(K) with A being the
set of all open subsets of K, we have that (ii) is satisfied by Urysohn’s Lemma, while
(i) is just the definition of C(K)-superspace. ut

An interesting application is given by the next example.

Example 4.17. Let D[0,1] be the space of bounded functions on [0,1] which are
right-continuous, have left limits everywhere and are continuous at t = 1. It is shown
in [60, Proposition 3.3] that D[0,1] is a C[0,1]-superspace (this is because D[0,1]
is the closure in `∞[0,1] of the span of the step functions 1[a,b), 0 6 a 6 b < 1 and
1[a,1], 0 6 a 6 1). Therefore, the inclusion J : C[0,1]−→ D[0,1] is lush.
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4.3 Operators acting from spaces of integrable functions

Our aim here is to describe operators from L1(µ) spaces which have the aDP. For
commodity, we only deal with probability spaces, but this is not a mayor restriction
as L1-spaces associated to σ -finite measures are (up to an isometric isomorphism)
L1-spaces associated to probability measures (see [26, Proposition 1.6.1], for in-
stance). We introduce some notation. Let (Ω ,Σ ,µ) be a probability space and let Y
be a Banach space. We write Σ+ :=

{
B∈ Σ : µ(B)> 0

}
and for A∈ Σ+ we consider

ΣA :=
{

B ∈ Σ : B⊂ A
}
, Σ

+
A := ΣA∩Σ

+, and ΓA :=
{

1B

µ(B)
: B ∈ Σ

+
A

}
.

We recall that an operator T ∈ L(L1(µ),Y ) is (Riesz) representable if there exists
g∈ L∞(µ,Y ) (i.e. a strongly measurable and essentially bounded function) such that

T ( f ) =
∫

Ω

f g dµ
(

f ∈ L1(µ)
)
.

Rank-one operators are representable by the classical Riesz representation theorem
assuring that L1(µ)

∗ ≡ L∞(µ), and then so are all finite-rank operators. Actually,
compact operators [37, p. 68, Theorem 2] and even weakly compact operators [37,
p. 65, Theorem 12] are representable, but the converse result is not true [37, p. 79,
Example 22]. Finally, let us say that the set of representable operators can be iso-
metrically identified with L∞(µ,Y ) [37, p. 62, Lemma 4]. We refer the reader to
chapter III of [37] for more information and background on representable operators.

Here is the characterization of aDP operators which is the main result of this
section.

Theorem 4.18. Let (Ω ,Σ ,µ) be a probability space, let Y be a Banach space and let
G ∈ L(L1(µ),Y ) be a norm-one operator. The following assertions are equivalent:

(i) G has the aDP.
(ii) G(ΓA) is a spear set for every A ∈ Σ+.

(iii) ‖G+TT‖= 1+‖T‖ for every T ∈ L(L1(µ),Y ) representable.

Let us recall the following exhaustion argument that we briefly prove here.

Remark 4.19. Let (Ω ,Σ ,µ) be a finite measure space. If for each A ∈ Σ+ there
is B ∈ Σ

+
A satisfying a certain property (P), then we can find a countable family

A ⊂ Σ+ of disjoint sets such that every A ∈A satisfies property (P) and Ω \
⋃

A
is µ-null.

Indeed, this follows from a simple argument: using Zorn’s lemma we can take
a maximal family A of disjoint sets in Σ+ satisfying property (P), which must be
countable as µ is finite. To see the last condition, notice that if A := Ω \

⋃
A had

positive measure, then we could use the hypothesis to find a subset B∈Σ
+
A satisfying

(P), and hence A ∪{A} would contradict the maximality of A .
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We need a preliminary result.

Lemma 4.20. Let (Ω ,Σ ,µ) be a probability space and let Y be a Banach space.
For every T ∈ L(L1(µ),Y ) one has that

‖T‖= sup
A∈Σ+

∥∥T (1A)/µ(A)
∥∥= sup

A∈Σ+
inf

B∈Σ
+
A

∥∥T (1B)/µ(B)
∥∥. (4.3)

Proof. The inequalities > are clear in both cases, so we just have to see that

α := sup
A∈Σ+

inf
B∈Σ

+
A

‖T (1B)/µ(B)‖

is greater than or equal to ‖T‖. Let h = ∑A∈π cA1A be a simple function, where π is
a finite partition of Ω into elements of Σ+, so ‖h‖1 = ∑A∈π |cA|µ(A). Given ε > 0,
we have that for each A ∈ Σ+ there is B ∈ Σ

+
A such that ‖T (1B)/µ(B)‖ < α + ε .

Using Remark 4.19 in each set A ∈ π , we can find a countable partition A ⊂ Σ+ of
Ω such that every B∈A of positive measure is contained in some element of π and
satisfies ‖T (1B)/µ(B)‖< α + ε . If we write cB = cA whenever B⊂ A, then

‖T (h)‖6 ∑
A∈π

|cA|‖T (1A)‖6 ∑
B∈A

µ(B)|cB|‖T (1B)/µ(B)‖6 (α + ε)‖h‖1.

Since ε > 0 was arbitrary, we conclude that ‖T (h)‖ 6 α‖h‖1. As h runs on all
simple functions, it follows that ‖T‖6 α . ut

Proof (of Theorem 4.18). (i) ⇒ (ii): Fix A ∈ Σ+, y ∈ SY , and ε ∈ (0,1). Consider
the rank-one operator T : L1(µ)−→ Y given by

T ( f ) = y
∫

A
f dµ

(
f ∈ L1(µ)

)
.

Then, ‖G+TT‖= 1+‖T‖= 2. By Lemma 4.20 we can find B ∈ Σ
+
A such that∥∥∥∥G

(
1B

µ(B)

)
+Ty

∥∥∥∥= ∥∥∥∥G(1B)

µ(B)
+T

T (1B)

µ(B)

∥∥∥∥> 2− ε.

(ii)⇒ (iii): Let T ∈L(L1(µ),Y ) and ε > 0. By Lemma 4.20, we can find A∈ Σ+

satisfying infB∈Σ
+
A
‖T (1B)/µ(B)‖> ‖T‖−ε . If T is representable, then there exists

B ∈ Σ
+
A such that diam

(
T (ΓB)

)
< ε (see [37, p. 62, Lemma 4 and p. 135, Lemma

6]), so taking any y ∈ T (ΓB) and using that G(ΓB) is a spear set we obtain

‖G+TT‖> ‖G(ΓB)+Ty‖−‖T (ΓB)− y‖> 1+‖y‖− ε > 1+‖T‖−2ε.

(iii)⇒ (i) is obvious as rank-one operators are representable. ut

Remark 4.21. A direct way to prove (i) ⇒ (iii) in Theorem 4.18 is the following:
every representable operator T : L1(µ) −→ X factorizes through `1, i.e. there are
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operators S : L1(µ) −→ `1 and R : `1 −→ X such that T = R ◦ S (see the proof of
Theorem 8 in [37, p. 66]). Then, S is an SCD operator satisfying ‖T f‖6 ‖R‖‖S f‖
for each f ∈ L1(µ), and so Corollary 3.18 implies that T is a target for G. However,
item (ii) in Theorem 4.18 gives an intrinsic characterization of aDP operators acting
from an L1 space which has its own interest.

As an obvious consequence of Theorem 4.18, if for a Banach space Y all bounded
linear operators from L1(µ) to Y are representable (i.e. when Y has the Radon-
Nikodým Property with respect to µ [37, p. 63, Theorem 5]), then the aDP is equiv-
alent to be spear for every G ∈ L(L1(µ),Y ). We can actually give a much stronger
result which characterizes the representable operators G ∈ L(L1(µ),Y ) which are
spears as those represented by a spear vector of L∞(µ,Y ). As a consequence, we will
describe the spear vectors of L∞(µ,Y ) as those functions which take spear values
almost everywhere, extending Example 2.12.d to the vector-valued case.

Corollary 4.22. Let (Ω ,Σ ,µ) be a probability space and let Y be a Banach space.
Let G∈L(L1(µ),Y ) be a norm-one operator which is representable by g∈L∞(µ,Y ).
Then, the following are equivalent:

(i) G is lush.
(ii) G is a spear.

(iii) G has the aDP.
(iv) g(t) ∈ Spear(Y ) for a.e. t ∈Ω .
(v) g ∈ Spear

(
L∞(µ,Y )

)
.

Proof. (i)⇒ (ii)⇒ (iii) are known. Let us prove (iii)⇒ (iv). Fix ε > 0. Since g is
strongly measurable, given any A ∈ Σ+ there exists B ∈ Σ

+
A with diam(g(B)) < ε

(see [25, Proposition 2.2], for instance). By Remark 4.19 we can take a countable
family A ⊂ Σ+ of disjoint sets with the property that diam(g(A)) < ε for each
A ∈ A and Nε := Ω \

⋃
A is µ-null. Given t ∈ Ω \Nε , it must belong to some

A ∈ A , and since G(ΓA) ⊂ conv
(
g(A)

)
(see [37, p. 48, Corollary 8]), we deduce

that diam(G(ΓA)) < ε . Using that G(ΓA) is a spear set by Theorem 4.18, it follows
that for every x ∈ X ,

‖g(t)+Tx‖> ‖G(ΓA)+Tx‖−‖G(ΓA)−g(t)‖
> ‖G(ΓA)+Tx‖− ε = 1+‖x‖− ε.

Finally, if we take now a decreasing sequence (εn)n∈N of positive numbers con-
verging to zero and consider the corresponding Nεn for each n ∈ N, then every
t ∈Ω \

⋃
n∈N Nεn satisfies ‖g(t)+Tx‖= 1+‖x‖ for each x ∈ X , i.e. g(t) is a spear.

Let us prove (iv)⇒ (i). Consider the adjoint operator G∗ : Y ∗ −→ L∞(µ) which
is explicitly given by G∗y∗ = y∗ ◦g for every y∗ ∈Y ∗. By (iv) and Corollary 2.8, for
every extreme point y∗ of BY ∗ we have that |y∗g(t)|= 1 for a.e. t ∈ Ω so y∗ ◦g is a
spear vector of L∞(µ) (see Example 2.12.d). By Theorem 3.32.b we deduce that G
is lush.



4.3 Operators acting from spaces of integrable functions 81

Finally, the relations (ii) ⇒ (v) ⇒ (iii) are straightforward using the isometric
identification of L∞(µ,X) with the subspace of L(L1(µ),X) consisting of all repre-
sentable operators, which contains in particular those of rank-one. ut

Corollary 4.23. Let (Ω ,Σ ,µ) be a probability space, let Y be a Banach space which
has the Radon-Nikodým Property with respect to µ , and let G ∈ L(L1(µ),Y ) be a
norm-one operator. Then, the following assertions are equivalent: (i) G has the aDP,
(ii) G is a spear operator, (iii) G is lush.

It is easy to see that every Banach space Y has the Radon-Nikodým Property with
respect to the counting measure on N (use [37, Theorem 8, p. 66], for instance) and
so G ∈ L(`1,Y ) has the aDP if and only if G is lush (see Example 5.5 for another
deduction of this fact using that `1 has the Radon-Nikodým Property).

On the other hand, let us observe that, if Y has the Radon-Nikodým Property
(with respect to every probability measure, or equivalently, with respect to the
Lebesgue measure on [0,1]), then for every Banach space X we have that each
G ∈ L(X ,Y ) with the aDP is a spear operator by Corollary 3.22.

4.3.1 Examples of spear operators which are not lush

In this final part, we are going to make use of several notions of the chapter in
order to construct examples of operators which are spear despite not being lush.
Our approach is based on [64, Theorem 4.1] where it is constructed a subspace Y of
L[0,2] such that L[0,2]/Y is not lush but its dual is. We extend this result to a more
general family of L1-spaces and operators.

Following the notation of the section, (Ω ,Σ ,µ) stands for a probability space.
We start with the following definition.

Definition 4.24. Let (Ω ,Σ ,µ) be a probability space and let X be a subspace of
L∞(µ). We say that X is a C-rich subspace of L∞(µ) if for every A ∈ Σ+ and every
ε > 0 there is a norm-one function h ∈ L∞(µ) with h ·1Ω\A = 0 and dist(h,X)< ε .

As L∞(µ) can be identified with a space of continuous functions on a Hausdorff
compact topological space, we have to see that this new definition is consistent with
the previous one. Indeed, recall that L∞(µ) is a commutative Banach algebra (with
unit) and so by Gelfand’s theorem, there is an isometric algebra isomorphism

φ : L∞(µ)−→C(Kµ)

where Kµ is the space of maximal ideals. In particular, for every A ∈ Σ it holds that
φ(1A) = 1UA for some clopen subset UA of Kµ , being moreover {UA : A∈ Σ} a basis
for the topology on Kµ (see [43, section I.9]). In particular, it follows that UΩ = Kµ

and UΩ\A =UΩ \UA necessarily.
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Lemma 4.25. Let (Ω ,Σ ,µ) be a probability space and let X be a subspace of
L∞(µ). Then, X is C-rich in L∞(µ) if and only if φ(X) is a C-rich subspace of
C(Kµ).

Proof. Assume first that φ(X) is C-rich and let A ∈ Σ+ and ε > 0. Then, there
exists F ∈C(Kµ) with ‖F‖∞ = 1, supp(F)⊂UA and dist(F,φ(X))< ε . Since φ is
an isometry, we deduce that F = φ(h) with ‖h‖ = 1 and dist(h,X) < ε , and using
moreover that it is an algebra homomorphism then we get that

0 = 1UΩ\A ·φ(h) = φ(h ·1Ω\A),

so h ·1Ω\A = 0. Conversely, suppose that X is C-rich in L∞(Ω ,Σ ,µ), let ε > 0 and a
basic open subset UA for some A ∈ Σ+. By hypothesis, there exists h ∈ L∞(µ) with
‖h‖∞ = 1 such that h ·1Ω\A = 0. Then, ‖φ(h)‖∞ = 1 and

0 = φ(h ·1Ω\A) = φ(h) ·1UΩ\A

which yields, in particular, that suppφ(h)⊂UA. ut

We now state the main result of the subsection.

Theorem 4.26. Let (Ω ,Σ ,µ) be an atomless probability space such that L1(µ) is
separable. Then, there exists a (closed) subspace Y ⊂ L1(µ) such that:

(a) (L1(µ)/Y )∗ ≡ Y⊥ does not contain spear vectors;
(b) for every other subspace X ⊂ Y , the operator

π : L1(µ)/X −→ L1(µ)/Y

is not lush but π∗ is lush; in particular, π∗ and π are spear operators.

Let us introduce some notation that we will employ during the proof. For each
A∈ Σ+ denote by µA := µ|ΣA the restriction of µ to ΣA, so that (A,ΣA,µA) is a finite
measure space. We then have a natural isometric embedding L∞(µA) −→ L∞(µ)

which associates to each f ∈ L∞(µA) the (unique) element f̃ ∈ L∞(µ) satisfying that
f̃ |A = f and f̃ |Ω\A = 0 almost everywhere.

Proof (of Theorem 4.26). We can find a partition Ω =
⋃

∞
m=0 ∆m where ∆m ∈ Σ+ for

each m > 0 and µ(∆0)> 1/4. Consider

∆̃ :=
⋃

m>1

∆m and W :=
{

f ∈ L∞(µ∆̃
) :
∫

∆n

f dµ = 0 for every n > 1
}
.

Let us fix a dense countable subset { fm : m ∈ N} ⊂ SL2(µ∆0 )
and define the operator

J : L∞(µ∆0)−→ L∞(µ∆̃
), g 7−→ J(g) = ∑

m∈N

(∫
∆0

g fm dµ

)
1∆m .
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Notice that for every g ∈ L∞(µ∆0)

‖J(g)‖∞ = sup
m∈N

∣∣∣∣∫
∆0

g fm dµ

∣∣∣∣= ‖g‖2. (4.4)

In particular, J is weakly compact. Let us define

Z := {g+2J(g)+ f : g ∈ L∞(µ∆0), f ∈W} ⊂ L∞(µ).

We are going to collect now some properties of this space:

(I) Z is weak-star closed. We can rewrite Z as the subspace of all h ∈ L∞(µ)
satisfying the system of linear equations

2 µ(∆m)
∫

∆0

h fm dµ =
∫

∆m

hdµ.

(II) Z is C-rich in L∞(µ). Let A ∈ Σ+ and ε > 0. We have that Am := A∩∆m ∈ Σ+

for some m > 0. In the case m = 0, we have that J is weakly compact when
restricted to L∞(µA0) (which is infinite-dimensional as µA0 is atomless), so there
exists g ∈ L∞(µA0) with ‖g‖∞ = 1 and ‖J(g)‖ < ε; taking h := g+ 2J(g) ∈ Z
we then have that

dist(g,Z)6 ‖g−h‖6 2‖J(g)‖< ε.

Otherwise, m ∈N and taking f ∈ SL∞(µAm ) with
∫

∆m
f dµ = 0 (which is possible

as µAm is atomless), we conclude that f ∈W ⊂ Z and supp( f )⊂ Am ⊂ A.
(III) Z does not contain any modulus-one function. Assume that there is a function

h = g+ 2J(g)+ f with g ∈ L∞(µ∆0) and f ∈W satisfying that |h| = 1 µ-a.e.
Then g = h ·1∆0 has modulus-one on ∆0 and so

‖J(g)‖∞ = ‖g‖2 = µ(∆0)
1
2 > 1/2

by (4.4). But, on the other hand

1 = ‖h‖∞ > sup
m∈N

∣∣∣∣ 1
µ(∆m)

∫
Ω

h ·1∆m dµ

∣∣∣∣= 2‖J(g)‖∞ > 1.

We then got a contradiction.
(IV) Z has no spear vectors. It is enough to check that a spear vector f ∈ Z would

have modulus-one almost everywhere and reduce it to (III). Assume on the con-
trary that there is 0<α < 1 such that A := {| f |<α}∈Σ+. SinceZ is C-rich by
(II), we can find h∈Z with ‖h‖∞ = 1 and |h(t)|< α for almost every t ∈Ω \A.
Thus

max
θ∈T
‖ f +θh‖6 ‖| f |+ |h|‖∞ 6 1+α < 2,

which contradicts that f is a spear vector.
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We can finish the proof: since Z is weak-star closed, we can fix a subspace
Y ⊂ L1(µ) such that Y⊥ =Z and (a) follows from (IV). Let us prove (b). If we take
any subspace X ⊂ Y and consider the operator π : L1(µ)/X −→ L1(µ)/Y , then its
adjoint π∗ : Y⊥ ≡ Z −→ X⊥ is just the (isometric) inclusion. We then have that π∗

is lush by Remark 3.34.ii together with the fact that Z is C-rich in L∞(µ) by (II).
On the other hand, π is not lush since, otherwise, we would have that there is an
extreme point z ∈ Z (actually “many”, by Theorem 3.33) such that π∗(z) is a spear
vector, and so z would be a spear in Z , contradicting (a). ut

The two extreme cases in the previous theorem, that is, X = Y and X = {0},
produce interesting examples. The first case allows to recover [64, Theorem 4.1]
taking X = L1(µ)/Y for any atomless measure µ .

Example 4.27. There is a separable Banach space X such that G := Id : X −→ X
is not lush, while G∗ is lush. Moreover, it satisfies that Spear(X ∗) = /0 although G is
spear. As a consequence, there is no lush operator whose domain is X by Theorem
3.33.

The case when X = {0} in Theorem 4.26.b produce the following result which
shows that the equivalences in Corollaries 4.22 and 4.23 do not hold in general.

Example 4.28. Let (Ω ,Σ ,µ) be an atomless probability space such that L1(µ) is
separable. Then, there exists a separable Banach space X such that L(L1(µ),X )
contains a spear operator which is not lush.



Chapter 5

Further results

Our goal here is to complement the previous chapter with some interesting results.
We characterize lush operators when the domain space has the Radon-Nikodým
Property or the codomain space is Asplund, and we get better results when the
domain or the codomain is finite-dimensional or when the operator has rank one.
Further, we study the behaviour of lushness, spearness and the aDP with respect to
the operation of taking adjoint operators.

5.1 Radon-Nikodým Property in the domain or Asplund
codomain

We first provide a result about the relationship of an operator with the aDP and spear
vectors of the range space and the spear vectors of the dual space to the domain
space.

Proposition 5.1. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be an operator
with the aDP, then

(a) Gx ∈ Spear(Y ) for every denting point x of BX .
(b) G∗y∗ ∈ Spear(X∗) for every w∗-denting point y∗ of BY ∗ .

Proof. We only illustrate the proof of (a), since the other one is completely analo-
gous. If x is denting, then we can find a decreasing sequence (Sn)n∈N of slices of
BX containing x and such that diamSn tends to zero. Since G has the aDP, Theorem
3.6.iii gives that

(
G(Sn)

)
n∈N is a decreasing sequence of spear sets whose diameters

tend to zero, so Gx ∈
⋂

n G(Sn) is a spear vector by Lemma 2.10. ut

We now characterize spear operators acting from a Banach space with the Radon-
Nikodým Property.

85
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Proposition 5.2. Let X be a Banach space with the Radon-Nikodým Property, let Y
be a Banach space and let G∈L(X ,Y ) be a norm-one operator. Then, the following
assertions are equivalent:

(i) G is lush.
(ii) G is a spear operator.

(iii) G has the aDP.
(iv) |y∗(Gx)|= 1 for every y∗ ∈ ext(BY ∗) and every denting point x of BX .
(v) BX = conv

{
x ∈ BX : Gx ∈ Spear(Y )

}
or, equivalently,

BX = conv
{

x ∈ BX : |y∗(Gx)|= 1 ∀y∗ ∈ ext(BY ∗)
}

= conv

 ⋂
y∗∈ext(BY∗ )

T Face(SX ,G∗y∗)

 .

Proof. (i) ⇒ (ii) ⇒ (iii) are clear. (iii) ⇒ (iv) follows from Proposition 5.1 and
Corollary 2.8.iv. (iv)⇒ (v) is consequence of the fact that BX is the closed convex
hull of its denting points since X has the Radon-Nikodým Property (see [20, §2]
for instance), and the equivalent reformulation is a consequence of Theorem 2.9.
Finally, (v)⇒ (i) follows from Proposition 3.32.c. ut

For Asplund spaces as codomain, we have the following characterization.

Proposition 5.3. Let X be a Banach space, let Y be an Asplund space and let G ∈
L(X ,Y ) be a norm-one operator. Then, the following assertions are equivalent:

(i) G is lush.
(ii) G is a spear operator.

(iii) G has the aDP
(iv) |x∗∗(G∗y∗)|= 1 for every x∗∗ ∈ ext(BX∗∗) and every w∗-denting point y∗ of BY ∗ .
(v) The set

{
y∗ ∈ ext(BY ∗) : G∗y∗ ∈ Spear(X∗)

}
is dense in (ext(BY ∗),w∗) or, equiv-

alently, there is a dense subset K of (extBY ∗ ,w∗) such that

BX = aconv
(
Face(SX ,G∗y∗)

)
for every y∗ ∈ K.

(vi) BY ∗ = convw∗{y∗ ∈ BY ∗ : G∗y∗ ∈ Spear(X∗)
}

.

Proof. (i) ⇒ (ii) ⇒ (iii) are clear. (iii) ⇒ (iv) follows from Proposition 5.1 and
Corollary 2.8(iv). (iv)⇒ (v): the set contains all w∗-denting points of BY ∗ by (iv),
so it is weak-star dense since for Asplund spaces, w∗-denting points are weak-star
dense in the set of extreme points of the dual ball (see [20, §2] for instance). The
equivalent reformulation is consequence of Theorem 2.9. Finally, (v)⇒ (vi) is clear
and (vi)⇒ (i) follows from Proposition 3.32.b. ut

We do not know whether the above result extends to the case when Y is SCD.
What is easily true, using Corollary 3.18, is that aDP and spearness are equivalent
in this case.
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Remark 5.4. Let X be a Banach space, let Y be an SCD Banach space, and let G ∈
L(X ,Y ) be a norm-one operator. Then, G has the aDP if and only if G is a spear
operator.

As a consequence of the results above, we may improve Proposition 3.3.

Example 5.5. Let Γ be an arbitrary set, let X , Y be Banach spaces and let (eγ)γ∈Γ

be the canonical basis of `1(Γ ) (as defined in Example 2.12.b).

(a) For G ∈ L(`1(Γ ),Y ) the following are equivalent: G is lush, G is a spear opera-
tor, G has the aDP, G(eγ) ∈ Spear(Y ) for every γ ∈Γ , |y∗(G(eγ))|= 1 for every
y∗ ∈ ext(BY ∗) and every γ ∈ Γ .

(b) For G ∈ L(X ,c0(Γ )) the following are equivalent: G is lush, G is a spear op-
erator, G has the aDP, BX = aconv

(
Face(SX ,G∗eγ)

)
for every γ ∈ Γ , G∗(eγ) ∈

Spear(X∗) for every γ ∈ Γ .

Part of assertion (a) above also follows from Corollary 4.23; the whole assertion
(b) also follows from Proposition 4.2.

5.2 Finite-dimensional domain or codomain

Our goal now is to discuss the situation about spear operators when the domain
or the codomain is finite-dimensional. We start with the case in which the domain
is finite-dimensional, where the result is just an improvement of Proposition 5.2.
To get it, we only have to recall that for finite-dimensional spaces, the concepts of
denting point and extreme point coincide thanks to the compactness of the unit ball
and Choquet’s Lemma (Lemma 2.5.a).

Proposition 5.6. Let X be a finite-dimensional space, let Y be a Banach space and
let G ∈ L(X ,Y ) be a norm-one operator. Then, the following are equivalent:

(i) G is lush.
(ii) G is a spear operator.

(iii) G has the aDP.
(iv) |y∗(Gx)|= 1 for every y∗ ∈ ext(BY ∗) and every x ∈ ext(BX ).
(v) Gx ∈ Spear(Y ) for every x ∈ ext(BX ).

(vi) BX = conv

 ⋂
y∗∈ext(BY∗ )

T Face(SX ,G∗y∗)

.

The next example shows that even in the finite-dimensional case, bijective lush
operators can be very far away from being isometries and that their domain and
codomain are not necessarily spaces with numerical index 1.
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Example 5.7. There exists a bijective lush operator between finite-dimensional Ba-
nach spaces such that neither its domain nor its codomain has the aDP.

Indeed, let X1 be the real four-dimensional space whose unit ball is given by

BX1 = conv
{
(ε1,ε2,ε3,ε4) : εk ∈ {−1,1} and εi 6= ε j for some i, j

}
.

Let Y1 be the real space `4
∞, let X2 = Y ∗1 = `4

1 and, finally, let Y2 = X∗1 . Consider the
operator G1 ∈ L(X1,Y1) given by G1(x1) = x1 for every x1 ∈ X1 and consider G2 =
G∗1 ∈L(X2,Y2). Finally, calling X = X1⊕∞ X2 and Y =Y1⊕∞ Y2, the operator we are
looking for is G∈L(X ,Y ) given by G(x1,x2) = (G1x1,G2x2) for every (x1,x2)∈ X .

We start showing that G is lush. To this end, by Proposition 5.6, all we have
to do is to check that G carries extreme points of BX to spear vectors of Y . By
Example 2.12.g, this is equivalent to show that both G1 and G2 carry extreme points
to spear elements. This is evident for G1 and it is also straightforward to show for G2
(alternatively, the first assertion gives that G1 is lush by Proposition 5.6, so G2 = G∗1
is also lush by Corollary 5.19 in the next section, so G2 carries extreme points of
BX2 to spear elements in Y2 by using again Proposition 5.6).

Finally, let us show that X does not have the aDP (i.e. that IdX does not have
the aDP). By Proposition 5.6, it is enough to find an extreme point of BX which
is not a spear vector of X . By Example 2.12.g, it is enough to find an extreme
point of BX1 which is not a spear vector of X1. Let us show that this happens for
x1 = (1,1,−1,−1) ∈ X1. On the one hand, x1 is clearly an extreme point of BX1 by
construction. On the other hand, if x1 is a spear vector, we have |x∗1(x1)| = 1 for
every x∗1 ∈ ext(BX∗1

) by Corollary 2.8.iv, so we will get a contradiction if we show
that the functional x∗1 = ( 1

2 ,
1
2 ,

1
2 ,

1
2 )∈ X∗1 is an extreme point of BX∗1

. Let us show this
last assertion. First, x∗1 belongs to BX∗1

since for every x1 = (ε1,ε2,ε3,ε4) ∈ ext(BX1)
we have that

|x∗(x)|= 1
2
|ε1 + ε2 + ε3 + ε4|6 1

(as necessarily εi 6= ε j for some i, j). Next, consider y∗1 ∈ X∗1 such that both x∗1 + y∗1
and x∗1− y∗1 lie in BX∗1

. This, together with the fact that

x∗1(−1,1,1,1) = x∗1(1,−1,1,1) = x∗1(1,1,−1,1) = x∗1(1,1,1,−1) = 1,

implies that

y∗1(−1,1,1,1) = y∗1(1,−1,1,1) = y∗1(1,1,−1,1) = y∗1(1,1,1,−1) = 0,

so y∗1 = 0 since it vanishes on a basis of X1. This gives that x∗1 is an extreme point,
as desired.

When the codomain is finite-dimensional, we can improve Proposition 5.3 as
follows, just taking into account that w∗-denting points and extreme points of the
dual ball are the same for a finite-dimensional space.
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Proposition 5.8. Let X be a Banach space, let Y be a finite-dimensional space and
let G ∈ L(X ,Y ) be a norm-one operator. Then, the following assertions are equiva-
lent:

(i) G is lush.
(ii) G is a spear operator.

(iii) G has the aDP
(iv) |x∗∗(G∗y∗)|= 1 for every x∗∗ ∈ ext(BX∗∗) and every y∗ ∈ ext(BY ∗).
(v) G∗y∗ ∈ Spear(X∗) for every y∗ ∈ ext(BY ∗).

(vi) BX = aconv
(
Face(SX ,G∗y∗)

)
for every y∗ ∈ ext(BY ∗).

(vii) BY ∗ = conv
({

y∗ ∈ BY ∗ : G∗y∗ ∈ Spear(X∗)
})

.

We do not know whether this result, or part of it, is also true when just the range
of the operator G is finite-dimensional. But we can provide with the following result
for rank-one operators.

Corollary 5.9. Let X, Y be Banach spaces and let G∈L(X ,Y ) be a norm-one rank-
one operator, and write G = x∗0⊗ y0 for suitable x∗0 ∈ SX∗ and y0 ∈ SY . Then, the
following assertions are equivalent:

(i) G is lush.
(ii) G is a spear operator.

(iii) G has the aDP
(iv) x∗0 ∈ Spear(X∗) and y0 ∈ Spear(Y ).

Proof. (i)⇒ (ii)⇒ (iii) are clear. Let us prove (iii)⇒ (iv). First, for every y ∈ Y ,
consider the rank-one operator T = x∗0⊗ y ∈ L(X ,Y ) and observe that

‖y0 +Ty‖= ‖x∗0⊗ y0 +Tx∗0⊗ y‖= ‖G+TT‖= 1+‖T‖= 1+‖y‖,

so y0 ∈ Spear(Y ). Next, we have that G : X −→ G(X) = Ky0 ≡ K, also has the
aDP (use Remark 3.8) and we may use Proposition 5.1 to get that G∗(1) = x∗0 ∈
Spear(X∗).

(iv) ⇒ (i). Observe that G∗(y∗) = y∗(y0)x∗0 for every y∗ ∈ Y ∗. Now, for each
y∗ ∈ ext(BY ∗) we have that |y∗(y0)| = 1 by Corollary 2.8.iv (as y0 ∈ Spear(Y )), so
G∗(y∗) ∈ Tx∗0 ⊂ Spear(X∗). Now, Proposition 3.32.b gives us that G is lush. ut

5.3 Adjoint Operators

We would like to discuss here the relationship of the aDP, spearness and lushness
with the operation of taking the adjoint.

As the norm of an operator and the one of its adjoint coincide, the following
observation is immediate.
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Remark 5.10. Let X , Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one oper-
ator. If G∗ is a spear operator, then G is a spear operator. If G∗ has the aDP, then G
has the aDP.

With respect to lushness, the above result is not true, even for G equal to the
Identity, as it is shown by Example 4.27.

We may give a positive result in this line: if the second adjoint of an operator is
lush, then the operator itself is lush. This will be given in Corollary 5.14, but we
need some preliminary work to get the result. We start with a general result which
allows to restrict the domain of a lush operator.

Proposition 5.11. Let X, Z be Banach spaces and let H ∈ L(X∗∗,Z∗) be a weak-
star to weak-star continuous norm-one operator. If H is lush, then H ◦JX : X −→ Z∗

is lush.

For the sake of clearness, we include the most technical part of the proof of this
result in the following lemma.

Lemma 5.12. Let X, Y , W be Banach spaces and let G1 ∈ L(X ,Y ) and G2 ∈
L(Y,W ) be norm-one operators. Suppose that there is a subset A1 ⊂ BY ∗ such that
G1 satisfies the following property

For every slice S of BX , every y∗ ∈ A1, and every ε > 0,[
G1(S)∩ convgSlice(BY ,Ty∗,ε) 6= /0

]
⇒
[
G1(S)∩gSlice(BY ,Ty∗,ε) 6= /0

]
.

(P1)

Suppose also that G2 is lush and there is a subset A2 ⊂ SW ∗ with convw∗(A2) = BW ∗

such that G∗2(A2)⊂ A1. Then G := G2 ◦G1 is lush.

Proof. Fix x0 ∈ SX , w0 ∈ BW and ε > 0. Let δ ∈ (0,ε/3). Since G2 is lush, applying
Proposition 3.28.iii with A = A2 ⊂ SW ∗ , we can find u∗ ∈ A2 such that

Reu∗(w0)> 1−δ and dist
(
G1x0,conv

(
gSlice(BY ,TG∗2u∗,δ )

))
< δ . (5.1)

Then, there are m ∈ N, λ j ∈ [0,1], y j ∈ gSlice(BY ,TG∗2u∗,δ ) for each j = 1, . . . ,m,
with ∑ j λ j = 1 and

y := G1x0−
m

∑
j=1

λ jy j ∈ δBY .

Notice that for each j we have that ‖y j + y‖6 1+δ , and∣∣∣∣G∗2u∗
(

y j + y
1+δ

)∣∣∣∣> 1−2δ

1+δ
= 1− 3δ

1+δ
.

This implies that
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G1

(
x0

1+δ

)
=

m

∑
j=1

λ j
y j + y
1+δ

∈ conv
(

gSlice
(

BY ,TG∗2u∗,
3δ

1+δ

))
.

Hence, every slice S of BX containing x0/(1+δ ) satisfies that

G1(S)∩ conv
(

gSlice
(

BY ,TG∗2u∗,
3δ

1+δ

))
6= /0.

As G∗2u∗ ∈ A1, the hypothesis (P1) yields that

G1(S)∩gSlice
(

BY ,TG∗2u∗,
3δ

1+δ

)
6= /0

and, therefore,

S∩gSlice
(

BX ,TG∗1G∗2u∗,
3δ

1+δ

)
6= /0.

Since S was arbitrary, we conclude that

x0

1+δ
∈ aconv

(
gSlice

(
BX ,G∗u∗,

3δ

1+δ

))
,

and so

dist
(

x0,aconvgSlice
(

BX ,G∗u∗,
3δ

1+δ

))
<

δ

1+δ
.

As 0 < δ < ε/3, we get that dist(x0,aconvgSlice(BX ,G∗u∗,ε))< ε . This, together
with the first part of (5.1), gives that G is lush by Proposition 3.28.iii. ut

Proof (of Proposition 5.11). We will use the above lemma with X = X , Y = X∗∗,
W = Z∗, G1 = JX and G2 = H. To this end, we first show that G1 = JX satisfies
condition (P1) of Lemma 5.12 with A1 = JX∗(BX∗)⊂ BX∗∗∗ . Indeed, let us fix a slice
of the form Slice(BX ,x∗1,δ ) of BX , JX∗(x∗) ∈ A1 and ε > 0, and suppose that

JX
(
Slice(BX ,x∗1,δ )

)
∩ conv

(
gSlice(BX∗∗ ,TJX∗(x∗),ε)

)
6= /0.

Since

conv
(
gSlice(BX∗∗ ,TJX∗(x∗),ε)

)
⊂ convσ(X∗∗,X∗) (JX

(
gSlice(BX ,Tx∗,ε)

))
,

we actually have that

JX
(
Slice(BX ,x∗1,δ )

)
∩ convσ(X∗∗,X∗) (JX

(
gSlice(BX ,Tx∗,ε)

))
6= /0

and so, a fortiori,

Slice(BX∗∗ ,JX∗(x∗1),δ )∩ convσ(X∗∗,X∗) (JX
(
gSlice(BX ,Tx∗,ε)

))
6= /0.

But it then follows that
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Slice(BX∗∗ ,JX∗(x∗1),δ )∩ JX
(
gSlice(BX ,Tx∗,ε)

)
6= /0.

This clearly implies that JX
(
Slice(BX ,x∗1,δ )

)
∩gSlice(BX∗∗ ,TJX∗(x∗),ε) 6= /0, as de-

sired.

Now, let G2 = H ∈ L(X∗∗,Z∗) and A2 = JZ(SZ)⊂ Z∗∗ which is norming for Z∗.
As H is weak-star to weak-star continuous, we have that G∗2(A2) ⊂ A1. Indeed, let
H∗ ∈ L(Z,X∗) such that [H∗]∗ = H and observe that

G∗2(JZz) = [H∗]∗∗(JZz) = JX∗(H∗z)

for every z ∈ SZ .

Therefore, all the requirements of Lemma 5.12 are satisfied, so G2 ◦G1 = H ◦JX
is lush. ut

We get a couple of corollaries of this result. The first one deals with the natural
inclusion of a lush Banach space into its bidual. It is an immediate consequence of
the result above applied to H = IdX∗∗ .

Corollary 5.13. Let X be a Banach space. If X∗∗ is lush, then the canonical inclu-
sion JX : X −→ X∗∗ is lush.

The next consequence is the promised result saying that lushness passes from the
biadjoint operator to the operator.

Corollary 5.14. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one
operator. If G∗∗ is lush, then G is lush.

Proof. Apply Proposition 5.11 to H = G∗∗ ∈ L(X∗∗,Y ∗∗), which is weak-star to
weak-star continuous, to get that G∗∗ ◦ JX : X −→ Y ∗∗ is lush. But, clearly, G∗∗ ◦
JX = JY ◦G and then, restricting the codomain and considering that Y and JY (Y ) are
isometrically isomorphic, Remark 3.34 gives us that G is lush. ut

These two corollaries improve [64, Proposition 4.3] where it is proved that a
Banach space X is lush whenever X∗∗ is lush.

Remark 5.15. The technical hypothesis G∗2(A2)⊂ A1 in Lemma 5.12 is fundamental
to get the result. Indeed, consider the inclusion J : c0 −→ `∞ and the projection
P : `∞ −→ `∞/c0. Notice that J = Jc0 satisfies the condition (P1) of Lemma 5.12
with A1 = J`1(B`1) ⊂ B`∗∞ (this is shown in the proof of Proposition 5.11). On the
other hand P is lush since it carries every spear vector of `∞ into a spear vector
of `∞/c0. This can be easily seen using the canonical (isometric) identifications
`∞ ≡ C(βN) and `∞/c0 = C(βN \N), so that P is just the restriction operator. On
the other hand, P◦ J = 0, which clearly is not lush. The technical hypothesis of the
lemma is not satisfied, since every µ ∈C(βN\N)∗ with P∗µ ∈ B`1 must be zero.
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The same example also shows the need of the operator H in Proposition 5.11 to
be weak-star to weak-star continuous: indeed, just take H = P : `∞ −→ `∞/c0 and
observe that H ◦ JX = 0.

Let us now discuss the more complicated direction: when lushness, spearness or
the aDP passes from an operator to its adjoint. It is easy to provide examples of
operators with the aDP whose adjoint do not share the property: for instance this is
the case of the Identity operator on the space C([0,1], `2) (indeed, this space has the
aDP by [71, Example in p. 858], while its dual contains `2 as L-summand and so it
fails the aDP by [97, Proposition 3.1]). Providing with a counterexample showing
that spearness does not pass from an operator to its adjoint is a more delicate issue,
and took a long time to be solved. It was done in [22] as we showed in Example
1.42. Let us recall this example here, as it presents other interesting features. Recall
that a James boundary for a Banach space X is a subset C of BX∗ such that ‖x‖ =
maxx∗∈C |x∗(x)| for every x ∈ X . As a consequence of the Hanh-Banach and the
Krein-Milman theorems, the set ext(BX∗) is a James boundary for X .

Example 5.16. Let us consider the countable compact subset of R given by

K =
{

1− 1
n+1 : n ∈ N

}
∪
{

2− 1
n+1 : n ∈ N

}
∪
{

3− 1
n+1 : n ∈ N

}
∪{1,2,3}

and define the Banach space

X =
{

f ∈C(K) : f (1)+ f (2)+ f (3) = 0
}
.

It is proved in Example 1.42 that X is C-rich in C(K) and that X∗ = Y ⊕1 W where
W has no spear vectors and Y consists of measures concentrated on isolated points
of K. Thus z ∈ Spear(X∗) if and only if it has the form z = (δt ,0) where t is an
isolated point of K (use Example 2.12.a).

(a) The inclusion J : X −→ C(K) is lush but its adjoint J∗ does not even have the
aDP. Indeed, J is lush by Theorem 4.6. On the other hand, as 1 is an accumula-
tion point, J∗(δ1) is not an spear vector of X∗, and this shows that J∗ does not
have the aDP since δ1 ∈ dent(BC(K)∗) and we may use Proposition 5.1.

(b) Actually, it is routine to check that

{y∗ ∈C(K)∗ : J∗(y∗) ∈ Spear(X∗)}= {δt : t isolated point of K}.

Therefore, this set is norming for C(K) but it is not a James boundary for C(K).
We deduce that

(c.1) Theorem 3.33 cannot be improved to get that the set Ω is the whole set of
extreme points, nor a James boundary for X ;

(c.2) the Gδ dense set in Proposition 5.3.v does not always coincide with the set
of all extreme points of the dual ball, nor is always a James boundary for
X .
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Our next goal is to provide sufficient conditions which allow to pass the prop-
erties of an operator to its adjoint. The first of these conditions is that the domain
space has the Radon-Nikodým Property.

Proposition 5.17. Let X be a Banach space with the Radon-Nikodým Property, let
Y be a Banach space and let G∈L(X ,Y ) be a norm-one operator. If G has the aDP,
then G∗ is lush. Therefore, the following six assertions are equivalent: G has the
aDP, G is a spear operator, G is lush, G∗ has the aDP, G∗ is a spear operator, G∗ is
lush.

Proof. If G has the aDP, Gx ∈ Spear(Y ) for every x ∈ dent(BX ) by Proposition 5.1,
and then Proposition 2.11.c gives that JY (Gx) ∈ Spear(Y ∗∗) for every x ∈ dent(BX ).
Therefore, the set {

x∗∗ ∈ BX∗∗ : [G∗]∗(x∗∗) ∈ Spear(Y ∗∗)
}

contains JX (dent(BX )) which is norming for X∗ as X has the Radon-Nikodým Prop-
erty (see [20, §2] for instance). Then, Proposition 3.32.a gives that G∗ is lush.

Finally, let us comment the proof of the last part. The three first assertions are
equivalent by Proposition 5.2 since X has the Radon-Nikodým Property; G∗ lush
⇒ G∗ spear ⇒ G∗ has the aDP ⇒ G has the aDP by Remark 5.10. The remaining
implication is just what we have proved above. ut

Another result in this line is the following. We recall that a Banach space X
is M-embedded if JX (X)⊥ is an L-summand in X∗∗∗ (which is actually equivalent
to the fact that the Dixmier projection on X∗∗∗ is an L-projection). We refer the
reader to the monograph [54] for more information and background. Examples of
M-embedded spaces are reflexive spaces (trivial), c0 and all of its closed subspaces,
K(H) (the space of compact operators on a Hilbert space H), C(T)/A(D), the little
Bloch space B0, among others (see [54, Examples III.1.4]).

Proposition 5.18. Let X be a Banach space, let Y be an M-embedded Banach space,
and let G ∈ L(X ,Y ) be a norm-one operator. If G has the aDP, then G∗ is lush.
Therefore, the following nine assertions are equivalent: G has the aDP, G is a spear
operator, G is lush, G∗ has the aDP, G∗ is a spear operator, G∗ is lush, G∗∗ has the
aDP, G∗∗ is a spear operator, G∗∗ is lush.

Proof. If G has the aDP, we use Proposition 5.1 to get that the set{
y∗ ∈ BY ∗ : G∗y∗ ∈ Spear(X∗)

}
contains the set D of those w∗-denting points of BY ∗ . By [54, Corollary III.3.2], we
have that BY ∗ = conv(D) so, a fortiori,

BY ∗ = conv
{

y∗ ∈ BY ∗ : G∗y∗ ∈ Spear(X∗)
}
.
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Then, Proposition 3.32.c gives that G∗ is lush.

Finally, for the last part, the three first assertions are equivalent by Proposition 5.3
since Y is Asplund [54, Theorem III.3.2]. The middle three assertions are equivalent
by Proposition 5.2 since Y ∗ has the Radon-Nikodým Property [54, Theorem III.3.2].
If G∗ has the aDP, so does G (Remark 5.10) and this implies that G∗ is lush by the
above. As Y ∗ has the Radon-Nikodým Property, if G∗ has the aDP, then G∗∗ is lush
by Proposition 5.17, and this gives the equivalence with the last three assertions. ut

Even though part of what we have used in the proof above is Asplundness of
M-embedded spaces, just this hypothesis on Y is not enough to get the result as
Example 5.16 shows.

A consequence of the two results above is that lushness passes from an operator
with reflexive domain or codomain to all of its successive adjoint operators.

Corollary 5.19. Let X, Y be Banach spaces such that at least one of them is reflex-
ive, and let G ∈ L(X ,Y ) be a norm-one operator. If G has the aDP, then G and all
the successive adjoint operators of G are lush.

Proof. If X is reflexive, then it has the Radon-Nikodým Property, so Proposition
5.17 gives that G and G∗ are lush. If Y is reflexive, then it is clearly M-embedded,
so Proposition 5.18 gives us that G and G∗ are lush. For the successive adjoint
operators, one of the above two arguments applies. ut

The above result applies of course to operators with finite-dimensional codomain,
but we do not know whether it can be extended to finite-rank operators. We may do
when the operator has actually rank one.

Proposition 5.20. Let X, Y be Banach spaces, and let G ∈ L(X ,Y ) be a rank-one
norm-one operator. If G has the aDP, then G∗ is lush. Therefore, all the successive
adjoints of G are lush.

Proof. If G has the aDP, we have that G = x∗0 ⊗ y0 with x∗0 ∈ Spear(X∗) and
y0 ∈ Spear(Y ) by Corollary 5.9. Observe that G∗ = JY (y0)⊗ x∗0 : Y ∗ −→ X∗. Since
JY (y0) ∈ Spear(Y ∗∗) by Proposition 2.11.c, we get that G∗ is lush by using again
Corollary 5.9. The last assertion follows from the fact that the adjoint to a rank-one
operator is again a rank-one operator, and so the argument can be iterated. ut

The last result deals with L-embedded spaces. Recall that a Banach space Y is
L-embedded if Y ∗∗ = JY (Y )⊕1 Ys for suitable closed subspace Ys of Y ∗∗. We refer to
the monograph [54] for background. Examples of L-embedded spaces are reflexive
spaces (trival), predual of von Neumann algebras so, in particular, L1(µ) spaces, the
Lorentz spaces d(w,1) and Lp,1, the Hardy space H1

0 , the dual of the disk algebra
A(D), among others (see [54, Examples IV.1.1 and III.1.4]).
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Proposition 5.21. Let X be a Banach space, let Y be an L-embedded space, and let
G ∈ L(X ,Y ) be a norm-one operator.

(a) If G is a spear operator, then G∗ is a spear operator.
(b) If G has the aDP, then G∗ has the aDP.

Proof. (a). Write PY : Y ∗∗ −→ JY (Y ) for the projection associated to the decompo-
sition Y ∗∗ = JY (Y )⊕1 Ys. We fix T ∈ L(Y ∗,X∗) and consider the operators

A := PY ◦T ∗ ◦ JX : X −→ JY (Y ) B := [Id−PY ]◦T ∗ ◦ JX : X −→ Ys,

and observe that T ∗ ◦ JX = A⊕B. Given ε > 0, since JX (BX ) is dense in BX∗∗ by
Goldstine’s Theorem and T ∗ is weak-star to weak-star continuous, we may find
x0 ∈ SX such that

‖T ∗JX (x0)‖= ‖Ax0‖+‖Bx0‖> ‖T‖− ε.

Now, we may find y0 ∈ SY and y∗s ∈ SY ∗s such that

‖Ax0‖y0 = Ax0 and y∗s (Bx0) = ‖Bx0‖.

We define S : X −→ Y by Sx = Ax+ y∗s (Bx)y0 for every x ∈ X , and observe that

‖S‖> ‖Sx0‖> ‖T‖− ε.

As G is a spear operator, we have that ‖G+TS‖ > 1+ ‖T‖− ε , so we may find
x1 ∈ SX , ω ∈ T, and y∗1 ∈ SY ∗ such that∣∣y∗1(Gx1 +ω Ax1 +ω y∗s (Bx1)y0)

∣∣> 1+‖T‖− ε.

Finally, consider Φ = (JY ∗(y∗1), y∗1(y0)y∗s ) ∈Y ∗∗∗ = JY ∗(Y ∗)⊕∞ Y ∗s which has norm-
one (here we use the L-embeddedness hypothesis) and observe that

‖G∗+TT‖= ‖G∗∗+TT ∗‖>
∣∣[Φ(G∗∗+ω T ∗

)]
(JX (x1))

∣∣
=
∣∣y∗1(Gx1 +ω Ax1)+ω y∗1(y0)y∗s (Bx1)

∣∣
=
∣∣y∗1(Gx1 +ω Ax1 +ω y∗s (Bx1)y0)

∣∣
> 1+‖T‖− ε.

Moving ε ↓ 0, we get that G∗ is a spear operator, as desired.

(b). If G just has the aDP, we may repeat the above argument for rank-one op-
erators T ∈ L(Y ∗,X∗), and everything works fine as the operator S ∈ L(X ,Y ) con-
structed there has finite rank, so ‖G+TS‖= 1+‖S‖ by Theorem 3.17 (as, clearly,
finite-rank operators are SCD). ut



Chapter 6

Isometric and isomorphic consequences

Our goal here is to present consequences on the Banach spaces X and Y of the fact
that there is G ∈ L(X ,Y ) which is a spear operator, is lush, or has the aDP.

We first start with a deep structural consequence which generalizes [9, Corollary
4.10] where it was proved for real infinite-dimensional Banach spaces with the aDP.

Theorem 6.1. Let X, Y be real Banach spaces and let G ∈ L(X ,Y ). If G has the
aDP and has infinite rank, then X∗ contains a copy of `1.

Proof. Using Proposition 3.7, we can find separable subspaces X∞ ⊂ X and Y∞ ⊂ Y
such that G∞ := G|X∞

: X∞ −→ Y∞ has the aDP, and still it has infinite rank. By
Remark 3.8, we may and do suppose that G∞(X∞) = Y∞. It is enough to show that
X∗∞ contains a copy of `1 since, in this case, X∗ also contains such a copy by the
lifting property of `1 (see [83, Proposition 2.f.7] or [119, p. 11]). We have two
possibilities. If X∞ contains a copy of `1, then X∗∞ contains a quotient isomorphic
to `∞ and so X∗∞ contains a copy of `1 again by the lifting property of `1. If X∞

does not contain copies of `1, then BX∞
is an SCD set by [9, Theorem 2.22] (see

Examples 1.56), so Theorem 3.29 gives that G∞ is lush. Then, by Theorem 3.33, the
set
{

y∗ ∈ extBY ∗∞ : G∗∞(y
∗) ∈ Spear(X∗∞)

}
is weak-star dense in extBY ∗∞ . As G∞ has

dense range, G∗∞ is injective, and since Y ∗∞ is infinite-dimensional, it follows that the
set Spear(X∗∞) must be infinite. Now, Proposition 2.11.i gives us that X∗∞ contains a
copy of c0 or `1. But a dual space contains a copy of `1 whenever it contains a copy
of c0 [83, Proposition 2.e.8]. ut

Another result in this line is the following.

Proposition 6.2. Let X be a real Banach space with the Radon-Nikodým Property,
let Y be a real Banach space, and let G∈L(X ,Y ). If G has the aDP and has infinite
rank, then Y ⊃ c0 or Y ⊃ `1.

Proof. By Proposition 5.2 we have that BX = conv
{

x ∈ BX : Gx ∈ Spear(Y )
}

, so

97



98 6 Isometric and isomorphic consequences

G(BX )⊂ conv{Gx : x ∈ BX , Gx ∈ Spear(Y )} ⊂ conv(Spear(Y )) .

Now, if G has infinite rank, Spear(Y ) has to be infinite and so Proposition 2.11.j
gives the result. ut

Remark 6.3. Let us observe that both possibilities in the result above may happen.
On the one hand, G := Id`1 : `1 −→ `1 is lush by Example 5.5. On the other hand,
the operator G : `1 −→ c given by [G(en)](k) = −1 if k = n and [G(en)](k) = 1 if
k 6= n is also lush by Example 5.5 and it has infinite-rank.

We next deal with isometric consequences of the existence of operators with the
aDP. The following result generalizes [63, Theorem 2.1] where it was proved for
G = Id. Let us remark that the proof given there relied on a non-trivial result of the
theory of numerical range: that the set of operators whose adjoint attain its numerical
radius is norm dense in the space of operators.

Proposition 6.4. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be an operator
with the aDP. Then

(a) If X∗ is strictly convex, then X =K.
(b) If X∗ is smooth, then X =K.
(c) If Y ∗ is strictly convex, then Y =K.

Proof. (a). We start showing that G∗ has rank one. Using Theorem 3.6.iv we can
find y∗0 ∈ SY ∗ with ‖G∗y∗0‖= 1. By the same result, there is a weak-star dense subset
of extBY ∗ whose elements y∗ satisfy that

‖G∗y∗0 +TG∗y∗‖= 2. (6.1)

It follows from the definition of strict convexity that G∗y∗ ∈ TG∗y∗0 for every such
y∗, and we deduce by the Krein-Milman Theorem and the weak-star continuity of
G∗, that G∗(BY ∗) is contained in span{G∗y∗0}. Hence, G∗ has rank one. Therefore,
G has rank one and Spear(X∗) is non empty by Corollary 5.9. Finally, X∗ is one-
dimensional by Proposition 2.11.h.

(b). Given arbitrary elements x∗0,x
∗
1 ∈ SX∗ we use use Theorem 3.6.iv and the

fact that (extBY ∗ ,w∗) is a Baire space (see Lemma 2.5.c) to deduce the existence
of some y∗ ∈ extBY ∗ with ‖G∗y∗+Tx∗i ‖ = 2 for i = 0,1. Taking x∗∗i ∈ SX∗∗ with
x∗∗i (G∗y∗)+ |x∗∗i (x∗i )|= 2 for each i = 0,1, we get that

x∗∗0 (G∗y∗) = x∗∗1 (G∗y∗) = 1 and |x∗∗0 (x∗0)|= |x∗∗1 (x∗1)|= 1.

Since X∗ is smooth, it follows from the left hand side of the above formula that
x∗∗0 = x∗∗1 and hence, ‖x∗0 +Tx∗1‖ = 2 by the right hand side of the above formula.
So every element of SX∗ is a spear and then Proposition 2.11.e tells us that X∗ is
one-dimensional.
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The proof of (c) follows the lines of the one of (a). Indeed, arguing like in (a), we
find y∗0 ∈ SY ∗ and a weak-star dense subset of ext(BY ∗) whose elements y∗ satisfy
(6.1) so, a fortiori, they satisfy that

‖y∗0 +Ty∗‖= 2.

Being Y ∗ strictly convex, we get that y∗ ∈ Ty∗0 for every such y∗, but this implies
that Y ∗, and so Y , is one-dimensional by the Krein-Milman Theorem. ut

The following result generalizes [63, Proposition 2.5].

Proposition 6.5. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be an operator
with the aDP.

(a) If the norm of Y is Fréchet smooth, then Y =K.
(b) If X and Y are real spaces and the norm of X is Fréchet smooth, then X = R.

Proof. (a). By Proposition 5.1 we have that G∗y∗ ∈ Spear(X∗) for every w∗-strongly
exposed point y∗ of BY ∗ . Since the norm of Y is Fréchet smooth, every functional
in SY ∗ attaining its norm is a w∗-strongly exposed point of BY ∗ (see [35, Corol-
lary I.1.5] for instance). As norm-one norm-attaining functionals are dense in SY ∗ by
the Bishop-Phelps Theorem, and Spear(X∗) is norm closed by Proposition 2.11.d,
we get in fact that G∗y∗ ∈ Spear(X∗) for every y∗ ∈ SY ∗ . So, given arbitrary elements
y∗1,y

∗
2 ∈ SY ∗ we can write

2 = ‖G∗(y∗1)+TG∗(y∗2)‖6 ‖y∗1 +Ty∗2‖6 2

which gives that every element in SY ∗ is a spear. Therefore, Y ∗ is one-dimensional
by Proposition 2.11.e.

(b). Fixed X0 ⊂ X and Y0 ⊂ Y arbitrary separable subspaces we can use Propo-
sition 3.7 to find separable subspaces X0 ⊂ X∞ ⊂ X and Y0 ⊂ Y∞ ⊂ Y such that
G(X∞)⊂ Y∞ and G∞ := G|X∞

: X∞ −→ Y∞ has norm one and the aDP. Next, we fix a
countable dense subset D⊂ SX∞

and we consider D∗ ⊂ SX∗∞ given by

D∗ = {x∗ ∈ SX∗∞ : ∃x ∈ D with x∗(x) = 1}

which is countable since D is countable and X∞ is smooth. Therefore, we can use
the fact that (extBY ∗ ,w∗) is a Baire space (see Lemma 2.5.c) and Theorem 3.6.iv to
deduce the existence of some y∗ ∈ extBY ∗∞ with ‖G∗∞y∗+Tx∗‖= 2 for every x∗ ∈D∗.
We will show that G∗∞y∗ ∈ Spear(X∗∞). To do so, fix x∗ ∈ SX∗∞ attaining its norm at
x ∈ SX∞

and recall that x strongly exposes x∗ as X∞ is Fréchet smooth. Let (xn)n∈N
be a sequence in D converging to x and let x∗n ∈ D∗ satisfying x∗n(xn) = 1 for every
n ∈ N. Then we have that

|x∗n(x)−1|= |x∗n(x)− x∗n(xn)|6 ‖x− xn‖ −→ 0

so (x∗n) converges in norm to x∗ and, therefore,
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2 = ‖G∗∞y∗+Tx∗n‖ −→ ‖G∗∞y∗+Tx∗‖

which gives ‖G∗∞y∗ +Tx∗‖ = 2. Since norm-one norm-attaining functionals are
dense in SX∗∞ by the Bishop-Phelps Theorem, we deduce that G∗∞y∗ is a spear in
X∗∞. Finally, Proposition 2.11.k tells us that X∞, and thus X0, is one-dimensional as
it is smooth. The arbitrariness of X0 implies that X is one-dimensional. ut

The next result deals with WLUR points. Given a Banach space X , a point x∈ SX
is said to be LUR (respectively WLUR) if for every sequence (xn)n∈N in BX such that
‖xn +x‖ −→ 2 one has that (xn)−→ x in norm (respectively weakly). It is clear that
LUR points are WLUR, but the converse result is known to be false [116].

Proposition 6.6. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be an operator
with the aDP. Then

(a) If BX contains a WLUR point, then X =K.
(b) If BY contains a WLUR point, then Y =K.

Proof. (a). Let x0 be a WLUR point of BX . We start showing that ‖Gx0‖= 1. To do
so, take x∗0 ∈ SX∗ with x∗0(x0) = 1 and use Theorem 3.6.iv to find y∗ ∈ extBY ∗ such
that ‖G∗y∗+Tx∗0‖= 2. Therefore, there is a sequence (xn)n∈N in BX satisfying∣∣[G∗y∗](xn)+Tx∗0(xn)

∣∣−→ 2

which clearly implies |y∗(Gxn)| =
∣∣[G∗y∗](xn)

∣∣ −→ 1 and |x∗0(xn)| −→ 1. Hence,
there is a sequence (θn)n∈N in T such that Rex∗0(θnxn)−→ 1 and so

‖θnxn + x0‖> Rex∗0(θnxn + x0)−→ 2.

Now, since x0 is a WLUR point we get that (θnxn) converges weakly to x0. There-
fore, (Gθnxn) converges weakly to Gx0, and the fact that |y∗(Gθnxn)| −→ 1 tells us
that |y∗(Gx0)|= 1 and, a fortiori, ‖Gx0‖= 1.

Suppose that X is not one-dimensional, then there is x∗ ∈ SX∗ with x∗(x0) = 0.
Consider the operator T = x∗⊗Gx0 ∈ L(X ,Y ) which satisfies ‖T‖ = 1. We have
that ‖G+TT‖= 2 since G has the aDP, so there are sequences (zn) in SX and (y∗n)
in SY ∗ such that

|y∗n(Gzn)+Ty∗n(Gx0)x∗(zn)| −→ 2

which implies |x∗(zn)| −→ 1 and |y∗n(Gzn)+Ty∗n(Gx0)| −→ 2. Hence, we may find
a sequence (ωn)n∈N in T such that |y∗n(ωnGzn +Gx0)| −→ 2 and so

‖ωnzn + x0‖> ‖G(ωnzn + x0)‖> |y∗n(ωnGzn +Gx0)| −→ 2.

Since x0 is a WLUR point, we get that (ωnzn) converges weakly to x0. This, together
with |x∗(zn)| −→ 1, tells us that |x∗(x0)|= 1, which is a contradiction.

(b). Let y0 be a WLUR point of BY . Since G has the aDP, Theorem 3.6.iv provides
us with a dense Gδ set A in (extBY ∗ ,w∗) such that ‖G∗y∗‖= 1 for every y∗ ∈ A. We
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claim that |y∗(y0)|= 1 for every y∗ ∈ A. Indeed, fixed y∗ ∈ A, consider the rank-one
operator T = G∗y∗⊗ y0 which satisfies ‖G+TT‖= 2. So there are sequences (xn)
in SX and (y∗n) in SY ∗ such that

2←− |y∗n(Gxn)+Ty∗n(T xn)|= |y∗n(Gxn)+Ty∗n(y0)y∗(Gxn)|.

This implies that |y∗(Gxn)| −→ 1 and that there is a sequence (θn)n∈N in T such that

‖θnGxn + y0‖> |y∗n(θnGxn + y0)| −→ 2.

Being y0 a WLUR point, we deduce that (θnGxn) converges weakly to y0 and, there-
fore, we get |y∗(y0)|= 1, finishing the proof of the claim.

To finish the proof, fix y ∈ SY and observe that

‖y0 +Ty‖> sup
y∗∈A
|y∗(y0)+Ty∗(y)|

= sup
y∗∈A
|y∗(y0)|+ |y∗(y)|= 1+ sup

y∗∈A
|y∗(y)|= 2.

This, together with y0 being a WLUR point, gives that y ∈ Ty0. Therefore, Y is one-
dimensional, as desired. ut

Our next result improves Proposition 6.4 but only for lush operators. We do not
know whether it is also true for operators with the aDP.

Proposition 6.7. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one
operator which is lush. Then:

(a) If X is strictly convex then X =K.
(b) In the real case, if X is smooth then X = R.
(c) If Y is strictly convex then Y =K.

Proof. Given arbitrary separable subspaces X0 ⊂ X and Y0 ⊂Y , we can use Proposi-
tion 3.28.vi to get the existence of separable subspaces X0⊂X∞⊂X and Y0⊂Y∞⊂Y
such that G(X∞)⊂ Y∞, ‖G|X∞

‖= 1, and G∞ := G|X∞
: X∞ −→ Y∞ is lush. Now The-

orem 3.33 tells us that there exists a Gδ dense subset Ω of (extBY ∗∞ ,w
∗) such that

G∗∞(Ω)⊂ Spear(X∗∞) or, equivalently, that

BX∞
= aconv

(
Face(SX∞

,G∗∞y∗)
)

(6.2)

for every y∗ ∈Ω .

(a). If X is strictly convex so is X∞, and then Proposition 2.11.h tells us that X∞

is one-dimensional as Spear(X∗∞) is non-empty. Thus, X0 is one-dimensional and its
arbitrariness gives that X is one-dimensional.

(b). If X is smooth so is X∞. Using this time Proposition 2.11.l, we get that X∞ is
one-dimensional as Spear(X∗∞) is non-empty. Therefore, X0 is one-dimensional and
its arbitrariness tells us that X is one-dimensional.
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(c). In this case, we have that Y∞ is strictly convex. Observe that, fixed y∗ ∈ Ω ,
every element x in the set Face(SX∞

,G∗∞y∗) satisfies that y∗(G∞x) = 1, so by the strict
convexity of Y∞, the set G∞

(
Face(SX∞

,G∗∞y∗)
)

must consist of one point. This, to-
gether with (6.2), implies that G∞ has rank one. Therefore, Spear(Y∞) is non-empty
by Corollary 5.9 and so Y∞ (and thus Y0) is one-dimensional by Proposition 2.11.h.
The arbitrariness of Y0 tells us that Y is one-dimensional. ut

Our last result in this chapter is an extension of Theorem 2.9 to arbitrary lush
operators: every lush operator attains its norm (i.e. the supremum defining its norm
is actually a maximum).

Proposition 6.8. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one
operator. If G is lush, then it is norm-attaining. Actually,

BX = conv
(
{x ∈ SX : ‖Gx‖= 1}

)
.

Proof. Fix an arbitrary x0 ∈ BX . By Proposition 3.28, there are separable Banach
spaces x0 ∈ X∞ ⊂ X and Y∞ ⊂ Y satisfying that G∞ := G|X∞

: X∞ −→ Y∞ is lush.
Using Theorem 3.33, there exists y∗0 ∈ SY ∗∞ such that G∗∞y∗0 is a spear, so Theorem
2.9 implies that

x0 ∈ BX∞
= conv({x ∈ SX∞

: |[G∗∞y∗0](x)|= 1})⊂ conv({x ∈ SX : ‖Gx‖= 1}) ,

giving thus the result. ut

We will see in Example 8.7 that the aDP is not enough to get norm-attainment.



Chapter 7

Lipschitz spear operators

Let X , Y be Banach spaces. We denote by Lip0 (X ,Y ) the set of all Lipschitz map-
pings F : X −→ Y such that F(0) = 0. This is a Banach space when endowed with
the norm

‖F‖L = sup
{
‖F(x)−F(y)‖
‖x− y‖

: x,y ∈ X , x 6= y
}
.

Observe that, clearly, L(X ,Y )⊂ Lip0(X ,Y ) with equality of norms.

Our aim in this chapter is to study those elements of Lip0(X ,Y ) which are spears.
First, let us give a name for this.

Definition 7.1. Let X , Y be Banach spaces. An element G∈Lip0(X ,Y ) is a Lipschitz
spear operator if ‖G+TF‖L = 1+‖F‖L for every F ∈ Lip0(X ,Y ).

We will prove here that every (linear) lush operator is a Lipschitz spear operator
and present similar results for Daugavet centers and for operators with the aDP.
To do so, we will use the technique of the Lipschitz-free space. We need some
definitions and preliminary results. Let X be a Banach space. Observe that we can
associate to each x ∈ X an element δx ∈ Lip0 (X ,K)∗ which is just the evaluation
map δx( f ) = f (x) for every f ∈ Lip0(X ,K). The Lipschitz-free space over X is the
Banach space

F(X) := span‖·‖{δx : x ∈ X} ⊂ Lip0 (X ,K)∗.

It turns out that F(X) is an isometric predual of Lip0 (X ,K) (which has been very
recently shown to be the unique predual [122]). The map δX : x 7−→ δx establishes an
isometric non-linear embedding X −→F(X) since ‖δx−δy‖F(X) = ‖x−y‖X for all
x,y ∈ X . The name Lipschitz-free space appeared for the first time in the paper [49]
by G. Godefroy and N. Kalton, but the concept was studied much earlier and it is
also known as the Arens-Ells space of X (see [121, §2.2]). The main features of the
Lipschitz-free space which we are going to use here are contained in the following
result. The first four assertions are nowadays considered folklore in the the theory
of Lipschitz operators, and may be found in the cited paper [49] (written for the
real case, but also working in the complex case), section 2.2 of the book [121] by
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N. Weaver, and Lemma 1.1 of [58]. The fifth assertion was proved in [65, Lemma
2.4]. For background on Lipschitz-free spaces we refer the reader to the already
cited [49, 58, 121] and the very recent survey [47] by G. Godefroy.

Lemma 7.2. Let X, Y be Banach spaces.

(a) For every F ∈ Lip0(X ,Y ), there exists a unique linear operator F̂ : F(X)−→Y
such that F̂ ◦ δX = F and ‖TF‖ = ‖F‖L. Moreover, the application F 7−→ F̂ is
an isometric isomorphism from Lip0(X ,Y ) onto L(F(X),Y ).

(b) There exists a norm-one K-linear quotient map βX : F(X)−→ X which is a left
inverse of δX , that is, βX ◦δX = IdX . It is called the barycenter map in [49], and
is given by the formula

βX

(
∑
x∈X

axδx

)
= ∑

x∈X
axx.

(c) From the uniqueness in item (a), it follows that F̂ = F ◦ βX for every F ∈
L(X ,Y ).

(d) The set

BX =

{
δx−δy

‖x− y‖
: x,y ∈ X , x 6= y

}
⊂ F(X)

is norming for F(X)∗ = Lip0(X ,K), i.e. BF(X) = aconv(BX ).
(e) Given C ⊂ SX and a slice S of BX ,[

βX (S)∩ conv(C) 6= /0
]

=⇒
[
βX (S)∩C 6= /0

]
.

A comment on item (e) above could be clarifying. Let X be a Banach space. As
BX ⊂ F(X) and F(X)∗ = Lip0(X ,K), a slice S of BX has the form

S = Slice(BX , f ,α) =

{
δx−δy

‖x− y‖
: x,y ∈ X , x 6= y, Re

〈
f ,

δx−δy

‖x− y‖

〉
> 1−α

}
,

where f ∈ Lip0(X ,K) has norm one and α is a positive real number. Then, we have
that

βX (S) =
{

x− y
‖x− y‖

: x,y ∈ X , x 6= y,
Re f (x)−Re f (y)

‖x− y‖
> 1−α

}
is what is called in [65] a Lipschitz slice of SX . Then, item (e) above means that if
a Lipschitz slice of SX does not intersect a subset C ⊂ SX , then it does not intersect
conv(C) either. This was proved in [65, Lemma 2.4] with a completely elemen-
tary proof. Let us also say that assertion (e) is equivalent to the following fact [10,
Lemma 2.3]: given a Lipschitz slice βX (S) of SX and a point x0 ∈ βX (S), there is a
linear slice S of SX such that x0 ∈ S ⊂ βX (S) (indeed, one direction is obvious and
for the non trivial one, let C = SX \βX (S) which clearly satisfies that βX (S)∩C = /0;
then, βX (S)∩ conv(C) = /0 and so the Hahn-Banach theorem gives the result). The
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proof of this last result given in [10] is independent of the above one and uses gen-
eralized derivatives and the Fundamental Theorem of Calculus for them.

The next one is the main result of this chapter. It is an application of our theory
to Lipschitz-free spaces from which we will deduce the commented result about
Lipschitz spear operators.

Theorem 7.3. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one oper-
ator. If G is lush, then Ĝ : F(X)−→ Y is lush.

We need the following general technical result.

Lemma 7.4. Let X, Y , Z be Banach spaces and let G1 ∈ L(Z,X) and G2 ∈ L(X ,Y )
be norm-one operators. Suppose that there is a subset B ⊂ BZ norming for Z∗ (i.e.
BZ = aconv(B)) such that G1 satisfies the following property

For every slice S of B, every x∗ ∈ SX∗ , and every ε > 0,[
G1(S)∩ convgSlice(SX ,Tx∗,ε) 6= /0

]
⇒
[
G1(S)∩gSlice(SX ,Tx∗,ε) 6= /0

]
.

(P2)

If G2 is lush, then G := G2 ◦G1 is lush.

Proof. Fix z0 ∈B, y0 ∈ SY , and ε > 0. As G2 is lush, by Proposition 3.28.v we may
find y∗ ∈ ext(BY ∗) such that

y0 ∈ Slice(SY ,y∗,ε) and G1(z0) ∈ conv
(
gSlice(SX ,TG∗2y∗,ε)

)
.

Therefore, for every slice S of B containing z0, we have that

G1(S)∩ conv
(
gSlice(SX ,TG∗2y∗,ε)

)
6= /0,

and so (P2) gives us that

G1(S)∩gSlice(SX ,TG∗2y∗,ε) 6= /0.

Therefore, we have that

S∩gSlice(SZ ,TG∗1G∗2y∗,ε) 6= /0.

This has been proved for every slice S of B containing z0 ∈B, but it is a fortiori
also true for every slice S of SZ containing z0, so it follows that

z0 ∈ conv
(
gSlice(SZ ,TG∗y∗,ε)

)
.

As B is norming for Z∗, Proposition 3.28.v gives us the result. ut

Proof (of Theorem 7.3). By Lemma 7.2.e, it follows that G1 := βX : F(X) −→ X
satisfies condition (P2) of Lemma 7.4 for B =BX . As G2 := G : X −→Y is lush, it
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follows from this lemma that G2 ◦G1 : F(X)−→Y is lush. But G2 ◦G1 = G◦βX =

Ĝ by Lemma 7.2.c. ut

The identification of L(F(X),Y ) with Lip0(X ,Y ) given in Lemma 7.2.a allows
to deduce the promised result about Lipschitz spear operators from Theorem 7.3.

Corollary 7.5. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one op-
erator. If G is lush, then G is a Lipschitz spear operator, i.e. ‖G+TF‖L = 1+‖F‖L
for every F ∈ Lip0(X ,Y ).

A first particular case of this result follows when we consider a lush Banach
space X and G = IdX . This result appeared previously in [65, 120]

Corollary 7.6 ([65, Theorem 4.1] and [120, Theorem 2.6]). Let X be a lush Banach
space. Then, IdX is a Lipschitz spear operator, i.e. ‖ IdX +TF‖L = 1+ ‖F‖L for
every F ∈ Lip0(X ,Y ).

As we commented, this result is already known, as it is contained in [120, Theo-
rem 2.6] and [65, Theorem 4.1]. But to get it from those references, the concept of
Lipschitz numerical index of a Banach space is needed. Let X be a Banach space.
For F ∈ Lip0(X ,X), the Lipschitz numerical range of F [120] is

WL(F) :=

{
ξ ∗
(
Fx−Fy)
‖x− y‖

: ξ
∗ ∈ SX∗ , ξ

∗(x− y) = ‖x− y‖, x,y ∈ X , x 6= y

}
,

the Lipschitz numerical radius of F is just wL(F) := sup
{
|λ | : λ ∈WL(F)

}
, and the

Lipschitz numerical index of X is

nL(X) := inf
{

wL(F) : F ∈ Lip0(X ,X), ‖F‖L = 1
}

= max
{

k > 0: k‖F‖L 6 wL(F) ∀F ∈ Lip0(X ,X)
}
.

It is shown in [120, Corollary 2.3] that IdX is a Lipschitz spear operator if and only
if nL(X) = 1. With this in mind, Corollary 7.6 is just [120, Theorem 2.6] in the
real case and [65, Theorem 4.1] in the complex case. Let us comment that the main
difficulty of the proofs in [120] and [65] is to deal with Lipschitz operators. With
our approach using the Lipschitz-free spaces, we avoid this.

Theorem 7.3 and Corollary 7.5 apply to all the lush operators presented in this
manuscript. We would like to emphasise the following two particular ones, which
follow from Theorem 4.1 and Corollary 4.12, respectively.

Example 7.7. Let H be a locally compact Abelian group and let Γ be its dual group.
Then, the Fourier transform F : L1(H)−→C0(Γ ) is a Lipschitz spear operator, that
is,

‖F +TF‖L = 1+‖F‖L

for every F ∈ Lip0(L1(H),C0(Γ )).
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Example 7.8. The inclusion J : A(D)−→C(T) is a Lipschitz spear operator, that is,

‖J+TF‖L = 1+‖F‖L

for every F ∈ Lip0(A(D),C(T)).

The last consequence of Theorem 7.3 (actually, of Corollary 7.5) we would like
to present here is the following.

Corollary 7.9. Let X be a Banach space. Then,

Spear(X∗)⊂ Spear(Lip0(X ,K)).

That is, every spear functional is actually a Lipschitz spear functional.

Proof. Let x∗ ∈ Spear(X∗). It follows from Corollary 5.8 that g = x∗ ∈ X∗ ≡
L(X ,K) is lush. Then, Corollary 7.5 gives that ‖g+T f‖L = 1+ ‖ f‖L for every
f ∈ Lip0(X ,K), that is, g ∈ Spear(Lip0(X ,K)) as desired. ut

We would like next to deal with operators with the aDP. The main result here is
that we may extend the aDP of a (linear) operator to its linearization to the Lipschitz-
free space.

Theorem 7.10. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one
operator. If G has the aDP, then Ĝ : F(X)−→ Y has the aDP.

Proof. We fix y0 ∈ SY and ε > 0. As G has the aDP, we have that

BX = conv{x ∈ SX : ‖Gx+Ty0‖> 2− ε}

by Theorem 3.6.iii. Then, if S is an arbitrary slice of BX , we obviously have that

βX (S)∩ conv{x ∈ SX : ‖Gx+Ty0‖> 2− ε} 6= /0,

and so Lemma 7.2.e gives us that

βX (S)∩{x ∈ SX : ‖Gx+Ty0‖> 2− ε} 6= /0. (7.1)

Therefore, S∩
{

ξ ∈ SF(X) :
∥∥[G ◦βX

]
(ξ )+Ty0

∥∥ > 2− ε
}
6= /0, that is, using that

G◦βX = Ĝ by Lemma 7.2.c,

S∩
{

ξ ∈ SF(X) :
∥∥Ĝ(ξ )+Ty0

∥∥> 2− ε
}
6= /0.

The arbitrariness of S gives then that

BX ⊂ conv
{

ξ ∈ SF(X) : ‖Ĝ(ξ )+Ty0‖> 2− ε
}

= aconv
{

ξ ∈ SF(X) : ‖Ĝ(ξ )+Ty0‖> 2− ε
}
.

(7.2)
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As BF(X) = aconv(BX ), we actually have that

BF(X) = aconv
{

ξ ∈ SF(X) : ‖Ĝ(ξ )+Ty0‖> 2− ε
}

= conv
{

ξ ∈ SF(X) : ‖Ĝ(ξ )+Ty0‖> 2− ε
}
,

(7.3)

and Theorem 3.6.iii gives that Ĝ has the aDP, as desired. ut

The identification of L(F(X),Y ) with Lip0(X ,Y ) given in Lemma 7.2.a allows
to write Theorem 7.10 in terms of the Lipschitz norm of Lipschitz operators. We
need some preliminary work. Let X , Y be Banach spaces. For F ∈ Lip0(X ,Y ), we
define the slope of F [65] as the set

slope(F) :=
{

F(x1)−F(x2)

‖x1− x2‖
: x1 6= x2 ∈ X

}
.

Observe that if T ∈ L(X ,Y ), then slope(T ) = T (SX ). On the other hand, it is clear
that slope(F) = F̂

(
BX
)

and, in particular,

aconv
(
slope(F)

)
= aconv

(
F̂
(
BX
))

= F̂
(
BF(X)

)
.

With this in mind, we get that if G ∈ L(X ,Y ) has the aDP and F ∈ Lip0(X ,Y )
satisfies that aconv(slope(F)) is SCD, then ‖ Id+TF‖L = 1+ ‖F‖L by Theorems
7.10 and 3.17. But, actually, we can go further and avoid to use the absolutely closed
convex hull in the assumption.

Corollary 7.11. Let X, Y be Banach spaces and let G ∈ Lip0(X ,Y ) be a norm-
one operator with the aDP. If F ∈ Lip0(X ,Y ) satisfies that slope(F) is SCD, then
‖G+TF‖L = 1+‖F‖L.

The result will follow from (7.1) in the proof of Theorem 7.10 and the following
general result.

Lemma 7.12. Let X, Y , Z be Banach spaces, let B⊂ BX such that aconv(B) = BX ,
and let G ∈ L(X ,Y ) be a norm-one operator such that G(S) is a spear set for every
slice S of B. Then, if T ∈ L(X ,Z) satisfies that T (B) is SCD, then T is a target for
G. In the case of Z = Y , we have ‖G+TT‖= 1+‖T‖.

Proof. The proof of this lemma is an easy adaptation of the one of Theorem 3.17.
Let {Ŝn : n∈N} be a determining family of slices for T (B), then Sn := T−1(Ŝn)∩B
is a slice of B satisfying that G(Sn) is a spear set by hypothesis. The same argument
from Theorem 3.17 shows that⋂

n∈N
gFace(extBY ∗ ,TG(Sn)) (7.4)

is weak-star dense in extBY ∗ . For every y∗0 belonging to this intersection, we
have that for every n ∈ N and ε > 0, G(Sn)∩TSlice(BY ,y∗0,ε) 6= /0. Therefore,
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Sn∩TgSlice(B,G∗y∗0,ε) 6= /0, and so T (TgSlice(B,G∗y∗0,ε))∩ Ŝn 6= /0. Using that
the family

{
Ŝn : n ∈ N

}
is determining for T (B), we conclude that

T (BX )⊂ aconv(T (B))⊂ T
(
aconv

(
gSlice(B,G∗y∗0,ε)

))
and, therefore, y∗0 ∈ DT . This shows that the intersection (7.4) is contained in DT ,
and thus DT is also weak-start dense in extBY ∗ . We then conclude, by Proposition
3.15, that T is a target for G.

Proof (of Corollary 7.11). If G has the aDP, it follows from (7.1) in the proof of
Theorem 7.10 that Ĝ : F(X)−→Y satisfies the hypothesis of the above lemma with
B = BX . Now, if slope(F) = F̂(BX ) is SCD, we have that ‖Ĝ+T F̂‖ = 1+‖F̂‖,
that is, ‖G+TF‖L = 1+‖F‖L as desired. ut

If we apply this result in the particular case when X =Y and G = IdX , we get the
following result which already appeared in [65].

Corollary 7.13 ([65, Theorem 3.7]). Let X be a Banach space with the aDP. Then
‖ IdX +TF‖L = 1+‖F‖L for every F ∈ Lip0(X ,X) such that slope(F) is SCD.

Our next result extends Corollary 7.11 to the non-separable case.

Corollary 7.14. Let X, Y be Banach spaces and let G ∈ Lip0(X ,Y ) be a norm-one
operator with the aDP. If F ∈ Lip0(X ,Y ) satisfies that for every separable subspace
X0 of X, slope(F |X0) is SCD, then ‖G+TF‖L = 1+‖F‖L.

The result follows immediately from Corollary 7.11 and the following lemma.

Lemma 7.15. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be an operator with
the aDP. Given F ∈ Lip0(X ,Y ), there are separable subspaces X∞ of X and Y∞ of Y
such that G|X∞

: X∞ −→ Y∞ has the aDP, F(X∞)⊂ Y∞ and ‖F |X∞
‖L = ‖F‖L.

Proof. Consider two sequences (xn)n∈N and (yn)n∈N with xn 6= yn for every n ∈ N
and

lim
‖F(xn)−F(yn)‖
‖xn− yn‖

= ‖F‖L,

let X0 be the closed linear span in X of the elements of the two sequences and let Y0
be the closed linear span of F(X0). By Proposition 3.7, there are separable subspaces
X1 of X and Y1 of Y such that G|X1 : X1 −→ Y1 has the aDP. By construction, we
have that ‖F |X1‖L = ‖F‖L. Now, we may apply again Proposition 3.7 starting with
X1 and the closed linear span of Y1 ∪F(X1) to get separable subspaces X2, Y2 such
that G|X2 : X2 −→ Y2 has the aDP, ‖FX2‖L = ‖F‖L, and F(X1) ⊂ Y2. Repeating the
process, it is straightforward to check that the separable subspaces X∞ :=

⋃
n∈N Xn

of X and Y∞ :=
⋃

n∈NYn of Y work. ut
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The main particular cases in which Corollary 7.14 applies are the following.

Corollary 7.16. Let X, Y be Banach spaces and let G∈L(X ,Y ) be an operator with
the aDP. If F ∈ Lip0(X ,Y ) satisfies that conv(slope(F)) has the Radon-Nikodým
property, or the convex point of continuity property, or it is an Asplund set, or it
does not contain `1-sequences, then ‖G+TF‖L = 1+‖F‖L.

To get the result, we need to know that a set is SCD when its closed convex hull
is, a result which was proved in [65, Lemma 3.1]. Actually, this implication reverses
and we will use this fact later. This result appeared first in the preliminary ArXiv
version of the current book, and then was modified a little in the ArXiv version of
[68]. We give the modified version with proof instead of referencing to [68], because
in the journal version of [68] the proof is going to be substituted by a reference to
this book ,.

Proposition 7.17. Let X be a Banach space. A bounded set A ⊂ X is SCD if and
only if conv(A) is SCD, and if and only if conv(A) is SCD.

Proof. It follows readily from the definition that a bounded set is SCD if and only
if its closure is, see [9, Remark 2.7]. It is also true that A is SCD whenever conv(A)
is. Let us give the easy argument from [65, Lemma 3.1]: let {Sn : n ∈N} be a deter-
mining sequence of slices of conv(A); then, the sets S′n = Sn∩A are not empty and
are slices of A and the family {S′n : n ∈ N} is determining for A (indeed, if B inter-
sects all the S′n, then B intersects all the Sn, so conv(A) ⊂ conv(B) and, a fortiori,
A⊂ conv(B)).

Let us prove the more intriguing reverse implication. Suppose now that A is SCD,
and let {Slice(A,x∗n,εn) : n∈N} be a family of slices determining for A. We consider
the following (countable) family of slices of conv(A):

S := {Slice(conv(A),x∗n,εn/k) : n,k ∈ N} .

Given Slice(conv(A),x∗,ε) of conv(A), where ‖x∗‖ = 1 without loss of generality,
we will show that it contains an element of S , thus proving that conv(A) is SCD by
Lemma 1.54. Now, for the slice of A given by Slice(A,x∗,ε/2) we know that there
is n0 ∈ N such that Slice(A,x∗n0

,εn0) ⊂ Slice(A,x∗,ε/2). Taking k ∈ N big enough
we will argue that

Slice(conv(A),x∗n0
,εn0/k)⊂ conv

(
Slice(A,x∗n0

,εn0)
)
+

ε

2
BX . (7.5)

To prove this inclusion, we let

r := sup
a∈A

Rex∗n0
(a) = sup

a∈conv(A)
Rex∗n0

(a) and M := sup
a∈A
‖a‖.

Consider a convex combination a = ∑
n
i=1 λiai ∈ conv(A) such that
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Rex∗n0
(a)> r− εn0/k,

where k is not yet specified. Write

I = {i : Rex∗n0
(ai)> r− εn0} and J = {i : Rex∗n0

(ai)6 r− εn0}.

We then have

r−
εn0

k
< ∑

i∈I
λi Rex∗n0

(ai)+∑
i∈J

λi Rex∗n0
(ai)6 r∑

i∈I
λi +∑

i∈J
λi(r− εn0),

which implies

∑
i∈J

λi <
1
k

and Λ := ∑
i∈I

λi > 1− 1
k
.

Now, put µi := λi/Λ for i ∈ I and consider the element

a′ = ∑
i∈I

µiai ∈ conv
(
Slice(A,x∗n0

,εn0)
)
.

The estimate

‖a−a′‖=
∥∥∥(Λ −1)∑

i∈I
µiai +∑

i∈J
λiai

∥∥∥6 |Λ −1|M+∑
i∈J

λiM <
2M
k

shows that the needed inclusion (7.5) holds true whenever k > 4M/ε .

It now follows for this choice of k that

Slice(conv(A),x∗n0
,εn0/k)⊂ conv

(
Slice(A,x∗n0

,εn0)
)
+

ε

2
BX

⊂ conv(Slice(A,x∗,ε/2))+
ε

2
BX

⊂ Slice(conv(A),x∗,ε/2)+
ε

2
BX .

Since, trivially, Slice(conv(A),x∗n0
,εn0/k)⊂ conv(A), we finally get

Slice(conv(A),x∗n0
,εn0/k)⊂

(
Slice(conv(A),x∗,ε/2)+

ε

2
BX

)
∩ conv(A)

⊂ Slice(conv(A),x∗,ε),

as desired. ut

Proof (of Corollary 7.16). If the set conv(slope(F)) satisfies any of the aforemen-
tioned conditions, then conv

(
slope(F |X0)

)
is SCD for every separable subspace X0

of X (use Examples 1.56). By Proposition 7.17, it follows that slope(F |X0) is SCD
for every separable subspace X0 of X , and so Corollary 7.14 gives the result. ut

It is immediate that the above result applies to the recently introduced Lip-
schitz compact and Lipschitz weakly compact operators [58, Definition 2.1]: F
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in Lip0(X ,Y ) is Lipschitz compact (respectively, Lipschitz weakly compact) if
slope(F) is relatively compact (respectively, relatively weakly compact).

The last aim in this chapter is to give for Daugavet centers analogous results to
the ones we have for the aDP. We recall that a bounded linear operator G between
two Banach spaces X and Y is said to be a Daugavet center [18] if

‖G+T‖= 1+‖T‖

for every rank-one operator T ∈ L(X ,Y ). In this case, we have to deal with the real
version of the Lipschitz-free space. Given a (real or complex) Banach space X , we
write FR(X) to denote the Lipschitz-free space of X in the sense of the real scalars,
that is, FR(X) it is the canonical predual of Lip0(X ,R). If X and Y are real Banach
spaces, nothing changes, but if they are complex spaces, we are considering only
their real structure and so Lemma 7.2 is only valid for real scalars.

The main result for Daugavet centers is the following one.

Theorem 7.18. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be a norm-one
operator. If G is a Daugavet center, then ĜR : FR(X)−→ YR is a Daugavet center.

We need the following characterization of Daugavet centers which follows imme-
diately from [18] and which will play the role of our Theorem 3.6.iii. In particular,
it follows from it that to be a Daugavet center only depends on the real structure of
the Banach spaces involved.

Lemma 7.19 (see [18, Theorem 2.1]). Let X, Y be Banach spaces and let G ∈
L(X ,Y ) be a norm-one operator. Then G is a Daugavet center if and only if

BX = conv
(
{x ∈ SX : ‖Gx+ y0‖> 2− ε}

)
for every y0 ∈ SX and every ε > 0.

Proof (of Theorem 7.18). We just have to adapt mutatis mutandis the proof of The-
orem 7.10, using the above lemma instead of Theorem 3.6.iii. But observe that the
game played in (7.2) and (7.3) is not valid here as the set

{ξ ∈ SFR(X) : ‖Ĝ(ξ )+ y0‖> 2− ε}

is not rounded. At this point is where we have to go to the real version of the
Lipschitz-free space, since the set BX is clearly R-rounded and then we actually
have BFR(X) = conv

(
BX
)
. With this in mind, everything works. ut

Our next aim is to get consequences of Theorem 7.18 just in terms of the Lips-
chitz norm and the slope of Lipschitz operators.

Corollary 7.20. Let X, Y be Banach spaces and let G ∈ Lip0(X ,Y ) be a Daugavet
center. If F ∈ Lip0(X ,Y ) satisfies that slope(F) is SCD, then ‖G+F‖L = 1+‖F‖L.
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Proof. If G is a Daugavet center, then ĜR : FR(X) −→ Y is also a Daugavet cen-
ter by Theorem 7.18. Now, if F ∈ Lip0(X ,Y ) satisfies that slope(F) is SCD, so is
F̂R(BFR(X)) = conv(slope(F)). Therefore, ‖ĜR+ F̂‖ = 1+ ‖F̂‖ by [17, Corollary
1]. Finally, this is equivalent to ‖G+F‖L = 1+‖F‖L by Lemma 7.2. ut

We may extend Corollary 7.20 to the non-separable case as we did for the aDP.

Corollary 7.21. Let X, Y be Banach spaces and let G ∈ Lip0(X ,Y ) be a Dau-
gavet center. If F ∈ Lip0(X ,Y ) satisfies that for every separable subspace X0 of
X, slope(F |X0) is SCD, then ‖G+F‖L = 1+‖F‖L.

The result follows immediately from Corollary 7.20 and the following lemma
which allows a reduction to the separable case and which is completely analogous
to Lemma 7.15. Its proof follows from [57, Theorem 1] in the same manner that the
proof of Lemma 7.15 follows from Proposition 3.7.

Lemma 7.22. Let X, Y be Banach spaces and let G∈L(X ,Y ) be a Daugavet center.
Given F ∈ Lip0(X ,Y ), there are separable subspaces X∞ of X and Y∞ of Y such that
G|X∞

: X∞ −→ Y∞ is a Daugavet center, F(X∞)⊂ Y∞ and ‖F |X∞
‖L = ‖F‖L.

The most interesting particular cases of Corollary 7.21 are summarized in the
following result, whose proof is completely analogous to the one of Corollary 7.16.

Corollary 7.23. Let X, Y be Banach spaces and let G∈L(X ,Y ) be a Daugavet cen-
ter. If F ∈Lip0(X ,Y ) satisfies that conv(slope(F)) has the Radon-Nikodým property,
the convex point of continuity property or it is an Asplund set, or it does not contain
`1-sequences, then ‖G+F‖L = 1+‖F‖L.





Chapter 8

Some stability results

Our aim here is to provide several results on the stability of our properties by several
operations like absolute sums, vector-valued function spaces, and ultraproducts.

8.1 Elementary results

The first result shows that we may produce an injective operator with the aDP from
any operator with the aDP.

Proposition 8.1. Let X, Y be Banach spaces and let G ∈ L(X ,Y ) be an operator
with the aDP and let P : X −→ X/kerG be the quotient map. Then, the quotient
operator G̃ ∈ L

(
X/kerG,Y

)
satisfying G̃◦P = G has the aDP.

Proof. By Theorem 3.6 it suffices to show that G̃(S̃) is a spear set in Y for every
slice S̃ of BX/kerG. So, we fix an arbitrary slice S̃ of BX/kerG and find z∗ ∈ S(X/kerG)∗

and α > 0 such that

S̃ =
{

x+kerG ∈ BX/kerG : Rez∗(x+kerG)> 1−α
}
.

Since P∗z∗ ∈ SX∗ , the set S =
{

x ∈ BX : Re[P∗z∗](x) > 1−α
}

is a slice of BX .
Observe that if x ∈ S then Rez∗(P(x))> 1−α and P(x) ∈ BX/kerG which give that
P(x) ∈ S̃. Therefore, we have that P(S)⊂ S̃ and so

G(S) = G̃
(
P(S)

)
⊂ G̃(S̃).

Now, as G(S) is a spear set by Theorem 3.6, so is a fortiori G̃(S̃), as desired. ut
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The reciprocal result is not true: consider G : `2
2 −→K given by G(x,y) = x and

observe that G̃ ≡ IdK is clearly lush, while G does not even have the aDP (use
Proposition 5.6, for instance).

Our next aim is to provide a way to extend the domain and the codomain keeping
the properties of being spear, lush, or the aDP. The first result deals with extending
the domain.

Proposition 8.2. Let X, Y , Z be Banach spaces, let G ∈ L(X ,Y ) be a norm-one
operator, and consider the operator G̃ : X ⊕∞ Z −→ Y given by G̃(x,z) = G(x) for
every (x,z) ∈ X⊕∞ Z. Then:

(a) if G is a spear operator, so is G̃;
(b) if G has the aDP, so does G̃;
(c) if G is lush, so is G̃.

Proof. (a). Fix T ∈ L(X⊕∞ Z,Y ) with ‖T‖> 0 and ‖T‖> ε > 0. Take x0 ∈ SX and
z0 ∈ SZ satisfying ‖T (x0,z0)‖> ‖T‖− ε . Now pick x∗ ∈ SX∗ so that x∗(x0) = 1 and
define the operator S ∈ L(X ,Y ) by

S(x) = T (x,x∗(x)z0) (x ∈ X)

which satisfies S(x0) = T (x0,z0) and so ‖S‖ > ‖T‖− ε . Now we can estimate as
follows

‖G̃+TT‖= sup
x∈BX

sup
z∈BZ

‖G̃(x,z)+TT (x,z)‖

> sup
x∈BX

‖G̃(x,x∗(x)z0)+TT (x,x∗(x)z0)‖

= sup
x∈BX

‖G(x)+TS(x)‖= ‖G+TS‖= 1+‖S‖> 1+‖T‖− ε.

The arbitrariness of ε gives ‖G̃+TT‖> 1+‖T‖.
(b). Just observe that if T is a rank-one operator in the argument above, then S

also is rank-one.

(c). Consider (x0,z0)∈ BX⊕∞Z = BX ×BZ , y∈ SY and ε > 0. As G is lush, Propo-
sition 3.28.iii allows to find y∗ ∈ SY ∗ such that

Rey∗(y)> 1− ε and dist
(
x0,aconv(gSlice(SX ,G∗y∗,ε))

)
< ε.

Now, observe that G̃∗y∗ = (G∗y∗,0) ∈ [X⊕∞ Z]∗ and it is then immediate that

dist
(
(x0,z0),aconv(gSlice(SX⊕∞Z , G̃∗y∗,ε))

)
< ε.

Now, Proposition 3.28.iii gives that G̃ is lush. ut

We can get an analogous result to extend the codomain space.
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Proposition 8.3. Let X, Y , Z be Banach spaces, let G ∈ L(X ,Y ) be a norm-one
operator, and consider the operator G̃ : X −→Y ⊕1 Z given by G̃(x) = (G(x),0) for
every x ∈ X. Then:

(a) if G is a spear operator, so is G̃;
(b) if G has the aDP, so does G̃;
(c) if G is lush, so is G̃.

Proof. (a). Fix T ∈ L(X ,Y ⊕1 Z) with ‖T‖> 0, ‖T‖> ε > 0, and x0 ∈ SX such that
‖T x0‖ > ‖T‖− ε . Denote by PY and PZ the respective projections from Y ⊕1 Z to
Y and Z. Take z∗ ∈ SZ∗ satisfying z∗(PZT x0) = ‖PZT x0‖ and pick y0 ∈ SY so that
PY T x0 = ‖PY T x0‖y0. Now define S ∈ L(X ,Y ) by

Sx = PY T x+ z∗(PZT x)y0 (x ∈ X)

which satisfies

‖S‖> ‖Sx0‖=
∥∥PY T x0 +‖PZT x0‖y0

∥∥= ‖PY T x0‖+‖PZT x0‖> ‖T‖− ε.

Finally, using the triangle inequality and the fact that G is a spear operator, we can
estimate as follows:

‖G̃+TT‖= sup
x∈BX

‖Gx+TPY T x‖+‖PZT x‖

> sup
x∈BX

∥∥Gx+T
(
PY T x+ z∗(PZT x)y0

)∥∥
= sup

x∈BX

‖Gx+TSx‖= ‖G+TS‖= 1+‖S‖> 1+‖T‖− ε.

The arbitrariness of ε finishes the proof.

(b). Observe that if T is a rank-one operator in the argument above, then S also
is rank-one.

(c). Fix x0 ∈ BX , (y,z) ∈ SY⊕1Z and ε > 0. As G is lush, we may find y∗ ∈ SY ∗

such that

Rey∗(y)> ‖y‖− ε and dist
(
x0,aconv(gSlice(SX ,G∗y∗,ε))

)
< ε.

Indeed, if y 6= 0, apply Proposition 3.28.iii to y/‖y‖; if y = 0, we may apply that
proposition to any vector in SY . Now, pick z∗ ∈ SZ∗ such that z∗(z) = ‖z‖ and con-
sider (y∗,z∗) ∈ SY ∗ ×SZ∗ ⊂ S[Y⊕1Z]∗ . Observe that, on the one hand,

Re[(y∗,z∗)](y,z)> ‖y‖− ε +‖z‖= 1− ε

and, on the other hand, G̃(y∗,z∗) = G∗(y∗), so we have that

dist
(
x0,aconv(gSlice(SX , G̃∗(y∗,z∗),ε))

)
< ε.
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We then get that G̃ is lush by Proposition 3.28.iii. ut

8.2 Absolute sums

We show in this section the stability of our properties by c0, `1, and `∞ sums of
Banach spaces. The following result borrows the ideas from [99, Proposition 1] and
[21, §5].

Proposition 8.4. Let {Xλ : λ ∈Λ}, {Yλ : λ ∈Λ} be two families of Banach spaces
and let Gλ ∈L(Xλ ,Yλ ) be a norm-one operator for every λ ∈Λ . Let E be one of the
Banach spaces c0, `∞, or `1, let X = [

⊕
λ∈Λ Xλ ]E and Y = [

⊕
λ∈Λ Yλ ]E , and define

the operator G : X −→ Y by

G
[
(xλ )λ∈Λ

]
= (Gλ xλ )λ∈Λ

for every (xλ )λ∈Λ ∈ [
⊕

λ∈Λ Xλ ]E . Then

(a) G is a spear operator if and only if Gλ is a spear operator for every λ ∈Λ ;
(b) G has the aDP if and only if Gλ has the aDP for every λ ∈Λ ;
(c) G is lush if and only if Gλ is lush for every λ ∈Λ .

Proof. (a). We suppose first that G is a spear operator and, fixed κ ∈ Λ , we have
to show that Gκ is a spear operator. Observe that calling W =

[⊕
λ 6=κ Xλ

]
E and

Y =
[⊕

λ 6=κ Yλ

]
E , we can write X = Xκ ⊕∞ W and Y = Yκ ⊕∞ Z when E is `∞ or c0

and X = Xκ ⊕1 W and Y = Yκ ⊕1 Z when E is `1. Given Tκ ∈ L(Xκ ,Yκ) non-zero,
define T ∈ L(X ,Y ) by T (xκ ,w) = (Tκ xκ ,0) which obviously satisfies ‖T‖= ‖Tκ‖.
Let Pκ and PZ denote the projections from Y onto Yκ and Z respectively. When E is
`∞ or c0, we can write

1+‖Tκ‖= 1+‖T‖= ‖G+TT‖= sup
(xκ ,w)∈BX

‖G(xκ ,w)+TT (xκ ,w)‖

(∗)
= sup

(xκ ,w)∈BX

max
{
‖Pκ G(xκ ,w)+TPκ T (xκ ,w)‖,

‖PZG(xκ ,w)+TPZT (xκ ,w)‖
}

= max

{
‖Gκ +TTκ‖, sup

(xκ ,w)∈BX

‖PZG(xκ ,w)‖

}
6 max{‖Gκ +TTκ‖, ‖G‖} .

Since ‖G‖= 1, it follows that 1+‖Tκ‖6 ‖Gκ +TTκ‖ and so Gκ is a spear operator.

When E is `1, the equality (∗) can be continued as follows
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1+‖Tκ‖
(∗)
= sup

(xκ ,w)∈BX

‖Pκ G(xκ ,w)+TPκ T (xκ ,w)‖

+‖PZG(xκ ,w)+TPZT (xκ ,w)‖
= sup

(xκ ,w)∈BX

‖Gκ xκ +TTκ xκ‖+‖PZG(0,w)‖

6 sup
(xκ ,w)∈BX

‖Gκ +TTκ‖‖xκ‖+‖G‖‖w‖= max{‖Gκ +TTκ‖, ‖G‖} .

Analogously to the previous case, it follows that Gκ is a spear operator.

We prove now the sufficiency when E is `∞ or c0. Given an operator T ∈L(X ,Y )
and fixed ε > 0, we find κ ∈Λ such that ‖Pκ T‖> ‖T‖−ε and write X = Xκ ⊕∞ W
where W =

[⊕
λ 6=κ Xλ

]
E . Since BX is the convex hull of SXκ

× SW we may find
x0 ∈ SXκ

and w0 ∈ SW such that

‖Pκ T (x0,w0)‖> ‖T‖− ε.

Now fix x∗ ∈ SX∗κ with x∗(x0) = 1 and define the operator S ∈ L(Xκ ,Yκ) given by

S(x) = Pκ T (x,x∗(x)w0) (x ∈ Xκ)

which satisfies ‖S‖> ‖Sx0‖= ‖Pκ T (x0,w0)‖> ‖T‖− ε . Observe finally that

‖G+TT‖> ‖Pκ G+TPκ T‖> sup
x∈Xκ

‖[Pκ G](x,x∗(x)w0)+T[Pκ T ](x,x∗(x)w0)‖

= sup
x∈Xκ

‖Gκ(x)+TS(x)‖= ‖Gκ +TS‖= 1+‖S‖> 1+‖T‖− ε.

So, the arbitrariness of ε gives that ‖G+TT‖ > 1+ ‖T‖, finishing the proof for
E = c0, `∞.

Suppose now that E = `1. Fix an operator T ∈ L(X ,Y ) and observe that it may
be seen as a family (Tλ )λ∈Λ of operators where Tλ ∈L(Xλ ,Y ) for every λ ∈Λ , and
‖T‖ = supλ ‖Tλ‖. Given ε > 0, find κ ∈ Λ such that ‖Tκ‖ > ‖T‖− ε , and write
X = Xκ⊕1 W , Y =Yκ⊕1 Z, and Tκ = (A,B) where A∈L(Xκ ,Yκ) and B∈L(Xκ ,Z).
Now we choose x0 ∈ SXκ

such that

‖Tκ x0‖= ‖Ax0‖+‖Bx0‖> ‖T‖− ε,

we find a0 ∈ SYκ
, z∗ ∈ SZ∗ satisfying

‖Ax0‖a0 = Ax0 and z∗(Bx0) = ‖Bx0‖,

and define the operator S ∈ L(Xκ ,Yκ) by

Sx = Ax+ z∗(Bx)a0 (x ∈ Xκ).

Then
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‖S‖> ‖Sx0‖=
∥∥∥Ax0 +‖Bx0‖a0

∥∥∥= ‖Ax0‖+‖Bx0‖> ‖T‖− ε.

Moreover, since Gκ is a spear operator, fixed ε > 0 we may find xκ ∈ SXκ
and

y∗κ ∈ SY ∗κ such that

|y∗κ(Gκ xκ +TSxκ)|= ‖Gκ xκ +TSxκ‖> 1+‖S‖− ε.

Now take x = (xκ ,0) ∈ SX and y∗ = (y∗κ ,y
∗
κ(a0)z∗) ∈ SY ∗ , and observe that

‖G+TT‖> |y∗(Gx+TT x)|=
∣∣y∗κ(Gκ xκ)+T[y∗κ(Axκ)+ y∗κ(a0)z∗(Bxκ)]

∣∣
= |y∗κ(Gκ xκ +TSxκ)|= ‖Gκ xκ +TSxκ‖
> 1+‖S‖− ε > 1+‖T‖−2ε.

So, the arbitrariness of ε gives that ‖G+TT‖ > 1+ ‖T‖, finishing the proof for
E = `1.

(b). For the aDP, the arguments above apply just taking into account that when
one starts with rank-one operators, the constructed operators are also rank-one.

(c). We assume first that G is lush. Fixed κ ∈ Λ , xκ ∈ SXκ
, yκ ∈ SYκ

, ε > 0 we
consider the elements (zλ )λ∈Λ ∈ BX and (wλ )λ∈Λ ∈ SY given by

zλ = 0, wλ = 0 for λ 6= κ and zκ = xκ , wκ = yκ .

Now Proposition 3.28.iii provides with y∗ ∈ Slice(BY ∗ ,(wλ )λ∈Λ ,ε) such that

dist
(
(zλ )λ∈Λ ,aconv(gSlice(SX ,G∗y∗,ε))

)
< ε

2. (8.1)

From this point we have to distinguish two cases depending on the space E. Suppose
first that E = c0 or E = `∞ and observe that y∗|Yκ

∈ Slice(BY ∗κ ,yκ ,ε). In this case,
given (z̃λ )λ∈Λ ∈ gSlice(SX ,G∗y∗,ε), it follows that z̃κ ∈ gSlice(SXκ

,G∗κ(y
∗|Yκ

),2ε)
which, together with (8.1), allows us to deduce that

dist
(
xκ ,aconv(gSlice(SXκ

,G∗κ(y
∗|Yκ

),2ε))
)
< ε.

We consider now the more bulky case in which E = `1. Using (8.1) we can find
scalars λi ∈K with ∑

n
i=1 |λi|= 1 and elements xi ∈ gSlice(SX ,G∗y∗,ε) such that∥∥∥∥∥xκ −

n

∑
i=1

λixi
κ

∥∥∥∥∥6 ∑
λ∈Λ

∥∥∥∥∥zλ −
n

∑
i=1

λixi
λ

∥∥∥∥∥
Xλ

< ε
2.

Since ‖xκ‖= 1, we deduce that 1− ε2 6 ∑
n
i=1 |λi|‖xi

κ‖ so Lemma 8.14 tells us that
the set I := {i : ‖xi

κ‖> 1− ε} satisfies that ∑i∈I |λi|> 1− ε . Hence∥∥∥∥∥xκ −∑
i∈I

λixi
κ

∥∥∥∥∥< 2ε. (8.2)
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But every i ∈ I satisfies that

1− ε < ∑
λ∈Λ

Rey∗|Yλ
(Gλ xi

λ
)6 Rey∗|Yκ

(Gκ x j
κ)+ ∑

λ 6=κ

‖xi
λ
‖< Rey∗|Yκ

(Gκ xi
κ)+ ε,

from where it follows that

xi
κ ∈ gSlice(BX ,G∗κ(y

∗|Yκ
),2ε)

for each i ∈ I. This, together with (8.2), tells us that

dist
(
xκ ,aconv(gSlice(BX ,G∗κ(y

∗|Yκ
),2ε))

)
< 2ε,

finishing the proof of the necessity for E = `1.

Let us prove the sufficiency when E = `∞ or E = c0. Fixed (xλ )λ∈Λ ∈ BX , y =
(yλ )λ∈Λ ∈ SY , and ε > 0, there is κ ∈ Λ such that ‖yκ‖ > 1− ε . Using that Gκ is
lush, we may find y∗κ ∈ gSlice(SY ∗κ ,yκ ,ε) satisfying

dist
(
xκ ,aconv(gSlice(SXκ

,G∗κ y∗κ ,ε))
)
< ε.

Defining y∗ ∈ SY ∗ by y∗[(zλ )λ∈Λ ] = y∗κ(zκ) for every (zλ )λ∈Λ ∈ X , we clearly
have y∗ ∈ Slice(BY ∗ ,y,ε). Observe that, fixed x̃κ ∈ gSlice(SXκ

,G∗κ y∗κ ,ε) and θ ∈ T,
the element (zλ )λ∈Λ ∈ BX given by zλ = θxλ for λ 6= κ and zκ = x̃κ belongs to
gSlice(SX ,G∗y∗,ε). Using this it is easy to deduce that

dist
(
(xλ )λ∈Λ ,aconv(gSlice(SX ,G∗y∗,ε))

)
< ε,

which tells us that G is lush by Proposition 3.28.iii.

Suppose that E = `1. We take the set B =
{
(xλ )λ∈Λ ∈ BX : #supp(xλ ) = 1

}
which is norming for X∗. Fixed (xλ )λ∈Λ ∈B, there is κ ∈ Λ so that xκ ∈ BXκ

and
xλ = 0 for λ 6= κ . Given (yλ )λ∈Λ ∈ SY and ε > 0, we may and do assume that yκ 6= 0
and, since Gκ is lush, we may use Proposition 3.28.iii for xκ ∈ BXκ

and yκ

‖yκ‖ ∈ SYκ

to find y∗κ ∈ Slice(BY ∗κ ,
yκ

‖yκ‖ ,ε) such that

dist
(
xκ ,aconv(gSlice(SXκ

,G∗κ y∗κ ,ε))
)
< ε.

For each λ ∈ supp(yλ ) \ {κ} we take y∗
λ
∈ SY ∗

λ
satisfying y∗

λ
(yλ ) = ‖yλ‖ and we

define y∗ ∈ SY ∗ by

y∗
[
(wλ )λ∈Λ

]
= ∑

λ∈supp(yλ )

y∗
λ
(wλ )

(
(wλ ) ∈ Y

)
.

Then it obviously follows that y∗ ∈ Slice(BY ∗ ,(yλ ),ε) and, thanks to the shape of
(xλ )λ∈Λ , one can easily deduce that

dist
(
(xλ )λ∈Λ ,aconv(gSlice(SX ,G∗y∗,ε))

)
< ε.
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This finishes the proof by using Proposition 3.28.iii since aconv(B) = BX . ut

8.3 Vector-valued function spaces

Our next aim is to present several results concerning the behaviour of our properties
for vector-valued function spaces. We start analysing the situation for spaces of
continuous functions.

Theorem 8.5. Let X ,Y be Banach spaces, let K be a compact Hausdorff topological
space and let G∈L(X ,Y ) be a norm-one operator. Consider the norm-one composi-
tion operator G̃ : C(K,X)−→C(K,Y ) given by G̃( f ) =G◦ f for every f ∈C(K,X).
Then:

(a) G̃ is a spear operator if and only if G is a spear operator.
(b) G̃ is lush if and only if G is lush.
(c) If K contains isolated points, then G̃ has the aDP if and only if G does.
(d) If K is perfect, then G̃ has the aDP if and only if G(BX ) is a spear set.

Remark 8.6. All the information given in the above result was previously known for
the case of the identity (see [64, 97, 98]).

Previously to present its proof, we use Theorem 8.5 to produce an example of an
operator with the aDP which does not attain its norm. Recall that it was proved in
Proposition 6.8 that this cannot happen if the operator is actually lush.

Example 8.7. Let X be a non-reflexive Banach space, let G : X −→K be a norm-one
functional which does not attain its norm, and let K be a perfect compact Hausdorff
topological space. Then, the operator G̃ ∈ L(C(K,X),C(K)) defined by G̃( f ) =
G◦ f for every f ∈C(K,X), has the aDP and it does not attain its norm.

Proof. As ‖G‖= 1, G(BX ) contains the open unit ball of K, which is clearly a spear
set, and so Theorem 8.5.d gives us that G̃ has the aDP. On the other hand, as G does
not attains its norm, for every f ∈C(K,X) with ‖ f‖= 1, it follows that∣∣[G̃( f )](t)

∣∣= |G( f (t))|< ‖ f (t)‖ ≤ 1

for every t ∈ K, so G̃ does not attain its norm, as claimed. ut

Observe that G in the example above is not a spear operator (use Theorem 2.9),
so neither is G̃ by Theorem 8.5.a. Actually, the operator G does not have the aDP by
Corollary 5.9.

Let us now present the proof of Theorem 8.5 which, for the reader convenience,
will be divided in four parts, one for each item (a), (b), (c), and (d).
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Proof (of Theorem 8.5.a). This is an easy adaptation of [98, Theorem 5]. Suppose
first that G is a spear operator. Fixed T ∈ L(C(K,X),C(K,Y )) with ‖T‖ = 1 and
ε > 0, find f0 ∈C(K,X) with ‖ f0‖= 1 and t0 ∈ K such that

‖[T f0](t0)‖> 1− ε. (8.3)

Define z0 = f0(t0) and find a continuous function ϕ : K −→ [0,1] such that ϕ(t0) = 1
and ϕ(t) = 0 if ‖ f0(t)− z0‖> ε . Now write z0 = λx1 +(1−λ )x2 with 0 6 λ 6 1,
x1,x2 ∈ SX , and consider the functions

f j = (1−ϕ) f0 +ϕx j ∈C(K,X) ( j = 1,2).

Then ‖ϕ f0−ϕz0‖< ε meaning that

‖ f0− (λ f1 +(1−λ ) f2)‖< ε,

and, using (8.3), we must have

‖[T f1](t0)‖> 1−2ε or ‖[T f2](t0)‖> 1−2ε.

By making the right choice of x0 = x1 or x0 = x2 we get x0 ∈ SX such that

‖ [T ((1−ϕ) f0 +ϕx0)] (t0)‖> 1−2ε. (8.4)

Next, we fix x∗0 ∈ SX∗ with x∗0(x0) = 1, denote

Φ(x) = x∗0(x)(1−ϕ) f0 +ϕx ∈C(K,X) (x ∈ X),

and consider the operator S ∈ L(X ,Y ) given by

Sx = [T (Φ(x))](t0) (x ∈ X)

which, by (8.4), obviously satisfies ‖S‖> ‖Sx0‖> 1−2ε . Now, we use that G is a
spear operator to find x ∈ SX satisfying ‖Gx+TSx‖> 1+‖S‖−ε , and observe that

‖G̃+TT‖>
∥∥∥[(G̃+TT )(Φ(x))

]
(t0)
∥∥∥= ‖Gx+TSx‖> 1+‖S‖− ε > 2−3ε.

The arbitrariness of ε gives that ‖G̃+TT‖> 2 and so G̃ is a spear operator.

Suppose conversely that G̃ is a spear operator. Fix S ∈ L(X ,Y ), ε > 0 and define
the operator T ∈ L

(
C(K,X),C(K,Y )

)
by

[T ( f )](t) = S( f (t)) (t ∈ K, f ∈C(K,X))

which satisfies ‖T‖ = ‖S‖. Since G̃ is a spear operator we may find f0 ∈ C(K,X)
and t0 ∈ K such that ∥∥∥[(G̃+TT )( f0)

]
(t0)
∥∥∥> 1+‖T‖− ε
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and we can write

1+‖S‖− ε = 1+‖T‖− ε <
∥∥∥[(G̃+TT )( f0)

]
(t0)
∥∥∥

= ‖G( f0(t0))+TS( f0(t0))‖6 ‖G+TS‖.

The arbitrariness of ε tells us that G is a spear operator. ut

We next deal with lushness for spaces of vector-valued continuous functions.

Proof (of Theorem 8.5.b). Suppose that G is lush and let us show that G̃ is lush.
This part of the proof is an easy adaptation of [64, Proposition 5.1]. Let f ∈ SC(K,Y ),
g ∈ SC(K,X), and ε > 0 be fixed. Then, we take t0 ∈ K with ‖ f (t0)‖ = 1 and, using
that G is lush together with Proposition 3.28.iii, we find y∗ ∈ Slice(BY ∗ , f (t0),ε)
such that

dist
(
g(t0),aconv(gSlice(SX ,G∗y∗,ε))

)
<

ε

2
.

So, there are θ1, . . . ,θn ∈ T, λ1, . . . ,λn ∈ [0,1] with ∑
n
k=1 λk = 1, and x1, . . . ,xn ∈

gSlice(SX ,G∗y∗,ε) such that∥∥∥∥∥g(t0)−
n

∑
k=1

λkθkxk

∥∥∥∥∥< ε

2
.

Next, we take an open set U ⊂ K such that t0 ∈U and

‖g(t)−g(t0)‖<
ε

2
(t ∈U),

and we fix a continuous function ϕ : K−→ [0,1] with ϕ(t0)= 0 and ϕ|K\U ≡ 1. Now
we consider the functional ξ ∗ ∈ BC(K,Y )∗ given by ξ ∗(h) = y∗(h(t0)) for h∈C(K,Y )
which clearly satisfies ξ ∗ ∈ Slice(BC(K,Y )∗ , f ,ε). Finally, for each k = 1, . . . ,n, we
define gk ∈C(K,X) by

gk(t) = xk +ϕ(t)(θ−1
k g(t)− xk) (t ∈ K)

and we observe that

G̃∗ξ ∗(gk) = ξ
∗(G◦gk) = y∗(G(gk(t0))) = G∗y∗(xk).

Therefore, we deduce that gk ∈ gSlice(SC(K,X), G̃∗ξ ∗,ε) for every k = 1, . . . ,n. On
the other hand, for an arbitrary t ∈ K we have that∥∥∥∥∥g(t)−

n

∑
k=1

λkθkgk(t)

∥∥∥∥∥=
∥∥∥∥∥(1−ϕ(t))

(
g(t)−

n

∑
k=1

λkθkxk

)∥∥∥∥∥ .
So, if t ∈U , then ‖g(t)−g(t0)‖6 ε

2 and, therefore,
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n

∑
k=1

λkθkgk(t)

∥∥∥∥∥6 ‖g(t)−g(t0)‖+

∥∥∥∥∥g(t0)−
n

∑
k=1

λkθkxk

∥∥∥∥∥6 ε.

If, otherwise, t /∈U , then ϕ(t) = 1 and thus g(t)−∑
n
k=1 λkθkgk(t) = 0. All this tells

us that
dist
(
g,aconv(gSlice(SC(K,X), G̃

∗
ξ
∗,ε))

)
< ε

and shows that G̃ is lush.

Suppose now that G̃ is lush and let us show that G is lush. To do so, we will use
Proposition 3.28.iii with the set

A = {y∗⊗δt : y∗ ∈ SY ∗ , t ∈ K}

where [y∗ ⊗ δt ]( f ) = y∗( f (t)) for f ∈ C(K,Y ). Observe that A is norming and
rounded, so convw∗(A ) = BC(K,Y )∗ . Fixed x0 ∈ SX , y0 ∈ SY , and ε > 0, we consider
f ∈ SC(K,Y ) and g ∈ SC(K,X) given respectively by

f (t) = y0 and g(t) = x0 (t ∈ K).

Now we use that G̃ is lush and Proposition 3.28.iii to find y∗0⊗δt0 ∈ Slice(A , f ,ε)
such that

dist
(
g,aconv(gSlice(SC(K,X), G̃

∗(y∗0⊗δt0),ε))
)
< ε.

Therefore, as f (t0) = y0, we clearly get that y∗0 ∈ Slice(BY ∗ ,y0,ε). Moreover, using
that if h∈ gSlice(SC(K,X), G̃∗(y∗0⊗δt0),ε) then h(t0)∈ gSlice(SX ,G∗y∗0,ε), we easily
deduce that

dist
(
x0,aconv(gSlice(SX ,G∗y∗0,ε))

)
< ε

which gives that G is lush. ut

Proof (of Theorem 8.5.c). We start showing that G̃ has the aDP when G does. In-
deed, observe that in the first part of the proof of Theorem 8.5.a, if the operator T
has rank one then so does the operator S ∈ L(X ,Y ) constructed there.

To prove the reversed implication, fix an isolated point t0 ∈ K and observe that
we can identify C(K,X)≡ X⊕∞ C(K \{t0},X) and C(K,Y )≡ Y ⊕∞ C(K \{t0},Y ).
Now, if for g ∈C(K \{t0},X) we write

ĝ(t) =

{
0 if t = t0
g(t) if t 6= t0

(t ∈ K),

and we consider the operator Ĝ : C(K \{t0},X)−→C(K \{t0},Y ) given by

Ĝ(g) = [G̃(ĝ)]|K\{t0}
(
g ∈C(K \{t0},X)

)
then, we can write
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G̃(x,g) = (Gx, Ĝ(g))
(
x ∈ X ,g ∈C(K \{t0},X)

)
.

Therefore, as G̃ has the aDP, Proposition 8.4 gives us that G has aDP. ut

Proof (of Theorem 8.5.d). We prove first the sufficiency. We will use Theorem 3.6.iii
to show that G̃ has the aDP. So, fixed f ∈ SC(K,Y ) and ε > 0, we write

∆ε( f ) = {g ∈ BC(K,X) : ‖G̃(g)+T f‖> 2− ε}

and we have to show that conv(∆ε( f )) = BX . The argument follows the lines of
[125, p. 81]: let U be the open set {t ∈ K : ‖ f (t)‖> 1−ε/2} and pick, given n ∈N,
open pairwise disjoint non-void subsets U1, . . . ,Un ⊂U and points t j ∈U j. Next, we
use the hypothesis to find x j ∈ BX and θ j ∈ T such that ‖G(x j)+θ j f (t j)‖> 2− ε .
Now, fixed h ∈ BC(K,X), we may choose functions g j ∈ BC(K,X) such that g j ≡ h in
K \U j and g j(t j) = x j. Indeed, take Urysohn functions ϕ j : K −→ [0,1] such that

ϕ j|K\U j ≡ 1 and ϕ j(t j) = 0 ( j = 1, . . . ,n),

and define

g j(t) = ϕ j(t)h(t)+(1−ϕ j(t))x j (t ∈ K, j = 1, . . . ,n).

On the one hand, observe that g j ∈ ∆ε( f ):

‖G̃(g j)+θ j f‖> ‖G(g j(t j))+θ j f (t j)‖= ‖G(x j)+θ j f (t j)‖> 2− ε.

On the other hand, for t ∈Uk we have that∥∥∥∥∥h(t)− 1
n

n

∑
j=1

g j(t)

∥∥∥∥∥=
∥∥∥∥h(t)− n−1

n
h(t)− 1

n
gk(t)

∥∥∥∥= 1
n
‖h(t)−gk(t)‖6

2
n

;

and, for t /∈
⋃

j U j, it follows that h(t)− 1
n ∑

n
j=1 g j(t) = 0. This proves that h ∈

conv(∆ε( f )) and so G̃ has the aDP.

Suppose now that G̃ has the aDP. Fixed ε > 0 and a non-zero y ∈ BY , we take
the constant function f ∈ C(K,Y ) given by f ≡ y

‖y‖ and we use Theorem 3.6.iii

to find g ∈ BC(K,X) such that ‖G̃(g)+T f‖ > 2− ε . So, there is t0 ∈ K satisfying
‖G(g(t0)) +T y

‖y‖‖ > 2− ε and we claim that g(t0) is the element in BX we are
looking for; indeed,

‖G(g(t0))+Ty‖>
∥∥∥∥G(g(t0))+T

y
‖y‖

∥∥∥∥−∥∥∥∥ y
‖y‖
− y
∥∥∥∥

> 2− ε− (1−‖y‖) = 1+‖y‖− ε,

as desired. ut
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We next deal with spaces of essentially bounded measurable functions.

Theorem 8.8. Let X ,Y be a Banach spaces, let (Ω ,Σ ,µ) be a σ -finite measure
space and let G ∈ L(X ,Y ) be a norm-one operator. Consider the norm-one com-
position operator G̃ : L∞(µ,X) −→ L∞(µ,Y ) given by G̃( f ) = G ◦ f for every
f ∈ L∞(µ,X). Then:

(a) G̃ is a spear operator if and only if G is a spear operator.
(b) G̃ is lush if and only if G is lush.
(c) If µ has an atom, then G̃ has the aDP if and only if G does.
(d) If µ is atomless, then G̃ has the aDP if and only if G(BX ) is a spear set.

Remark 8.9. The results in items (a), (c), and (d) of the above theorem were known
for the case of the identity (see [97, 100]). The content of (b) is completely new
even for the identity.

Corollary 8.10. Let X be a Banach space and let (Ω ,Σ ,µ) be a σ -finite measure
space. Then, L∞(µ,X) is lush if and only if X is lush.

We will use the following notation:

Σ
+
fin := {A ∈ Σ : 0 < µ(A)<+∞}.

Observe that when the measure is finite, Σ
+
fin equals the family Σ+ given in section

4.3. Moreover, we will also use the subset of SL1(µ,Y ∗) given by

A :=
{

y∗
1A

µ(A)
: y∗ ∈ SY ∗ ,A ∈ Σ

+
fin

}
which clearly satisfies that

convw∗(A ) = BL∞(µ,Y )∗ .

Proof (of Theorem 8.8.a). This is an easy adaptation of [100, Theorem 2.3]. Sup-
pose first that G is a spear operator. We fix T ∈ L

(
L∞(µ,X),L∞(µ,Y )

)
with

‖T‖= 1. Given ε > 0 we may follow the first part of the proof of [100, Theorem 2.3]
to find f ∈ SL∞(µ,X), x0 ∈ SX , and A,B ∈ Σ with 0 < µ(B)< ∞, such that

B⊂ A and
∥∥∥∥ 1

µ(B)

∫
B

T (x01A + f1Ω\A)dµ

∥∥∥∥> 1− ε. (8.5)

Now we fix x∗0 ∈ SX∗ with x∗0(x0) = 1, we write

Φ(x) = x01A + x∗0(x) f1Ω\A (x ∈ X)

and we define the operator S ∈ L(X ,Y ) given by
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S(x) =
1

µ(B)

∫
B

T (Φ(x))dµ (x ∈ X)

which, by (8.5), satisfies ‖S‖> ‖Sx0‖> 1−ε . Next, we use that G is a spear operator
to find x ∈ SX such that ‖Gx+TSx‖> 2− ε , so we can take y∗ ∈ SY ∗ satisfying

|y∗(Gx+TSx)|> 2− ε.

Finally, define the functional g∗ ∈ SL∞(µ,Y )∗ by

g∗(h) = y∗
(

1
µ(B)

∫
B

hdµ

)
(h ∈ L∞(µ,Y ))

and observe that

‖G̃+TT‖>
∣∣∣g∗(G̃(Φ(x))+TT (Φ(x))

)∣∣∣
=
∣∣g∗(G(x)1A)+Tg∗

(
T (Φ(x))

)∣∣= |y∗(G(x))+Ty∗(S(x))|> 2− ε.

The arbitrariness of ε gives that G̃ is a spear operator.

Assume now that G̃ is a spear operator. Fix S ∈ L(X ,Y ) and define the operator
T ∈ L

(
L∞(µ,X),L∞(µ,Y )

)
by

[T ( f )](t) = S( f (t)) (t ∈Ω , f ∈ L∞(µ,X))

which clearly satisfies ‖T‖ = ‖S‖. As we mentioned at the beginning of the proof,
we can find f ∈ SL∞(µ,X), x0 ∈ SX , and A,B ∈ Σ with 0 < µ(B)< ∞, such that B⊂ A
and ∥∥∥∥ 1

µ(B)

∫
B
(G̃+TT )(x01A + f1Ω\A)dµ

∥∥∥∥> ‖G̃+TT‖− ε

= 1+‖T‖− ε = 1+‖S‖− ε.

Therefore, we can write

1+‖S‖− ε 6

∥∥∥∥ 1
µ(B)

∫
B
(G̃+TT )(x01A + f1Ω\A)dµ

∥∥∥∥
=

∥∥∥∥ 1
µ(B)

∫
B

G(x0)1A +TT (x01A + f1Ω\A)dµ

∥∥∥∥
=

∥∥∥∥G(x0)+T
1

µ(B)

∫
B

T (x01A + f1Ω\A)dµ

∥∥∥∥
=

∥∥∥∥G(x0)+TS
(

1
µ(B)

∫
B

x01A + f1Ω\Adµ

)∥∥∥∥= ‖G(x0)+TS(x0)‖.

Thus, we get ‖G+TS‖> 1+‖S‖− ε and so G is a spear operator. ut
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We next deal with lushness for L∞(µ,X).

Proof (of Theorem 8.8.b). Assume first that G is lush. To prove that so is G̃, we
will check that Proposition 3.28.iii is satisfied. Let f0 ∈ SL∞(µ,X), g0 ∈ SL∞(µ,Y ) and
ε > 0. By density, we can assume that f0,g0 can be written as

f0 = ∑
A∈π

xA1A, g0 = ∑
A∈π

yA1A

where π ⊂ Σ
+
fin is a countable partition of Ω and xA ∈ BX , yA ∈ BY for each A ∈ π .

Since ‖g0‖L∞(µ,Y ) = 1, we can assume without loss of generality that there is A0 ∈ π

with ‖yA0‖= 1. Using that G is lush, we can find y∗0 ∈ SY ∗ such that

Rey∗0(yA0)> 1− ε (8.6)

and elements x j ∈ gSlice(SX ,G∗y∗0,ε), θ j ∈ T, λ j > 0 for j = 1, . . . ,m (m ∈N) with
∑ j λ j = 1 satisfying that ∥∥∥∥∥xA0 −

m

∑
j=1

λ jθ jx j

∥∥∥∥∥< ε. (8.7)

Consider now h∗0 := y∗01A0/µ(A0) ∈A , and for each j = 1, . . . ,m let

f j := ∑
A∈π,A 6=A0

θ jxA1A + x j1A0 .

Then, by (8.6) we have that

Reh∗0(g0) = Rey∗0(yA0)> 1− ε.

A similar argument shows that

f j ∈ gSlice(SL∞(µ,X), G̃
∗h∗,ε)

for every j = 1, . . . ,m, since ReG∗y∗0(x j)> 1− ε . Moreover, using (8.7) we imme-
diately conclude that

∥∥∥∥∥ f0−
m

∑
j=1

λ jθ j f j

∥∥∥∥∥= max

 sup
A∈π

A6=A0

∥∥∥∥∥xA−
m

∑
j=1

λ jxA

∥∥∥∥∥,
∥∥∥∥∥xA0 −

m

∑
j=1

λ jθ jx j

∥∥∥∥∥
< ε.

Let us see the converse: assume that G̃ is lush, fix an element B ∈ Σ
+
fin, and let

x∈ SX , y∈ SY and ε > 0. Then, defining f := x1B ∈ SL∞(µ,X) and g := y1B ∈ SL∞(µ,Y ),
we can use the hypothesis to find h∗ ∈ Slice(A ,g,ε) such that

dist
(

f ,aconv
(
gSlice(BL∞

(µ,X), G̃∗h∗,ε)
))

< ε. (8.8)
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Since we can write h∗ = y∗01A/µ(A) for some A ∈ Σ
+
fin and y∗0 ∈ SY ∗ , the condition

h∗ ∈ Slice(A ,g,ε) can be rewritten as

Rey∗0(y0)
µ(A∩B)

µ(A)
> 1− ε. (8.9)

By (8.8) we find elements f j ∈ gSlice(BL∞(µ,X), G̃∗h∗,ε), θ j ∈ T and λ j > 0 for
j = 1, . . . ,m satisfying ∑

m
j=1 λ j = 1 and∥∥∥∥∥ f −

m

∑
j=1

λ jθ j f j

∥∥∥∥∥< ε. (8.10)

Next, for each j = 1, . . . ,m, we consider the element

x j :=
1

µ(A)

∫
A

f j dµ ∈ BX

which clearly satisfies that

ReG∗y∗0(x j) =
1

µ(A)

∫
A

ReG∗y∗0( f j)dµ = Re G̃∗h∗( f j)> 1− ε.

Moreover, making use of (8.9) we get that∥∥∥∥x− 1
µ(A)

∫
A

f dµ

∥∥∥∥= ∥∥∥∥x− µ(A∩B)
µ(A)

x
∥∥∥∥< ε

and, combining this with (8.10), we conclude that∥∥∥∥∥x−
m

∑
j=1

λ jθ jx j

∥∥∥∥∥6 ε +

∥∥∥∥∥ 1
µ(A)

∫
A

f dµ−
m

∑
j=1

λ jθ j
1

µ(A)

∫
A

f j dµ

∥∥∥∥∥
6 ε +

1
µ(A)

∫
A

∥∥∥∥∥ f −
m

∑
j=1

λ jθ j f j

∥∥∥∥∥ dµ < 2ε,

which finishes the proof. ut

Proof (of Theorem 8.8.c). We start showing that when G has the aDP so does G̃.
Indeed, observe that in the first part of the proof of Theorem 8.8.a, if the operator T
has rank one then the operator S ∈ L(X ,Y ) constructed there also has rank one.

To prove the reversed implication, fix A0 ∈ Σ which is an atom for µ and observe
that we can identify

L∞((Ω ,µ),X)≡ X⊕∞ L∞((Ω \A0,µ),X)

and



8.3 Vector-valued function spaces 131

L∞((Ω ,µ),Y )≡ Y ⊕∞ L∞((Ω \A0,µ),Y ).

Now, if for g ∈ L∞((Ω \A0,µ),X) we write

ĝ(t) =

{
0 if t ∈ A0

g(t) if t /∈ A0
(t ∈Ω),

and we consider the operator Ĝ : L∞((Ω \A0,µ),X) −→ L∞((Ω \A0,µ),Y ) given
by

Ĝ(g) = [G̃(ĝ)]|Ω\A0

(
g ∈ L∞((Ω \A0,µ),X)

)
,

then we can write

G̃(x,g) = (Gx, Ĝ(g))
(
x ∈ X ,g ∈ L∞((Ω \A0,µ),X)

)
.

Therefore, as G̃ has the aDP, we may use Proposition 8.4 to deduce that G has the
aDP. ut

Proof (of Theorem 8.8.d). We prove first the sufficiency. We will use Theorem 3.6.iii
to show that G̃ has the aDP. So, fixed f ∈ SL∞(µ,Y ) and ε > 0, we write

∆ε( f ) =
{

g ∈ BL∞(µ,X) : ‖G̃(g)+T f‖> 2− ε

}
and we have to show that conv(∆ε( f )) = BL∞(µ,X). Using Lemma 2.2 in [100], we
may find y ∈ SY and A ∈ Σ

+
fin such that

‖ f − (y1A + f1Ω\A)‖<
ε

2
.

As µ is atomless, for every n ∈ N we may and do pick pairwise disjoint sets
U1, . . . ,Un with positive measure such that Ui⊂A for every i= 1, . . . ,n. Next, we use
that G(BX ) is a spear set to find x ∈ BX and θ ∈ T such that ‖G(x)+θy‖> 2−ε/2.
Now, fixed h ∈ BL∞(µ,X), we define g j = x1U j +h1K\U j ∈ BL∞(µ,X) for j = 1, . . . ,n.
On the one hand, observe that for every t ∈U j we get the following estimation

‖G(g j(t))+θ f (t)‖> ‖G(x)+θy‖−‖ f (t)− y‖> 2− ε,

so ‖G̃(g j) + θ f‖ > 2− ε which implies that g j ∈ ∆ε( f ). On the other hand, for
t ∈Uk we have that∥∥∥∥∥h(t)− 1

n

n

∑
j=1

g j(t)

∥∥∥∥∥=
∥∥∥∥h(t)− n−1

n
h(t)− 1

n
gk(t)

∥∥∥∥= 1
n
‖h(t)−gk(t)‖6

2
n

;

and, for t /∈
⋃

j U j, it follows that h(t)− 1
n ∑

n
j=1 g j(t) = 0. This proves that h ∈

conv(∆ε( f )) and so G̃ has the aDP.
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Conversely, suppose now that G̃ has the aDP. Fixed ε > 0 and a non-zero y ∈ BY ,
we take the constant function f ∈ L∞(µ,Y ) given by f ≡ y

‖y‖ and we use Theo-

rem 3.6.iii to find g ∈ BL∞(µ,X) such that ‖G̃(g)+T f‖ > 2− ε . So, there is t0 ∈ Ω

satisfying that
∥∥∥G(g(t0))+T y

‖y‖

∥∥∥> 2− ε and, therefore,

‖G(g(t0))+Ty‖>
∥∥∥∥G(g(t0))+T

y
‖y‖

∥∥∥∥−∥∥∥∥ y
‖y‖
− y
∥∥∥∥

> 2− ε− (1−‖y‖) = 1+‖y‖− ε.

This shows that G(BX ) is a spear set, concluding thus the proof. ut

Finally, we would like to work with spaces of integrable functions.

Theorem 8.11. Let X ,Y be Banach spaces, let (Ω ,Σ ,µ) be a σ -finite measure
space, and let G ∈ L(X ,Y ) be a norm-one operator. Consider the norm-one com-
position operator G̃ : L1(µ,X) −→ L1(µ,Y ) given by G̃( f ) = G ◦ f for every
f ∈ L1(µ,X). Then:

(a) G̃ is a spear operator if and only if G is a spear operator.
(b) G̃ is lush if and only if G is lush.
(c) If µ has an atom, then G̃ has the aDP if and only if G has the aDP.
(d) If µ is atomless, then G̃ has the aDP if and only if

BX = aconv{x ∈ BX : ‖Gx‖> 1− ε} for every ε > 0.

Remark 8.12. The results in items (a), (c), and (d) of the above theorem were known
for the case of the identity (see [97, 98]). The content of (b) is completely new even
for the identity.

Corollary 8.13. Let X be a Banach space and let (Ω ,Σ ,µ) be a σ -finite measure
space. Then, L1(µ,X) is lush if and only if X is lush.

We claim that for the proof of Theorem 8.11 we can assume without loss of gen-
erality that (Ω ,Σ ,µ) is a probability space, as vector-valued L1-spaces associated
to σ -finite measures are (up to an isometric isomorphism) vector-valued L1-spaces
associated to probability measures (see [26, Proposition 1.6.1], for instance), with
the same null-sets and the same atoms.

Now, in order to prove Theorem 8.11 for probability spaces, we need to introduce
some notation. If (Ω ,Σ ,µ) is a probability space and X and Y are Banach spaces,
the set

A :=

{
∑

A∈π

y∗A1A : π ⊂ Σ
+ finite partition of Ω , y∗A ∈ SY ∗

}
⊂ SL∞(µ,Y ∗)

satisfies that
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BL1(µ,Y )∗ = convw∗(A ), (8.11)

since A is rounded and it is clearly norming for the simple functions of L1(µ,Y ).
On the other hand, we will write

B :=
{

x
1B

µ(B)
: x ∈ SX , B ∈ Σ

+

}
which satisfies that

BL1(µ,X) = conv(B). (8.12)

Indeed, it is enough to notice that every simple function f in SL1(µ,X) belongs to the
convex hull of B: such an f can be written as f = ∑B∈π xB1B, where π ⊂ Σ+ is a
finite family of pairwise disjoint sets of Ω and xB ∈ X \{0} for each B ∈ π . Then

‖ f‖= ∑
B∈π

‖xB‖µ(B) = 1,

and hence
f = ∑

B∈π

‖xB‖µ(B)
xB

‖xB‖
1B

µ(B)
∈ conv(B).

Proof (of Theorem 8.11.a). Suppose that G̃ is a spear operator. Fix T ∈ L(X ,Y )
and consider T̃ ∈ L

(
L1(µ,X),L1(µ,Y )

)
given by T̃ ( f ) = T ◦ f , which obviously

satisfies ‖T̃‖= ‖T‖. Given ε > 0, we can find x ∈ SX and B ∈ Σ+ such that∥∥∥(G̃+T T̃ )(x 1B
µ(B) )

∥∥∥> 1+‖T‖− ε. (8.13)

But notice that∥∥∥G̃(x 1B
µ(B) )+T T̃ (x 1B

µ(B) )
∥∥∥= ∥∥∥(G(x)+TT (x)

)
1B

µ(B)

∥∥∥= ‖G(x)+TT (x)‖.

This, together with (8.13) and the arbitrariness of ε , tells us that G is a spear operator.

Assume now that G is a spear operator. Fixed T ∈ L
(
L1(µ,X),L1(µ,Y )

)
with

‖T‖= 1 and ε > 0, we may find by (8.12) elements x0 ∈ SX and B ∈ Σ+ such that∥∥∥T
(

x0
1B

µ(B)

)∥∥∥> 1− ε.

Using now (8.11), there exists f ∗ = ∑A∈π y∗A1A, where π is a finite partition of Ω

into sets of Σ+ and y∗A ∈ SY ∗ for each A ∈ π , satisfying that

Re f ∗
(

T
(

x0
1B

µ(B)

))
= Re ∑

A∈π

y∗A

(∫
A

T
(

x0
1B

µ(B)

)
dµ

)
> 1− ε. (8.14)

Then, we can write



134 8 Some stability results

T
(

x0
1B

µ(B)

)
= ∑

A∈π
µ(A∩B)6=0

µ(B∩A)
µ(B)

T
(

x0
1B∩A

µ(B∩A)

)

so by a standard convexity argument we can assume that there is A0 ∈ π such that
A0 ⊂ B and (8.14) is still satisfied. By the density of norm-attaining functionals, we
can and do assume that every y∗A is norm-ataining, so there is yA0 ∈ SY such that
y∗A0

(yA0) = 1. Define the operator S : X −→ Y by

S(x) =
∫

A0

T
(

x 1B
µ(B)

)
dµ +

[
∑

A∈π\{A0}
y∗A

(∫
A

T
(

x 1B
µ(B)

)
dµ

)]
yA0 (x ∈ X).

It is easy to check that ‖S‖ 6 1, and moreover ‖S‖ > 1− ε since as a consequence
of (8.14) we obtain that

‖S(x0)‖> |y∗A0
(Sx0)|=

∣∣∣ f ∗(T
(

x0
1B

µ(B)

))∣∣∣> 1− ε.

By hypothesis, we can find x1 ∈ SX and θ1 ∈T such that ‖G(x1)+θ1S(x1)‖> 2−ε .
Now,∥∥∥G̃

(
x1

1B
µ(B)

)
+θ1 T

(
x1

1B
µ(B)

)∥∥∥
=
∫

B

∥∥∥G(x1)
1B

µ(B) +θ1T
(

x1
1B

µ(B)

)∥∥∥ dµ +
∫
∪π\B

∥∥∥T (x1
1B

µ(B) )
∥∥∥ dµ

>

∥∥∥∥G(x1)+θ1

∫
B

T (x1
1B

µ(B) )dµ

∥∥∥∥+∫A0\B

∥∥∥T (x1
1B

µ(B) )
∥∥∥ dµ

+ ∑
A∈π\{A0}

∫
A

∥∥∥T (x1
1B

µ(B) )
∥∥∥ dµ

>

∥∥∥∥G(x1)+θ1

∫
A0

T (x1
1B

µ(B) )dµ

∥∥∥∥+ ∑
A∈π\{A0}

∥∥∥∥y∗A

(∫
A

T (x1
1B

µ(B) )dµ

)
yA0

∥∥∥∥
> ‖G(x1)+θ1S(x1)‖> 2− ε.

This shows that ‖G̃+TT‖> 2− ε , finishing the proof. ut

Our next aim is to deal with lushness. To this end, we will make use of the
following immediate numerical result which we prove for the sake of completeness.

Lemma 8.14. Let ε > 0, δ > 0, and let λi > 0 for i= 1, . . . ,n. Suppose that αi,βi ∈R
are such that αi 6 βi for i = 1, . . . ,n and satisfy (∑n

i=1 λiβi)−εδ 6 ∑
n
i=1 λiαi. Then,

∑{λi : αi 6 βi− ε}< δ .

In particular, if ∑
n
i=1 λi = 1, then

∑{λi : αi > βi− ε}> 1−δ .



8.3 Vector-valued function spaces 135

Proof. Calling I = {1 6 i 6 n : αi > βi− ε} it suffices to observe that(
n

∑
i=1

λiβi

)
− εδ 6

n

∑
i=1

λiαi 6 ∑
i∈I

λiβi +∑
i/∈I

λi(βi− ε) =
n

∑
i=1

λiβi− ε ∑
i/∈I

λi

from where it easily follows that ∑i/∈I λi < δ . The last claim is clear. ut

Proof (of Theorem 8.11.b). Assume that G is lush. To check that G̃ is lush, we
just have to show that Proposition 3.28.iii is satisfied. Fix ε > 0, g0 ∈ SL1(µ,Y ) and
f0 ∈B of the form f0 = x01B/µ(B) for some x0 ∈ SX and B ∈ Σ+. By density, we
can assume that

g0 = ∑
A∈π

yA
1A

µ(A)

where π ⊂ Σ+ is a finite partition of Ω and yA ∈ Y satisfy that ∑A∈π ‖yA‖ = 1. By
Proposition 3.28.iii, the lushness of G lets us find for each A∈ π an element y∗A ∈ SY ∗

such that Rey∗A(yA)> (1− ε)‖yA‖ and

dist
(
x0,aconv

(
gSlice(SX ,G∗y∗A,ε)

))
< ε. (8.15)

Let h∗ := ∑A∈π y∗A1A, which satisfies that h∗ ∈ Slice(SL∞(µ,Y ∗),g0,ε) as

Reh∗(g0) = ∑
A∈π

Rey∗A(yA)> ∑
A∈π

(1− ε)‖yA‖= 1− ε.

Our aim is to prove now that

dist
(

f0,aconv
(

gSlice(BL1(µ,X), G̃
∗h∗,ε)

))
< ε, (8.16)

which will finish the proof. First notice that for each A ∈ π with µ(B∩A) 6= 0 we
have that

gSlice(SX ,G∗y∗A,ε)
1B∩A

µ(B∩A)
⊂ gSlice(BL1(µ,X), G̃

∗h∗,ε), (8.17)

since every xA ∈ gSlice(SX ,G∗y∗A,ε) satisfies

Re G̃∗h∗
(

xA
1B∩A

µ(B∩A)

)
= ReG∗y∗A(xA)> 1− ε.

In particular, if for each A ∈ π we take an element xA ∈ aconv
(
gSlice(SX ,G∗y∗A,ε)

)
satisfying ‖xA− x0‖< ε , which exists by (8.15), then the inclusion in (8.17) yields
that
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f := ∑
A∈π

µ(A∩B)6=0

xA
1B∩A

µ(B)

= ∑
A∈π

µ(A∩B)6=0

µ(B∩A)
µ(B)

xA
1B∩A

µ(B∩A)
∈ aconv

(
gSlice(BL1(µ,X), G̃

∗h∗,ε)
)
.

Moreover, we have that

‖ f − f0‖=
∥∥∥∥ f − x0

1B

µ(B)

∥∥∥∥= ∑
A∈π

µ(A∩B)6=0

‖xA− x0‖
µ(B∩A)

µ(B)
< ε

which shows that (8.16) holds.

Let us see the converse: to check that G is lush, we will show that condition (iii)
of Proposition 3.28 is satisfied. To do so, let 0 < ε < 1/8, x0 ∈ SX and y0 ∈ SY .
The mentioned condition applied to the lush operator G̃ for ε , x01Ω ∈ SL1(µ,X) and
y01Ω ∈ SL1(µ,Y ) provides n ∈ N, functions

g∗ ∈ S(A ,y01Ω ,ε3) and f1, . . . , fn ∈ gSlice(SL1(µ,X), G̃
∗g∗,ε3) (8.18)

and scalars θ1, . . . ,θn ∈ T, λ1, . . . ,λn ∈ [0,1] with ∑
n
i=1 λi = 1 satisfying that∥∥∥∥∥x01Ω −

n

∑
i=1

λiθi fi

∥∥∥∥∥< ε
3. (8.19)

By density, we can assume that the functions fi are simple and moreover that there
is a finite partition {A1, . . . ,Am} ⊂ Σ+ of Ω such that

g∗ =
m

∑
j=1

y∗j1A j and fi =
m

∑
j=1

xi, j1A j (i = 1, . . . ,n)

where y∗j ∈ SY ∗ and xi, j ∈ X for every i, j. Then, conditions (8.18) and (8.19) can be
rewritten as

1− ε
3 < Reg∗(y01Ω ) =

m

∑
j=1

Rey∗j(y0)µ(A j), (8.20)

m

∑
j=1

µ(A j)

∥∥∥∥∥x0−
n

∑
i=1

λiθixi, j

∥∥∥∥∥< ε
3, (8.21)

and
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1− ε
3 < Re G̃∗g∗( fi) =

m

∑
j=1

ReG∗y∗j(xi, j)µ(A j) (8.22)

6
m

∑
j=1
‖xi, j‖µ(A j) = 1 (i = 1, . . . ,n).

Applying Lemma 8.14 to (8.20) and (8.21), we obtain respectively that

∑
{

µ(A j) : Rey∗j(y0)> 1− ε
}
> 1− ε

2 (8.23)

and

∑

{
µ(A j) :

∥∥∥∥∥x0−
n

∑
i=1

λiθixi, j

∥∥∥∥∥< ε

}
> 1− ε

2. (8.24)

Using that ‖x0‖= 1, the last inequality yields in particular that

∑

{
µ(A j) :

n

∑
i=1

λi‖xi, j‖> 1− ε

}
> 1− ε

2. (8.25)

Combining the relations of (8.22) in a convex sum with the λi’s as coefficients we
obtain that

1− ε
3 <

m

∑
j=1

µ(A j)
n

∑
i=1

λi ReG∗y∗j(xi, j)6
m

∑
j=1

µ(A j)
n

∑
i=1

λi‖xi, j‖= 1. (8.26)

Actually, from the right-hand equality of the previous expression we get that

1 =
n

∑
i=1

λi

m

∑
j=1
‖xi, j‖µ(A j) =

m

∑
j=1

µ(A j)
n

∑
i=1

λi‖xi, j‖

> (1+ ε)∑

{
µ(A j) :

n

∑
i=1

λi‖xi, j‖> 1+ ε

}

+(1− ε)∑

{
µ(A j) : 1− ε <

n

∑
i=1

λi‖xi, j‖6 1+ ε

}
,

which, together with (8.25), implies that the number

α := ∑

{
µ(A j) : 1− ε <

n

∑
i=1

λi‖xi, j‖6 1+ ε

}

satisfies the relation

(1+ ε)(1− ε
2−α)+(1− ε)α 6 1.

A simple computation shows that necessarily 1− ε− ε2 6 2α , and so
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∑

{
µ(A j) : 1− ε <

n

∑
i=1

λi‖xi, j‖6 1+ ε

}
= α >

1
2
− ε. (8.27)

On the other hand, an application of Lemma 8.14 to the left-hand side part of (8.26)
gives that

∑

{
µ(A j) :

(
n

∑
i=1

λi‖xi, j‖

)
− ε

2 <
n

∑
i=1

λi ReG∗y∗j(xi, j)

}
> 1− ε. (8.28)

Using that ε < 1/8 combined with (8.23), (8.24), (8.27), and (8.28), we deduce the
existence of some j0 ∈ {1, . . . ,m} satisfying simultaneaously

1− ε < Rey∗j0(y0),∥∥∥∥∥x0−
n

∑
i=1

λiθixi, j0

∥∥∥∥∥< ε, (8.29)

1− ε <
n

∑
i=1

λi‖xi, j0‖6 1+ ε, (8.30)

and (
n

∑
i=1

λi‖xi, j0‖

)
− ε

2 <
n

∑
i=1

λi ReG∗y∗j0(xi, j0). (8.31)

If we denote

I := {1 6 i 6 n : ReG∗y∗j0(xi, j0)> ‖xi, j0‖(1− ε)},

then again we can apply Lemma 8.14 to (8.31) with

βi = 1, αi =
ReG∗y∗j0(xi, j0)

‖xi, j0‖
, and

(
n

∑
i=1

λi‖xi, j0‖βi

)
− ε

2 <
n

∑
i=1

λi‖xi, j0‖αi

to get that
∑
i/∈I

λi‖xi, j0‖< ε.

This, together with (8.30), yields that

1−2ε < ∑
i∈I

λi‖xi, j0‖6 1+ ε. (8.32)

Consider now the elements

x̃i :=
xi, j0
‖xi, j0‖

∈ SX and λ̃i :=
λi‖xi, j0‖

∑k∈I λk‖xk, j0‖
> 0

which satisfy
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∑
i∈I

λ̃i = 1 and x̃i ∈ gSlice(SX ,G∗y∗j0 ,ε) for each i ∈ I.

Finally, using (8.29) and (8.32) we conclude that∥∥∥∥∥x0−∑
i∈I

λ̃iθix̃i

∥∥∥∥∥6 ε +

∥∥∥∥∥ n

∑
i=1

λiθixi, j0 −∑
i∈I

λ̃iθix̃i

∥∥∥∥∥
6 ε +∑

i/∈I
λi‖xi, j0‖+∑

i∈I

∥∥∥λixi, j0 − λ̃ix̃i

∥∥∥
6 ε +∑

i/∈I
λi‖xi, j0‖+

∣∣∣∣1− 1
∑k∈I λk‖xk, j0‖

∣∣∣∣∑
i∈I

λi‖xi, j0‖

= ε +∑
i/∈I

λi‖xi, j0‖+

∣∣∣∣∣1−∑
i∈I

λi‖xi, j0‖

∣∣∣∣∣6 4ε

which finishes the proof. ut

Proof (of Theorem 8.11.c). Let us fix an atom A0 ∈ Σ+. Assume that G̃ has the aDP.
We will show that G satisfies condition (iii) of Theorem 3.6: Let x0 ∈ SX , y0 ∈ SY
and ε > 0. By hypothesis, we have that

x0
1A0

µ(A0)
∈ aconv

({
f ∈B :

∥∥∥∥G̃( f )+ y0
1A0

µ(A0)

∥∥∥∥> 2− ε µ(A0)

})
.

Then, for each η ∈ (0,1) we can find a finite family F ⊂ Σ+, elements xB ∈ SX
satisfying

2− ε µ(A0)<

∥∥∥∥G(xB)
1B

µ(B)
+ y0

1A0

µ(A0)

∥∥∥∥ for every B ∈ F ; (8.33)

and scalars λB ∈K with ∑B∈F |λB|= 1 such that∥∥∥∥∥x0
1A0

µ(A0)
− ∑

B∈F
λBxB

1B

µ(B)

∥∥∥∥∥< η . (8.34)

But µ(A0∩B) is either 0 or µ(A0) for each B ∈F as A0 is an atom. Then, if we just
integrate in (8.34) over the atom A0 we will get that∥∥∥∥∥∥∥x0− ∑

B∈F
µ(A0\B)=0

λBxB
µ(A0)

µ(B)

∥∥∥∥∥∥∥< η . (8.35)

In particular, this yields that
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α := ∑
B∈F

µ(A0\B)=0

|λB|
µ(A0)

µ(B)
> 1−η . (8.36)

Combining (8.35) and (8.36), we deduce that∥∥∥∥∥∥∥x0− ∑
B∈F

µ(A0\B)=0

λBµ(A0)

αµ(B)
xB

∥∥∥∥∥∥∥6 η +

∥∥∥∥∥∥∥ ∑
B∈F

µ(A0\B)=0

( 1
α
−1
)

λBxB
µ(A0)

µ(B)

∥∥∥∥∥∥∥
6 η +

1−α

α
6 η +

η

1−η
.

(8.37)

Since η ∈ (0,1) was arbitrary, we deduce from (8.37) that x0 belongs to the closed
absolute convex hull of the set of all x ∈ SX for which there is B ∈ Σ+ satisfying
µ(A0 \B) = 0 and ∥∥∥∥G(x)

1B

µ(B)
+ y0

1A0

µ(A0)

∥∥∥∥> 2− ε µ(A0).

But then such elements x and B satisfy in particular that

2− ε µ(A0)< ‖G(x)‖µ(B\A0)

µ(B)
+

∥∥∥∥G(x)
µ(A0)

µ(B)
+ y0

∥∥∥∥
6 ‖G(x)‖µ(B\A0)

µ(B)
+‖y0‖

µ(B\A0)

µ(B)
+

µ(A0)

µ(B)
‖G(x)+ y0‖

6
µ(B\A0)

µ(B)
2+

µ(A0)

µ(B)
‖G(x)+ y0‖,

and hence
2− ε 6 2−µ(B)ε 6 ‖G(x)+ y0‖.

We then conclude that

x0 ∈ aconv({x ∈ BX : ‖G(x)+ y0‖> 2− ε}).

Let us prove now the converse of (c). We remark here that this implication does
not use that µ has atoms. Assuming that G has the aDP, we will now check that G̃
satisfies Theorem 3.6.ii. For this, it is enough to prove that given a simple function
g0 ∈ SL1(µ,Y ) of the form

g0 = ∑
A∈π

yA
1A

µ(A)
,

where π ⊂ Σ+ is a finite partition of Ω and yA ∈ Y (A ∈ π), we have that

B ⊂ aconv({ f ∈B : ‖G̃( f )+g0‖> 2− ε}).

Let x0 ∈ SX and B ∈ Σ+. Then
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x0
1B

µ(B)
= ∑

A∈π
µ(A∩B)6=0

µ(B∩A j)

µ(B)
x0

1B∩A

µ(B∩A)
,

and so in order to show that

x0
1B

µ(B)
∈ aconv({ f ∈B : ‖G̃( f )+g0‖> 2− ε})

we can assume without loss of generality, by using a standard convexity argument,
that B is contained in some A0 ∈ π . Since G has the aDP, using Theorem 3.6.iii, for
each δ > 0 there is a finite set

F ⊂ {x ∈ SX :
∥∥G(x)+ yA0

∥∥> 1+‖yA0‖− ε}

such that dist(x0,aconv(F))< δ . In particular, this implies that

dist
(

x0
1B

µ(B) ,aconv
({

x 1B
µ(B) : x ∈ F

}))
< δ . (8.38)

Finally, notice that each x ∈ F satisfies that∥∥∥G̃
(

x 1B
µ(B)

)
+g0

∥∥∥= ∫
B

∥∥∥G(x) 1B
µ(B) + yA01A0

∥∥∥ dµ +
∫
∪π\B
‖g0‖dµ

= ‖G(x)+ yA0 µ(B)‖+‖yA0‖µ(A0 \B)+ ∑
A∈π\{A0}

‖yA‖µ(A)

> 1+‖yA0‖µ(B)− ε +‖yA0‖µ(A0 \B)+ ∑
A∈π\{A0}

‖yA‖µ(A)

= 1+‖g0‖− ε = 2− ε.

Therefore, (8.38) leads to

dist
(

x0
1B

µ(B) ,aconv({ f ∈B : ‖G̃( f )+g0‖> 2− ε})
)
< δ

for arbitrary δ > 0. ut

Proof (of Theorem 8.11.d). Assuming hat µ has no atoms, we claim that given a
simple function g0 ∈ SL1(µ,Y ), for every δ > 0 we can write g0 as

g0 = ∑
A∈π

yA
1A

µ(A)
(8.39)

where π ⊂ Σ+ is a finite partition of Ω and the coefficients yA ∈ δBY for each A∈ π .
Let us check this: of course, we can write g0 as in (8.39) for a partition π ⊂ Σ+ and
elements yA ∈ Y with ∑A∈π ‖yA‖ = 1. But since µ has no atoms, we can find for
each A ∈ π a partition of A into elements C ∈ Σ+ satisfying µ(C)6 δ µ(A). If π ′ is
the collection of all such subsets, then this is a finer partition than π and
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g0 = ∑
A∈π

yA
1A

µ(A)
= ∑

A∈π

∑
C∈π ′
C⊂A

(
µ(C)

µ(A)
yA

)
1C

µ(C)

and the proof of the claim is over.

Let us then prove now that if

BX = aconv{x ∈ BX : ‖Gx‖> 1− ε} (8.40)

for every ε > 0, then G̃ has the aDP. By Theorem 3.6.iii, it is enough to show that
given a simple function g0 ∈ SL1(µ,Y ) as in (8.39) and ε > 0, we have that

B ⊂ aconv
{

f ∈B : ‖G̃( f )+g0‖> 2− ε

}
+δBL1(µ,X)

for every δ > 0. Let x0 ∈ SX , B ∈ Σ+ and 0 < δ < ε/3. Let π ⊂ Σ+ and yA ∈ δBY
(A ∈ π) as in the claim above for the given g0. We can moreover assume that every
A ∈ π is either contained in B or in Ω \B. Using (8.40), we can find m ∈N, x j ∈ BX
with ‖G(x j)‖> 1−δ and λ j ∈K ( j = 1, . . . ,m) such that ∑

m
j=1 |λ j|= 1 and∥∥∥∥∥x0−

m

∑
j=1

λ jx j

∥∥∥∥∥< δ .

Then, it is easy to check that∥∥∥∥∥∥∥x0
1B

µ(B)
− ∑

A∈π
A⊂B

m

∑
j=1

(
µ(A)
µ(B)

λ j

)
x j

1A

µ(A)

∥∥∥∥∥∥∥< δ . (8.41)

This shows that x01B/µ(B) is δ -approximated by an absolutely convex sum of el-
ements of the form x j1A/µ(A) for some 1 6 j 6 m and A ∈ π . Finally, notice that
every such element satisfies that∥∥∥∥G̃

(
x j

1A

µ(A)

)
+g0

∥∥∥∥= ∥∥∥∥G(x j)
1A

µ(A)
+g0

∥∥∥∥
= ‖G(x j)+ yA‖+ ∑

A′∈π,A′ 6=A
‖yA′‖

> ‖G(x j)‖−δ +1−δ > 2−3δ .

(8.42)

Therefore,

x0
1B

µ(B)
∈ aconv

({
f ∈ BL1(µ,X) : ‖G̃( f )+g0‖> 2−3δ

})
+δBL1(µ,X).

Using that 0 < δ < ε/3 was arbitrary, we conclude the result.
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Conversely, suppose that G̃ has the aDP and let ε > 0, x0 ∈ SX and y0 ∈ SY . By
Theorem 3.6.iii, we have that

x01Ω ∈ aconv
({

f ∈B :
∥∥∥G̃( f )+ y01Ω

∥∥∥> 2− ε

})
.

Therefore, given any δ > 0 there is a finite set F ⊂ Σ+ and elements xA ∈ SX ,
λA ∈K (A ∈ F ) such that ∑A∈F |λA|= 1 satisfying that∥∥∥∥G̃

(
xA

1A

µ(A)

)
+ y01Ω

∥∥∥∥> 2− ε (8.43)

and ∥∥∥∥∥x01Ω − ∑
A∈F

λAxA
1A

µ(A)

∥∥∥∥∥< δ . (8.44)

It easily follows from (8.43) that

1− ε <

∥∥∥∥G(xA)
1A

µ(A)
+ y01Ω

∥∥∥∥−1 6 ‖G(xA)‖.

On the other hand, (8.44) yields that∥∥∥∥∥x0− ∑
A∈F

λAxA

∥∥∥∥∥=
∥∥∥∥∥
∫

Ω

(
x01Ω − ∑

A∈F
λAxA

1A

µ(A)

)
dµ

∥∥∥∥∥< δ .

Therefore,
dist(x0,aconv{x ∈ BX : ‖Gx‖> 1− ε})< δ ,

and since δ > 0 and x0 ∈ SX were arbitrary, we conclude that (8.40) holds. ut

8.4 Target operators, lushness and ultraproducts

Now, we will prove the stability of target operators and lush operators with respect
to the operation of taking ultraproducts. These results extend Corollaries 4.4 and 4.5
of [21] about stability of lush spaces with respect to ultraproducts.

Let us recall the basic definitions, taken from [55]. Let U be a free ultrafilter on
N. The limit of a sequence with respect to the ultrafilter U is denoted by limU an, or
limn,U an, if it is necessary to stress that the limit is taken with respect to the variable
n. Let (Xn)n∈N be a sequence of Banach spaces. We can consider the `∞-sum of the
family, [⊕n∈NXn]`∞

, together with its closed subspace

N(U ) =

{
(xn)n∈N ∈ [⊕n∈NXn]`∞

: lim
U
‖xn‖= 0

}
.
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The quotient space (Xn)U = [⊕n∈NXn]`∞
/N(U ) is called the ultraproduct of the

family (Xn)n∈N relative to the ultrafilter U . Let (xn)U stand for the element of
(Xn)U containing a given representative (xn) ∈ [⊕n∈NXn]`∞

. It is easy to check that

‖(xn)U ‖= lim
U
‖xn‖.

Moreover, every x̃ ∈ (Xn)U can be represented as x̃ = (xn)U in such a way that
‖xn‖= ‖x̃‖ for all n ∈ N.

If all the spaces Xn are equal to the same Banach space X , the ultraproduct of the
family is called the U -ultrapower of X . We denote this ultrapower by XU .

Let (Xn)n∈N, (Yn)n∈N be two sequences of Banach spaces and let (Tn)n∈N be a
norm-bounded sequence of operators where Tn ∈ L(Xn,Yn) for every n ∈ N. We
denote (Tn)U the operator that acts from (Xn)U to (Yn)U as follows:[

(Tn)U
]
(xn)U = (Tnxn)U

(
(xn)U ∈ (Xn)U

)
.

Evidently,
‖(Tn)U ‖= lim

U
‖Tn‖.

Now, we state our main result about ultraproducts.

Theorem 8.15. Let U be a free ultrafilter on N, (Xn)n∈N, (Yn)n∈N, (Zn)n∈N be se-
quences of Banach spaces and let (Gn)n∈N, (Tn)n∈N be norm bounded sequences
of operators such that Gn ∈ SL(Xn,Yn) and Tn ∈ L(Xn,Zn) for every n ∈ N. If
each Tn is a target for the corresponding Gn for every n ∈ N, then T = (Tn)U ∈
L((Xn)U ,(Zn)U ) is a target for G = (Gn)U ∈ L((Xn)U ,(Yn)U ).

We need the following easy remark about the absolutely convex hull of a convex
set. In fact, this idea already appeared implicitly in the proof of implication (i) ⇒
(iii) of Corollary 2.8.

Proposition 8.16. Let F ⊂ BX be a convex set. If X is a real space, then

aconv(F) = {λ1x1−λ2x2 : x1,x2 ∈ F,λ1,λ2 > 0,λ1 +λ2 = 1}.

If X is a complex space, then for every m ∈ N and every x ∈ aconv(F), there are
λ1, . . . ,λm > 0 with ∑

m
k=1 λk = 1 and x1, . . . ,xm ∈ F, such that∥∥∥∥∥x−

m

∑
k=1

λk exp
(

2πik
m

)
xk

∥∥∥∥∥6 2π

m
. (8.45)

Proof. We demonstrate only the more complicated complex case. As x ∈ aconv(F)
there are µ j ∈ [0, 1], j = 1, . . . ,N with ∑

N
j=1 µ j = 1, θ j ∈ [0, 2π] and y j ∈F satisfying
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x =
N

∑
j=1

µ j exp(iθ j)y j.

Taking into account that the points
{ 2πk

m : k = 1, . . . ,m
}

form a 2π

m -net of [0, 2π] we
can represent the set of indices {1, . . . ,N} as a disjoint union of sets Ak, k = 1, . . . ,m
in such a way that ∣∣∣∣θ j−

2πk
m

∣∣∣∣6 2π

m
for every j ∈ Ak.

Let us show that

λk = ∑
j∈Ak

µ j, and xk =
1
λk

∑
j∈Ak

µ jy j if Ak 6= /0

and
λk = 0, and arbitrary xk ∈ F if Ak = /0

fulfill the desired condition (8.45). Indeed, it is clear that xk ∈ F and ∑
m
k=1 λk = 1.

Now, ∥∥∥∥∥x−
m

∑
k=1

λk exp
(

2πik
m

)
xk

∥∥∥∥∥=
∥∥∥∥∥x− ∑

{k : Ak 6= /0}
∑
j∈Ak

µ j exp
(

2πik
m

)
y j

∥∥∥∥∥
6

∥∥∥∥∥x− ∑
{k : Ak 6= /0}

∑
j∈Ak

µ j exp(iθ j)y j

∥∥∥∥∥+ 2π

m

=

∥∥∥∥∥x−
N

∑
j=1

µ j exp(iθ j)y j

∥∥∥∥∥+ 2π

m
=

2π

m
,

as desired. ut

Proof (of Theorem 8.15). We demonstrate the theorem only for the more compli-
cated complex case. Also, we may and do suppose that ‖T‖ = ‖Tn‖ = 1 for every
n ∈ N.

Let x0 = (x0,n)U ∈ B(Xn)U
, y = (yn)U ∈ S(Yn)U

and ε > 0 be fixed. Evidently,
the “coordinates” x0,n can be selected in such a way that x0,n ∈ BXn and yn ∈ SYn for
every n ∈ N. For each n ∈ N applying (3) in Definition 3.9 for ε/2, x0,n ∈ BXn , and
yn ∈ SYn we obtain the corresponding Fn ⊂ BXn satisfying

conv(Fn)⊂
{

x ∈ BXn : ‖Gnx+ yn‖> 2− ε

2

}
and

dist
(
Tnx0,n,Tn

(
aconv(Fn)

))
<

ε

2
.

(8.46)

Without loss of generality, we assume that Fn is convex, otherwise we just substitute
Fn by its convex hull. Our choice means that there is xn ∈ aconv(Fn) such that
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∥∥< ε

2
.

Select m ∈N such that
2π

m
<

ε

2
. Using Proposition 8.16, we can find for each n ∈N

corresponding λn,1 . . . ,λn,m > 0, ∑
m
k=1 λn,k = 1 and xn,1, . . . ,xn,m ∈ Fn such that∥∥∥∥∥xn−

m

∑
k=1

λn,k exp
(

2πik
m

)
xn,k

∥∥∥∥∥< ε

2

and, consequently, ∥∥∥∥∥Tnx0,n−
m

∑
k=1

λn,k exp
(

2πik
m

)
Tnxn,k

∥∥∥∥∥< ε. (8.47)

For each k = 1, . . . ,m, denote λk = limn,U λn,k and x̃k = (xn,k)U ∈ B(Xn)U
. Also,

denote F = {x̃1, . . . , x̃m}. Since xn,1, . . . ,xn,m ∈ Fn, and Fn is convex, by (8.46) we
have

conv(F)⊂
{

x ∈ B(Xn)U
: ‖Gx+(yn)U ‖ ≥ 2− ε

2

}
.

Also, since m is fixed, (8.47) implies∥∥∥∥∥T x0−
m

∑
k=1

λk exp
(

2πik
m

)
T x̃k

∥∥∥∥=
lim
n,U

∥∥∥∥∥Tnx0,n−
m

∑
k=1

λn,k exp
(

2πik
m

)
Tnxn,k

∥∥∥∥∥6 ε,

that is
dist
(
T x0,T

(
aconv(F)

))
6 ε.

Consequently, F satisfies (3) for ε , x0, and y, i.e. T is a target for G by using this
set F in Definition 3.9. ut

In the case of ultrapowers, the converse result is also true.

Theorem 8.17. Let U be a free ultrafilter on N, let X, Y , Z be Banach spaces, and
let G ∈ SL(X ,Y ) and T ∈ L(X ,Z) be operators. If TU = (T,T, . . .)U ∈ L(XU ,ZU ) is
a target for GU = (G,G, . . .)U ∈ L(XU ,YU ), then T is a target for G.

Proof. For given x0 ∈ BX , ε > 0 and y ∈ SY , by (3) in Definition 3.9 applied to

x̃0 = (x0,x0, . . .)U ∈ BXU
and ỹ = (y,y, . . .)U ∈ SYU

,

we can find a finite set F = {(x1,n)U , . . . ,(xm,n)U } ⊂ BXU
, λ1, . . . ,λm > 0 with

∑λk = 1, and θ1, . . . ,θm ∈ T such that

conv(F)⊂ {x̃ ∈ BXU
: ‖GU x̃+ ỹ‖> 2− ε/2} (8.48)
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and

lim
n,U

∥∥∥∥∥T x0−
m

∑
k=1

λkθkT (xk,n)

∥∥∥∥∥< ε. (8.49)

Write Fn = {x1,n, . . . ,xm,n} ⊂ BX and denote by E the set of those n ∈ N for which

conv(Fn)⊂ {x ∈ BX : ‖Gx+ y‖> 2− ε}.

We claim that E ∈U . Indeed, if this is not so, then N\E ∈U . For every n ∈N\E
choose µ1,n, . . . ,µm,n > 0 with ∑

m
k=1 µk,n = 1 such that∥∥∥∥∥G

(
m

∑
k=1

µk,nxk,n

)
+ y

∥∥∥∥∥6 2− ε.

Then, for µk = limn,U µk,n we have∥∥∥∥∥GU

(
m

∑
k=1

µk(xk,n)U

)
+ ỹ

∥∥∥∥∥6 2− ε,

which contradicts (8.48).

Now, since E ∈U , according to (8.49) there is an n0 ∈ E such that∥∥∥∥∥T x0−
m

∑
k=1

λkθkT (xk,n0)

∥∥∥∥∥< ε.

The corresponding Fn0 fulfills (3) in Definition 3.9. ut

Since lushness of an operator reduces to the fact that the identity operator is a
target for it, we obtain the following two corollaries.

Corollary 8.18. Let U be a free ultrafilter on N, (Xn)n∈N, (Yn)n∈N be sequences of
Banach spaces, (Gn)n∈N be a sequence of lush operators where Gn ∈ SL(Xn,Yn) for
every n ∈ N. Then G = (Gn)U ∈ L((Xn)U ,(Yn)U ) is lush.

Corollary 8.19. Let U be a free ultrafilter on N, X, Y be Banach spaces, G ∈
SL(X ,Y ). If GU = (G,G, . . .)U ∈ L(XU ,YU ) is lush, then G is lush.





Chapter 9

Open problems

Corresponding to Spear sets and spear vectors:

Problem 9.1. Let X be a complex Banach space. If Spear(X) is not compact, does
X contain a copy of c0 or `1?

Problem 9.2. If X is a complex smooth Banach space and Spear(X∗) 6= /0, can we
deduce that X ∼= C?

Corresponding to Lush operators:

Problem 9.3. Are items (a) and (b) in Proposition 3.32 necessary for G to be lush?
If there is a counterexample, notice that the domain must be non separable.

Corresponding to Examples in classical Banach spaces:

Problem 9.4. Is lush the dual of the Fourier transform on L1? Is lush the Fourier-
Stieltjes transform?

Problem 9.5. Is Proposition 4.2 always an equivalence?

Problem 9.6. Is there an intrinsic characterization of lush operators or of spear op-
erators acting from an L1(µ) space analogous to the one given in Theorem 4.18 for
the aDP?

Corresponding to Further results:

Problem 9.7. Are spearness and lushness equivalent when the codomain space is
SCD? The aDP and spearness are, see Remark 5.4.

Problem 9.8. Are the aDP and lushness equivalent when the image of the operator
is Asplund? They are equivalent when the codomain is Asplund, see Proposition
5.3.
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Problem 9.9. Can the results about rank-one operators be extended to finite-rank
operators? They are Corollary 5.9 and Proposition 5.20.

Problem 9.10. If G : X −→ Y is lush and Y is L-embedded, is G∗ lush? This is true
for spearness and the aDP (see Proposition 5.21).

Corresponding to Isomorphic and isometric consequences:

Problem 9.11. Is Theorem 6.1 valid in the complex case? That is, does the dual of
the domain of a complex operator with infinite rank and the aDP always contain `1?

Problem 9.12. Let G : X −→ Y be an operator with the aDP. Does X = K if X is
strictly convex or smooth? Does Y =K if Y is strictly convex or smooth?

Problem 9.13. Does every spear operator attain its norm? This is true for lush oper-
ators, see Proposition 6.8, but it is not true for operators with the aDP, see Example
8.7.

Corresponding to Stability results:

Problem 9.14. Are there results about the relationship between spear and lush op-
erators with quotients by the kernel of the operator analogous to the one given in
Proposition 8.1 for the aDP?
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spear, 39
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Spear(·), 39
strictly convex, 5
strong Daugavet operator, 23
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ultraproduct, 144
uniform algebra, 75
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