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Abstract. It is shown that the Bishop-Phelps-Bollobás theorem holds for bilinear forms on the complex

C0(L1) × C0(L2) for arbitrary locally compact topological Hausdorff spaces L1 and L2.

All along the paper, we will use the following usual notation. Let BX and SX denote, respectively,
the closed unit ball and the unit sphere of a Banach space X, and let X∗ denotes the (topological) dual
space of X. We write L(X,Y ) to denote the space of all bounded linear operators from a Banach space
X into a Banach space Y and B(X × Y ) to denote the space of all bounded bilinear forms defined on
X × Y . We say that T ∈ L(X,Y ) (respectively B ∈ B(X × Y )) attains its norm if there is x ∈ SX such
that ‖Tx‖ = ‖T‖ (respectively, there are x ∈ SX and y ∈ SY such that |B(x, y)| = ‖B‖).

The classical Bishop-Phelps theorem [14] states that the set of norm attaining linear functionals are
dense in the topological dual of an arbitrary Banach space. Bollobás [15] gave a quantitative version of
this theorem which is now called the Bishop-Phelps-Bollobás theorem and states the following (see [18,
Corollary 2.4] for this version):

Let X be a Banach space. If x ∈ BX and x∗ ∈ SB∗
X

satisfy Re x∗(x) > 1 − ε2/2. Then
there exist y ∈ SX and y∗ ∈ SX∗ such that y∗(y) = 1, ‖x∗ − y∗‖ < ε and ‖x− y‖ < ε.

In 1963, Lindenstrauss [34] studied possible extensions of the Bishop-Phelps theorem to the vector-
valued case, starting a fruitful line of research on norm attaining operators. We refer the reader to the
expository paper [1] for more information and background. Let us just comment a couple of interesting
results in this line. First, if a Banach space X has the Radon-Nikodým property, then norm attaining op-
erators from X into Y are dense in L(X,Y ) for every Banach space Y [16], and this actually characterizes
the Radon-Nikodým property if it holds for every equivalent renorming of X [16]. Second, norm attaining
operators are not dense in L(L1[0, 1], C[0, 1]) but norm attaining operators are dense in L(C(K), Lp(µ))
for every compact Hausdorff topological space K, every measure µ and 1 6 p <∞ [36].

In 2008, Acosta, Aron, Garćıa and Maestre [4] started the study of possible vector-valued versions of
the Bishop-Phelps-Bollobás theorem, introducing the so-called Bishop-Phelps-Bollobás property. A pair
(X,Y ) of Banach spaces has the Bishop-Phelps-Bollobás property for operators if for every 0 < ε < 1,
there is η(ε) > 0 such that given T ∈ L(X,Y ) with ‖T‖ = 1 and x0 ∈ SX satisfying ‖T (x0)‖ > 1− η(ε),
there exist x1 ∈ SX and S ∈ L(X,Y ) such that ‖S(x1)‖ = ‖S‖ = 1, ‖x0 − x1‖ < ε and ‖S −B‖ < ε. In
this case, it also said that the Bishop-Phelps-Bollobás theorem holds for L(X,Y ).

It is clear that the Bishop-Phelps-Bollobás property for a pair (X,Y ) implies that norm attaining
operators are dense in L(X,Y ), being false the converse: there is a (reflexive) space Y such that the
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FEDER grants FQM-185 and P09-FQM-4911.

1



2 KIM, LEE, AND MARTÍN

Bishop-Phelps-Bollobás theorem does not holds for L(`
(2)
1 , Y ) [4, 10] (`

(2)
1 is the two-dimensional L1

space) while all elements of L(`
(2)
1 , Y ) attain their norms. We refer the reader to [2, 4, 5, 10, 11, 12, 17,

21, 22, 29, 30, 31] and references therein for more information and background. Let us just mention some
examples of pairs of classical spaces having the Bishop-Phelps-Bollobás property for operators, namely,
(L1(µ), L∞(ν)) for arbitrary measure µ and localizable measure ν [12, 22], (L1(µ), L1(ν)) for arbitrary
measures µ and ν [22], (C(K1), C(K2)) for every compact spaces K1 and K2 [5], and (Lp(µ), Y ) for
arbitrary measure µ, arbitrary Banach space Y and 1 < p <∞ [6, 30].

On the other hand, a lot of attention was focus in the 1990’s on the problem of extending the Bishop-
Phelps theorem to the bilinear case, starting with the paper of Aron, Finet and Werner [13] where the
problem is stated and it is shown, in particular, that the Radon-Nikodým property is sufficient to get such
a extension. In 1998, Acosta, Aguirre and Payá [3] found the first negative example. In 1997, Alaminos,
Choi, Kim and Payá [8] showed that norm attaining bilinear forms on C0(L) spaces are dense in the
space of all bounded bilinear forms. We refer again to the expository paper [1] for a detailed account on
the subject.

Let us recall that for all Banach spaces X and Y , B(X × Y ) is isometrically isomorphic to L(X,Y ∗)
(by the canonical isometry B 7−→ T given by [T (x)](y) = B(x, y) for every y ∈ Y and x ∈ X). Moreover,
density of norm attaining bilinear forms on X × Y implies density of norm attaining operators from X
into Y ∗, as every norm attaining bilinear form produces a norm attaining operator. But the reverse result
is far from being true. For instance, norm attaining operators from L1[0, 1] into L∞[0, 1] are dense in
L(L1[0, 1], L∞[0, 1]) [26], while norm attaining bilinear forms are not dense in B(L1[0, 1]× L1[0, 1]) [19].

Very recently, Acosta, Becerra, Garćıa and Maestre [6] introduced the Bishop-Phelps-Bollobás property
for bilinear forms, a concept which appeared without name in [23].

Definition 1 ([6, 23]). A pair (X,Y ) of Banach spaces have the Bishop-Phelps-Bollobás property for
bilinear forms if for every 0 < ε < 1, there is η(ε) > 0 such that given B ∈ B(X × Y ) with ‖B‖ = 1 and
(x0, y0) ∈ SX × SY satisfying ‖B(x0, y0)‖ > 1− η(ε), there exist (x1, y1) ∈ SX × SY and S ∈ B(X × Y )
with ‖S‖ = 1 satisfying the following conditions:

|S(x1, y1)| = 1, ‖x0 − x1‖ < ε, ‖y0 − y1‖ < ε, and ‖S −B‖ < ε.

In this case, we also say that the Bishop-Phelps-Bollobás theorem holds for B(X × Y ).

There are some recent results about the Bishop-Phelps-Bollobás property for bilinear forms [6, 7, 23,
27, 30]. For instance, let us comment that the Bishop-Phelps-Bollobás theorem holds for B(X×Y ) if the
Banach spaces X and Y are uniformly convex [6].

If a pair (X,Y ) of Banach spaces has the Bishop-Phelps-Bollobás for bilinear forms, then norm at-
taining bilinear forms on X × Y are dense and, on the other hand, the pair (X,Y ∗) has the Bishop-
Phelps-Bollobás property for operators. None of the reversed results are true: the pair (`1, `1) fails the
Bishop-Phelps-Bollobás for bilinear forms [23], while norm attaining bilinear forms are dense in B(`1×`1)
[13] and also the pair (`1, `∞) has the Bishop-Phelps-Bollobás property for operators [4].

Recently, it has been shown that the Bishop-Phelps-Bollobás theorem holds for L(C0(L), L1(µ)) in the
complex case for arbitrary locally compact Hausdorff topological space L and arbitrary positive measure
µ [2, 31]. As C0(L)∗ is isometrically isomorphic to a L1(µ) space, it is natural to ask whether the Bishop-
Phelps-Bollobás theorem holds for B(C0(L1) × C0(L2)). In this paper, we show that the answer to this
question is affirmative (again in the complex case). Concretely, we will prove the following result.

Theorem 2. Let L1 and L2 locally compact Hausdorff topological spaces. Then the pair (C0(L1), C0(L2))
has the Bishop-Phelps-Bollobás property for bilinear forms in the complex case. Moreover, for every
0 < ε < 1 there exists η(ε) > 0, independent of L1 and L2, which is valid for B(C0(L1) × C0(L2)) in
Definition 1.

Even in the particular case of c0, the above result is new. It solves in the positive [7, Open problem
4.6.(1)] and [30, Problem (b) in p. 385] for the complex case.
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Corollary 3. The Bishop-Phelps-Bollobás theorem holds for B(c0 × c0) in the complex case.

The rest of this paper is devoted to provide the proof of Theorem 2, for which we will need a number
of preliminary results. From now on, we will only consider complex Banach spaces.

First, we fully use the power of the uniform complex convexity of L1(µ) spaces. The modulus of
complex convexity HX of a complex Banach space X is defined by

HX(ε) = inf

{
sup

06θ62π

∥∥x+ eiθ y
∥∥− 1 : x ∈ SX , ‖y‖ > ε

} (
ε ∈ R+

)
.

A (complex) Banach space is said to be uniformly complex convex if HX(ε) > 0 for all ε > 0. This
concept has been recently used to study denseness of norm attaining operators [2, 20]. It is easy to check
that every uniformly convex (complex) Banach space is uniformly complex convex. The converse result
is false, as it is shown in [28] that L1(µ) is uniformly complex convex. Moreover, there is common lower
bound for the modulus of complex convexity of all L1(µ) spaces [28, Theorem 1] (we also refer to [32, 33]).

Lemma 4 ([28]). There is a function η0 : (0, 1) −→ (0,∞) such that HL1(µ)(ε) > η0(ε) for every ε ∈ (0, 1)
and for every measure µ.

Second, let L be a locally compact Hausdorff space and C0(L) be the Banach space consisting of all
complex-valued continuous functions which vanish at infinity. Recall that a bounded linear functional x∗

on C0(L) is represented by a complex-valued Radon measure µx∗ on L. That is, for each x ∈ C0(L),

x∗(x) =

∫
L

x dµx∗

(this is the classical Riesz representation theorem for C0(L)∗). Notice that every complex-valued Radon
measure is regular and also that there is a Borel measure ν on L such that C0(L)∗ is isometrically
isometric to L1(ν) (just take a maximal family {µα}α of mutually singular positive Radon measures,
then C0(K)∗ = [⊕αL1(µα)]`1) and so C0(L)∗∗ can be identified with L∞(ν). We refer to the classical

book [35] for background. For each Borel subset A, we define the operator PA : C0(L)∗∗ −→ C0(L)∗∗ by
PA(f) = fχA for every f ∈ C0(L)∗∗ ≡ L∞(ν). Given a Radon measure µ on L and a Borel subset A of
L, |µ|(A) denotes the total variation of µ on A. We will use the following result which is just a particular
case of [2, Lemma 2.3] using that C0(L2)∗ ≡ L1(ν) is uniformly complex convex and taking η0 as the
function given by Lemma 4.

Lemma 5 (Particular case of [2, Lemma 2.3]). Let L1, L2 be locally compact Hausdorff spaces and let
A be a Borel subset of L1. For given 0 < λ < 1, if T ∈ L(C0(L1), C0(L2)∗) with ‖T‖ = 1 satisfies

‖T ∗∗PA‖ > 1− η0(λ)
1+η0(λ) , then ‖T ∗∗(Id−PA)‖ 6 λ.

The next result is clearly well-known (see [9, 5.5.4 and G.5] for instance) and follows from the fact
that C0(L)∗ ≡ L1(ν) does not contains c0. We state it for the sake of completeness.

Lemma 6. Let L1 and L2 be locally compact Hausdorff spaces and T ∈ L(C0(L1), C0(L2)∗). Then T is
weakly compact and so T ∗∗(C0(L1)∗∗) ⊂ C0(L2)∗.

We know present the main ingredient in the proof of Theorem 2.

Lemma 7. Let L1 and L2 be locally compact Hausdorff spaces. Then for every 0 < λ < 1 there is η > 0
which satisfies the following:

If B ∈ B(C0(L1)× C0(L2)) with ‖B‖ = 1 and (x, y) ∈ SC0(L1) × SC0(L2) satisfy |B(x, y)| > 1− η4, then

there exist compact sets K1 ⊂ L1, K2 ⊂ L2 and a bilinear form B̃ ∈ B(C(K1)× C(K2)) such that∣∣∣B̃(x|K1
, y|K2

)
∣∣∣ > 1− λ2 and ‖C −B‖ < λ,

where C ∈ B(C0(L1) × C0(L2)) is given by C(u, v) = B̃(u|K1
, v|K2

) for every (u, v) ∈ C0(L1) × C0(L2).

Besides, min
t∈K1

|x(t)| > 1− η2 and min
s∈K2

|y(s)| > 1− η.
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Proof. Choose 0 < η < 1 such that η4 + η3 + η2 + η < min

{
λ2,

η0(λ2 )
1+η0(λ2 )

}
, where η0(·) is given by

Lemma 4.

Fix B ∈ B(C0(L1)×C0(L2)) with ‖B‖ = 1 and (x, y) ∈ SC0(L1)×SC0(L2) satisfying |B(x, y)| > 1−η4.
Consider T ∈ L(C0(L1), C0(L2)∗) the operator defined by [T (u)](v) = B(u, v) for every v ∈ C0(L2) and
u ∈ C0(L1), and write

A1 =
{
t ∈ L1 : |x(t)| > 1− η2}, A2 =

{
s ∈ L2 : |y(s)| > 1− η}.

Then, we have that

1− η4 < |[T (x)](y)| = |[T ∗(y)](x)| =
∣∣∣∣∫
L

x dµT∗(y)

∣∣∣∣
6
∫
A1

d
∣∣µT∗(y)

∣∣+ (1− η2)

∫
Ac1

d
∣∣µT∗(y)

∣∣ 6 1− η2

∫
Ac1

d
∣∣µT∗(y)

∣∣ .
Hence,

∣∣µT∗(y)

∣∣ (Ac1) < η2. By the regularity of µT∗(y), there exists a compact set K1 ⊂ A1 such that∣∣µT∗(y)

∣∣ (Kc
1) < η2. Therefore,∣∣∣∣∫

K1

x dµT∗(y)

∣∣∣∣ =
∣∣T ∗∗(x|K1

)(y)
∣∣

> |[T ∗∗(x)](y)| −
∣∣[T ∗∗(x)](y)− [T ∗∗(x|K1

)](y)
∣∣

>1− η4 −

∣∣∣∣∣
∫
Kc

1

x dµT∗(y)

∣∣∣∣∣
>1− η4 − η2

Thus, ‖T ∗∗PK1‖ > 1 − η4 − η2 > 1 − η0(λ2 )
1+η0(λ2 )

. By Lemma 5, we get ‖T ∗∗ − T ∗∗PK1
‖ 6 λ/2. Now, let

U ∈ L(C0(L2), C0(L1)∗) be the operator defined by [U(v)](u) = T ∗∗(PK1
u)(v) for every u ∈ C0(L1) and

v ∈ C0(L2) (note that T ∗∗PK1
(C0(L1)) ⊂ C0(L2)∗ by Lemma 6). Since

|[U(y)](x)| =
∣∣∣∣∫
K1

x dµT∗(y)

∣∣∣∣ > 1− η4 − η2,

similarly to the above, we get
∣∣µU∗(x)

∣∣ (Ac2) < η3 + η. So there exists a compact set K2 ⊂ A2 such that∣∣µU∗(x)

∣∣ (Kc
2) < η3 + η. Hence, ∣∣∣∣∣

∫
Kc

2

y dµU∗(x)

∣∣∣∣∣ > 1− η4 − η2 − η3 − η

and

‖U∗∗PK2
‖ > 1−

η0

(
λ
2

)
1 + η0

(
λ
2

) .
Using Lemma 5 again, we get ‖U∗∗ − U∗∗PK2

‖ 6 λ/2.

Define B̃ ∈ B(C(K1) × C(K2)) by B̃(u′, v′) = [U∗∗(PK2
ṽ′)](ũ′) for every (u′, v′) ∈ C(K1) × C(K2),

where ũ′ and ṽ′ are norm preserving extensions of u′ and v′ to L1 and L2, respectively. Then, C as
in the statement of the lemma is well-defined. Indeed, if (u, v) ∈ C0(L1) × C0(L2), then 〈v, U∗u〉 =
〈T ∗∗(PK1u), v〉 . Since U∗u ∈ C0(L2)∗ and T ∗∗(PK1u) ∈ C0(L2)∗, we have, by Goldstine’s lemma,
〈ṽ, U∗u〉 = 〈T ∗∗(PK1

u), ṽ〉 for all ṽ ∈ C0(L2)∗∗. Therefore,

U∗∗(PK2 ṽ
′)(ũ′) =

〈
PK2 ṽ

′, U∗(ũ′)
〉

=
〈
PK2 ṽ

′, T ∗∗(PK1
ũ′)
〉
.
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This implies that C is well-defined. Finally, we also have that

‖B − C‖ = sup
x∈SC0(L1), y∈SC0(L2)

|B(x, y)− C(x, y)|

= sup
x∈SC0(L1), y∈SC0(L2)

|T ∗∗(x)(y)− U∗∗PK2(y)(x)|

= sup
x∈SC0(L1), y∈SC0(L2)

(|T ∗∗(x)(y)− T ∗∗PK1
(x)(y)|+ |T ∗∗PK1

(x)(y)− U∗∗PK2
(y)(x)|)

6 sup
x∈SC0(L1), y∈SC0(L2)

(|T ∗∗(x)(y)− T ∗∗PK1
(x)(y)|+ |U∗∗(y)(x)− U∗∗PK2

(y)(x)|)

=‖T ∗∗ − T ∗∗PK1‖+ ‖U∗∗ − U∗∗PK2‖ 6 λ. �

The next ingredient is the following easy consequence of Urysohn lemma.

Lemma 8. Assume that two continuous functions f, g ∈ BC0(L) and a compact set A ⊂ L are given. If
‖f|A − g|A‖ < ε, then there exists a function h ∈ BC0(L) such that h|A = f|A and ‖h− g‖ < ε.

Proof. Since A is compact there exists an open set U so that A ⊂ U and ‖f|U − g|U ‖ < ε. Using
Urysohn lemma, choose u ∈ C0(L) such that 0 6 u 6 1, u = 1 on A and u = 0 on U c. Then, clearly
h = uf + (1− u)g works. �

It is proved in [8] that the set of all norm attaining bilinear forms are dense in B(C0(L)× C0(L)) for
every locally compact space L. With a slight modification of the proof we may get the following.

Proposition 9 ([8]). Let L1, L2 be locally compact Hausdorff topological spaces. Then, every continuous
bilinear form on C0(L1)× C0(L2) can be approximated by norm attaining bilinear forms.

We are now ready to provide the proof of the main result.

Proof of Theorem 2. Given 0 < ε < 1, let

ψ = min

{
ε2

4
,

η0

(
ε
4

)
1 + η0

(
ε
4

)} .
Choose suitable positive numbers 0 < λ < ζ < γ < ψ satisfying the following three conditions:

(1)
((1−λ2)2−2λ)(1+λ−λ3)

1+λ − λ2

2 > 1− ζ2.

(2) ζ < min
{
γ, η0(γ)

1+η0(γ)

}
.

(3)
((1−λ2)2−2λ)(1+λ−λ3)

1+λ − λ2

2 − ζ − 2γ > 1− ψ2.

For such λ, choose 0 < η < ε given by Lemma 7.

Fix B ∈ B (C0(L1)× C0(L2)) with ‖B‖ = 1 and (x0, y0) ∈ SC0(L1) × SC0(L2) satisfying

|B(x0, y0)| > 1− η4.

Then there are compact sets K1, K2 and a bilinear form B̃ ∈ B(C(K1) × C(K2)) which satisfy the

conditions in Lemma 7. Let C ∈ B(C0(L1)×C0(L2)) be the canonical extension of B̃ and let f0 = x0|K1

and g0 = y0|K2
. Choose α ∈ C with |α| = 1 such that |B̃(f0, g0)| = αB̃(f0, g0).

Define B̃1 ∈ B(C(K1)× C(K2)) by

B̃1(f, g) = αB̃(f, g) + λα2B̃(f, g0)B̃(f0, g)
(
(f, g) ∈ C(K1)× C(K2)

)
and write B̃2 = B̃1/‖B̃1‖. Since the set of norm attaining bilinear mappings is dense in B(C(K1)×C(K2))

(Proposition 9), there exist B̃3 ∈ B(C(K1)× C(K2)) and (f1, g1) ∈ SC(K1) × SC(K2) such that

‖B̃3‖ = 1, ‖B̃3 − B̃2‖ <
λ2

2
and |B̃3(f1, g1)| = 1.
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Moreover, rotating g1 and f1 if needed, we may assume that

B̃3(f1, g1) = 1 and αB̃(f1, g0) = |B̃(f1, g0)|.

First, we have that

‖B̃1‖ > |B̃1(f0, g0)| =
∣∣∣∣αB̃(f0, g0) + λ

(
αB̃(f0, g0)

)2
∣∣∣∣

=
∣∣∣B̃(f0, g0)

∣∣∣+ λ
∣∣∣B̃(f0, g0)

∣∣∣2 > 1− λ2 + λ(1− λ2)2.

Thus, 1− λ 6 ‖B̃1‖ 6 1 + λ. Second,

1 = ‖B̃3‖ = B̃3(f1, g1) 6 Re B̃2(f1, g1) +
λ2

2
=

Re B̃1(f1, g1)

‖B̃1‖
+
λ2

2

=
1

‖B̃1‖

(
Re B̃(f1, g1) + Re λα2B̃(f1, g0) · B̃(f0, g1)

)
+
λ2

2

6
1

‖B̃1‖

(
1 + Re λαB̃(f0, g1)

)
+
λ2

2
.

Hence, we have 1 + Re λαB̃(f0, g1) > ‖B̃1‖ − λ2

2 ‖B̃1‖ > ‖B̃1‖ − λ2, and this implies

Re αB̃(f0, g1) > (1− λ2)2 − 2λ.

In the same way, we get

αB̃(f1, g0) = |B̃(f1, g0)| > (1− λ2)2 − 2λ.

Define T1 ∈ L(C(K1), C(K2)∗) by [T1(f)](g) = B̃3(f, g) for g ∈ C(K2) and f ∈ C(K1). We have

Re T1(f0)(g1) = Re B̃3(f0, g1) > Re B̃2(f0, g1)− λ2

2

=
Re B̃1(f0, g1)

‖B̃1‖
− λ2

2
>

Re B̃1(f0, g1)

1 + λ
− λ2

2

=
Re αB̃(f0, g1) + Re λα2B̃(f0, g0)B̃(f0, g1)

1 + λ
− λ2

2

=
Re αB̃(f0, g1)

(
1 + λαB̃(f0, g0)

)
1 + λ

− λ2

2

>

(
(1− λ2)2 − 2λ

) (
1 + λ− λ3

)
1 + λ

− λ2

2

> 1− ζ2.

By the polar decomposition of the measure µT∗
1 (g1), there is a measurable function hg1 ∈ C(K1)∗∗ with

|hg1 | = 1 such that

[T ∗1 (g1)](f) =

∫
K1

fhg1d|µT∗
1 (g1)|

(
f ∈ C(K1)

)
.

Consider the set A1 =
{
t ∈ K1 : Re

(
f0(t)+f1(t)

2

)
hg1(t) > 1− ζ

}
and observe that

1− ζ2 < Re

[
T1

(
f0 + f1

2

)]
(g1) = Re [T ∗1 (g1)]

(
f0 + f1

2

)
=

∫
K1

Re

(
f0 + f1

2

)
hg1d|µT∗

1 (g1)|

=

∫
A1

Re

(
f0 + f1

2

)
hg1d|µT∗

1 (g1)|+
∫
K1\A1

Re

(
f0 + f1

2

)
hg1d|µT∗

1 (g1)|

<

∫
A1

d|µT∗
1 (g1)|+ (1− ζ)

∫
K1\A1

d|µT∗
1 (g1)| = 1− ζ

∫
K1\A1

d|µT∗
1 (g1)|
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Hence, |µT∗
1 (g1)|(K1 \A1) < ζ. By regularity, there is a compact subset F1 of A1 such that |µT∗

1 (g1)|(K1 \
F1) < ζ, which implies

‖T ∗∗1 PF1‖ > sup
f∈BC(K1)

[T ∗∗1 (PF1f)](g1) = sup
f∈BC(K1)

∫
F1

f dµT∗
1 (g1) = |µT∗

1 (g1)|(F1)

> |µT∗
1 (g1)|(K1)− ζ = ‖T ∗(g1)‖ − ζ = 1− ζ > 1− η0 (γ)

1 + η0 (γ)
.

Hence, from Lemma 7, we have ‖T ∗∗1 − T ∗∗1 PF1
‖ 6 γ. Using the definition of the set A1, it follows that

(1) ‖f0|A1
− f1|A1

‖ < 2
√
ζ(1− ζ).

Indeed, for t ∈ A1, we know that |Re f0(t) + Re f1(t)| > 2− 2ζ. As |f0(t)| 6 1 and |f1(t)| 6 1, it follows
by the parallelogram law, that

|f0(t)− f1(t)|2 6 4− |f0(t) + f1(t)|2 6 4− |Re f0(t) + Re f1(t)| 6 4(ζ − ζ2).

Now, using Urysohn lemma we can find f2 ∈ SC(K1) satisfying

‖f1 − f2‖ < 3ζ, [T1(f2)](g1) = 1, and |f2(t)| = 1 for every t ∈ F1.

Indeed, consider U = {t ∈ K1 : |f1(t)| > 1− 3ζ} and observe that F1 ⊂ A1 ⊂ U , so there exists a
function u ∈ C(K1) such that 0 6 u 6 1, u(t) = 1 for every t ∈ F1, and u(t) = 0 for every t ∈ K1 \ U .

Define the function f2 by f2(t) = u(t) f1(t)
|f1(t)| + (1− u(t))f1(t) for every t ∈ U and f2(t) = f1(t) for every

t ∈ K1 \U . Similarly, define f3 by f3(t) = −u(t) f1(t)
|f1(t)| + (1 + u(t))f1(t) for every t ∈ U and f2(t) = f1(t)

for every t ∈ K1 \ U . It is obvious that f2, f3 ∈ BC(K1) and ‖f2 − f1‖ < 3ζ. Moreover, [T1(f2)](g1) = 1
since [T1(f2 + f3)](g1) = 2[T1(f1)](g1) = 2 and |[T1(f2)](g1)|, |[T1(f3)](g1)| 6 1.

Choose any t1 ∈ F1 and define S1 ∈ L(C(K1), C(K2)∗) by

S1(f) = T ∗∗1 PF1
(f) + f2(t1)f(t1)

(
T ∗∗1 − T ∗∗1 PF1

)
(f2)

(
f ∈ C(K1)

)
.

This is well-defined by Lemma 6, and satisfies

‖S1‖ = [S1(f2)](g1) = 1 and ‖S1 − T1‖ < 2γ.

Let T2 ∈ L(C(K2), C(K1)∗ be given by [T2(g)](f) = [S1(f)](g) for f ∈ C(K1) and g ∈ C(K2). We have

Re [T2(g0)](f2) = Re [S1(f2)](g0) > Re [T1(f2)](g0)− 2γ = Re [T1(f1)](g0)− ζ − 2γ

= Re B̃3(f1, g0) > Re B̃2(f1, g0)− λ2

2
− ζ − 2γ

>
Re B̃1(f1, g0)

‖B̃1‖
− λ2

2
>

Re B̃1(f1, g0)

1 + λ
− λ2

2
− ζ − 2γ

=
Re αB̃(f1, g0) + Re λα2B̃(f1, g0)B̃(f0, g0)

1 + λ
− λ2

2
− ζ − 2γ

=
Re αB̃(f1, g0)

(
1 + λαB̃(f0, g0)

)
1 + λ

− λ2

2
− ζ − 2γ

>

(
(1− λ2)2 − 2λ

) (
1 + λ− λ3

)
1 + λ

− λ2

2
− ζ − 2γ > 1− ψ2

With the same procedure than above, we get a measurable function hf2 ∈ C(K2)∗∗ with |hf2 | = 1 such
that

[T ∗2 (f2)](g) =

∫
K2

ghf2d|µT∗
2 (f2)|

(
g ∈ C(K2)

)
,

considering the set A2 =
{
t ∈ K2 : Re

(
g0+g1

2

)
hf2 > 1− ψ

}
, we get that

∥∥g0|A2
− g1|A2

∥∥ < 2
√
ψ(1− ψ)

as in the estimation (1) and there is a compact subset F2 of A2 satisfying

‖T ∗∗2 − T ∗∗2 PF2‖ 6
ε

4
.
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Besides, there exists a function g2 ∈ SC(K2) satisfying

‖g1 − g2‖ < 3ψ, [T2(g2)](f2) = 1, and |g2(t)| = 1 for every t ∈ F2.

Choose any t2 ∈ F2, and define an operator S2 ∈ L(C(K2), C(K1)∗) by

S2(g) = T ∗∗2 PF2
(g) + g2(t2)g(t2)

(
T ∗∗2 − T ∗∗2 PF2

)
(g2)

(
g ∈ C(K2)

)
.

Then, ‖S2‖ = [S2(g2)](f2) = 1, and ‖S2 − T2‖ < ε
2 .

Finally, let B̃4 ∈ B(C(K1)×C(K2)) be given by B̃4(f, g) = [S2(g)](f) for every (f, g) ∈ C(K1)×C(K2)

and let D ∈ B(C0(L1) × C0(L2)) be the canonical extension of B̃4. Notice that |D(u, v)| = 1 for any
extensions (u, v) ∈ SC0(L1) × SC0(L2) of (f2|A1

, g2|A2
) because of our construction. Let x1 ∈ C0(L1) and

y1 ∈ C0(L2) be any norm preserving extensions of f2|A1
and g2|A2

respectively. As

‖x0|A1
− x1|A1

‖ < 2
√
ζ(1− ζ) < ε and ‖y0|A2

− y1|A2
‖ < 2

√
ψ(1− ψ) < ε,

Lemma 8 provides with x2 ∈ SC0(L1) and y2 ∈ SC0(L2) such that x2|A1
= x0|A1

, y2|A2
= y0|A2

and

‖x2 − x0‖, ‖y2 − y0‖ < ε.

Observe that |D(x2, y2)| = 1. Finally,

‖B − αD‖ = ‖D − αB‖ < ‖D − αC‖+ ‖αC − αB‖ 6 ‖B̃4 − αB̃‖+ λ

6 ‖B̃4 − B̃3‖+ ‖B̃3 − B̃2‖+ ‖B̃2 − B̃1‖+ ‖B̃1 − αB̃‖+ λ

6 ‖S2 − T2‖+ ‖S1 − T1‖+
λ2

2
+ λ+ λ+ λ

< 2γ +
ε

2
+
λ2

2
+ 3λ < ε. �

References

[1] M. D. Acosta, Denseness of norm attaining mappings, Rev. R. Acad. Cien. Serie A. Mat. 100 (2006), 9–30.

[2] M. D. Acosta, The Bishop-Phelps-Bollobás property for operators on C(K), Preprint. Available at

http://arxiv.org/abs/1405.6428
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