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ABSTRACT. In this paper we show that the Bishop-Phelps-Bollobés theorem holds for £(L1 (i), L1(v))
for all measures g and v and also holds for £(L1(u), Loo(v)) for every arbitrary measure p and every
localizable measure v. Finally, we show that the Bishop-Phelps-Bollobas theorem holds for two classes
of bounded linear operators from a real Li(p) into a real C(K) if p is a finite measure and K is a
compact Hausdorff space. In particular, one of the classes includes all Bochner representable operators
and all weakly compact operators.

1. INTRODUCTION

The celebrated Bishop-Phelps theorem of 1961 [12] states that for a Banach space X, every element
in its dual space X* can be approximated by ones that attain their norms. Since then, there has
been an extensive research to extend this result to bounded linear operators between Banach spaces
[14, 27, 33, 34, 37] and non-linear mappings [2, 7, 11, 16, 17, 30]. On the other hand, Bollobds [13],
motivated by problems arising in the theory of numerical ranges, sharpened the Bishop-Phelps theorem
in 1970, and got what is nowadays called the Bishop-Phelps-Bollobas theorem. Previously to presenting
this result, let us introduce some notations. Given a (real or complex) Banach space X, we write By for
the unit ball, Sx for its unit sphere, and X* for the topological dual space of X. If Y is another Banach
space, we write £(X,Y) to denote the space of all bounded linear operators from X into Y.

Theorem 1.1 (Bishop-Phelps-Bollobds theorem). Let X be a Banach space. If x € Sx and z* € Sx-
satisfy |z*(x) — 1| < €%/4, then there exist y € Sx and y* € Sx- such that y*(y) = 1, ||lz* — y*|| < ¢ and
lz -yl <e.

In 2008, Acosta, Aron, Garcia and Maestre [3] introduced the Bishop-Phelps-Bollobds property to
study extensions of the theorem above to operators between Banach spaces.

Definition 1.2. Let X and Y be Banach spaces. The pair (X,Y) is said to have the Bishop-Phelps-
Bollobds property (BPBp) if for every 0 < e < 1, there is () > 0 such that for every T' € £L(X,Y) with
IT] =1 and xg € Sx satisfying ||T(xo)|| > 1 — n(e), there exist yp € Sx and S € L(X,Y) with ||S]| =1
satisfying the following conditions:

1Syoll = 1, llyo — xol] <&, and ||S—T| <e.
In this case, we also say that the Bishop-Phelps-Bollobds theorem holds for £(X,Y).
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This property has been studied by many authors. See for instance [5, 8, 10, 15, 18, 19, 28, 29]. Observe
that the BPBp of a pair (X,Y’) implies obviously that the set of norm attaining operators is dense in
L(X,Y). However, its converse is false, as shown by the pair (X,Y’) where X is the 2-dimensional L;-
space and Y is a strictly, but not uniformly convex space (see [3] or [10]). Let us also comment that the
Bishop-Phelps-Bollobds theorem states that the pair (X, K) has the Bishop-Phelps-Bollobés property for
every Banach space X (K is the base scalar field R or C).

In this paper we first deal with the problem of when the pair (L,(u), Ly(v)) has the BPBp. Let us
start with a presentation of both already known results and our new results. Iwanik [25] showed in 1979
that the set of norm-attaining operators from L; (i) to Li(v) is dense in the space L£(Li(u), L1(v)) for
arbitrary measures g and v. Our first main result in this paper is that the pair £(L1(u), L1(v)) has the
BPBp. This is the content of section 3.

On the other hand, Aron et al. [9] showed that if u is a o-finite measure, then the pair (L1 (u), Loo[0, 1])
has the BPBp, improving a result of Finet and Pay4d [24] about the denseness of norm-attaining operators.
We generalize this result in section 4 showing that (Li(u), Loo(v)) has the BPBp for every measure p
and every localizable measure v. This is also a strengthening of a result of Payd and Saleh [35] which
stated only the denseness of norm-attaining operators.

One of the tools used to prove the results above is the fact that one can reduce the proofs to some
particular measures. We develop this idea in section 2, where, as its first easy application, we extend to
arbitrary measures p the result in [18] that (L1(u), Ly(v)) has the BPBp for o-finite measures p.

The following result summarizes all what is known about the BPBp for the pair (L, (1), Ly(v)).
Corollary 1.3. The pair (L,(p), Lq(v)) has the BPBp

) for all measures p and v ifp=1 and 1 < g < co.

) for any measure p and any localizable measure v if p =1, ¢ = oo.
) for all measures p and v if 1 < p < 0o and 1 < g < oo.

) for all measures p and v if p = 00, ¢ = 00, in the real case.

(1) and (2) follows from the results of this paper (Corollary 2.3, Theorem 3.1 and Theorem 4.1). Since
L,(p) is uniformly convex when 1 < p < oo, (3) follows from [5, 29] in the o-finite case, generalized
here to arbitrary measures p (Corollary 2.3). Finally, (4) follows from [4], because every L., space is
isometrically isomorphic to a C'(K) space.

As far as we know, the cases (Loo(1t), Lq(v)) for 1 < ¢ < 0o and the complex case of (4) remain open.

Let u be a finite measure. Since any L., space is isometrically isomorphic to C'(K) for some compact
Hausdorff space K, it is natural to ask when (L;(u), C(K)) has the BPBp. Schachermayer [38] showed
that the set of all norm-attaining operators is not dense in £(L1[0, 1], C[0,1]). Hence, (L1[0,1],CI0,1])
cannot have the BPBp. On the other hand, Johnson and Wolfe [27] proved that if X is a Banach space
and if either Y or Y* is a L;(u) space, then every compact operator from X into Y can be approximated
by norm-attaining finite-rank operators. They also showed that every weakly compact operator from
Ly (p) into C'(K) can be approximated by norm-attaining weakly compact ones. In this direction, Acosta
et al. have shown that (L;(u),Y’) has the BPBp for representable operators (in particular, for weakly
compact operators) if (¢1,Y) has the BPBp, and this is the case of Y = C(K) [6].

On the other hand, Iwanik [26] studied two classes of bounded linear operators from a real Lq(u)
space to a real C(K) space such that every element of each class can be approximated by norm-attaining
elements, and showed that one of the classes strictly contains all Bochner representable operators and all
weakly compact operators. In section 5, we deal with Bishop-Phelps-Bollobéas versions of these Iwanik’s
results. In particular, we show that for every 0 < & < 1, there is (g) > 0 such that if T € L£(L1(p), C(K))
with ||T'|| = 1 is Bochner representable (resp. weakly compact) and fo € S, () satisfy || T fol| > 1 —n(e),
then there is a Bochner representable (resp. weakly compact) operator S € L(L1(u), C(K)) and f € St ()
such that |Sf||=[|S||=1, ||IS—T| <eand || f — fol <e.
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Let us finally comment that the proofs presented in sections 3 and 4 are written for the complex case.
Their corresponding proofs for the real case are easily obtained, even easier, from the ones presented
there.

2. SOME PRELIMINARY RESULTS

We start with some terminologies and known facts about Ly (). Suppose that (Q, X, 1) is an arbitrary
measure space and put X = L;(u). Suppose G is a countable subset of X. Since the closed linear
span [G] of G is separable, we may assume that [G] is the closed linear span of a countable set {xg, }
of characteristic functions of measurable subsets with finite positive measure. Let E = |J,, E,, and
Z ={fxg : f € X}. Then, Z = L1(p|g), where u|g is restriction of the measure u to the o-algebra
Yl ={ENA: Ae X} Since p|g is o-finite, Z is isometrically (lattice) isomorphic to Li(m) for
some positive finite Borel regular measure m defined on a compact Hausdorff space by the Kakutani
representation theorem (see [32, Theorem 9, § 14] for a reference). This space Z is called the band
generated by G, and the canonical band projection P : X — Z, defined by P(f) := fxg for f € X,
satisfies || f|| = ||Pf]l + ||(Id —P)f] for all f € X. For more details, we refer the reader to the classical
books [32, 39].

Next, we state the following equivalent formulation of the BPBp from [10] which helps to better
understand the property and will be useful for our preliminary results. Given a pair (X,Y) of Banach
spaces, let

I(X,Y) ={(2,T) € X x L(X,Y) : |[T|| = |lz]| = |T=| = 1}
and define, for 0 < e < 1,
n(X,Y)(e) = inf{l —|Tz|| : w€Sx, T e LX,Y), ||T| =1, dist (=, 7),II(X,Y)) > 5},

where dist ((z,7),I1(X,Y)) = inf{max{||z — y|, |T — S|} : (y,5) € I(X,Y)}. Equivalently, for every

€ (0,1), n(X,Y)(e) is the supremum of those £ > 0 such that whenever T' € L(X,Y") with ||T'|| = 1 and
x € Sx satisfy || Tx| = 1 —¢&, then there exists (y,S5) € II(X,Y) with |T —S|| < e and ||z —y| <e. Tt is
clear that (X,Y) has the BPBp if and only if n(X,Y)(e) >0 for all 0 < e < 1.

Our first preliminary result deals with operators acting on an Lq(u) space and shows that the proof
of some results can be reduced to the case when p is a positive finite Borel regular measure defined on a
compact Hausdorff space.

Proposition 2.1. Let Y be a Banach space. Suppose that there is a function n: (0,1) — (0,00) such
that

n(Li(m),Y)(e) = n(e) >0 (0<e<1)
for every positive finite Borel reqular measure m defined on a compact Hausdorff space. Then, for every
measure i, the pair (L1(p),Y) has the BPBp with n(Ly(pn),Y) = n.

Moreover, if Y = Ly(v) for an arbitrary measure v, then it is enough to show that
n(Ll(ml),Ll(mz))(E) > 77(5) >0 (O <e< 1)

for all positive finite Borel reqular measures my and ms defined on Hausdorff compact spaces in order to
get that (Ly(p), L1(v)) has the BPBp with n(L1(p), L1(v)) = n.

Proof. Let 0 < ¢ < 1. Suppose that T' € L£(L1(u),Y) is a norm-one operator and fy € Sx satisfy that
ITfoll > 1 —mn(e). Let {f)22, be a sequence in X such that ||f,] < 1 for all n and lim, o ||Tfr] =
IT|| = 1. The band X; generated by {f, : n > 0} is isometric to Li(J,m) for a finite positive Borel
regular measure m defined on a compact Hausdorff space J by the Kakutani representation theorem. Let
T be the restriction of T to X;. Then ||T1|| = 1 and ||T3 fo]| > 1 — n(e). By the assumption, there exist
a norm-one operator S1 : X1 — Y and g € Sx, such that ||Sig| =1, |Th — Si]| < e and ||f —g| < e.
Let P denote the canonical band projection from L () onto X;. Then S := S P+ T(Id —P) is a norm-
one operator from Li(u) to Y, g can be viewed as a norm-one element in S, (,) (just extending by 0),
ISgll=1, ||S—T| < e and || f — g|| <e. This completes the proof of the first part of the proposition.
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In the case when Y = L;(v), we observe that the image T'(X;) is also contained in a band Y; of
Ly (v) which, again, is isometric to Li(ms) for a finite positive Borel regular measure mso on a compact
Hausdorff space J,. Now, we work with the restriction of 7" to X; with values in Y7, we follow the proof of
the first part and finally we consider the operator S as an operator with values in L (v) (just composing
with the formal inclusion of Y7 into Lq(v)). O

Since for every positive finite Borel regular measure m defined on a compact Hausdorff space, L1 (m)
is isometric to Ly (u) for a probability measure p, we get the following.

Corollary 2.2. Let Y be a Banach space. Suppose that there is a strictly positive function n: (0,1) —
(0,00) such that n(L1(u1),Y) = n for every probability measure yuy. Then (L1(p),Y) has the BPBp for
every measure fi, with n(Ll(,u),Y) >n.

Let us give the first application of the above results. For a o-finite measure p1, it is shown in [18] that
(L1(11),Y) has the BPBp if Y has the Radon-Nikodym property and (¢1,Y") has the BPBp. By following
the proof of [18, Theorem 2.2], we conclude that there is a strictly positive function ny : (0,1) — (0, 00)
such that n(Ly(p1),Y) = ny for every probability measure pq. Therefore, the corollary above provides
the same result without the assumption of o-finiteness. We also recall that L,(v) is uniformly convex
for all 1 < ¢ < co and for all measures v, so it has the Radon-Nikodym property and (¢1, Ly(v)) has the
BPBp [3]. Hence we get the following.

Corollary 2.3. Let u be an arbitrary measure. If Y is a Banach space with the Radon-Nikodym property
and such that (¢1,Y) has the BPBp, then the pair (L1(u),Y") has the BPBp. In particular, (L1(p), Lqe(v))
has the BPBp for all 1 < g < oo and all arbitrary measures v.

We now deal with operators with values on an ¢..-sum of Banach spaces, giving the following result
from [10] which we will use in section 4. Given a family {Y; : j € J} of Banach spaces, we denote by

[@jeJ Yj} , the {-sum of the family.

Proposition 2.4 ([10]). Let X be o Banach space and let {Y; : j € J} be a family of Banach spaces
and let Y = [GajeJ Y]L denote their lo-sum. If inEn(X,Y}-)(s) >0 for all0 < e <1, then (X,Y) has
oo j€
the BPBp with
§(X,Y) = inf (X, ;).
jeJ

We will use this result for operators with values in L, (). To present the result, we fist recall that
given a localizable measure v, we have the following representation

1 Le) = |, Y], -

where each space Y; is either 1-dimensional or of the form L. ([0,1]*) for some finite or infinite set A
and [0, 1]* is endowed with the product measure of the Lebesgue measures. For its background, see [35]
and references therein. With this in mind, the following corollary follows from the proposition above.

Corollary 2.5. Let X be a Banach space. Suppose that there is a strictly positive function n: (0,1) —
(0,00) such that
(X, Lo([0,1]Y)(e) = n(e)  (0<e<1)
for every finite or infinite set A. Then the pair (X, Loo(v)) has the BPBp for every localizable measure v
with
n(X, Leo(v))(e) = min{n(e),e*/2} (0<e<1).

The proof is just an application of Proposition 2.4, the representation formula given in (1) and the
Bishop-Phelps-Bollobds theorem (Theorem 1.1).
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Let us comment that the analogue of Proposition 2.4 is false for ¢;-sums in the domain space (see
[10]), so Proposition 2.1 cannot be derived directly from the decomposition of L, (u) spaces analogous to

(1).
Before finishing this section, we state the following lemma of [3] which we will frequently use afterwards.
Lemma 2.6 ([3, Lemma 3.3]). Let {c,} be a sequence of complex numbers with |c,| < 1 for every n, and

let n > 0 be such that for a convex series Y ay,, Re > 0" | anc, > 1 —n. Then for every 0 < r <1, the
set A:={i € N:Re ¢; > r}, satisfies the estimate

Zai}l_lﬁr'

i€A

3. THE BISHOP-PHELPS-BOLLOBAS PROPERTY OF (L1 (), L1(v))

Our goal in this section is to prove the following result.

Theorem 3.1. Let yi and v be arbitrary measures. Then the pair (L1(u), L1(v)) has the BPBp. Moreover,
there exists a strictly positive function n : (0,1) — (0,00) such that

(L), L)) () Z () (0<e<1).

By Proposition 2.1, it is enough to get the result for finite regular positive Borel measures defined on
compact Hausdorff spaces. Therefore, Theorem 3.1 follows directly from the next result.

Theorem 3.2. Let my and mo be finite reqular positive Borel measures on compact Hausdorff spaces
J1 and Ja, respectively. Let 0 < & < 1 and suppose that T € L(L1(m1), L1(m2)) with |T|| = 1 and
fo € Sr,(my) satisfy | T foll > 1 — % Then there are S € Sp(L,(m1),L.1(ms)) a1d g € S1,(m,) such that

ISgll =1, [If —gll <4e and ||T -S| <4ve.

Prior to presenting the proof of this theorem, we have to recall the following representation result for
operators from Lq(m1) into Li(mgy). As we announced in the introduction, we deal with the complex
spaces only. The proof of the real case is easier than the one given by us for the complex case.

Let my and mso be finite regular positive Borel measures on compact Hausdorff spaces J; and Js,
respectively. For a complex-valued Borel measure p on the product space Jy x Jo, we define their
marginal measures ' on J; (i = 1,2) as follows:

pH(A) = p(Ax Jo) and  p*(B) = pu(Ji x B),
where A and B are Borel measurable subsets of J; and Js, respectively.

Let M(m1, m2) be the complex Banach lattice consisting of all complex-valued Borel measures p on
the product space J; x Jy such that each |u|? is absolutely continuous with respect to m; for i = 1,2 with
the norm
d|ul*

dm1

oo
It is clear that to each p € M(mi,ma) there corresponds a unique bounded linear operator 7T, €

L(L1(mq), L1(m2)) defined by

(Tu(f).g) = / F@)al) dua.),

where f € Li(m,) and g € Loo(m2). Iwanik [25] showed that the mapping p — T, is a surjective lattice
isomorphism and

dlp*
T = |-
1730 = |

Even though he showed this for the real case, it can be easily generalized to the complex case. For details,
see [25, Theorem 1] and [39, IV Theorem 1.5 (ii), Corollary 2.

Since the proof of Theorem 3.2 is complicated, we divide it into the following two lemmas.

‘ (oo}
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Lemma 3.3. Let 0 < ¢ < 1. Suppose that T}, is an element of L(L1(m1),L1(m2)) with | T,|| =1 for
some p € M(my,ma) and that fo € Sp,(m,) 15 a nonnegative simple function such that || T, fo| > 1— 5.
Then there are a norm-one bounded linear operator T, for some v € M (m1, ma) and a nonnegative simple
function f1 in Sp,(m,) such that

HT;L_TVH<57 ||f1_f0||<36

and we have, for all x € supp(f1),
djv|*
dm1

() =1.

_ dlp"
Proof. As ||T,|| = 1, we have that
dmq

{B;}}-, are mutually disjoint Borel subsets of Ji, a; > 0 and my(B;) > 0 for all 1 < j < n, and
3

Yiiaj =1 Let D={z e Jp: dd%lll () > 1—g}. It is clear that mi(D) > 0. Since [|T), fol| > 1 — 55,
there is go € S1__(m,) such that

(z) < 1 almost everywhere. Let fo = >0, aj%, where
J

83

Re (T, fo,90) > 1 — %"

Let

1 2
J = {je{l,...,n} : ml(lBj) /B]. (351‘1 (x) dmq(z) >1;6}.

Zaj>1—€>0.
jeJ

Then we have

Indeed, since

&3
1— = <Re (Tp.fo,90) = Re / fo(@)go(y) dp(z,y)
2 J1><J2

< / U@y = / fo(@) ' (@)

_ n ; 1 . 4 1 d|#‘1 N
_;ajml(3j> /Bj e (I)_Z%TM(BJ) /B]- dm1( ) dma(z),

Jj=1

we have Zje] oj 21 —¢ >0 by Lemma 2.6. Note also that for each j € J,
2

1
1S o / dlp|
26 " ma(By) Jp, dm

1 dju]! 1 dju]*
~ mi(B)) /Bij dmy (&) dma (@) + mi(B;) /B]-\D dmy (e) drm ()
<cm(B;inD) (1 3 5) my(B; \ D)
m1(B;) 8/ ma(Bj)
_emi(B;\ D)
8 mi(Bj)
Hence we deduce that, for all j € J,

() dmy(z)

mi(Bi\D) _e

mi(B;) 8
Let B; = B;N D and §; = ﬁ for all j € J and define
XB,

fi=) Bi——=%—.

2. "mi(B;)

JjeJ
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It is clear that f; is a nonnegative element in Sy, (,,,) and

XB;
— < l + ; !
o= Al Z Jml ZBJ 1(B;) JG{l;n}\J "ma(By)
XB XB 3
z( )| K1) STEEIF TR P S
jeJ mi(Bj)  ma(B;) jed mi(B;) je{l,...n}\J
< Z%‘( X5 X ) +> oy =Bl +e
ey mi(B;)  my(B;) iy
XB; XB,
= o — ~ +1-— o+ e
j;] J <m1(B]) ml(BJ)> g !
ml(Bj\D) 9
<2 : 2e < =42
Z I mi(B)) + 4+ e < 3e.

Define
d* )
)= xg () g @) | du(@y) + X\ By d(z, y),
jed !
where B = U]GJ . Tt is clear that d‘”' —(z) =1on B and 'Zl—;‘j(x) < 1 elsewhere. Note also that for all
r € Jy,

1 1 -1 1
Wt 0y = 3 i, 0 (("f};’l @) - 1) ol
1 €

<—————-1=—-<e¢.
1-—¢/8 §—c  °

Hence T, is a norm-one operator such that [T, — T, | < ¢, ||fi — fo| < 3¢ and d‘l’l —(z) = 1 for all
x € supp(f1). O

Lemma 3.4. Let 0 < € < 1. Suppose that T, is a norm-one operator in L(L1(mq), Ll(mg)) and that

[ is a nonnegative norm-one simple function in S, () satisfying | T, f|| > 1 — ;—3 and d"’l —(z) =1 for

all x in the support of f. Then there are a nonnegative simple function f in ST, (my) and a norm-one
operator Ty in L(Li(my), L1(mz)) such that

ITofll =1, T, =Tl <3ve and |f - f] <3e.

Proof. Let f = Z;L_l ,Bj%, where {B;}_; are mutually disjoint Borel subsets of Ji, §; > 0 and

mi(B;) >0 forall 1 <j<n,and Z] 185 =1. Since | T, f|| > 1 — there is g € S __(m,) such that

277

6

1S <Re (Tf.g) Zﬁj Ro [ X008 (g0 vty

J1 X J2 ml(B])
. XB, (m) e’ .
Let J=49j€{1,...,n} : Re T)g(y) dv(z,y) > 1— % (- From Lemma 2.6 it follows that
J J

1 X Jo ml(
3
3
> 1
>8> 1-3

jeJ
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Let f1 = Ejejlgjimfféj), where Bj = Bj/(>2 ;e By) for all j € J. Then

=11 < [0 - ) 2B+ 308 < & <

JjeJ jeJ

Note that there is a Borel measurable function h on Jy X Jy such that dv(x,y) = h(z,y) d|v|(z,y) and
|h(z,y)| =1 for all (x,y) € J; x Ja. Let
Ve
¢ ={ o) slatwhie.n) 11 < 30

Define two measures vy and v, as follows:
vi(A) =v(A\C) and v.(4)=v(ANC)
for every Borel subset A of J; x Js. It is clear that
dv =dvs +dve, dlvg| =hdvy, d|v.| =hdv., and dlv|=dvs|+ d|v.].

Since C(li‘:@lll (z) =1for all z € U 1 Bj, we have |[v|'(B;) = mq(B;) for all 1 < j < n and
dlv|! dlvg|! dlve|" "
1= . (x) = s (x) + dm, (x) forallz € B= U B;.

j=1

We claim that l:;ill(;f]j) < ;—i for all j € J. Indeed, if |g(y)h(z,y) — 1| > 23%, then Re (g(y)h(z,y)) <

1 — 57. So we have

e 1 /
- <——_ _Re XB;()9(y) dv(z,y)
26 = mq(By) Jy X Jz )

- ml(lgj)/J L xBi@ Re (9()h(z,y)) dv|(z,y)
B m(lB>/ _ xB,@ Re (gWh(a,y) divsl(z,)
* m(lBg)/J L, XB@ Re (9(y)h(z,y)) dlve|(z,y)
< oty (0 0B + el (5)
e |vsl'(By)
24 ml(BJ) )

This proves our claim.

We also claim that for each j € J, there exists a Borel subset Bj of Bj such that

€ ~
(1—§)m1(BJ) ma(B;) < my(B;)
and
dlve|! £
dm1 (3?) 5
for all x € Ej. Indeed, set Bj =B;nN {x € Ji: d(‘il’injzjl(x) < %} Then
€ d|Vf|1 1 62
/B\B 5 my(x) /Bj dm, (z) dmy(x) = |v¢[(B;) 22m1( )

This shows that m; (B, \ B;) < $m1(B;). This proves our second claim.
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Now, we define g by g(y) = ‘g(y) if g(y) # 0 and §(y) = 1if g(y) = 0, and we write f = > EJB] ml(B ;-

9(y)l
Finally, we define the measure

— d|ve|* !
= 5% i, T o) (G)) b sl
jedJ 1

where B = Ujes B;. Tt is easy to see that C(lilfn‘l () =1 on B and Cfi‘;;l (z) < 1 elsewhere. Note that
. ————— (d|v|* -
Ao =)@ = 3 x5, (@ [ e (@) —1] dve(a.)
mi
jeJ
_ZXB x)dvg(z,y).
jeJ

If(a?,y)EC,then|g(y)|>1_2\3(/52 21—23%and

T 1] = | 2 (o) -1

lg)h(z,y) = 1] | [1—=1g(w)l]
(y)| lg(y)]

lg
lg(y)h(z,y) — 1| Ve 2372
T Steapaog SAVE

< [y - 1] (d'”“'1<x>)_l+|(“””6'1<x>)_11

my dmy
<avz (M) s

Hence, for all (z,y) € C' we have

) (el o) Ty

dm1

L) | () )

(o) et

So, we have for all z € Jq,

d|u—u\1 dvet, 7!
jGI
L7
+ Z dm1 3»')
jed
dlve|! dlvy|*
<Y x5, (2\/5 (19 @) + T 0 (T @
jeJ JjeJ
< 2ve+¢e < 3y/e.
This gives that |1, — T3] < 3y/e. Note also that, for all j € J,

Xg,  _\ _ X3, ()
<Tgm1(éj),g>—/]w 30 )
5 (@)

) (d'”C“(x))_l dvelz, )

dm1

dm1

/J1><]2 ml(Bj)
Xs, () (dv.|!

5 mi(Bj) \ dmy
X3, ()

= " ml(B) ml(fﬂ):l

<x>)1 el (2)
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Hence we get <Tl~,f7§> = 1, which implies that |75 f| = || 75| = 1. Finally,

If = FIL<IIF = fall + LA = £

_ 5 XB, N~ p o XB
= Zﬂjml(_éj) Zﬂjml(Bj) +e

JeJ jeJ
3 XB, XB; XB; XB;
< B, L — z J J + e
- my(B;\ B;
:225j1(17£ﬂ)+6
jeJ ma ( ])
= 5mi(B;) €
<2) Bt —="+e< Fe<3e -
jEZJ ’ m1(B;) 1—¢/2

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let 0 < ¢ < 1. Suppose that T is a norm-one element in £(L;i(mq), L1(ms2)) and
there is f € Sp, (m,) such that | Tf[| > 1 - 55% Then there is an isometric isomorphism 1 from Lq(m;)
onto itself such that ¢(f) = |f|. Using T o~ instead of T, we may assume that f is nonnegative.
Since simple functions are dense in Li(m1), we can choose a nonnegative simple function fo € Sz, (m,)

arbitrarily close to f so that

18 3

€ o
where g1 = 56—;7 By Lemma 3.3, there exist a norm-one bounded linear operator T, for some v €

M (my1,m2) and a nonnegative simple function fi in Sz (ag) such that [|T'— T, | < e1, [|f1 — f]| < 3e1
and 2 (z) =1 for all z € supp(f1). Then

dm1
3 gl
T4l > TS = ITF =Tl = T = F)ll > 1= Sk — ey —8e > 1 =56 =1 - 7.

Now, by Lemma 3.4, there exist a nonnegative simple function f and an operator Ty in £(Ly(m1), L1(m3))
such that [|T; f|| = ||T5]] = 1, ||T. — T3] < 3v/e and || f1 — f|| < 3e. Therefore, ||T — T;|| < 44/ and
Ilf — fll < 4e, which complete the proof. O

4. THE BISHOP-PHELPS-BOLLOBAS PROPERTY OF (L1(j1), Loo(V))

Our aim now is to show that (L1 (p), Leo(v)) has the BPBp for any measure p and any localizable
measure v.

Theorem 4.1. Let pu be an arbitrary measure and let v be a localizable measure. Then the pair (L1 (1), Loo(V))
has the BPBp. Moreover,

£1\8
(L) L)) > (15)  (0<e<1).

By Corollaries 2.2 and 2.5, it is enough to prove the result in the case where u is o-finite and v is the
product measure on [0, 1]*. Therefore, we just need to prove the following result.

Theorem 4.2. Assume p is a o-finite measure and v is the product measure of Lebesgue measures on
[0,1]A. Let 0 < e < 1/3, let T : L1(n) — Loo(v) be a bounded linear operator of morm one and
let fo € Sp, () satisfy | T(fo)llee > 1 —€®. Then there exist S € L(Ly(p), Loo(v)) with ||S|| = 1 and
go € Sp,(u) such that

15(g0)llo =1, T =S| <2 and [[fo = gollx <10e.



THE BISHOP-PHELPS-BOLLOBAS THEOREM FOR OPERATORS ON Li(p) 11

Recall that the particular case where A reduces to one point was established in [9]. Actually, our proof
is based on the argument given there.

Prior to giving the proof of Theorem 4.2, we state the following representation result for operators
from L; () into Lo ([0,1]*) and one lemma.

Let (2,3, 1) be a o-finite measure space and let K = [0, 1]* be the product space equipped with the
product measure v of the Lebesgue measures. Let J be a countable subset of A and let 77 be the natural
projection from K onto [0,1]7. Fix a sequence (II,) of finite partitions of [0,1]7 into sets of positive
measure such that II, 41 is a refinement of II,, for each n, and the o-algebra generated by J,-_, II,, is the
Borel g-algebra of [0,1]7. For each y € K and n € N, let B(n,(y)) be the set in II,, containing 7 ;(y).
Then, given a Borel set F of the form Fy x [0,1]*\ with Fy C [0,1]”, define

OF) = {y € K: lim v(F Ny (Bln,ms(y)) = 1} :
noe y(mr(B(n,m(y)))
It is easy to check that 6(F) = d;(Fp) x [0, 1]\, where

57(Fy) = {y €[0,1]” : Jim. V(Zw(f? ;(f:(;b;)z;))) _ 1}
J )

Using the martingale almost everywhere convergence theorem [22], we have
v(FAS(F)) =0
where FAGJ(F) denotes the symmetric difference of the sets F' and §(F).

On the other hand, it is well-known that the space £(L1(u), Loo(v)) is isometrically isomorphic to the
space Loo (it ® v), where p ® v denotes the product measure on  x K. More precisely, the operator h
corresponding to h € Lo, (u ® v) is given by

W) = / h(w,£) (@) dpu(w)

for v-almost every t € K. For a reference, see [20]. For a measurable subset M of Q x K, let M, = {y €
K : (z,y)e M} foreachz € Qand MY ={z € Q : (v,y) € M} for each y € K.

Lemma 4.3. Let M be a measurable subset of 0 x K with positive measure, 0 < € < 1, and let fy be a
simple function. If [|[Xar(fo)lleo > 1 — €, then there exists a simple function go € Sp,(u) such that

Iar + @l(g0)lloe =1 and [ fo = gollr < 4ve

for every simple function ¢ in Lo, (pu ® v) with ||¢]le < 1 and vanishing on M.

Proof. Write fy = Z;”:l aj% € 51, (u)» where each A; is a measurable subset of (2 with finite positive

measure, AN A; = for k # [, and «; is a positive real number for every j = 1,...,m with Z;"Zl aj; = 1.
Since ||Xaz(fo)l|loo > 1 — &, there is a measurable subset B of K such that 0 < v(B) and

<W(fo),u>(<g)> >1-e.

We may assume that there is a countable subset .J of A such that M = My x[0, 1]\ and B = By x[0, 1]\’
for some measurable subsets My C Q x [0,1]7 and By C [0,1]7. For each j € {1,...,m}, we write
Mj =M ﬂ (A] X B) = (MO N (AJ X Bo)) X [0, 1]A\J and define

Hj = {(xvy) T E Ajvy € 5((MJ)-L)}

As in the proof of [35, Proposition 5], the H;’s are disjoint measurable subsets of Q x K. We note that
for each j € {1,...,m}, we have H; C A; x 6(B) and (u ® v)(M;AH;) = 0.
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Now, by Fubini theorem, we have that

j=1
= XH; d(p®
2 GTAB) Sy X109 A7)
m HY
= v(B) 5(B) #( i)
w(H?
UE;) dv(y).
6(B)j <7 u(4;)
So, there exists yo € 6(B) such that
Za] > 1—e.

LetJ:{je{l,...,m} : ’if(HiA};)))>1—f} For each j € J, we have that pu(A;\ H") < \/eu(A;) and,

by Lemma 2.6, we also have ay =3, ;a; > 1—/e. Define
XHyO
Zﬂﬂ Hyo

jeJ

where 8; = a;/a ;. Then

XH}° XA;
9o — foll < Bj =D aj |+ e
lgo = fol Z i) ZJ e

< JGZJBJ Hyo ZBJ + ;53 JEZJ j% +\@
< Zﬁ; ZBJ XHyO + Zﬁj 25] W~
jeJ jeJ

A;\ HY
<2M+2\/g<4\@

We claim that Yar + @ attains its norm at go. Let B, = 7, (B(n,m;(yo))) for each n. Note that for
every x € HY° we have (x,yo) € H;, which implies that

=1.
n— 00 V(Bn)

It follows from the Lebesgue dominated convergence theorem and Fubini theorem that, for each j € J,
1 M;), N By,
1 = lim =7 / M dp(z)
B W(HPY Sy~ 0(Ba)
- (p@v)(M; N (H]" x Bn))
lim 7o
e T W(HT W (B,)
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On the other hand, since the simple function ¢ is assumed to vanish on M and ||¢||s < 1, we have

. XH} XB, 1
G By | = B /HB #dlue)
_ V(N x B\ My)
S T uEm B
e 0 (Y X B)
= 1- — 0,

p(H;" )v(Bn)

as n — 0o. Therefore,

1> |+ Aol > lim <(X““")(J€Zﬁu)§$>)’Vf§;)>
_ (p@v)(MN(H x By))
=)

jeJ

p@v)(M; 0 (H® x By))
>  lim B =1,
o 2 )
which shows that X7 + @ attains its norm at gq. O

We are now ready to give the proof of the main result in this section.

Proof of Theorem 4.2. Since the set of all simple functions is dense in L (), we may assume

Zaj ESLl(#),

where each A, is a measurable subset of © with finite positive measure, Ay N A; = 0 for k # [, and every
aj is a nonzero complex number with 337" || = 1. We may also assume that 0 < a; < 1 for every
j=1,...,m. Indeed, there exists an isometric isomorphism ¥ : L (u) — L1 (u) such that ¥(fy) = |fol.
Hence we may replace T and fo by T o U1 and ¥(fy), respectively.

Let h be the element in Lo, (2 X K, p®v) with ||h]lcc = 1 corresponding to T, that is, T' = h. We may
find a simple function

ho € L2 X K,p®v), |hollec =1

such that ||h — holloo < [|T(fo)|lec — (1 — %), hence ||ﬁ0(fo)|\oo >1—¢e® We can write hg = Y 1, aXp,,
where each D; is a measurable subset of Q x K with positive measure, D N D; = ) for k # I, |¢;| < 1 for
every l =1,...,p, and |¢,| = 1 for some 1 < Iy < p.

Let B be a Lebesgue measurable subset of K with 0 < v(B) < oo such that
T XB 8
h —— 1—e°.

< O(fO)’V(B)>‘ > £

| (o (fo), %M
= em@o(fo)’ inB

Choose 6 € R so that

N
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Set

J = {j €{l,...,m} : Re | ew(?l\o(lj((ijl;)), ;gg)ﬂ > 1—64}.

By Lemma 2.6, we have

We define

We have that ||f1]]1 = 1,
st < St s () ISt

= Y ot (1-ay)=201-a,) <2

i¢J
i 5855 > e o (Rt 5

_ 72% Re [e“g <h0(u(z]))’u>(<g)>]

JEJ

> —Za] 1-eh)y=1-¢%

JEJ

)‘1

and

Let L = {l €{l,...,p} : Re(e¥¢) >1— —} On the other hand, for each j € J, we have

_ 4 o et { B XA XB
b= < R{ <h°(< bl u<B>>}
(r®@v)(DiN(A; x B))
ZRe ) T A (B)
(11®v)(Dy N (4, x B))
u(A;)v(B)
(1®v)(Dy N (4; x B))
T B
§ (L@ v)(DiN(A; x B))
W(Au(B)

N

M

_
|

2)

N
—
I
K
(]

This implies that for each j € J

le{1,...,p}\L

Since

z”: u@y )V(A ><B))>1_6’
=1

(B)

for every j € J we have that

> v VL((Zl.? %;J) x5) >(1—e*—2%) > 1-3¢%
leL v
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Set D =, Di. Then we have
4, x B))

- XB | _ ajy N s v(DiN( g2
T D SLew D v r7-

By Lemma 4.3, there is go € Sp,(,) such that |[(Xp + @)(g0)llec = 1 and | f1 — gol| < 4V3e% < 8¢ for
every simple function ¢ in Lo (p ® v) vanishing on D with [|¢|ec < 1. Therefore, we have

1fo=gollt < 1fo— fullL + [1f1 = golln < 2" + 8e < 10e.
Define

hi=e¢ xp+Y axp € Loo(p®v).
I¢L

Let S be the operator in £(L; (1), Loo(m)) corresponding to hy. Then we get

15(90)llso = [171(g0)lo0 = 1

and

lho — h1lloo = max |c; — e~ | = max | e ¢; — 1.
leL leL
As Re (e ¢;) > 1~ % for every | € L, we have that

2

Since

i0 _ i0 2 i0 2

e -1 = \/(17Re(e a))” + (Im (e ;)

< Ver/d+ (2 —e/4) =,
we conclude that
HhO —hillee <€
and
1T = Slloe < ||h = holloo + [|ho — Pillos < €%+ < 2e. O

5. THE BISHOP-PHELPS-BOLLOBAS PROPERTY FOR SOME OPERATORS FROM L;(u) INTO C(K)

Throughout this section, we consider only a finite measure p on a measurable space (2,X) and real
Banach spaces Li(p) and C(K). Our aim is to obtain the Bishop-Phelps-Bollobds property for some
classes of operators from Li(u) to C(K), sharpening the results about denseness of norm-attaining
operators given by Iwanik in 1982 [26].

We use the following standard representation of operators into C'(K) [23, Theorem 1 in p. 490].
Lemma 5.1. Given a bounded linear operator T : X — C(K), define F: K — X* by F(s) = T*(ds),
where 65 is the point measure at s € K. Then, for x € X, the relation Tx(s) = (x,F(s)) defines an

isometric isomorphism of L(X,C(K)) onto the space of weak* continuous functions from K to X* with
the supremum norm. Moreover, compact operators correspond to norm continuous functions.

Iwanik [26] considered operators T' € L(L1 (1), C(K)) satisfying one of the following conditions:

(1) The map s — T*§ is continuous in measure.
(2) There exists a co-meager set G C K such that {T*d; : s € G} is norm separable in Lo, ().

We recall that a subset A is said to be a co-meager subset of K if the set K \ A is meager, that is, of first
category.
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Theorem 5.2. Let 0 < e < 1. Suppose that T € L(L1(u), C(K)) (real case) has norm one and satisfies
condition (1). If |[Tf]]| >1— % for some f € Sp, (), then there exist S € L(L1(p), C(K)) with [|S|| =1
and g € Sp, () such that ||Sgl| =1, [|S =T <&, and ||f — g|| <e. Moreover, S also satisfies condition

(1).

Proof. Without loss of generality, we assume that there exists sqg € K such that

52

Tf(So) >1-— 6

Consider the function G : Lo (p) — Loo () given by
G(h) = (h/\ (1- g/3)) V(-1+¢/3)  (he Lu(p).

Since the lattice operation G is continuous in the Lo, norm and 7T satisfies condition gl)7 we can see that
the mapping s — GT™*J; is continuous in measure, hence weak*-continuous. Let S be the element of
L(Li(p), C(K)) represented by the function F(s) := GT*0s. Then

IS =T = sup ||[F(s) - T*6,| <
sEK

W ™

Let

C= {w €Q : sign (f(w))T"0s(w) > 1 - g}

and define S = S/||S|| and g = f|c/||flc||, where f|c is the restriction of f to the subset C. It is easy
to see that S satisfies condition (1) and

IS =TI <IS=SI+IS=TI =Sl =+ 1S - T <28 - T| <e.

Moreover, we get

=5 < TS0 = T f) = [ T8, (@)f(w)du

= [ sien (F@) T8 @@ d+ [ sign (1) T8 ) )] du
e} Q\C

N

L@l =2 [ el

&
=5 L e

which implies that
S
[ ls@lde<s.
Q\c

Therefore,

lo—fIl < llg—flel + fle — £ = 21— | fel)
- Q/Q\le(fc)ldu<5

On the other hand, we see that Sg(so) = (S*ds,,9) = 1 because S*d,,(w) = sign (f(z)) = sign (g(w)) for
every w € C. This completes the proof. O

We do not know, and it is clearly of interest, for which topological compact Hausdorff spaces K all
operators in £(Ly(p), C(K)) satisfy condition (1).

We recall that a bounded linear operator T from L (p) into a Banach space X is said to be Bochner
representable if there is a bounded strongly measurable function g : 2 — X such that

Tf = / f@g@) duw)  (f € La(w).
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The Dunford-Pettis-Phillips Theorem [21, Theorem 12 p. 75] says that T € £(L1(n), X) is weakly compact
if and only if T is Bochner representable by a function g which has an essentially relatively weakly
compact range. Iwanik [26] showed that every Bochner representable operator from L;(u) into C'(K)

satisfies condition (1). Moreover, we get the following result which has been independently obtained in
[6, Corollary 2.4].

Corollary 5.3. Let 0 < ¢ < 1. Suppose that T € L(L1(p), C(K)) (real case) has norm-one and it is
Bochner representable (resp. weakly compact). If |Tf| > 1 — % for some f € Sp, (), then there exist a
Bochner representable (resp. weakly compact) operator S € L(Ly(u), C(K)) with ||S|| =1 and g € S, ()
such that ||Sg|| =1, ||[S—T| <e, and ||f — g|| < e.

Proof. By Theorem 5.2, it is enough to show that if T is a Bochner representable operator from Lj(u)
into C(K), then F(s) = T*J, is continuous in measure and that the operator S defined in the proof is
Bochner representable.

Let g : @ — C(K) be a bounded strongly measurable function which represents T. It is easy to
check that F(s) = g(+)(s) for all s € K. Since the range of g is separable, the range of T is separable and
contained in a separable sub-algebra A of C'(K) with unit. By the Gelfand representation theorem, A is
isometrically isomorphic to C(K) for some compact metrizable space K. So, we may assume that K is
metrizable. To show that the mapping F(s) = T*§; = g(w)(s) is continuous in measure, assume that a
sequence (s,) converges to s in K. Then for all w € Q,

i |g()(s,) — g(w)(5)] = 0.
By the dominated convergence theorem, we have that

lim  sup / F@)(9(w)(5n) — 9(w)(5)) dulw) < lim / 19(@)(50) — 9(w)()] duw) = 0.

n—oo fesLoo(“) n—oo

Hence the sequence (g(-)(sy))n converges to g(-)(s) in measure. That is, (F(sy)), converges to F(s).

We note that the operator S in the proof of Theorem 5.2 is determined by GT*§s = G(g(-)(s)). Since
the mapping
s G(g(1)(s))(w) = (g(w)(s) A (1 =¢/3)) V(=1 +¢/3))
is continuous for each w € €, the operator S is Bochner representable by this mapping. Finally, if T is
weakly compact, then the proof is done by the Dunford-Pettis-Phillips theorem. O

As observed in [26], the operator T": Ly[0,1] — C[0, 1] determined by 7*ds = X|o,s) is not Bochner
representable, but satisfies condition (1).

For condition (2), we have the following result.
Theorem 5.4. Let 0 < e < 1. Suppose that T € L(L1(p), C(K)) (real case) has norm-one and satisfies
condition (2). If |[Tf]| >1— % for some f € Sp, (., then there exist S € L(L1(p), C(K)) with [|S|| =1
and g € Sp, () such that ||Sgl| =1, [|S =T < e, and ||f — gl| <e. Moreover, S also satisfies condition

(2).

Proof. By using a suitable isometric isomorphism, we may first assume that f is nonnegative. Let G be
the co-meager set in the condition (2) and (7745, )x be a sequence which is || - ||oc-dense in the closure of
{T*0s : s € G} C Loo(p). Observe that the sets

{weQ:a< T, (w) < b}

where a,b € Q and k > 1, form a countable family {A;}; of measurable subsets of 2. We define, for each
i, the functions

ui(s) = ess.inf{T"ds(w) : w € A;} and wv;(s) = ess.sup{T"d;(w) : w € A;}.
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Let U; and V; be the set of all continuity points of u; and v; for all 7, respectively. Let F' be the intersection
of all subsets U;’s and V;’s. We claim that the functions u;’s are upper semi-continuous and the functions
v;’s are lower semi-continuous. Indeed, recall (see [36, 3.7 Definition] for a reference) that

vi(s) = inf{A ER:p{we A; : T%0s(w) > A} = O},

where inf ) = co and inf R = —oco. To show that the set {s: A < v;(s)} is open in K for all A € R, suppose
that v;(sg) > Ao for some sy € K and A\g € R. It suffice to prove that there is an open neighborhood
V of sg such that V' C {s: v;(s) > Ag}. We note that p{w € A4; : T*d5,(w) > Ao} > 0 and there exists
A1 > Ag such that

plw € A; : T s, (w) > A1} > 0.
Let E={we A; : T*§5,(w) > A1}. Then

1

5 [T > 20> e

Since the map s — 10, is weak* continuous on L (pt), the set

V= {3 eK: ﬁ/ET*ds(w)du(w) > )xl}

is an open subset containing so. We note that u{w € A4; : T*§s(w) > A1} > 0 for all s € V. Otherwise,
there is s1 € V such that u{w € A; : T*0s, (w) > A1} = 0. Then T%0,, (w) < A1 almost everywhere w € A;
and )

M(E)/ET*(SSl(w)du(w) < Ar.
This is a contradiction to the fact that s; is an element of V', which implies that v;(s) > Ao for all s € V
and V' C {s : v;(s) > Ao}. This gives the lower semi-continuity of v;. The upper semi-continuity of u;

follows from the fact that —u; is lower semi-continuous. The claim is proved.

We deduce then that the set F' is co-meager (c.f. see [31, § 32 II. p. 400]). Since the set {s : s €

K, |Tf(s)]>1- %} is nonempty and open, there exists sop € FNG such that |T f(sg)] > 1— %. Without
loss of generality, we may assume that

52

Tf(so) = (T"0s0, f) >1— R

Because of the denseness of the sequence (705, )i, there exists kg € N such that

2

* € * * €
Tf(SkO) = <T 6Sk0’f> >1-— Z and HT 650 -T 551“0” < Z

Fixqe(@suchthatlf%€<q<1f%andlet
C={we : T 05y, (W) >q}.
Then

2
1 % <T84, f) = /QT*cSSkO (W) f(w) du

= [ T @@ [T, @) (w) du
c Q\c

</Cf(w>du+ (1—;)/9\Cf(w)du

5
=1- 3 flw)dp.
o\C

Hence we have that

f(w)dﬂ<% and /f(w)du>lf§.

o\C c 2
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Let B, = {w : ¢ < T*ds,, (w) < n} for each n. Then C' = J;_, B, and there exists ng such that

/ f(w)du>lfi.
By 2

Hence B,, = A, for some ig and p(A4;,) > 0. This implies that w;, (sx,) = g and w;, (s0) = g —
Setting A = A;,, it is also clear that
fla
liii 7
[1f]al

Since u;, is continuous at sp, there exist an open neighborhood U of sy and a continuous function
h : K — [0,1] such that u;,(s) > 1 —¢ for all s € U, h(sg) = 1 and h(U®) = 0. We define a
weak*-continuous map M : K — Lo (u) by

M(s)(w) =T"0s(w) + xa(w)h(s)(1 = T"55(w)) (we, seK).
We note that M(sg) =1 for all w € A. It is also easy to get that
[M(s)(w) = T"6s(@)I| = [xa(@)h(s)(1 = T"0s(w))[| < and sup 1M (s)|] = 1.

>1—e.

sl

10

<e.

Let S be the operator represented by the function M. Then S satisfies condition (2), S (II}CBH) (so) =1
and ||S — T <e.

As shown in [26], the Dunford-Pettis-Phillips Theorem implies that every weakly compact operator
T in from L;(u) to an arbitrary Banach space Y has separable range, hence the range of its weakly
compact adjoint T™* is also separable and so T satisfies condition (2). On the other hand, there are
Bochner representable operators which do not satisfy the condition (2) (see [26]). Indeed, let u be a
strictly positive probability measure on N and consider the operator T € L£(Ly(u), C({0,1}Y) defined
by Tf(s) = [ f(n)mn(s)du(n), where m, be the n-th natural projection on {0,1}N. Then T is Bochner
representable, while {T*d; : s € G} is non-separable in L. (1) for every uncountable subset G of {0, 1}.

Finally, let us comment that it is also observed in [26] that if K has a countable dense subset of isolated
points, then condition (2) is automatically satisfied for all T € £(L1(u), C(K)). Actually, in this case,
C(K) has the so-called property (/) and then the pair (X, C'(K)) has the BPBp for all Banach spaces X
[3, Theorem 2.2].

It would be of interest to characterize those topological Hausdorff compact spaces K such that
(X,C(K)) has the BPBp for every Banach space X.

Acknowledgment. The authors thank an anonymous referee for careful reading and helpful sugges-
tions about revision.
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