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Abstract. It has been very recently discovered that there are compact linear operators between

Banach spaces which cannot be approximated by norm-attaining operators. The aim of this note
is to discuss those examples and also sufficient conditions to ensure that compact linear operators

can be approximated by norm attaining operators. To do so, we introduce the analogous for
compact operators of Lindenstrauss properties A and B.

1. Introduction

The study of norm-attaining operators started with a celebrated paper by J. Lindenstrauss of
1963 [25]. There, he provided examples of pairs of Banach spaces such that there are (bounded
linear) operators between them which cannot be approximated by norm-attaining operators. Also,
sufficient conditions on the domain space or on the range space providing the density of norm-
attaining operators were given. We recall that an operator T between two Banach spaces X and
Y is said to attain its norm whenever there is x ∈ X with ‖x‖ = 1 such that ‖T‖ = ‖T (x)‖ (that
is, the supremum defining the operator norm is actually a maximum).

Very recently, it has been shown that there exist compact linear operators between Banach spaces
which cannot be approximated by norm-attaining operators [28], solving a question open since the
1970s. We recall that an operator between Banach spaces is compact if it carries bounded sets
into relatively compact sets or, equivalently, if the closure of the image of the unit ball is compact.
After the cited result of [28], it makes more sense to discuss sufficient conditions on the domain or
the range space to ensure that every compact linear operator between them can be approximated
by norm attaining operators. This is the objective of the present paper.

Prior to discuss results about the density of norm-attaining compact operators, let us make
some remarks about the existence of compact operators which do not attain the norm. First, it is
clear that if the domain of a linear operator is a finite-dimensional space, then the image by it of
the unit ball is actually compact and, therefore, the operator automatically attains its norm. This
argument extends to infinite-dimensional reflexive spaces. Indeed, if X is a reflexive space, every
compact operator from X into a Banach space Y is completely continuous (i.e. it maps weakly
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convergent sequences into norm convergent sequences, see [13, Problem 30 in p. 515] for instance)
and so the weak (sequential) compactness of the unit ball of X gives easily the result. We refer to
[11, Theorem 6 in p. 16] for a discussion on when all bounded linear operators between reflexive
spaces attain their norm. On the other hand, for every non-reflexive Banach space X there is
a continuous linear functional on X which does not attain its norm (James’ theorem, see [11,
Theorem 2 in p. 7] for instance). The multiplication of such functional by a fix non-zero vector
of a Banach space Y clearly produces a rank-one (hence compact) operator from X into Y which
does not attain its norm.

Let us present a brief account on classical results about norm-attaining operators. The exposi-
tory paper [3] contains a more detailed relate that can be used for reference and background. We
need some notation first. Given two (real or complex) Banach spaces X and Y , we write L(X,Y )
to denote the Banach space of all bounded linear operators from X into Y , endowed with the op-
erator norm. By K(X,Y ) and F (X,Y ) we denote the subspaces of L(X,Y ) of compact operators
and finite-rank operators, respectively. We write X∗ for the (topological) dual of X, BX for it
closed unit ball and SX for the unit sphere. The set of norm-attaining operators from X into Y
is denoted by NA(X,Y ). The study on norm-attaining operators started as a negative answer by
J. Lindenstrauss [25] to the question of whether it is possible to extend to the vector valued case
the classical Bishop-Phelps theorem of 1961 [6] stating that the set of norm-attaining functionals
is always dense in the dual of a Banach space. As the question has a negative answer in general,
J. Lindenstrauss introduced two properties to study norm-attaining operators: a Banach space X
(resp. Y ) has Lindenstrauss property A (resp. property B) if NA(X,Z) is dense in L(X,Z) (resp.
NA(Z, Y ) is dense in L(Z, Y )) for every Banach space Z. It is shown in [25], for instance, that
c0, C[0, 1] and L1[0, 1] fail property A. Examples of spaces having property A (including reflexive
spaces and `1) and of spaces having property B (including c0, `∞ and every finite-dimensional
space whose unit ball is a polyhedron) are also shown in this paper. There are many extensions
of Lindenstrauss results from which we will comment only a representative sample. With respect
to property A, J. Bourgain showed in 1977 that every Banach space with the Radon-Nikodým
property have property A and that, conversely, if a Banach space X has property A in every
equivalent norm, then it has the Radon-Nikodým property (this direction needs a refinement due
to R. Huff, 1980). W. Schachermayer (1983) and B. Godun and S. Troyanski (1993) showed that
“almost” every Banach space can be equivalently renormed to have property A. With respect to
property B, J. Partington proved that every Banach space can be renormed to have property B
(1982) and W. Schachermayer showed that C[0, 1] fails the property (1983). W. Gowers showed
in 1990 that `p does not have property B for 1 < p < ∞, a result extended by M. Acosta (1999)
to all infinite-dimensional strictly convex Banach spaces and to infinite-dimensional L1(µ) spaces.
With respect to pairs of classical Banach spaces not covered by the above results, J. Johnson and
J. Wolfe (1979) proved that, in the real case, NA(C(K), C(S)) is dense in L(C(K), C(S)) for all
compact spaces K and S, and C. Finet and R. Payá (1998) showed the same result for the pair
(L1[0, 1], L∞[0, 1]). Concerning the study of norm-attaining compact operators, J. Diestel and
J. Uhl (1976) [12] showed that norm-attaining finite-rank operators from L1(µ) into any Banach
space are dense in the space of all compact operators. This study was continued by J. Johnson
and J. Wolfe [23] (1979), who proved the same result when the domain space is a C(K) space or
the range space is an L1-space (only real case) or a predual of an L1-space. In 2013, B. Cascales,
A. Guirao, and V. Kadets [9, Theorem 3.6] showed that for every uniform algebra (in particular,
the disk algebra A(D)), the set of norm-attaining compact operators arriving to the algebra is
dense in the set of all compact operators.
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Our objective here is to discuss positive and negative result about density of norm-attaining
compact operators. As this question is too general, and imitating what Lindenstrauss did in 1963,
we introduce the following two properties.

Definition 1.1. Let X, Y be Banach spaces.

(a) X is said to satisfy property Ak if K(X,Z) ∩ NA(X,Z) is dense in K(X,Z) for every
Banach space Z.

(b) Y is said to satisfy property Bk if K(Z, Y )∩NA(Z, Y ) is dense in K(Z, Y ) for every Banach
space Z.

It is not clear whether, in general, property A implies property Ak or property B implies property
Bk.

Question 1.2. Does Lindenstrauss property A imply property Ak?

Question 1.3. Does Lindenstrauss property B imply property Bk?

We do not know the answer to these two questions, but all sufficient conditions for Lindenstrauss
properties A and B listed below also implies, respectively, properties Ak and Bk. This is so because
the usual way of establishing the density of norm-attaining operators is by proving that every
operator can be approximated by compact perturbations of it attaining the norm.

Besides of these examples, there are results which are specific for compact operators and they
depend on some stronger forms of the approximation property. Let us recall the basic principles
of this concept. We refer to the classical book [26] for background and to [8] for a more updated
account. A Banach space X has the (Grothendieck) approximation property if for every compact
set K and every ε > 0, there is R ∈ F (X,X) such that ‖x−R(x)‖ < ε for all x ∈ K. Useful and
classical results about the approximation theory are the following.

Proposition 1.4. Let X, Y be Banach spaces.

a) Y has the approximation property if and only if F (Z, Y ) = K(Z, Y ) for every Banach space
Z.

b) X∗ has the approximation property if and only if F (X,Z) = K(X,Z) for every Banach
space Z.

c) If X∗ has the approximation property, then so does X.
d) (Enflo) There exist Banach spaces without the approximation property. Actually, there are

closed subspaces of c0 failing the approximation property.

What is the relation between the approximation property and norm-attaining compact opera-
tors? On the one hand, the negative examples given in [28] exploit the failure of the approximation
property of some subspaces of c0 together with an easy extension to its subspaces of a geometrical
property proved by Lindenstrauss for c0 (see section 2 for details). On the other hand, the most
of the positive results for properties Akand Bk which are not related to Lindenstrauss properties
A and B use some strong form of the approximation property. Actually, all positive results in this
line try to give a partial answer to one of the following two open questions.

Question 1.5. Does the approximation property imply property Bk?

Question 1.6. Has property Ak every Banach space whose dual has the approximation property?

Actually, by Proposition 1.4.a, Question 1.5 is equivalent to the following one, which is consid-
ered one of the most important open question in the theory of norm-attaining operators.
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Question 1.7. Does every finite-dimensional Banach space have Lindenstrauss property B?

Surprising, this question is open even for the two-dimensional Euclidean space.

In section 3 we collect all results about property Ak. We start by listing the main known
examples of Banach spaces with Lindenstrauss property A since all of them have property Ak.
Next, we show a result of [23] that an stronger version of the approximation property of the dual
of a Banach space (which we may called w∗ metric π property) implies property Ak, show that
most of the examples known in the literature are proved in this way, and also present some new
examples. In particular, we get the following (non-exahustive) list of examples of Banach spaces
with property Ak: L1(µ) spaces, C0(L) spaces, preduals of `1, and closed subspaces of c0 with
monotone basis.

The results for property Bk appear in section 4. Again, we start with a list of known examples
of Banach spaces with Lindenstrauss property B which also have property Bk. Next, as we do
not know whether the approximation property implies property Bkor, equivalently, whether finite-
dimensionality implies property B (Questions 1.5 and 1.7), we provide two sufficient conditions.
The first one is very simple: suppose that a Banach space Y has the approximation property and
every finite-dimensional subspace of it is contained in another subspace of Y having property Bk.
Then, the whole space Y has property Bk. The second sufficient condition deals with the existence
of a bounded net of projections converging to the identity in the strong operator topology and
such that their ranges have property Bk. These two ideas lead to a list including most of the
known examples of Banach spaces with property Bk: preduals of L1(µ) spaces (in particular,
C0(L) spaces), real L1(µ) spaces, and polyhedral Banach spaces with the approximation property
(in particular, subspaces of c0 with the approximation property, both in the real and in the complex
case). Besides of these examples, uniform algebras have been very recently proved to have property
Bk.

We would like to finish this introduction with some comments about the complex case of Bishop-
Phelps theorem and its relation to Question 1.7 for the two dimensional real Hilbert space. First,
let us comment that there is a complex version of the Bishop-Phelps theorem, easily deductible
from the real case, which states that for every complex Banach space X, complex-linear norm-
attaining functionals from X into C are dense in X∗ = L(X,C) (see [32] or [33, §2]). But this does
not imply that C viewed as the real two-dimensional Hilbert space have Lindenstrauss property
B, as it does not allow to work with operators which are not complex-linear. On the other hand,
V. Lomonosov showed in 2000 [27] that there is a complex Banach space X and a (non-complex
symmetric) closed convex bounded subset C of X such that there is no element in X∗ attaining
the supremum of its modulus on C.

2. Negative examples

Our goal here is to present the recent results in [28] providing examples of compact operators
which cannot be approximated by norm-attaining operators. The key idea is to combine the
approximation property with the following simple geometric idea. Let X and Y be Banach spaces
and let T ∈ L(X,Y ) with ‖T‖ = 1. Suppose that T attains its norm at a point x0 ∈ SX which is
not an extreme point of BX , let z ∈ X be such that ‖x0±z‖ 6 1 and observe that ‖Tx0±Tz‖ 6 1.
If Tx0 ∈ SY is an extreme point of BY , then Tz = 0. Summarizing:

‖x0 ± z‖ 6 1 and Tx0 is an extreme point of BY =⇒ Tz = 0. (1)

Two remarks are pertinent. First, the most quantity of vectors z’s we may use in the above
equation, the most information we get about T . Second, to get that Tx0 ∈ SY is an extreme point,
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the easiest way is to requiere that all points in SY are extreme points of BY , that is, that Y is
strictly convex. Observe that geometrically, this argument means that an operator into a strictly

T
x0

Tx0

Figure 1. An operator attaining its norm into a strictly convex space

convex Banach space which attains its norm in the interior of a face of the unit sphere carries the
whole sphere to the same point (see Figure 1).

Next, suppose that for every x0 ∈ SX , the set of z’s working in (1) generate a finite-codimensional
subspace. Then T has finite-rank. We have proved the key ingredient for all the examples.

Lemma 2.1 (Geometrical key lemma, Lindenstrauss). Let X, Y be Banach spaces. Suppose that
for every x0 ∈ SX the closed linear span of the set of those z ∈ X such that ‖x0 ± z‖ 6 1 is
finite-codimensional and that Y is strictly convex. Then, NA(X,Y ) ⊆ F (X,Y ).

This result was used by J. Lindenstrauss [25] to give a direct proof of the fact that c0 fails
property A (this result is deductible from earlier parts in the same paper). How was this done?
Just observing that for every x0 ∈ Sc0 , there is N ∈ N such that

∥∥x0 ± 1
2en
∥∥ 6 1 for every

n > N and that there is a strictly convex Banach space Y isomorphic to c0. The isomorphism
from c0 into Y is not compact and so it cannot be approximated by norm-attaining operators by
Lemma 2.1. The argument also shows that strictly convex renorming of c0 do not have property
B. Similar arguments like the above ones, replacing c0 by suitable Banach spaces, have been used
by T. Gowers [18] to show that `p fails Lindenstrauss property B, and by M. Acosta [1, 2] to show
that no infinite-dimensional strictly convex Banach space nor infinite-dimensional L1(µ) space has
Lindenstrauss property B.

But let us return to compact operators. Instead of looking for a non-compact operator which
cannot be approximated by norm-attaining operators using Lemma 2.1, the idea in [28] is to use
domain spaces without the approximation property. The key idea there is that Lindenstrauss’
argument for c0 extends to all its closed subspaces.

Lemma 2.2 ([28]). Let X be a closed subspace of c0. Then, for every x0 ∈ SX the closed linear
span of the set of those z ∈ X such that ‖x0 ± z‖ 6 1 generates a finite-codimensional subspace.

Proof. Fix x0 ∈ SX . As x0 ∈ c0, there is N ∈ N such that |x0(n)| < 1/2 for every n > N . Now,
consider the finite-codimensional subspace of X given by

Z =
{
z ∈ X : z(i) = 0 for 1 6 i 6 N

}
,

and observe that for every z ∈ Z with ‖z‖ 6 1/2, we have ‖x0 ± z‖ 6 1. �



6 MIGUEL MARTIN

Therefore, combining this result with Lemma 2.1, we get the following.

Corollary 2.3 ([28]). Let X be a closed subspace of c0 and let Y be a strictly convex Banach
space. Then, NA(X,Y ) ⊆ F (X,Y ).

What is next? We just have to recall the approximation property and use Proposition 1.4.
Pick a closed subspace X of c0 without the approximation property. Then, X∗ also fails the
approximation property, so there is a Banach space Y and T ∈ K(X,Y ) which is not in the closure
of F (X,Y ). Considering Y as the range of T , which is separable, we may suppose that Y is strictly
convex (using an equivalent renorming, see [10, §II.2]). Now, Corollary 2.3 gives that T cannot be
approximated by norm-attaining operators. We have proved.

Fact 2.4 ([28]). There exist compact operators between Banach spaces which cannot be approxi-
mated by norm-attaining operators.

Actually, we have proved the following result.

Proposition 2.5 ([28]). Every closed subspace of c0 whose dual does not have the approximation
property fails property Ak.

An specially interesting example can be given using an space constructed by W. Johnson and
G. Schechtman [22, Corollary JS, p. 127] which is a closed subspace of c0 with Schauder basis
whose dual fails the approximation property.

Example 2.6 ([28]). There exist a subspace of c0 with Schauder basis failing property Ak.

Compare this result with Corollary 3.13.

Next we would like to produce more examples without property Ak. We say that the norm of
a Banach space X locally depends upon finitely many coordinates if for every x ∈ X, there exist
ε > 0, a finite subset {f1, f2, . . . , fn} of X∗ and a continuous function ϕ : Rn −→ R such that
‖y‖ = ϕ(f1(y), f2(y), . . . , fn(y)) for every y ∈ X such that ‖x − y‖ < ε. We refer to [16] and
references therein for background. Closed subspaces of c0 have this property [16, Proposition III.3]
and, conversely, every infinite-dimensional Banach space whose norm locally depends upon finitely
many coordinates contains an isomorphic copy of c0 [16, Corollary IV.5]. It is easy to extend
the proof of Lemma 2.2 to this case and then use Lemma 2.1 to get the following extension of
Proposition 2.5.

Proposition 2.7. Let X be a Banach space whose norm locally depends upon finitely many coor-
dinates and fails the approximation property. Then X does not have property Ak.

Proof. Fix x0 ∈ SX . For ε = 1/2, consider {f1, f2, . . . , fn} ⊂ X∗ and ϕ : Rn −→ R given by the
hypothesis. Let Z =

⋂n
i=1 ker fi, which is finite-codimensional. For z ∈ Z with ‖z‖ < 1/2, we have

that

‖x0 ± z‖ = ϕ
(
f1(x0 ± z), f2(x0 ± z), . . . , fn(x0 ± z)

)
= ϕ

(
f1(x0), f2(x0), . . . , fn(x0)

)
= 1.

Now, we may repeat the proof of Proposition 2.5 using the above fact instead of Lemma 2.2. �

We now deal with the range space. Let Y be a strictly convex Banach space without the
approximation property. By a result of A. Grothendieck [21, Theorem 18.3.2], there is a closed
subspace X of c0 such that F (X,Y ) is not dense in K(X,Y ). This, together with Corollary 2.3
show that Y fails property Bk.
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Proposition 2.8 ([28]). Every strictly convex Banach space without the approximation property
fails property Bk.

The same kind of arguments can be applied to subspaces of complex L1(µ) spaces without the
approximation property. Indeed, every subspace Y of the complex L1(µ) space is complex strictly
convex (see [20, Proposition 3.2.3]) and this means that for every y ∈ Y with ‖y‖ = 1 and z ∈ Y ,
the condition ‖y + θz‖ 6 1 for every θ ∈ C with |θ| = 1 implies z = 0. An obvious adaption of the
proof of Corollary 2.3 and the proof of the above proposition provide the following result.

Proposition 2.9 ([28]). Every closed subspace of the complex space L1(µ) without the approxima-
tion property fails property Bk.

It is even possible to produce a Banach space Z and a compact endomorphism of Z which
cannot be approximated by norm-attaining operators.

Example 2.10 ([28]). There exists a Banach space Z and a compact operator from Z into itself
which cannot be approximated by norm-attaining operators.

This is an immediate consequence of the following lemma, which is proved in [28, Theorem 8].

Lemma 2.11 ([28]). Let X, Y be Banach spaces and let Z = X ⊕∞ Y . If NA(Z,Z)∩K(Z,Z) is
dense in K(Z,Z) then NA(X,Y ) ∩K(X,Y ) is dense in K(X,Y ).

We finish the section about negative examples with an easy consequence of Lemma 2.3 about
Lindenstrauss property A which we do not know whether it was previously known.

Proposition 2.12. No infinite-dimensional closed subspace of c0 satisfies Lindenstrauss property
A.

Proof. LetX be a infinite-dimensional closed subspace of c0 and let Y a strictly convex renorming of
c0. By Corollary 2.3, NA(X,Y ) ⊂ F (X,Y ), but as X is infinite-dimensional, the inclusion from X
into Y is non-compact and, therefore, it cannot be approximated by norm-attaining operators. �

Let us observe that this result solves in the negative Question 13 of [28] as it is written there.
As we have done here, it can be solved using arguments from that paper. But, actually, there is an
errata in the statement of this question and the exact question that the author wanted to propose
is about property Ak (see Question 3.14).

3. Positive results on domain spaces

As we commented in the introduction, every compact operator whose domain is reflexive attains
its norm. In particular, reflexive spaces have property Ak. To get more examples, we first recall
that even it is not known whether Lindenstrauss property A implies property Ak(Question 1.2),
the usual way to prove property A for a Banach space X is by showing that every operator from
X can be approximated by compact perturbations of it attaining the norm. Therefore, the known
examples of spaces with property A actually have property Ak. The main examples of this kind
are spaces with the Radon-Nikodým property (J. Bourgain 1977 [7]) and those with property α
(W. Schachermayer 1983 [34]). Let us start with the Radon-Nikodým property, which does not
need presentation as it is one of the classical properties studied in geometry of Banach spaces, but
let us just recall that reflexive spaces and `1 have it. Bourgain’s result is much deeper that what
we are going to present here and the paper also contains a kind of converse result. The paper [7]
is consider one of the cornerstone results in the theory of norm-attaining operators and connect
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this theory with the geometric concept of dentability. The proof given by Bourgain is based in
a variational principle introduced in the same paper and approximates every operator by nuclear
(hence compact) perturbations of it attaining the norm. The variational principle was extended to
the non-linear case in 1978 by C. Stegall [36] getting rank-one perturbations. We are not going to
present the proof here; we refer the reader to the 1986 paper [37] of C. Stegall for a simpler proof
and applications.

Theorem 3.1 (Bourgain). The Radon-Nikodým property implies property Ak.

Let us introduce the definition of property α, probably less known. A Banach space X has
property α if there are two sets {xi : i ∈ I} ⊂ SX , {x∗i : i ∈ I} ⊂ SX∗ and a constant 0 6 ρ < 1
such that the following conditions hold:

(i) x∗i (xi) = 1, ∀i ∈ I.
(ii) |x∗i (xj)| 6 ρ < 1 if i, j ∈ I, i 6= j.

(iii) BX is the absolutely closed convex hull of {xi : i ∈ I} or, equivalently, for every x∗ ∈ X∗,
‖x∗‖ = sup

i∈I

∣∣x∗(xi)∣∣.
This property was introduced by W. Schachermayer [34] as an strengthening of a property used
by J. Lindenstrauss in the seminal paper [25]. We refer to [29] and references therein for more
information and background. The prototype of Banach space with property α is `1.

Proposition 3.2 (Schachermayer). Property α implies property Ak.

Proof. Let X be a Banach space with property α with constant ρ ∈ [0, 1) and let Y be a Banach
space. Fix T ∈ K(X,Y ), T 6= 0, and ε > 0. We find i ∈ I such that

‖Txi‖ >
‖T‖(1 + ερ)

1 + ε

and define S ∈ K(X,Y ) by

Sx = Tx+ εx∗i (x)Txi (x ∈ X).

Then ‖Sxi‖ > ‖T‖(1 + ερ), while ‖Sxj‖ 6 ‖T‖(1 + ερ) for every j 6= i. This gives that S ∈
NA(X,Y ) and it is clear that ‖T − S‖ 6 ε‖T‖. �

The main utility of property α is that many Banach spaces can be renormed with property α
(B. Godun and S. Troyanski 1983 [17], previous results by W. Schachermayer [34]), so we obtain
that property Ak is isomorphically innocuous in most cases.

Corollary 3.3. Every Banach space X with a biorthogonal system whose cardinality is equal to
the density character of X can be equivalently renormed to have property Ak. In particular, this
happens if X is separable.

Let us comment that property Ak for a Banach space X does not imply that for every Banach
space Y , norm-attaining finite-rank operators from X into Y are dense in K(X,Y ). Indeed, by
the above, all reflexive spaces have property Ak , while there are reflexive spaces whose duals fail
the approximation property (even subspaces of `p for p 6= 2).

Let us pass to discuss on results which are specific of property Ak and do not follow from
property A. All results we know of this kind follow from the same general principle: an stronger
version of the approximation property of the dual, and so give partial answers to Question 1.6.
The argument appeared in the 1979 paper by J. Johnson and J. Wolfe [23, Lemma 3.1]. The (easy)
proof of it appeared in [28, Proposition 11].
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Proposition 3.4 (Johnson-Wolfe). Let X be a Banach space. Suppose there is a net (Pα) of finite-
rank contractive projections on X such that (P ∗α) converges to Id in the strong operator topology
(i.e. for every x∗ ∈ X∗, (P ∗αx

∗) −→ x∗ in norm). Then X has property Ak.

Sketch of the proof. Let Y be a Banach space and consider T ∈ K(X,Y ). First, all operators TPα
attain their norm since TPα(BX) = T (BPα(X)) and BPα(X) is compact. By using the compactness
of T , it can be easily proved that (P ∗αT

∗) −→ T ∗, so (TPα) −→ T . �

This result was used in the cited paper [23] to get examples of spaces with property Ak. In [23,
Proposition 3.2] it is shown that real C(K) spaces ensure the property given in Proposition 3.4,
but the proof easy extends to real or complex C0(L) spaces.

Example 3.5 (Johnson-Wolfe). For every locally compact space Hausdorff space L, the space
C0(L) has property Ak.

In 1976, J. Diestel and J. Uhl [12] showed that L1(µ) spaces have property Ak.

Example 3.6 (Diestel-Uhl). For every positive measure µ, the space L1(µ) has property Ak.

If the measure is finite, the above result also follows from Proposition 3.4. The general case can
be obtained from the finite measure case using the following lemma, which is just the immediate
adaptation to compact operators of [31, Lemma 2].

Lemma 3.7. Let {Xi : i ∈ I} be a non-empty family of Banach spaces and let X denote the
`1-sum of the family. Then X has property Ak if and only if Xi does for every i ∈ I.

Compare Examples 3.5 and 3.6 with the result by W. Schachermayer that NA(L1[0, 1], C[0, 1])
is not dense in L(L1[0, 1], C[0, 1]) [35].

More examples of spaces with property Ak can be deduced from Proposition 3.4. The first set
is the family of preduals of `1.

Corollary 3.8. Let X be a Banach space such that X∗ is isometrically isomorphic to `1. Then
X has property Ak.

Proof. Let (x∗n)n∈N be a Schauder basis of X∗ isometrically equivalent to the usual `1-basis and for
every n ∈ N, let Yn the linear span of {x∗1, . . . , x∗n}. In the proof of [15, Corollary 4.1], a sequence
of w∗-continuous contractive projections Qn : X∗ −→ X∗ with Qn(X∗) = Yn is constructed.
The w∗-continuity of Qn provides us with a sequence of finite-rank contractive projections on X
satisfying the hypothesis of Proposition 3.4. Let us note that the results in [15] are given in the
real case, but in the case we are using the proofs work in the complex case as well. �

We do not know whether the corollary above extends to isometric preduals of arbitrary L1(µ)
spaces.

Question 3.9. Do all preduals of L1(µ) spaces have property Ak?

Proposition 3.4 also applied to spaces with a shrinking monotone Schauder basis. Recall that a
Schauder basis of a Banach space X is said to be shrinking if its sequence of coordinate functionals
is a Schauder basis of X∗.

Corollary 3.10. Every Banach space with a shrinking monotone Schauder basis has property Ak.



10 MIGUEL MARTIN

It is well-known that an unconditional Schauder basis of a Banach space is shrinking if the space
does not contain `1 (see [5, Theorem 3.3.1] for instance), so the following particular case appears.

Corollary 3.11. Let X be a Banach space with unconditional monotone Schauder basis which
does not contain `1. Then X has property Ak.

For the class of M -embedded spaces, this last result can be improved removing the uncon-
ditionality condition on the basis, by using the 1988 result of G. Godefroy and P. Saphar that
Schauder bases in M -embedded spaces with basis constant less than 2 are shrinking (see [19,
Corollary III.3.10], for instant). We recall that a Banach space X is said to be M -embedded if X⊥

is the kernel of an L1-projection in X∗ (i.e. X∗ = X⊥⊕Z for some Z and ‖x⊥+ z‖ = ‖x⊥‖+ ‖z‖
for every x⊥ ∈ X⊥ and z ∈ Z). We refer the reader to [19] for background.

Corollary 3.12. Every M -embedded space with monote Schauder basis has property Ak.

As c0 is an M -embedded space [19, Examples III.1.4] and M -embeddedness passes to closed
subspaces [19, Theorem III.1.6], we get the following interesting particular case

Corollary 3.13 ([28, Corollary 12]). Every closed subspace of c0 with monotone Schauder basis
has property Ak.

Compare this result with the example of a closed subspace of c0 with Schauder basis failing
property Ak (Example 2.6). It is an interesting question whether Corollary 3.13 extends to every
closed subspace of c0 with the metric approximation property.

Question 3.14. Does every closed subspace of c0 with the metric approximation property have
property Ak?

We finish this section which an easy observation about Questions 1.2 and 1.6: we do not know
whether either property A or the approximation property of the dual is sufficient to get property
Ak, but the two properties together are.

Proposition 3.15. Let X be a Banach space having Lindenstrauss property A and such that X∗

has the approximation property. Then, X has property Ak.

Proof. As X∗ has the approximation property, it is enough to show that every finite-rank oper-
ator starting from X can be approximated by finite-rank norm-attaining operators (see Propo-
sition 1.4.b). Fix a finite-rank operator T : X −→ Y and write Z = T (X) which is finite-
dimensional. As X has property A, we have that NA(X,Z) = NA(X,Z) ∩ K(X,Z) is dense
in L(X,Z) = K(X,Z), so we may find a sequence Tn ∈ NA(X,Z) converging to T (viewed
as an operator from X into Z). It is now enough to consider the operators Tn as elements of
NA(X,Y ) ∩K(X,Y ). �

4. Positive results on range spaces

The first example of a Banach space with property Bk is the base field by the classical Bishop-
Phelps theorem [6]. This implies that every rank-one operator can be approximated by norm-
attaining rank-one operators. It is not known whether this extends in general to finite-rank oper-
ators (Question 1.7 or even to rank-two operators.

To get more positive examples, and analogously to what is done in the previous section,
we start by recalling that it is not known whether Lindenstrauss property B implies property
Bk(Question 1.3) but, nevertheless, the usual way to prove property B for a Banach space X
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is by showing that every operator arriving to Y can be approximated by compact perturbations
of it attaining the norm. This is what happens with property β, which is the main example of
this kind. A Banach space Y has property β (J. Lindenstrauss 1963 [25]) if there are two sets
{yi : i ∈ I} ⊂ SY , {y∗i : i ∈ I} ⊂ SY ∗ and a constant 0 6 ρ < 1 such that the following conditions
hold:

(i) y∗i (yi) = 1, ∀i ∈ I.
(ii) |y∗i (yj)| 6 ρ < 1 if i, j ∈ I, i 6= j.

(iii) For every y ∈ Y , ‖y‖ = supi∈I
∣∣y∗i (y)

∣∣ or, equivalently, BY ∗ is the absolutely weakly∗-closed
convex hull of {y∗i : i ∈ I} .

We refer to [29] and references therein for more information and background. Examples of Banach
spaces with property β are closed subspace of `∞(I) containing the canonical copy of c0(I) and
real finite-dimensional Banach spaces whose unit ball is a polyhedrum (actually, these are the only
real finite-dimensional spaces with property β).

Proposition 4.1 (Lindenstrauss). Property β implies property Bk.

Proof. Let Y be a Banach space with property β with constant ρ ∈ [0, 1) and let X be a Banach
space. Fix T ∈ K(X,Y ) with ‖T‖ = 1 and ε > 0, and consider δ > 0 such that(

1 +
ε

2

)
(1− δ) > 1 + ρ

(ε
2

+ δ
)
.

Next, we find i ∈ I such that

‖T ∗y∗i ‖ > 1− δ
and apply Bishop-Phelps theorem [6] to get x∗0 ∈ X∗ attaining its norm such that

‖x∗0‖ = ‖T ∗y∗i ‖ and ‖T ∗y∗i − x∗0‖ < δ.

Define S ∈ K(X,Y ) by

Sx = Tx+
[(

1 +
ε

2

)
x∗0(x)− y∗i (Tx)

]
(x ∈ X).

Then, it is immediate to check that ‖T − S‖ < ε
2 + δ < ε. Now, we have that

S∗y∗i =
(

1 +
ε

2

)
x∗0, ‖S∗y∗i ‖ >

(
1 +

ε

2

)
(1− δ),

and for j 6= i, we have

‖S∗y∗j ‖ 6 1 + ρ
(ε

2
+ δ
)
.

This shows that S∗ attains its norm at y∗i ∈ SY ∗ . As S∗y∗i =
(
1 + ε

2

)
x∗0 ∈ X∗ also attains its

norm, it follows that S ∈ NA(X,Y ). �

R. Partington proved in 1982 [30] that every Banach space can be renormed with property β,
so we obtain that property Bk is isomorphically innocuous.

Corollary 4.2. Every Banach space can be equivalently renormed to have property Bk.

Let us comment that property Bk for a Banach space Y does not imply that for every Banach
space X, norm-attaining finite-rank operators from X into Y are dense in K(X,Y ). Indeed, by the
above, there are many Banach spaces with property β (and so Bk) but without the approximation
property.
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Let us comment that the knowledge about property B is more unsatisfactory than the one about
property A. Besides of property β, the only sufficient condition we know for property B is the so-
called property quasi-β, introduced in 1996 by M. Acosta, F. Agirre and R. Payá [4]. We are not
going to give the definition of this property here (it is a weakening of property β), but let us just
comment that there are even examples of finite-dimensional spaces with property quasi-β which
do not have property β. Again, the proof of the fact that property quasi-β implies property B can
be adapted to the compact case.

Proposition 4.3 (Acosta-Aguirre-Payá). Property quasi-β implies property Bk.

Let us pass to discuss on results which are specific of property Bkand are not related to property
B. Most results we know of this kind follows from two general principles. The first one is the
following, whose proof is straightforward.

Proposition 4.4. Let Y be a Banach space with the approximation property. Suppose that for ev-
ery finite-dimensional subspace W of Y , there is a closed subspace Z having Lindenstrauss property
B such that W 6 Z 6 Y . Then Y has property Bk.

This result applied to those Banach space with the approximation property satisfying that all
its finite-dimensional subspaces have Lindenstrauss property B. This is the case of the so-called
polyhedral spaces. We recall that a real Banach space is said to be polyhedral if the unit balls of
all of its finite-dimensional subspaces are polyhedra (i.e. the convex hull of finitely many points).
A typical example of polyhedral space is c0 and hence, so are its closed subspaces. We refer to
[14] for background on polyhedral spaces. Real finite-dimensional polyhedral spaces clearly fulfil
property β [25].

Corollary 4.5. A polyhedral Banach space with the approximation property has property Bk.

To deal with the complex case, we observe that polyhedrality is equivalent to the fact that the
norm of each finite-dimensional subspace can be calculated as the maximum of the absolute value
of finitely many functionals, and this implies property β also in the complex case. With this idea,
the result above can be extended to the complex case.

Proposition 4.6. Let Y be a complex Banach space with the approximation property such that
for every finite-dimensional subspace, the norm of the subspace can be calculated as the maximum
of the modulus of finitely many functionals. Then Y has property Bk.

It is easy to see that closed subspaces of c0 satisfy this condition (see [16, Proposition III.3]).

Example 4.7. Closed subspaces of real or complex c0 with the approximation property have
property Bk.

The main limitation of Proposition 4.4 is that we only know few examples of finite-dimensional
Banach spaces with property B. If we use property β (equivalent here to polyhedrality), what we
actually are requiring in that proposition is that all finite-dimensional subspaces have property B.
To deal with more examples, we present the second general principle to get property Bk, which
appeared in [23, Lemma 3.4].

Proposition 4.8 (Johnson-Wolfe). A Banach space Y has property Bk provided that there is a net
of projections {Qλ} in Y such that supλ ‖Qλ‖ < ∞ and converging to IdY in the strong operator
topology (i.e. Qλ(y) −→ y in norm for every y ∈ Y ) and such that Qλ(Y ) has property Bk for
every λ.
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Proof. Let X be a Banach space and fix T ∈ K(X,Y ). The compactness of T allows to show that
QλT converges in norm to T . Therefore, it is enough to prove that each QλT can be approximated
by norm-attaining compact operators, but this is immediate since QλT arrives to the space Qλ(Y )
which has property Bk. �

Observe that if in the proposition above the projections have finite-dimensional range, what we
are requiring is an stronger form of the approximation property.

This result was used in [23] to show that (real or complex) isometric preduals of L1(µ) spaces
have property Bk. Indeed, by a classical result of A. Lazar and J. Lindenstrauss, the projections
Qλ can be chosen to have ‖Qλ‖ = 1 and Qλ(Y ) ≡ `nλ

∞ (see [24, Chapter 7] for instance).

Corollary 4.9 (Johnson-Wolfe). Every predual of a real or complex L1(µ) space has property Bk.

In particular,

Example 4.10 (Johnson-Wolfe). Real or complex C0(L) spaces have property Bk.

Proposition 4.8 also applied to real L1(µ) spaces. Indeed, it is enough to consider conditional
expectations to finite collections of subsets of positive and finite measure, and use the density of
simple functions in L1(µ). Doing that, we get a net (Qλ) of norm-one projections converging to
the identity in the strong operator topology such that Qλ(L1(µ)) ≡ `nλ

1 . In the real case, `m1 is
polyhedral, so it has property β; in the complex case, `m1 does not have property β and it is not
known whether it has property B.

Example 4.11 (Johnson-Wolfe). For every positive measure µ, the real space L1(µ) has property
Bk.

We do not know whether the above result extends to the complex case.

The last class of spaces with property Bk that we would like to present is the one of uniform
algebras. The result recently appeared in [9, R2 in p. 380] and the proof is completely different from
the previous ones in this chapter, as the authors do not use any kind of approximation property,
but a nice complex version of Urysohn lemma constructed in the same paper. We recall that a
uniform algebra is a closed subalgebra of a complex C(K) space that separates the points of K.

Proposition 4.12 (Cascales-Guirao-Kadets). Every uniform algebra has property Bk.
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