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Dedicated to the memory of Robert R. Phelps

Abstract. In this paper we show that the Bishop-Phelps-Bollobás theorem holds for L(L1(µ), L1(ν))
for all measures µ and ν and also holds for L(L1(µ), L∞(ν)) for every arbitrary measure µ and every

localizable measure ν. Finally, we show that the Bishop-Phelps-Bollobás theorem holds for two classes

of bounded linear operators from a real L1(µ) into a real C(K) if µ is a finite measure and K is a
compact Hausdorff space. In particular, one of the classes includes all Bochner representable operators

and all weakly compact operators.

1. Introduction

The celebrated Bishop-Phelps theorem of 1961 [12] states that for a Banach space X, every element
in its dual space X∗ can be approximated by ones that attain their norms. Since then, there has
been an extensive research to extend this result to bounded linear operators between Banach spaces
[14, 27, 33, 34, 37] and non-linear mappings [2, 7, 11, 16, 17, 30]. On the other hand, Bollobás [13],
motivated by problems arising in the theory of numerical ranges, sharpened the Bishop-Phelps theorem
in 1970, and got what is nowadays called the Bishop-Phelps-Bollobás theorem. Previously to presenting
this result, let us introduce some notations. Given a (real or complex) Banach space X, we write BX for
the unit ball, SX for its unit sphere, and X∗ for the topological dual space of X. If Y is another Banach
space, we write L(X,Y ) to denote the space of all bounded linear operators from X into Y .

Theorem 1.1 (Bishop-Phelps-Bollobás theorem). Let X be a Banach space. If x ∈ SX and x∗ ∈ SX∗
satisfy |x∗(x)− 1| < ε2/4, then there exist y ∈ SX and y∗ ∈ SX∗ such that y∗(y) = 1, ‖x∗ − y∗‖ < ε and
‖x− y‖ < ε.

In 2008, Acosta, Aron, Garćıa and Maestre [3] introduced the Bishop-Phelps-Bollobás property to
study extensions of the theorem above to operators between Banach spaces.

Definition 1.2. Let X and Y be Banach spaces. The pair (X,Y ) is said to have the Bishop-Phelps-
Bollobás property (BPBp) if for every 0 < ε < 1, there is η(ε) > 0 such that for every T ∈ L(X,Y ) with
‖T‖ = 1 and x0 ∈ SX satisfying ‖T (x0)‖ > 1− η(ε), there exist y0 ∈ SX and S ∈ L(X,Y ) with ‖S‖ = 1
satisfying the following conditions:

‖Sy0‖ = 1, ‖y0 − x0‖ < ε, and ‖S − T‖ < ε.

In this case, we also say that the Bishop-Phelps-Bollobás theorem holds for L(X,Y ).
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This property has been studied by many authors. See for instance [5, 8, 10, 15, 18, 19, 28, 29]. Observe
that the BPBp of a pair (X,Y ) implies obviously that the set of norm attaining operators is dense in
L(X,Y ). However, its converse is false, as shown by the pair (X,Y ) where X is the 2-dimensional L1-
space and Y is a strictly, but not uniformly convex space (see [3] or [10]). Let us also comment that the
Bishop-Phelps-Bollobás theorem states that the pair (X,K) has the Bishop-Phelps-Bollobás property for
every Banach space X (K is the base scalar field R or C).

In this paper we first deal with the problem of when the pair (Lp(µ), Lq(ν)) has the BPBp. Let us
start with a presentation of both already known results and our new results. Iwanik [25] showed in 1979
that the set of norm-attaining operators from L1(µ) to L1(ν) is dense in the space L(L1(µ), L1(ν)) for
arbitrary measures µ and ν. Our first main result in this paper is that the pair L(L1(µ), L1(ν)) has the
BPBp. This is the content of section 3.

On the other hand, Aron et al. [9] showed that if µ is a σ-finite measure, then the pair (L1(µ), L∞[0, 1])
has the BPBp, improving a result of Finet and Payá [24] about the denseness of norm-attaining operators.
We generalize this result in section 4 showing that (L1(µ), L∞(ν)) has the BPBp for every measure µ
and every localizable measure ν. This is also a strengthening of a result of Payá and Saleh [35] which
stated only the denseness of norm-attaining operators.

One of the tools used to prove the results above is the fact that one can reduce the proofs to some
particular measures. We develop this idea in section 2, where, as its first easy application, we extend to
arbitrary measures µ the result in [18] that (L1(µ), Lp(ν)) has the BPBp for σ-finite measures µ.

The following result summarizes all what is known about the BPBp for the pair (Lp(µ), Lq(ν)).

Corollary 1.3. The pair (Lp(µ), Lq(ν)) has the BPBp

(1) for all measures µ and ν if p = 1 and 1 6 q <∞.
(2) for any measure µ and any localizable measure ν if p = 1, q =∞.
(3) for all measures µ and ν if 1 < p <∞ and 1 6 q 6∞.
(4) for all measures µ and ν if p =∞, q =∞, in the real case.

(1) and (2) follows from the results of this paper (Corollary 2.3, Theorem 3.1 and Theorem 4.1). Since
Lp(µ) is uniformly convex when 1 < p < ∞, (3) follows from [5, 29] in the σ-finite case, generalized
here to arbitrary measures µ (Corollary 2.3). Finally, (4) follows from [4], because every L∞ space is
isometrically isomorphic to a C(K) space.

As far as we know, the cases (L∞(µ), Lq(ν)) for 1 6 q <∞ and the complex case of (4) remain open.

Let µ be a finite measure. Since any L∞ space is isometrically isomorphic to C(K) for some compact
Hausdorff space K, it is natural to ask when (L1(µ), C(K)) has the BPBp. Schachermayer [38] showed
that the set of all norm-attaining operators is not dense in L(L1[0, 1], C[0, 1]). Hence, (L1[0, 1], C[0, 1])
cannot have the BPBp. On the other hand, Johnson and Wolfe [27] proved that if X is a Banach space
and if either Y or Y ∗ is a L1(µ) space, then every compact operator from X into Y can be approximated
by norm-attaining finite-rank operators. They also showed that every weakly compact operator from
L1(µ) into C(K) can be approximated by norm-attaining weakly compact ones. In this direction, Acosta
et al. have shown that (L1(µ), Y ) has the BPBp for representable operators (in particular, for weakly
compact operators) if (`1, Y ) has the BPBp, and this is the case of Y = C(K) [6].

On the other hand, Iwanik [26] studied two classes of bounded linear operators from a real L1(µ)
space to a real C(K) space such that every element of each class can be approximated by norm-attaining
elements, and showed that one of the classes strictly contains all Bochner representable operators and all
weakly compact operators. In section 5, we deal with Bishop-Phelps-Bollobás versions of these Iwanik’s
results. In particular, we show that for every 0 < ε < 1, there is η(ε) > 0 such that if T ∈ L(L1(µ), C(K))
with ‖T‖ = 1 is Bochner representable (resp. weakly compact) and f0 ∈ SL1(µ) satisfy ‖Tf0‖ > 1− η(ε),
then there is a Bochner representable (resp. weakly compact) operator S ∈ L(L1(µ), C(K)) and f ∈ SL1(µ)

such that ‖Sf‖ = ‖S‖ = 1, ‖S − T‖ < ε and ‖f − f0‖ < ε.
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Let us finally comment that the proofs presented in sections 3 and 4 are written for the complex case.
Their corresponding proofs for the real case are easily obtained, even easier, from the ones presented
there.

2. Some preliminary results

We start with some terminologies and known facts about L1(µ). Suppose that (Ω,Σ, µ) is an arbitrary
measure space and put X = L1(µ). Suppose G is a countable subset of X. Since the closed linear
span [G] of G is separable, we may assume that [G] is the closed linear span of a countable set {χEn}
of characteristic functions of measurable subsets with finite positive measure. Let E =

⋃
nEn and

Z = {fχE : f ∈ X}. Then, Z = L1(µ|E), where µ|E is restriction of the measure µ to the σ-algebra
Σ|E = {E ∩ A : A ∈ Σ}. Since µ|E is σ-finite, Z is isometrically (lattice) isomorphic to L1(m) for
some positive finite Borel regular measure m defined on a compact Hausdorff space by the Kakutani
representation theorem (see [32, Theorem 9, § 14] for a reference). This space Z is called the band
generated by G, and the canonical band projection P : X −→ Z, defined by P (f) := fχE for f ∈ X,
satisfies ‖f‖ = ‖Pf‖ + ‖(Id−P )f‖ for all f ∈ X. For more details, we refer the reader to the classical
books [32, 39].

Next, we state the following equivalent formulation of the BPBp from [10] which helps to better
understand the property and will be useful for our preliminary results. Given a pair (X,Y ) of Banach
spaces, let

Π(X,Y ) = {(x, T ) ∈ X × L(X,Y ) : ‖T‖ = ‖x‖ = ‖Tx‖ = 1}
and define, for 0 < ε < 1,

η(X,Y )(ε) = inf
{

1− ‖Tx‖ : x ∈ SX , T ∈ L(X,Y ), ‖T‖ = 1, dist
(
(x, T ),Π(X,Y )

)
> ε
}
,

where dist
(
(x, T ),Π(X,Y )

)
= inf

{
max{‖x− y‖, ‖T − S‖} : (y, S) ∈ Π(X,Y )

}
. Equivalently, for every

ε ∈ (0, 1), η(X,Y )(ε) is the supremum of those ξ > 0 such that whenever T ∈ L(X,Y ) with ‖T‖ = 1 and
x ∈ SX satisfy ‖Tx‖ > 1− ξ, then there exists (y, S) ∈ Π(X,Y ) with ‖T − S‖ 6 ε and ‖x− y‖ 6 ε. It is
clear that (X,Y ) has the BPBp if and only if η(X,Y )(ε) > 0 for all 0 < ε < 1.

Our first preliminary result deals with operators acting on an L1(µ) space and shows that the proof
of some results can be reduced to the case when µ is a positive finite Borel regular measure defined on a
compact Hausdorff space.

Proposition 2.1. Let Y be a Banach space. Suppose that there is a function η : (0, 1) −→ (0,∞) such
that

η
(
L1(m), Y

)
(ε) > η(ε) > 0 (0 < ε < 1)

for every positive finite Borel regular measure m defined on a compact Hausdorff space. Then, for every
measure µ, the pair (L1(µ), Y ) has the BPBp with η

(
L1(µ), Y

)
> η.

Moreover, if Y = L1(ν) for an arbitrary measure ν, then it is enough to show that

η
(
L1(m1), L1(m2)

)
(ε) > η(ε) > 0 (0 < ε < 1)

for all positive finite Borel regular measures m1 and m2 defined on Hausdorff compact spaces in order to
get that (L1(µ), L1(ν)) has the BPBp with η

(
L1(µ), L1(ν)

)
> η.

Proof. Let 0 < ε < 1. Suppose that T ∈ L(L1(µ), Y ) is a norm-one operator and f0 ∈ SX satisfy that
‖Tf0‖ > 1 − η(ε). Let {fn)∞n=1 be a sequence in X such that ‖fn‖ 6 1 for all n and limn→∞ ‖Tfn‖ =
‖T‖ = 1. The band X1 generated by {fn : n > 0} is isometric to L1(J,m) for a finite positive Borel
regular measure m defined on a compact Hausdorff space J by the Kakutani representation theorem. Let
T1 be the restriction of T to X1. Then ‖T1‖ = 1 and ‖T1f0‖ > 1− η(ε). By the assumption, there exist
a norm-one operator S1 : X1 −→ Y and g ∈ SX1 such that ‖S1g‖ = 1, ‖T1 − S1‖ < ε and ‖f − g‖ < ε.
Let P denote the canonical band projection from L1(µ) onto X1. Then S := S1P + T (Id−P ) is a norm-
one operator from L1(µ) to Y , g can be viewed as a norm-one element in SL1(µ) (just extending by 0),
‖Sg‖ = 1, ‖S − T‖ < ε and ‖f − g‖ < ε. This completes the proof of the first part of the proposition.
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In the case when Y = L1(ν), we observe that the image T (X1) is also contained in a band Y1 of
L1(ν) which, again, is isometric to L1(m2) for a finite positive Borel regular measure m2 on a compact
Hausdorff space J2. Now, we work with the restriction of T to X1 with values in Y1, we follow the proof of
the first part and finally we consider the operator S as an operator with values in L1(ν) (just composing
with the formal inclusion of Y1 into L1(ν)). �

Since for every positive finite Borel regular measure m defined on a compact Hausdorff space, L1(m)
is isometric to L1(µ) for a probability measure µ, we get the following.

Corollary 2.2. Let Y be a Banach space. Suppose that there is a strictly positive function η : (0, 1) −→
(0,∞) such that η

(
L1(µ1), Y

)
> η for every probability measure µ1. Then (L1(µ), Y ) has the BPBp for

every measure µ, with η
(
L1(µ), Y

)
> η.

Let us give the first application of the above results. For a σ-finite measure µ1, it is shown in [18] that
(L1(µ1), Y ) has the BPBp if Y has the Radon-Nikodým property and (`1, Y ) has the BPBp. By following
the proof of [18, Theorem 2.2], we conclude that there is a strictly positive function ηY : (0, 1) −→ (0,∞)
such that η(L1(µ1), Y ) > ηY for every probability measure µ1. Therefore, the corollary above provides
the same result without the assumption of σ-finiteness. We also recall that Lq(ν) is uniformly convex
for all 1 < q <∞ and for all measures ν, so it has the Radon-Nikodým property and (`1, Lq(ν)) has the
BPBp [3]. Hence we get the following.

Corollary 2.3. Let µ be an arbitrary measure. If Y is a Banach space with the Radon-Nikodým property
and such that (`1, Y ) has the BPBp, then the pair (L1(µ), Y ) has the BPBp. In particular, (L1(µ), Lq(ν))
has the BPBp for all 1 < q <∞ and all arbitrary measures ν.

We now deal with operators with values on an `∞-sum of Banach spaces, giving the following result
from [10] which we will use in section 4. Given a family {Yj : j ∈ J} of Banach spaces, we denote by[⊕

j∈J Yj

]
`∞

the `∞-sum of the family.

Proposition 2.4 ([10]). Let X be a Banach space and let {Yj : j ∈ J} be a family of Banach spaces

and let Y =
[⊕

j∈J Yj

]
`∞

denote their `∞-sum. If inf
j∈J

η(X,Yj)(ε) > 0 for all 0 < ε < 1, then (X,Y ) has

the BPBp with

η(X,Y ) = inf
j∈J

η(X,Yj).

We will use this result for operators with values in L∞(ν). To present the result, we fist recall that
given a localizable measure ν, we have the following representation

(1) L∞(ν) ≡
[⊕

j∈J
Yj

]
`∞

,

where each space Yj is either 1-dimensional or of the form L∞([0, 1]Λ) for some finite or infinite set Λ
and [0, 1]Λ is endowed with the product measure of the Lebesgue measures. For its background, see [35]
and references therein. With this in mind, the following corollary follows from the proposition above.

Corollary 2.5. Let X be a Banach space. Suppose that there is a strictly positive function η : (0, 1) −→
(0,∞) such that

η
(
X,L∞([0, 1]Λ)

)
(ε) > η(ε) (0 < ε < 1)

for every finite or infinite set Λ. Then the pair (X,L∞(ν)) has the BPBp for every localizable measure ν
with

η
(
X,L∞(ν)

)
(ε) > min{η(ε), ε2/2} (0 < ε < 1).

The proof is just an application of Proposition 2.4, the representation formula given in (1) and the
Bishop-Phelps-Bollobás theorem (Theorem 1.1).
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Let us comment that the analogue of Proposition 2.4 is false for `1-sums in the domain space (see
[10]), so Proposition 2.1 cannot be derived directly from the decomposition of L1(µ) spaces analogous to
(1).

Before finishing this section, we state the following lemma of [3] which we will frequently use afterwards.

Lemma 2.6 ([3, Lemma 3.3]). Let {cn} be a sequence of complex numbers with |cn| 6 1 for every n, and
let η > 0 be such that for a convex series

∑
αn, Re

∑∞
n=1 αncn > 1− η. Then for every 0 < r < 1, the

set A := {i ∈ N : Re ci > r}, satisfies the estimate∑
i∈A

αi > 1− η

1− r
.

3. The Bishop-Phelps-Bollobás property of (L1(µ), L1(ν))

Our goal in this section is to prove the following result.

Theorem 3.1. Let µ and ν be arbitrary measures. Then the pair (L1(µ), L1(ν)) has the BPBp. Moreover,
there exists a strictly positive function η : (0, 1) −→ (0,∞) such that

η
(
L1(µ), L1(ν)

)
(ε) > η(ε) (0 < ε < 1).

By Proposition 2.1, it is enough to get the result for finite regular positive Borel measures defined on
compact Hausdorff spaces. Therefore, Theorem 3.1 follows directly from the next result.

Theorem 3.2. Let m1 and m2 be finite regular positive Borel measures on compact Hausdorff spaces
J1 and J2, respectively. Let 0 < ε < 1 and suppose that T ∈ L(L1(m1), L1(m2)) with ‖T‖ = 1 and

f0 ∈ SL1(m1) satisfy ‖Tf0‖ > 1− ε18

53227 . Then there are S ∈ SL(L1(m1),L1(m2)) and g ∈ SL1(m1) such that

‖Sg‖ = 1, ‖f − g‖ < 4ε and ‖T − S‖ < 4
√
ε.

Prior to presenting the proof of this theorem, we have to recall the following representation result for
operators from L1(m1) into L1(m2). As we announced in the introduction, we deal with the complex
spaces only. The proof of the real case is easier than the one given by us for the complex case.

Let m1 and m2 be finite regular positive Borel measures on compact Hausdorff spaces J1 and J2,
respectively. For a complex-valued Borel measure µ on the product space J1 × J2, we define their
marginal measures µi on Ji (i = 1, 2) as follows:

µ1(A) = µ(A× J2) and µ2(B) = µ(J1 ×B),

where A and B are Borel measurable subsets of J1 and J2, respectively.

Let M(m1,m2) be the complex Banach lattice consisting of all complex-valued Borel measures µ on
the product space J1×J2 such that each |µ|i is absolutely continuous with respect to mi for i = 1, 2 with
the norm ∥∥∥∥d|µ|1dm1

∥∥∥∥
∞
.

It is clear that to each µ ∈ M(m1,m2) there corresponds a unique bounded linear operator Tµ ∈
L(L1(m1), L1(m2)) defined by

〈Tµ(f), g〉 =

∫
J1×J2

f(x)g(y) dµ(x, y),

where f ∈ L1(m1) and g ∈ L∞(m2). Iwanik [25] showed that the mapping µ 7−→ Tµ is a surjective lattice
isomorphism and

‖Tµ‖ =

∥∥∥∥d|µ|1dm1

∥∥∥∥
∞
.

Even though he showed this for the real case, it can be easily generalized to the complex case. For details,
see [25, Theorem 1] and [39, IV Theorem 1.5 (ii), Corollary 2].

Since the proof of Theorem 3.2 is complicated, we divide it into the following two lemmas.
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Lemma 3.3. Let 0 < ε < 1. Suppose that Tµ is an element of L(L1(m1), L1(m2)) with ‖Tµ‖ = 1 for

some µ ∈M(m1,m2) and that f0 ∈ SL1(m1) is a nonnegative simple function such that ‖Tµf0‖ > 1− ε3

26 .
Then there are a norm-one bounded linear operator Tν for some ν ∈M(m1,m2) and a nonnegative simple
function f1 in SL1(m1) such that

‖Tµ − Tν‖ < ε, ‖f1 − f0‖ < 3ε

and we have, for all x ∈ supp(f1),

d|ν|1

dm1
(x) = 1.

Proof. As ‖Tµ‖ = 1, we have that
d|µ|1

dm1
(x) 6 1 almost everywhere. Let f0 =

∑n
j=1 αj

χBj
m1(Bj)

, where

{Bj}nj=1 are mutually disjoint Borel subsets of J1, αj > 0 and m1(Bj) > 0 for all 1 6 j 6 n, and∑n
j=1 αj = 1. Let D = {x ∈ J1 : d|µ|

1

dm1
(x) > 1− ε

8}. It is clear that m1(D) > 0. Since ‖Tµf0‖ > 1− ε3

26 ,
there is g0 ∈ SL∞(m2) such that

Re 〈Tµf0, g0〉 > 1− ε3

26
.

Let

J =

{
j ∈ {1, . . . , n} :

1

m1(Bj)

∫
Bj

d|µ|1

dm1
(x) dm1(x) > 1− ε2

26

}
.

Then we have ∑
j∈J

αj > 1− ε > 0.

Indeed, since

1− ε3

26
< Re 〈Tµf0, g0〉 = Re

∫
J1×J2

f0(x)g0(y) dµ(x, y)

6
∫
J1×J2

|f0(x)| d|µ|(x, y) =

∫
J1

f0(x) d|µ|1(x)

=

n∑
j=1

αj
1

m1(Bj)

∫
Bj

d|µ|1(x) =

n∑
j=1

αj
1

m1(Bj)

∫
Bj

d|µ|1

dm1
(x) dm1(x),

we have
∑
j∈J αj > 1− ε > 0 by Lemma 2.6. Note also that for each j ∈ J ,

1− ε2

26
<

1

m1(Bj)

∫
Bj

d|µ|1

dm1
(x) dm1(x)

=
1

m1(Bj)

∫
Bj∩D

d|µ|1

dm1
(x) dm1(x) +

1

m1(Bj)

∫
Bj\D

d|µ|1

dm1
(x) dm1(x)

6
m1(Bj ∩D)

m1(Bj)
+
(

1− ε

8

) m1(Bj \D)

m1(Bj)

= 1− ε

8

m1(Bj \D)

m1(Bj)
.

Hence we deduce that, for all j ∈ J ,
m1(Bj \D)

m1(Bj)
6
ε

8
.

Let B̃j = Bj ∩D and βj =
αj∑
j∈J αj

for all j ∈ J and define

f1 =
∑
j∈J

βj
χB̃j

m1(B̃j)
.
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It is clear that f1 is a nonnegative element in SL1(m1) and

‖f0 − f1‖ 6

∥∥∥∥∥∥
∑
j∈J

αj
χBj

m1(Bj)
−
∑
j∈J

βj
χB̃j

m1(B̃j)

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑

j∈{1,...,n}\J

αj
χBj

m1(Bj)

∥∥∥∥∥∥
6

∥∥∥∥∥∥
∑
j∈J

αj

(
χBj

m1(Bj)
−

χB̃j

m1(B̃j)

)∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
j∈J

(αj − βj)
χB̃j

m1(B̃j)

∥∥∥∥∥∥+
∑

j∈{1,...,n}\J

αj

<

∥∥∥∥∥∥
∑
j∈J

αj

(
χBj

m1(Bj)
−

χB̃j

m1(B̃j)

)∥∥∥∥∥∥+
∑
j∈J
|αj − βj |+ ε

=

∥∥∥∥∥∥
∑
j∈J

αj

(
χBj

m1(Bj)
−

χB̃j

m1(B̃j)

)∥∥∥∥∥∥+ 1−
∑
j∈J

αj + ε

6 2
∑
j∈J

αj
m1(Bj \D)

m1(Bj)
+ 2ε 6

ε

4
+ 2ε < 3ε.

Define

dν(x, y) =
∑
j∈J

χB̃j (x)

(
d|µ|1

dm1
(x)

)−1

dµ(x, y) + χ(J1\B̃) dµ(x, y),

where B̃ =
⋃
j∈J B̃j . It is clear that d|ν|1

dm1
(x) = 1 on B̃ and d|ν|1

dm1
(x) 6 1 elsewhere. Note also that for all

x ∈ J1,

d|ν − µ|1

dm1
(x) =

∑
j∈J

χB̃j (x)

((
d|µ|1

dm1
(x)

)−1

− 1

)
d|µ|1

dm1

6
1

1− ε/8
− 1 =

ε

8− ε
< ε.

Hence Tν is a norm-one operator such that ‖Tµ − Tν‖ < ε, ‖f1 − f0‖ < 3ε and d|ν|1
dm1

(x) = 1 for all

x ∈ supp(f1). �

Lemma 3.4. Let 0 < ε < 1. Suppose that Tν is a norm-one operator in L(L1(m1), L1(m2)) and that

f is a nonnegative norm-one simple function in SL1(m1) satisfying ‖Tνf‖ > 1 − ε6

27 and d|ν|1
dm1

(x) = 1 for

all x in the support of f . Then there are a nonnegative simple function f̃ in SL1(m1) and a norm-one
operator Tν̃ in L(L1(m1), L1(m2)) such that

‖Tν̃ f̃‖ = 1, ‖Tν − Tν̃‖ < 3
√
ε and ‖f − f̃‖ < 3ε.

Proof. Let f =
∑n
j=1 βj

χBj
m1(Bj)

, where {Bj}nj=1 are mutually disjoint Borel subsets of J1, βj > 0 and

m1(Bj) > 0 for all 1 6 j 6 n, and
∑n
j=1 βj = 1. Since ‖Tνf‖ > 1− ε6

27 , there is g ∈ SL∞(m2) such that

1− ε6

27
< Re 〈Tνf, g〉 =

n∑
j=1

βj Re

∫
J1×J2

χBj (x)

m1(Bj)
(g(y)) dν(x, y).

Let J =

{
j ∈ {1, . . . , n} : Re

∫
J1×J2

χBj (x)

m1(Bj)
g(y) dν(x, y) > 1− ε3

26

}
. From Lemma 2.6 it follows that

∑
j∈J

βj > 1− ε3

2
.
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Let f1 =
∑
j∈J β̃j

χBj
m1(Bj)

, where β̃j = βj/(
∑
j∈J βj) for all j ∈ J . Then

‖f1 − f‖ 6

∥∥∥∥∥∥
∑
j∈J

(β̃j − βj)
χBj

m1(Bj)

∥∥∥∥∥∥+
∑
j∈J

βj 6 ε
3 < ε.

Note that there is a Borel measurable function h on J1 × J2 such that dν(x, y) = h(x, y) d|ν|(x, y) and
|h(x, y)| = 1 for all (x, y) ∈ J1 × J2. Let

C =

{
(x, y) : |g(y)h(x, y)− 1| <

√
ε

23/2

}
.

Define two measures νf and νc as follows:

νf (A) = ν(A \ C) and νc(A) = ν(A ∩ C)

for every Borel subset A of J1 × J2. It is clear that

dν = dνf + dνc, d|νf | = h̄dνf , d|νc| = h̄dνc, and d|ν| = d|νf |+ d|νc|.

Since d|ν|1
dm1

(x) = 1 for all x ∈
⋃n
j=1Bj , we have |ν|1(Bj) = m1(Bj) for all 1 6 j 6 n and

1 =
d|ν|1

dm1
(x) =

d|νf |1

dm1
(x) +

d|νc|1

dm1
(x) for all x ∈ B =

n⋃
j=1

Bj .

We claim that
|νf |1(Bj)
m1(Bj)

6 ε2

22 for all j ∈ J . Indeed, if |g(y)h(x, y)− 1| >
√
ε

23/2 , then Re (g(y)h(x, y)) 6
1− ε

24 . So we have

1− ε3

26
6

1

m1(Bj)
Re

∫
J1×J2

χBj(x)g(y) dν(x, y)

=
1

m1(Bj)

∫
J1×J2

χBj(x) Re
(
g(y)h(x, y)

)
d|ν|(x, y)

=
1

m1(Bj)

∫
J1×J2

χBj(x) Re
(
g(y)h(x, y)

)
d|νf |(x, y)

+
1

m1(Bj)

∫
J1×J2

χBj(x) Re
(
g(y)h(x, y)

)
d|νc|(x, y)

6
1

m1(Bj)

(
(1− ε

24
)|νf |1(Bj) + |νc|1(Bj)

)
= 1− ε

24

|νf |1(Bj)

m1(Bj)
.

This proves our claim.

We also claim that for each j ∈ J , there exists a Borel subset B̃j of Bj such that(
1− ε

2

)
m1(Bj) 6 m1(B̃j) 6 m1(Bj)

and
d|νf |1

dm1
(x) 6

ε

2

for all x ∈ B̃j . Indeed, set B̃j = Bj ∩
{
x ∈ J1 :

d|νf |1
dm1

(x) 6 ε
2

}
. Then∫

Bj\B̃j

ε

2
dm1(x) 6

∫
Bj

d|νf |1

dm1
(x) dm1(x) = |ν1

f |(Bj) 6
ε2

22
m1(Bj).

This shows that m1(Bj \ B̃j) 6 ε
2m1(Bj). This proves our second claim.
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Now, we define g̃ by g̃(y) = g(y)
|g(y)| if g(y) 6= 0 and g̃(y) = 1 if g(y) = 0, and we write f̃ =

∑
j∈J β̃j

χB̃j
m1(B̃j)

.

Finally, we define the measure

dν̃(x, y) =
∑
j∈J

χB̃j (x)g̃(y)h(x, y)dνc(x, y)

(
d|νc|1

dm1
(x)

)−1

+ χJ1\B̃(x)dν(x, y),

where B̃ =
⋃
j∈J B̃j . It is easy to see that d|ν̃|1

dm1
(x) = 1 on B̃ and d|ν̃|1

dm1
(x) 6 1 elsewhere. Note that

d(ν̃ − ν)(x, y) =
∑
j∈J

χB̃j (x)

[
g̃(y)h(x, y)

(
d|νc|1

dm1
(x)

)−1

− 1

]
dνc(x, y)

−
∑
j∈J

χB̃j (x)dνf (x, y).

If (x, y) ∈ C, then |g(y)| > 1−
√
ε

23/2 > 1− 1
23/2 and∣∣∣g̃(y)h(x, y)− 1

∣∣∣ =

∣∣∣∣ g(y)

|g(y)|
h(x, y)− 1

∣∣∣∣
6
|g(y)h(x, y)− 1|

|g(y)|
+

∣∣1− |g(y)|
∣∣

|g(y)|

6 2
|g(y)h(x, y)− 1|

|g(y)|
6 2

√
ε

23/2

23/2

23/2 − 1
6 2
√
ε.

Hence, for all (x, y) ∈ C we have∣∣∣∣∣g̃(y)h(x, y)

(
d|νc|1

dm1
(x)

)−1

− 1

∣∣∣∣∣ 6 ∣∣∣g̃(y)h(x, y)− 1
∣∣∣ (d|νc|1

dm1
(x)

)−1

+

∣∣∣∣∣
(
d|νc|1

dm1
(x)

)−1

− 1

∣∣∣∣∣
6 2
√
ε

(
d|νc|1

dm1
(x)

)−1

+

∣∣∣∣∣
(
d|νc|1

dm1
(x)

)−1

− 1

∣∣∣∣∣ .
So, we have for all x ∈ J1,

d|ν̃ − ν|1

dm1
(x) 6

∑
j∈J

χB̃j (x)

[
2
√
ε

(
d|νc|1

dm1
(x)

)−1

+

∣∣∣∣∣
(
d|νc|1

dm1
(x)

)−1

− 1

∣∣∣∣∣
]
d|νc|1

dm1
(x)

+
∑
j∈J

χB̃j (x)
d|νf |1

dm1
(x)

6
∑
j∈J

χB̃j (x)

(
2
√
ε+

(
1− d|νc|1

dm1
(x)

))
+
∑
j∈J

χB̃j (x)

(
d|νf |1

dm1
(x)

)
6 2
√
ε+ ε < 3

√
ε.

This gives that ‖Tν − Tν̃‖ < 3
√
ε. Note also that, for all j ∈ J ,〈

Tν̃
χB̃j

m1(B̃j)
, g̃

〉
=

∫
J1×J2

χB̃j (x)

m1(B̃j)
g̃(y) dν̃(x, y)

=

∫
J1×J2

χB̃j (x)

m1(B̃j)
h(x, y)

(
d|νc|1

dm1
(x)

)−1

dνc(x, y)

=

∫
J1

χB̃j (x)

m1(B̃j)

(
d|νc|1

dm1
(x)

)−1

d|νc|1(x)

=

∫
J1

χB̃j (x)

m1(B̃j)
dm1(x) = 1.
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Hence we get
〈
Tν̃ f̃ , g̃

〉
= 1, which implies that ‖Tν̃ f̃‖ = ‖Tν̃‖ = 1. Finally,

‖f̃ − f‖ 6 ‖f̃ − f1‖+ ‖f1 − f‖

=

∥∥∥∥∥∥
∑
j∈J

β̃j
χB̃j

m1(B̃j)
−
∑
j∈J

β̃j
χBj

m1(Bj)

∥∥∥∥∥∥+ ε

6
∑
j∈J

β̃j

(∥∥∥∥∥ χB̃j

m1(B̃j)
−

χBj

m1(B̃j)

∥∥∥∥∥+

∥∥∥∥∥ χBj

m1(B̃j)
−

χBj
m1(Bj)

∥∥∥∥∥
)

+ ε

= 2
∑
j∈J

β̃j
m1(Bj \ B̃j)
m1(B̃j)

+ ε

6 2
∑
j∈J

β̃j

ε
2m1(Bj)

m1(B̃j)
+ ε 6

ε

1− ε/2
+ ε < 3ε. �

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let 0 < ε < 1. Suppose that T is a norm-one element in L(L1(m1), L1(m2)) and

there is f ∈ SL1(m1) such that ‖Tf‖ > 1− ε18

53227 . Then there is an isometric isomorphism ψ from L1(m1)

onto itself such that ψ(f) = |f |. Using T ◦ ψ−1 instead of T , we may assume that f is nonnegative.
Since simple functions are dense in L1(m1), we can choose a nonnegative simple function f0 ∈ SL1(m1)

arbitrarily close to f so that

‖Tf0‖ > 1− ε18

53227
= 1− ε3

1

26
,

where ε1 = ε6

5·27 . By Lemma 3.3, there exist a norm-one bounded linear operator Tν for some ν ∈
M(m1,m2) and a nonnegative simple function f1 in SL1(M1) such that ‖T − Tν‖ < ε1, ‖f1 − f‖ < 3ε1

and d|ν|1
dm1

(x) = 1 for all x ∈ supp(f1). Then

‖Tνf1‖ > ‖Tf‖ − ‖Tf − Tνf‖ − ‖Tν(f − f1)‖ > 1− ε3
1

26
− ε1 − 3ε1 > 1− 5ε1 = 1− ε6

27
.

Now, by Lemma 3.4, there exist a nonnegative simple function f̃ and an operator Tν̃ in L(L1(m1), L1(m2))

such that ‖Tν̃ f̃‖ = ‖Tν̃‖ = 1, ‖Tν − Tν̃‖ 6 3
√
ε and ‖f1 − f̃‖ 6 3ε. Therefore, ‖T − Tν̃‖ < 4

√
ε and

‖f − f̃‖ < 4ε, which complete the proof. �

4. The Bishop-Phelps-Bollobás property of (L1(µ), L∞(ν))

Our aim now is to show that (L1(µ), L∞(ν)) has the BPBp for any measure µ and any localizable
measure ν.

Theorem 4.1. Let µ be an arbitrary measure and let ν be a localizable measure. Then the pair (L1(µ), L∞(ν))
has the BPBp. Moreover,

η
(
L1(µ), L∞(ν)

)
(ε) >

( ε
10

)8

(0 < ε < 1).

By Corollaries 2.2 and 2.5, it is enough to prove the result in the case where µ is σ-finite and ν is the
product measure on [0, 1]Λ. Therefore, we just need to prove the following result.

Theorem 4.2. Assume µ is a σ-finite measure and ν is the product measure of Lebesgue measures on
[0, 1]Λ. Let 0 < ε < 1/3, let T : L1(µ) −→ L∞(ν) be a bounded linear operator of norm one and
let f0 ∈ SL1(µ) satisfy ‖T (f0)‖∞ > 1 − ε8. Then there exist S ∈ L(L1(µ), L∞(ν)) with ‖S‖ = 1 and
g0 ∈ SL1(µ) such that

‖S(g0)‖∞ = 1, ‖T − S‖ < 2ε and ‖f0 − g0‖1 < 10ε.
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Recall that the particular case where Λ reduces to one point was established in [9]. Actually, our proof
is based on the argument given there.

Prior to giving the proof of Theorem 4.2, we state the following representation result for operators
from L1(µ) into L∞

(
[0, 1]Λ

)
and one lemma.

Let (Ω,Σ, µ) be a σ-finite measure space and let K = [0, 1]Λ be the product space equipped with the
product measure ν of the Lebesgue measures. Let J be a countable subset of Λ and let πJ be the natural
projection from K onto [0, 1]J . Fix a sequence (Πn) of finite partitions of [0, 1]J into sets of positive
measure such that Πn+1 is a refinement of Πn for each n, and the σ-algebra generated by

⋃∞
n=1 Πn is the

Borel σ-algebra of [0, 1]J . For each y ∈ K and n ∈ N, let B(n, πJ(y)) be the set in Πn containing πJ(y).
Then, given a Borel set F of the form F0 × [0, 1]Λ\J with F0 ⊂ [0, 1]J , define

δ(F ) =

{
y ∈ K : lim

n→∞

ν(F ∩ π−1
J (B(n, πJ(y)))

ν(π−1
J (B(n, πJ(y)))

= 1

}
.

It is easy to check that δ(F ) = δJ(F0)× [0, 1]Λ\J , where

δJ(F0) =

{
y ∈ [0, 1]J : lim

n→∞

ν(π−1
J (F0 ∩B(n, y)))

ν(π−1
J (B(n, y)))

= 1

}
.

Using the martingale almost everywhere convergence theorem [22], we have

ν(F∆δ(F )) = 0

where F∆δ(F ) denotes the symmetric difference of the sets F and δ(F ).

On the other hand, it is well-known that the space L(L1(µ), L∞(ν)) is isometrically isomorphic to the

space L∞(µ ⊗ ν), where µ ⊗ ν denotes the product measure on Ω ×K. More precisely, the operator ĥ
corresponding to h ∈ L∞(µ⊗ ν) is given by

ĥ(f)(t) =

∫
Ω

h(ω, t)f(ω) dµ(ω)

for ν-almost every t ∈ K. For a reference, see [20]. For a measurable subset M of Ω×K, let Mx = {y ∈
K : (x, y) ∈M} for each x ∈ Ω and My = {x ∈ Ω : (x, y) ∈M} for each y ∈ K.

Lemma 4.3. Let M be a measurable subset of Ω×K with positive measure, 0 < ε < 1, and let f0 be a
simple function. If ‖χ̂M (f0)‖∞ > 1− ε, then there exists a simple function g0 ∈ SL1(µ) such that

‖[χ̂M + ϕ̂](g0)‖∞ = 1 and ‖f0 − g0‖1 < 4
√
ε

for every simple function ϕ in L∞(µ⊗ ν) with ‖ϕ‖∞ 6 1 and vanishing on M .

Proof. Write f0 =
∑m
j=1 αj

χAj
µ(Aj)

∈ SL1(µ), where each Aj is a measurable subset of Ω with finite positive

measure, Ak∩Al = ∅ for k 6= l, and αj is a positive real number for every j = 1, . . . ,m with
∑m
j=1 αj = 1.

Since ‖χ̂M (f0)‖∞ > 1− ε, there is a measurable subset B of K such that 0 < ν(B) and〈
χ̂M (f0),

χB
ν(B)

〉
> 1− ε.

We may assume that there is a countable subset J of Λ such thatM = M0×[0, 1]Λ\J and B = B0×[0, 1]Λ\J

for some measurable subsets M0 ⊂ Ω × [0, 1]J and B0 ⊂ [0, 1]J . For each j ∈ {1, . . . ,m}, we write
Mj = M

⋂
(Aj ×B) = (M0 ∩ (Aj ×B0))× [0, 1]Λ\J and define

Hj = {(x, y) : x ∈ Aj , y ∈ δ
(
(Mj)x

)
}.

As in the proof of [35, Proposition 5], the Hj ’s are disjoint measurable subsets of Ω×K. We note that
for each j ∈ {1, . . . ,m}, we have Hj ⊂ Aj × δ(B) and (µ⊗ ν)(Mj∆Hj) = 0.
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Now, by Fubini theorem, we have that

1− ε < 〈χ̂M (f0),
χB
ν(B)

〉

=

m∑
j=1

αj
µ(Aj)ν(B)

∫
Ω×K

χMj (x, y) d(µ⊗ ν)

=

m∑
j=1

αj
µ(Aj)ν(B)

∫
Ω×K

χHj (x, y) d(µ⊗ ν)

=

m∑
j=1

αj
ν(B)

∫
δ(B)

µ(Hy
j )

µ(Aj)
dν(y)

=
1

ν(δ(B))

∫
δ(B)

m∑
j=1

αj
µ(Hy

j )

µ(Aj)
dν(y).

So, there exists y0 ∈ δ(B) such that
m∑
j=1

αj
µ(Hy0

j )

µ(Aj)
> 1− ε.

Let J =
{
j ∈ {1, . . . ,m} :

µ(H
y0
j )

µ(Aj)
> 1−

√
ε
}

. For each j ∈ J , we have that µ(Aj \Hy0
j ) <

√
εµ(Aj) and,

by Lemma 2.6, we also have αJ :=
∑
j∈J αj > 1−

√
ε. Define

g0 =
∑
j∈J

βj
χHy0j
µ(Hy0

j )
,

where βj = αj/αJ . Then

‖g0 − f0‖ <

∥∥∥∥∥∥
∑
j∈J

βj
χHy0j
µ(Hy0

j )
−
∑
j∈J

αj
χAj
µ(Aj)

∥∥∥∥∥∥+
√
ε

6

∥∥∥∥∥∥
∑
j∈J

βj
χHy0j
µ(Hy0

j )
−
∑
j∈J

βj
χAj
µ(Aj)

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
j∈J

βj
χAj
µ(Aj)

−
∑
j∈J

αj
χAj
µ(Aj)

∥∥∥∥∥∥+
√
ε

6

∥∥∥∥∥∥
∑
j∈J

βj
χHy0j
µ(Hy0

j )
−
∑
j∈J

βj
χHy0j
µ(Aj)

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
j∈J

βj
χHy0j
µ(Aj)

−
∑
j∈J

βj
χAj
µ(Aj)

∥∥∥∥∥∥+ 2
√
ε

6 2
µ(Aj \Hy0

j )

µ(Aj)
+ 2
√
ε 6 4

√
ε

We claim that χ̂M + ϕ̂ attains its norm at g0. Let Bn = π−1
J (B(n, πJ(y0))) for each n. Note that for

every x ∈ Hy0
j we have (x, y0) ∈ Hj , which implies that

lim
n→∞

ν
(
(Mj)x ∩Bn

)
ν(Bn)

= 1.

It follows from the Lebesgue dominated convergence theorem and Fubini theorem that, for each j ∈ J ,

1 = lim
n→∞

1

µ(Hy0
j )

∫
H
y0
j

ν
(
(Mj)x ∩Bn

)
ν(Bn)

dµ(x)

= lim
n→∞

(µ⊗ ν)(Mj ∩ (Hy0
j ×Bn))

µ(Hy0
j )ν(Bn)

.
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On the other hand, since the simple function ϕ is assumed to vanish on M and ‖ϕ‖∞ 6 1, we have∣∣∣∣∣〈ϕ̂( χHy0j
µ(Hy0

j )

)
,
χBn
ν(Bn)

〉∣∣∣∣∣ =

∣∣∣∣∣ 1

µ(Hy0
j )ν(Bn)

∫
H
y0
j ×Bn

ϕ d(µ⊗ ν)

∣∣∣∣∣
6

(µ⊗ ν)((Hy0
j ×Bn) \Mj)

µ(Hy0
j )ν(Bn)

= 1−
(µ⊗ ν)(Mj ∩ (Hy0

j ×Bn))

µ(Hy0
j )ν(Bn)

−→ 0,

as n→∞. Therefore,

1 >
∥∥[χ̂M + ϕ̂](g0)

∥∥
∞ > lim

n→∞

∣∣∣∣∣∣
〈

(χ̂M + ϕ̂)
(∑
j∈J

βj
χHy0j
µ(Hy0

j )

)
,
χBn
ν(Bn)

〉∣∣∣∣∣∣
= lim

n→∞

∑
j∈J

βj
(µ⊗ ν)(M ∩ (Hy0

j ×Bn))

µ(Hy0
j )ν(Bn)

> lim
n→∞

∑
j∈J

βj
(µ⊗ ν)(Mj ∩ (Hy0

j ×Bn))

µ(Hy0
j )ν(Bn)

= 1,

which shows that χ̂M + ϕ̂ attains its norm at g0. �

We are now ready to give the proof of the main result in this section.

Proof of Theorem 4.2. Since the set of all simple functions is dense in L1(µ), we may assume

f0 =

m∑
j=1

αj
χAj
µ(Aj)

∈ SL1(µ),

where each Aj is a measurable subset of Ω with finite positive measure, Ak ∩Al = ∅ for k 6= l, and every
αj is a nonzero complex number with

∑m
j=1 |αj | = 1. We may also assume that 0 < αj 6 1 for every

j = 1, . . . ,m. Indeed, there exists an isometric isomorphism Ψ : L1(µ) −→ L1(µ) such that Ψ(f0) = |f0|.
Hence we may replace T and f0 by T ◦Ψ−1 and Ψ(f0), respectively.

Let h be the element in L∞(Ω×K,µ⊗ ν) with ‖h‖∞ = 1 corresponding to T , that is, T = ĥ. We may
find a simple function

h0 ∈ L∞(Ω×K,µ⊗ ν), ‖h0‖∞ = 1

such that ‖h− h0‖∞ < ‖T (f0)‖∞ − (1− ε8), hence ‖ĥ0(f0)‖∞ > 1− ε8. We can write h0 =
∑p
l=1 clχDl ,

where each Dl is a measurable subset of Ω×K with positive measure, Dk ∩Dl = ∅ for k 6= l, |cl| 6 1 for
every l = 1, . . . , p, and |cl0 | = 1 for some 1 6 l0 6 p.

Let B be a Lebesgue measurable subset of K with 0 < ν(B) <∞ such that∣∣∣∣〈ĥ0(f0),
χB
ν(B)

〉∣∣∣∣ > 1− ε8.

Choose θ ∈ R so that

1− ε8 <
∣∣〈ĥ0(f0),

χB
ν(B)

〉
∣∣

= eiθ〈ĥ0(f0),
χB
ν(B)

〉

=

m∑
j=1

αj eiθ
〈
ĥ0(

χAj
µ(Aj)

),
χB
ν(B)

〉
.
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Set

J =

{
j ∈ {1, . . . ,m} : Re

[
eiθ〈ĥ0(

χAj
µ(Aj)

),
χB
ν(B)

〉
]
> 1− ε4

}
.

By Lemma 2.6, we have

αJ =
∑
j∈J

αj > 1− ε8

1− (1− ε4)
= 1− ε4.

We define

f1 =
∑
j∈J

(
αj
αJ

)
χAj
µ(Aj)

.

We have that ‖f1‖1 = 1,

‖f0 − f1‖1 6
∥∥∥∑
j /∈J

αj
χAj
µ(Aj)

∥∥∥
1

+
( 1

αJ
− 1
) ∥∥∥∑

j∈J
αj

χAj
µ(Aj)

∥∥∥
1

=
∑
j /∈J

αj + (1− αJ) = 2(1− αJ) < 2ε4.

and ∣∣∣∣〈ĥ0(f1),
χB
ν(B)

〉
∣∣∣∣ > Re

[
eiθ
〈
ĥ0(f1),

χB
ν(B)

〉]
=

1

αJ

∑
j∈J

αj Re

[
eiθ
〈
ĥ0(

χAj
µ(Aj)

),
χB
ν(B)

〉]
>

1

αJ

∑
j∈J

αj(1− ε4) = 1− ε4.

Let L =
{
l ∈ {1, . . . , p} : Re (eiθ cl) > 1− ε2

2

}
. On the other hand, for each j ∈ J , we have

1− ε4 < Re

[
eiθ
〈
ĥ0(

χAj
µ(Aj)

),
χB
ν(B)

〉]
=

p∑
l=1

Re (eiθ cl)
(µ⊗ ν)(Dl ∩ (Aj ×B))

µ(Aj)ν(B)

6
∑

l∈{1,...,p}\L

(1− ε2

2
)
(µ⊗ ν)(Dl ∩ (Aj ×B))

µ(Aj)ν(B)

+
∑
l∈L

(µ⊗ ν)(Dl ∩ (Aj ×B))

µ(Aj)ν(B)

6 1− ε2

2

∑
l∈{1,...,p}\L

(µ⊗ ν)(Dl ∩ (Aj ×B))

µ(Aj)ν(B)
.

This implies that for each j ∈ J ∑
l∈{1,...,p}\L

(µ⊗ ν)(Dl ∩ (Aj ×B))

µ(Aj)ν(B)
6 2ε2.

Since
p∑
l=1

(µ⊗ ν)(Dl ∩ (Aj ×B))

µ(Aj)ν(B)
> 1− ε4,

for every j ∈ J we have that∑
l∈L

(µ⊗ ν)(Dl ∩ (Aj ×B))

µ(Aj)ν(B)
> (1− ε4 − 2ε2) > 1− 3ε2.
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Set D =
⋃
l∈LDl. Then we have

〈χ̂D(f1),
χB
ν(B)

〉 =
∑
j∈J

(αj
αJ

)
·
∑
l∈L

µ⊗ ν(Dl ∩ (Aj ×B))

µ(Aj)ν(B)
> 1− 3ε2.

By Lemma 4.3, there is g0 ∈ SL1(µ) such that ‖(χ̂D + ϕ̂)(g0)‖∞ = 1 and ‖f1 − g0‖ < 4
√

3ε2 < 8ε for
every simple function ϕ in L∞(µ⊗ ν) vanishing on D with ‖ϕ‖∞ 6 1. Therefore, we have

‖f0 − g0‖1 6 ‖f0 − f1‖1 + ‖f1 − g0‖1 6 2ε4 + 8ε < 10ε.

Define

h1 = e−iθ χD +
∑
l/∈L

cl χDl ∈ L∞(µ⊗ ν).

Let S be the operator in L(L1(µ), L∞(m)) corresponding to h1. Then we get

‖S(g0)‖∞ = ‖ĥ1(g0)‖∞ = 1

and

‖h0 − h1‖∞ = max
l∈L
|cl − e−iθ | = max

l∈L
| eiθ cl − 1|.

As Re (eiθ cl) > 1− ε2

2 for every l ∈ L, we have that(
Im (eiθ cl)

)2
6 1−

(
Re (eiθ cl)

)2
< 1− (1− ε2

2
)2 = ε2 − ε4

4
.

Since

| eiθ cl − 1| =

√(
1− Re (eiθ cl)

)2
+
(

Im (eiθ cl)
)2

<
√
ε4/4 + (ε2 − ε4/4) = ε,

we conclude that

‖h0 − h1‖∞ < ε

and

‖T − S‖∞ 6 ‖h− h0‖∞ + ‖h0 − h1‖∞ < ε8 + ε < 2ε. �

5. The Bishop-Phelps-Bollobás Property for some operators from L1(µ) into C(K)

Throughout this section, we consider only a finite measure µ on a measurable space (Ω,Σ) and real
Banach spaces L1(µ) and C(K). Our aim is to obtain the Bishop-Phelps-Bollobás property for some
classes of operators from L1(µ) to C(K), sharpening the results about denseness of norm-attaining
operators given by Iwanik in 1982 [26].

We use the following standard representation of operators into C(K) [23, Theorem 1 in p. 490].

Lemma 5.1. Given a bounded linear operator T : X −→ C(K), define F : K −→ X∗ by F (s) = T ∗(δs),
where δs is the point measure at s ∈ K. Then, for x ∈ X, the relation Tx(s) = 〈x, F (s)〉 defines an
isometric isomorphism of L(X,C(K)) onto the space of weak∗ continuous functions from K to X∗ with
the supremum norm. Moreover, compact operators correspond to norm continuous functions.

Iwanik [26] considered operators T ∈ L(L1(µ), C(K)) satisfying one of the following conditions:

(1) The map s 7−→ T ∗δs is continuous in measure.
(2) There exists a co-meager set G ⊂ K such that {T ∗δs : s ∈ G} is norm separable in L∞(µ).

We recall that a subset A is said to be a co-meager subset of K if the set K \A is meager, that is, of first
category.
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Theorem 5.2. Let 0 < ε < 1. Suppose that T ∈ L(L1(µ), C(K)) (real case) has norm one and satisfies

condition (1). If ‖Tf‖ > 1− ε2

6 for some f ∈ SL1(µ), then there exist S ∈ L(L1(µ), C(K)) with ‖S‖ = 1
and g ∈ SL1(µ) such that ‖Sg‖ = 1, ‖S − T‖ < ε, and ‖f − g‖ < ε. Moreover, S also satisfies condition
(1).

Proof. Without loss of generality, we assume that there exists s0 ∈ K such that

Tf(s0) > 1− ε2

6
.

Consider the function G : L∞(µ) −→ L∞(µ) given by

G(h) =
(
h ∧ (1− ε/3)

)
∨ (−1 + ε/3)

(
h ∈ L∞(µ)

)
.

Since the lattice operation G is continuous in the L∞ norm and T satisfies condition (1), we can see that
the mapping s 7−→ GT ∗δs is continuous in measure, hence weak∗-continuous. Let S̄ be the element of
L(L1(µ), C(K)) represented by the function F (s) := GT ∗δs. Then

‖S̄ − T‖ = sup
s∈K
‖F (s)− T ∗δs‖ 6

ε

3
.

Let

C =
{
ω ∈ Ω : sign

(
f(ω)

)
T ∗δs(ω) > 1− ε

3

}
and define S = S/‖S‖ and g = f |C/‖f |C‖, where f |C is the restriction of f to the subset C. It is easy
to see that S satisfies condition (1) and

‖S − T‖ 6 ‖S − S‖+ ‖S − T‖ = |‖S̄‖ − 1|+ ‖S̄ − T‖ 6 2‖S̄ − T‖ < ε.

Moreover, we get

1− ε2

6
< Tf(s0) = 〈T ∗δs0 , f〉 =

∫
Ω

T ∗δs0(ω)f(ω) dµ

=

∫
C

sign
(
f(ω)

)
T ∗δs0(ω)|f(ω)| dµ+

∫
Ω\C

sign
(
f(ω)

)
T ∗δs0(ω)|f(ω)| dµ

6
∫
C

|f(x)| dµ+ (1− ε

3
)

∫
Ω\C
|f(ω)| dµ

= 1− ε

3

∫
Ω\C
|f(x)|dµ,

which implies that ∫
Ω\C
|f(x)| dµ < ε

2
.

Therefore,

‖g − f‖ 6 ‖g − f |C‖+ ‖f |C − f‖ = 2(1− ‖fC‖)

= 2

∫
Ω\C
|f(x)|dµ < ε

On the other hand, we see that Sg(s0) = 〈S∗δs0 , g〉 = 1 because S∗δs0(ω) = sign
(
f(x)

)
= sign

(
g(ω)

)
for

every ω ∈ C. This completes the proof. �

We do not know, and it is clearly of interest, for which topological compact Hausdorff spaces K all
operators in L(L1(µ), C(K)) satisfy condition (1).

We recall that a bounded linear operator T from L1(µ) into a Banach space X is said to be Bochner
representable if there is a bounded strongly measurable function g : Ω −→ X such that

Tf =

∫
f(ω)g(ω) dµ(ω)

(
f ∈ L1(µ)

)
.
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The Dunford-Pettis-Phillips Theorem [21, Theorem 12 p. 75] says that T ∈ L(L1(µ), X) is weakly compact
if and only if T is Bochner representable by a function g which has an essentially relatively weakly
compact range. Iwanik [26] showed that every Bochner representable operator from L1(µ) into C(K)
satisfies condition (1). Moreover, we get the following result which has been independently obtained in
[6, Corollary 2.4].

Corollary 5.3. Let 0 < ε < 1. Suppose that T ∈ L(L1(µ), C(K)) (real case) has norm-one and it is

Bochner representable (resp. weakly compact). If ‖Tf‖ > 1− ε2

6 for some f ∈ SL1(µ), then there exist a
Bochner representable (resp. weakly compact) operator S ∈ L(L1(µ), C(K)) with ‖S‖ = 1 and g ∈ SL1(µ)

such that ‖Sg‖ = 1, ‖S − T‖ < ε, and ‖f − g‖ < ε.

Proof. By Theorem 5.2, it is enough to show that if T is a Bochner representable operator from L1(µ)
into C(K), then F (s) = T ∗δs is continuous in measure and that the operator S defined in the proof is
Bochner representable.

Let g : Ω −→ C(K) be a bounded strongly measurable function which represents T . It is easy to
check that F (s) = g(·)(s) for all s ∈ K. Since the range of g is separable, the range of T is separable and
contained in a separable sub-algebra A of C(K) with unit. By the Gelfand representation theorem, A is
isometrically isomorphic to C(K̄) for some compact metrizable space K̄. So, we may assume that K is
metrizable. To show that the mapping F (s) = T ∗δs = g(ω)(s) is continuous in measure, assume that a
sequence (sn) converges to s in K. Then for all ω ∈ Ω,

lim
n→∞

|g(ω)(sn)− g(ω)(s)| = 0.

By the dominated convergence theorem, we have that

lim
n→∞

sup
f∈SL∞(µ)

∫
f(ω)(g(ω)(sn)− g(ω)(s)) dµ(ω) 6 lim

n→∞

∫
|g(ω)(sn)− g(ω)(s)| dµ(ω) = 0.

Hence the sequence (g(·)(sn))n converges to g(·)(s) in measure. That is, (F (sn))n converges to F (s).

We note that the operator S̄ in the proof of Theorem 5.2 is determined by GT ∗δs = G(g(·)(s)). Since
the mapping

s 7−→ G(g(·)(s))(ω) = (g(ω)(s) ∧ (1− ε/3)) ∨ (−1 + ε/3))

is continuous for each ω ∈ Ω, the operator S̄ is Bochner representable by this mapping. Finally, if T is
weakly compact, then the proof is done by the Dunford-Pettis-Phillips theorem. �

As observed in [26], the operator T : L1[0, 1] −→ C[0, 1] determined by T ∗δs = χ[0,s] is not Bochner
representable, but satisfies condition (1).

For condition (2), we have the following result.

Theorem 5.4. Let 0 < ε < 1. Suppose that T ∈ L(L1(µ), C(K)) (real case) has norm-one and satisfies

condition (2). If ‖Tf‖ > 1− ε2

4 for some f ∈ SL1(µ), then there exist S ∈ L(L1(µ), C(K)) with ‖S‖ = 1
and g ∈ SL1(µ) such that ‖Sg‖ = 1, ‖S − T‖ < ε, and ‖f − g‖ < ε. Moreover, S also satisfies condition
(2).

Proof. By using a suitable isometric isomorphism, we may first assume that f is nonnegative. Let G be
the co-meager set in the condition (2) and (T ∗δsk)k be a sequence which is ‖ · ‖∞-dense in the closure of
{T ∗δs : s ∈ G} ⊂ L∞(µ). Observe that the sets

{ω ∈ Ω : a < T ∗δsk(ω) < b}

where a, b ∈ Q and k > 1, form a countable family {Ai}i of measurable subsets of Ω. We define, for each
i, the functions

ui(s) = ess. inf{T ∗δs(ω) : ω ∈ Ai} and vi(s) = ess. sup{T ∗δs(ω) : ω ∈ Ai}.
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Let Ui and Vi be the set of all continuity points of ui and vi for all i, respectively. Let F be the intersection
of all subsets Ui’s and Vi’s. We claim that the functions ui’s are upper semi-continuous and the functions
vi’s are lower semi-continuous. Indeed, recall (see [36, 3.7 Definition] for a reference) that

vi(s) = inf
{
λ ∈ R : µ{ω ∈ Ai : T ∗δs(ω) > λ} = 0

}
,

where inf ∅ =∞ and inf R = −∞. To show that the set {s : λ < vi(s)} is open in K for all λ ∈ R, suppose
that vi(s0) > λ0 for some s0 ∈ K and λ0 ∈ R. It suffice to prove that there is an open neighborhood
V of s0 such that V ⊂ {s : vi(s) > λ0}. We note that µ{ω ∈ Ai : T ∗δs0(ω) > λ0} > 0 and there exists
λ1 > λ0 such that

µ{ω ∈ Ai : T ∗δs0(ω) > λ1} > 0.

Let E = {ω ∈ Ai : T ∗δs0(ω) > λ1}. Then

1

µ(E)

∫
E

T ∗δs0(ω)dµ(ω) > λ1 > λ0.

Since the map s 7−→ T ∗δs is weak∗ continuous on L∞(µ), the set

V :=

{
s ∈ K :

1

µ(E)

∫
E

T ∗δs(ω)dµ(ω) > λ1

}
is an open subset containing s0. We note that µ{ω ∈ Ai : T ∗δs(ω) > λ1} > 0 for all s ∈ V . Otherwise,
there is s1 ∈ V such that µ{ω ∈ Ai : T ∗δs1(ω) > λ1} = 0. Then T ∗δs1(ω) 6 λ1 almost everywhere ω ∈ Ai
and

1

µ(E)

∫
E

T ∗δs1(ω)dµ(ω) 6 λ1.

This is a contradiction to the fact that s1 is an element of V , which implies that vi(s) > λ0 for all s ∈ V
and V ⊂ {s : vi(s) > λ0}. This gives the lower semi-continuity of vi. The upper semi-continuity of ui
follows from the fact that −ui is lower semi-continuous. The claim is proved.

We deduce then that the set F is co-meager (c.f. see [31, § 32 II. p. 400]). Since the set {s : s ∈
K, |Tf(s)| > 1− ε2

4 } is nonempty and open, there exists s0 ∈ F ∩G such that |Tf(s0)| > 1− ε2

4 . Without
loss of generality, we may assume that

Tf(s0) = 〈T ∗δs0 , f〉 > 1− ε2

4
.

Because of the denseness of the sequence (T ∗δsk)k, there exists k0 ∈ N such that

Tf(sk0) =
〈
T ∗δsk0 , f

〉
> 1− ε2

4
and ‖T ∗δs0 − T ∗δsk0 ‖ <

ε

4
.

Fix q ∈ Q such that 1− 3
4ε < q < 1− ε

2 and let

C =
{
ω ∈ Ω : T ∗δsk0 (ω) > q

}
.

Then

1− ε2

4
<
〈
T ∗δsk0 , f

〉
=

∫
Ω

T ∗δsk0 (ω)f(ω) dµ

=

∫
C

T ∗δsk0 (ω)f(ω) dµ+

∫
Ω\C

T ∗δsk0 (ω)f(ω) dµ

6
∫
C

f(ω) dµ+
(

1− ε

2

)∫
Ω\C

f(ω) dµ

=1− ε

2

∫
Ω\C

f(ω) dµ.

Hence we have that ∫
Ω\C

f(ω) dµ <
ε

2
and

∫
C

f(ω) dµ > 1− ε

2
.
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Let Bn = {ω : q < T ∗δsk0 (ω) < n} for each n. Then C =
⋃∞
n=1Bn and there exists n0 such that∫

Bn0

f(ω) dµ > 1− ε

2
.

Hence Bn0 = Ai0 for some i0 and µ(Ai0) > 0. This implies that ui0(sk0) > q and ui0(s0) > q− ε
4 > 1− ε.

Setting A = Ai0 , it is also clear that ∥∥∥∥ f |A
‖f |A‖

− f
∥∥∥∥ < ε.

Since ui0 is continuous at s0, there exist an open neighborhood U of s0 and a continuous function
h : K −→ [0, 1] such that ui0(s) > 1 − ε for all s ∈ U , h(s0) = 1 and h(U c) = 0. We define a
weak∗-continuous map M : K −→ L∞(µ) by

M(s)(ω) = T ∗δs(ω) + χA(ω)h(s)(1− T ∗δs(ω))
(
ω ∈ Ω, s ∈ K

)
.

We note that M(s0) = 1 for all ω ∈ A. It is also easy to get that

‖M(s)(ω)− T ∗δs(ω)‖ = ‖χA(ω)h(s)(1− T ∗δs(ω))‖ < ε and sup
s∈K
‖M(s)‖ = 1.

Let S be the operator represented by the function M . Then S satisfies condition (2), S
(

f |A
‖f |A‖

)
(s0) = 1

and ‖S − T‖ < ε. �

As shown in [26], the Dunford-Pettis-Phillips Theorem implies that every weakly compact operator
T in from L1(µ) to an arbitrary Banach space Y has separable range, hence the range of its weakly
compact adjoint T ∗ is also separable and so T satisfies condition (2). On the other hand, there are
Bochner representable operators which do not satisfy the condition (2) (see [26]). Indeed, let µ be a
strictly positive probability measure on N and consider the operator T ∈ L(L1(µ), C({0, 1}N) defined
by Tf(s) =

∫
f(n)πn(s) dµ(n), where πn be the n-th natural projection on {0, 1}N. Then T is Bochner

representable, while {T ∗δs : s ∈ G} is non-separable in L∞(µ) for every uncountable subset G of {0, 1}N.

Finally, let us comment that it is also observed in [26] that if K has a countable dense subset of isolated
points, then condition (2) is automatically satisfied for all T ∈ L(L1(µ), C(K)). Actually, in this case,
C(K) has the so-called property (β) and then the pair (X,C(K)) has the BPBp for all Banach spaces X
[3, Theorem 2.2].

It would be of interest to characterize those topological Hausdorff compact spaces K such that
(X,C(K)) has the BPBp for every Banach space X.

Acknowledgment. The authors thank an anonymous referee for careful reading and helpful sugges-
tions about revision.
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Analysis (Srńı, 1982) Rend. Circ. Mat. Palermo. 2 (1982), 147-152.
[27] J. Johnson and J. Wolfe, Norm attaining operators, Studia Math. 65 (1979), 7-19.

[28] S. K. Kim, The Bishop-Phelps-Bollobás Theorem for operators from c0 to uniformly convex spaces, Israel. J. Math.

197 (2013), 425-435.
[29] S. K. Kim and H. J. Lee, Uniform convexity and Bishop-Phelps-Bollobás property, Canad. J. Math. 66 (2014),

373-386.
[30] J. Kim and H. J. Lee, Strong peak points and strongly norm attaining points with applications to denseness and

polynomial numerical indices, J. Funct. Anal. 257 (2009), 931-947.

[31] K. Kuratowski, Topology, Vol 1, Academic press, 1966.
[32] H. E. Lacey, The isometric theory of classical Banach spaces, Springer, 1974.

[33] J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139-148.

[34] J. R. Partington, Norm attaining operators, Israel J. Math. 43 (1982), 273-276.
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