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ON THE BISHOP-PHELPS-BOLLOBÁS PROPERTY FOR NUMERICAL RADIUS

SUN KWANG KIM, HAN JU LEE, AND MIGUEL MARTÍN

Abstract. We study the Bishop-Phelps-Bollobás property for numerical radius (in short, BPBp-nu)
and find sufficient conditions for Banach spaces to ensure the BPBp-nu. Among other results, we show

that L1(µ)-spaces have this property for every measure µ. On the other hand, we show that every

infinite-dimensional separable Banach space can be renormed to fail the BPBp-nu. In particular, this
shows that the Radon-Nikodým property (even reflexivity) is not enough to get BPBp-nu.

1. Introduction

Let X be a (real or complex) Banach space and X∗ be its dual space. The unit sphere of X will be
denoted by SX . We write L(X) for the space of all bounded linear operators on X. For T ∈ L(X), its
numerical radius is defined by

v(T ) = sup{|x∗Tx| : (x, x∗) ∈ Π(X)},
where Π(X) = {(x, x∗) ∈ SX ×SX∗ : x∗(x) = 1}. It is clear that v is a semi-norm on L(X). We refer the
reader to the monographs [11, 12] for background. An operator T ∈ L(X) attains its numerical radius if
there exists (x0, x

∗
0) ∈ Π(X) such that v(T ) = |x∗0Tx0|.

In this paper we will discuss on the density of numerical radius attaining operators, actually on an
stronger property called Bishop-Phelps-Bollobás property for numerical radius. Let us present first a
short account on the known results about numerical radius attaining operators. Motivated by the study
of norm attaining operators initiated by J. Lindenstrauss in the 1960’s, B. Sims [31] asked in 1972
whether the numerical radius attaining operators are dense in the space of all bounded linear operators
on a Banach space. I. Berg and B. Sims [10] gave a positive answer for uniformly convex spaces and
C. Cardassi showed that the answer is positive for `1, c0, C(K) (where K is a metrizable compact),
L1(µ) and uniformly smooth spaces [13, 14, 15]. M. Acosta showed that the numerical radius attaining
operators are dense in C(K) for every compact Hausdorff space K [1]. M. Acosta and R. Payá showed
that numerical radius attaining operators are dense in L(X) if X has the Radon-Nikodým property [7].
On the other hand, R. Payá [28] showed in 1992 that there is a Banach space X such that the numerical
radius attaining operators are not dense in L(X), which gave a negative answer to Sim’s question. Some
authors also paid attention to the study of denseness of numerical radius attaining nonlinear mappings
[16, 5, 6, 25].

Motivated by the work [4] of M. Acosta, R. Aron, D. Garćıa and M. Maestre on the Bishop-Phelps-
Bollobás property for operators, A. Guirao and O. Kozhushkina [22] introduced very recently the notion
of Bishop-Phelps-Bollobás property for numerical radius.

Definition 1.1 ([22]). A Banach space X is said to have the Bishop-Phelps-Bollobás property for numer-
ical radius (in short, BPBp-nu) if for every 0 < ε < 1, there exists η(ε) > 0 such that whenever T ∈ L(X)
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and (x, x∗) ∈ Π(X) satisfy v(T ) = 1 and |x∗Tx| > 1− η(ε), there exit S ∈ L(X) and (y, y∗) ∈ Π(X) such
that

v(S) = |y∗Sy| = 1, ‖T − S‖ < ε, ‖x− y‖ < ε, and ‖x∗ − y∗‖ < ε.

Notice that if a Banach space X has the BPBp-nu, then the numerical radius attaining operators are
dense in L(X). One of the main results of this paper is to show that the converse result is not longer
true (section 5)

It is shown in [22] that the real or complex spaces c0 and `1 have the BPBp-nu. This result has
been extended to the real space L1(R) by J. Falcó [19]. A. Avilés, A. J. Guirao and J. Rodŕıguez [9]
give sufficient conditions on a compact space K for the real space C(K) to have the BPBp-nu which, in
particular, include all metrizable compact spaces.

The content of this paper is the following. First, we introduce in section 2 a modulus of the BPBp-nu
analogous to the one introduced in [8] for the Bishop-Phelps-Bollobás property for the operator norm,
and we will use it as a tool in the rest of the paper. As easy applications, we prove that finite-dimensional
spaces always have the BPBp-nu and that a reflexive space has the BPBp-nu if and only if its dual does.
Next, section 3 is devoted to prove that Banach spaces which are both uniformly convex and uniformly
smooth satisfy a weaker version of the BPBp-nu and to discuss such weaker version. In particular, it
is shown that Lp(µ) spaces have the BPBp-nu for every measure µ when 1 < p < ∞, p 6= 2. We show
in section 4 that given any measure µ, the real or complex space L1(µ) has the BPBp-nu. Finally, we
prove in section 5 that every separable infinite-dimensional Banach space can be equivalently renormed
to fail the BPBp-nu (actually, to fail the weaker version). In particular, this shows that reflexivity (or
even superreflexivity) is not enough for the BPBp-nu, while the Radon-Nikodým property was known to
be sufficient for the density of numerical radius attaining operators.

Let us introduce some notations for later use. The n-dimensional space with the `1 norm is denoted by

`
(n)
1 . Given a family {Xk}∞k=1 of Banach spaces,

[⊕∞
k=1Xk

]
c0

(resp.
[⊕∞

k=1Xk

]
`1

) is the Banach space

consisting of all sequences (xk)∞k=1 such that each xk is in Xk and lim
k→∞

‖xk‖ = 0 (resp.
∑∞
k=1 ‖xk‖ <∞)

equipped with the norm ‖(xk)∞k=1‖ = supk ‖xk‖ (resp. ‖(xk)∞k=1‖ =
∑∞
k=1 ‖xk‖).

2. Modulus of the Bishop-Phelps-Bollobás for numerical radius

Analogously to what is done in [8] for the BPBp for the operator norm, we introduce here a modulus
to quantify the Bishop-Phelps-Bollobás property for numerical radius.

Notation 2.1. Let X be a Banach space. Consider the set

Πnu(X) =
{

(x, x∗, T ) : (x, x∗) ∈ Π(X), T ∈ L(X), v(T ) = 1 = |x∗Tx|
}
,

which is closed in SX × SX∗ × L(X) with respect to the following metric

dist
(
(x, x∗, T ), (y, y∗, S)

)
= max

{
‖x− y‖, ‖x∗ − y∗‖, ‖T − S‖

}
.

The modulus of the Bishop-Phelps-Bollobás property for numerical radius is the function defined by

ηnu(X)(ε) = inf
{

1− |x∗Tx| : (x, x∗) ∈ Π(X), T ∈ L(X), v(T ) = 1, dist
(
(x, x∗, T ),Πnu(X)

)
> ε
}

for every ε ∈ (0, 1). Equivalently, ηnu(X)(ε) is the supremum of those η > 0 such that whenever T ∈ L(X)
and (x, x∗) ∈ Π(X) satisfy v(T ) = 1 and |x∗Tx| > 1− η, there exist S ∈ L(X) and (y, y∗) ∈ Π(X) such
that

v(S) = |y∗Sy| = 1, ‖T − S‖ < ε, ‖x− y‖ < ε, and ‖x∗ − y∗‖ < ε.

It is immediate that a Banach space X has the BPBp-nu if and only if ηnu(ε) > 0 for every 0 < ε < 1.
By construction, if a function ε 7−→ η(ε) is valid in the definition of the BPBp-nu, then ηnu(ε) > η(ε).

An immediate consequence of the compactness of the unit ball of a finite-dimensional space is the
following result. It was previously known to A. Guirao (private communication).
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Proposition 2.2. Let X be a finite dimensional Banach space. Then X has the Bishop-Phelps-Bollobás
property for numerical radius.

Proof. Let K = {S ∈ L(X) : v(S) = 0}. Then K is a norm-closed subspace of L(X). Hence L(X)/K is
a finite-dimensional space with two norms

v([T ]) := inf{v(T − S) : S ∈ K} = v(T )

‖[T ]‖ := inf{‖T − S‖ : S ∈ K},
where [T ] is the class of T in the quotient space L(X)/K. Hence there is a constant 0 < c 6 1 such that
c‖[T ]‖ 6 v(T ) 6 ‖[T ]‖.

Suppose that X does not have the BPBp-nu. Then, there is 0 < ε < 1 such that ηnu(X)(ε) = 0. That
is, there are sequences (xn, x

∗
n) ∈ Π(X) and (Tn) ∈ L(X) with v(Tn) = 1 such that

dist
(
(xn, x

∗
n, Tn),Πnu(X)

)
> ε (n ∈ N) and lim

n

∣∣x∗nTnxn∣∣ = 1.

By compactness, we may assume that limn ‖[Tn]− [T0]‖ = 0 for some T0 ∈ L(X) and v(T0) = 1. Hence
there exists a sequence {Sn}n in K such that limn ‖Tn − (T0 + Sn)‖ = 0. Observe that v(T0 + Sn) =
v(T0) = 1 for every n ∈ N.

By compactness again, we may assume that (xn, x
∗
n) converges to (x0, x

∗
0) ∈ X × X∗. This implies

that (x0, x
∗
0) ∈ Π(X), and

∣∣x∗0(T0 + Sn)x0

∣∣ = v(T0 + Sn) = 1, that is, (x0, x
∗
0, T0 + Sn) ∈ Πnu(X) for all

n. This is a contradiction with the fact that

0 = lim
n

dist
(
(xn, x

∗
n, Tn), (x0, x

∗
0, T0 + Sn)

)
> lim

n
dist

(
(xn, x

∗
n, Tn),Πnu(X)

)
> ε. �

We may also give the following easy result concerning duality.

Proposition 2.3. Let X be a reflexive space. Then ηnu(X)(ε) = ηnu(X∗)(ε) for every ε ∈ (0, 1). In
particular, X has the BPBp-nu if and only if X∗ has the BPBp-nu.

We will use that v(T ∗) = v(T ) for all T ∈ L(X), where T ∗ denotes the adjoint operator of T . This
result can be found in [11], but it is obvious if X is reflexive.

Proof. By reflexivity, it is enough to show that ηnu(X)(ε) 6 ηnu(X∗)(ε). Let ε ∈ (0, 1) be fixed. If
ηnu(X)(ε) = 0, there is nothing to prove. Otherwise, consider 0 < η < ηnu(X)(ε). Suppose that
T1 ∈ L(X∗) and (x∗1, x1) ∈ Π(X∗) satisfy

v(T1) = 1 and |x1T1x
∗
1| > v(T1)− η.

By considering T ∗1 ∈ L(X), we may find S1 ∈ L(X) and (y1, y
∗
1) ∈ Π(X) such that

|y∗1S1y1| = v(S1) = 1, ‖y1 − x1‖ < ε, ‖y∗1 − x∗1‖ < ε and ‖T ∗1 − S1‖ < ε.

Then S∗1 ∈ L(X∗) and (y∗1 , y1) ∈ Π(X∗) satisfy

| 〈y1, S
∗
1y
∗
1〉 | = v(S1) = 1, ‖y∗1 − x∗1‖ < ε, ‖y1 − x1‖ < ε and ‖T1 − S∗1‖ < ε.

This implies that ηnu(X∗)(ε) > η. We finish by just taking supremum on η. �

We do not know whether the result above is valid in the non-reflexive case.

3. Spaces which are both uniformly convex and uniformly smooth

For a Banach space which is both uniformly convex and uniformly smooth, we get a property which
is weaker than BPBp-nu. This result was known to A. Guirao (private communication).

Proposition 3.1. Let X be a uniformly convex and uniformly smooth Banach space. Then, given
ε > 0, there exists η(ε) > 0 such that whenever T0 ∈ L(X) with v(T0) = 1 and (x0, x

∗
0) ∈ Π(X) satisfy

|x∗0T0x0| > 1− η(ε), there exist S ∈ L(X) and (y, y∗) ∈ Π(X) such that

v(S) = |y∗Sy|, ‖x− y‖ < ε, ‖x∗ − y∗‖ < ε and ‖S − T0‖ < ε.
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Proof. Notice that the uniform smoothness of X is equivalent to the uniform convexity of X∗. Let δX(ε)
and δX∗(ε) be the moduli of convexity X and X∗, respectively. Given 0 < ε < 1, consider

η(ε) =
ε

4
min

{
δX

(ε
4

)
, δX∗

(ε
4

)}
> 0.

Consider T0 ∈ L(X) with v(T0) = 1 and (x0, x
∗
0) ∈ Π(X) satisfying |x∗0T0x0| > 1 − η(ε). Define

T1 ∈ L(X) by T1x = T0x + λ1
ε
4x
∗
0(x)x0 for all x ∈ X, where λ1 is the scalar satisfying |λ1| = 1

and |x∗0T0x0 + λ1
ε
4 | = |x∗0T0x0| + ε

4 . Now, choose x1 ∈ SX and x∗1 ∈ SX∗ such that |x∗1(x1)| = 1,
x∗1(x0) = |x∗1(x0)| and

|x∗1T1x1| > v(T1)− η(
ε2

42
).

Now we define a sequence (xn, x
∗
n, Tn) in SX × SX∗ ×L(X) inductively. Indeed, suppose that we have a

defined sequence (xj , x
∗
j , Tj) for 0 6 j 6 n and let

Tn+1x = Tnx+ λn+1
εn+1

4n+1
x∗n(x)xn.

Then choose xn+1 ∈ SX and x∗n+1 ∈ SX∗ such that |x∗n+1(xn+1)| = 1 and |x∗n+1(xn)| = x∗n+1(xn)∣∣x∗n+1Tn+1xn+1

∣∣ > v(Tn+1)− η
(
εn+2

4n+2

)
.

Notice that for all n > 0, we have

‖Tn+1 − Tn‖ 6
εn+1

4n+1
and |v(Tn+1)− v(Tn)| 6 εn+1

4n+1
.

This implies that (Tn) is a Cauchy sequence and assume that it converges to S ∈ L(X). Then we have

lim
n
Tn = S, ‖T0 − S‖ < ε and lim

n
|x∗nTnxn| = lim

n
v(Tn) = v(S).

We will show that both sequences (xn) and (x∗n) are Cauchy. From the definition, we have

v(Tn+1)− η
(
εn+2

4n+2

)
6 |x∗n+1Tn+1xn+1|

6

∣∣∣∣x∗n+1Tnxn+1 + λn+1
εn+1

4n+1
x∗n(xn+1)x∗n+1(xn)

∣∣∣∣
6 v(Tn) +

εn+1

4n+1
x∗n+1(xn)

and

v(Tn+1) > |x∗nTn+1xn| =
∣∣∣∣x∗nTnxn + λn+1

εn+1

4n+1

∣∣∣∣
= |x∗nTnxn|+

εn+1

4n+1
> v(Tn)− η

(
εn+1

4n+1

)
+
εn+1

4n+1
.

In summary, we have

v(Tn) +
εn+1

4n+1
x∗n+1(xn) > v(Tn)− η

(
εn+1

4n+1

)
+
εn+1

4n+1
− η

(
εn+2

4n+2

)
.

Hence

x∗n+1(xn) > 1− 2
4n+1

εn+1
η

(
εn+1

4n+1

)
= 1− 1

2
min

{
δX

(
εn+1

4n+2

)
, δX∗

(
εn+1

4n+2

)}
and ∥∥∥∥xn + xn+1

2

∥∥∥∥ > x∗n+1

(
xn + xn+1

2

)
> 1− δX

(
εn+1

4n+2

)
,∥∥∥∥x∗n + x∗n+1

2

∥∥∥∥ > x∗n + x∗n+1

2
(xn) > 1− δX∗

(
εn+1

4n+2

)
.
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This means that ‖xn − xn+1‖ 6 εn+1

4n+2 and ‖x∗n − x∗n+1‖ 6 εn+1

4n+2 for all n. So (xn) and (x∗n) are Cauchy.
Let x∞ = limn xn and x∗∞ = limn x

∗
n. Then we have ‖x0 − x∞‖ < ε

4 and ‖x∗0 − x∗∞‖ < ε
4 . Hence,

|x∗∞(x∞)| = limn |x∗n(xn)| = 1 and

v(S) = lim
n
v(Tn) = lim

n
|x∗nTnxn| = |x∗∞Sx∞|.

Let α = x∗∞(x∞), y∗ = ᾱx∗∞ and y = x∞. Then we have y∗(y) = 1, v(S) = |y∗Sy| and ‖y − x0‖ < ε.
Notice that

|α− 1| = |x∗∞(x∞)− x∗0(x0)| 6 |(x∗∞ − x∗0)(x∞)|+ |x∗0(x∞)− x∗0(x0)| < ε

2
.

Therefore
‖y∗ − x∗‖ 6 ‖ᾱy∗ − y∗‖+ ‖y∗ − x∗‖ < ε

2
+
ε

4
< ε.

This completes the proof. �

Let us discuss a little bit about the equivalence between the property in the result above and the
BPBp-nu. For convenience, let us introduce the following definition.

Definition 3.2. A Banach space X has the weak Bishop-Phelps-Bollobás property for the numerical
radius (in short weak-BPBp-nu) if given ε > 0, there exists η(ε) > 0 such that whenever T0 ∈ L(X) with
v(T0) = 1 and (x0, x

∗
0) ∈ Π(X) satisfy |x∗0T0x0| > 1− η(ε), there exist S ∈ L(X) and (y, y∗) ∈ Π(X) such

that
v(S) = |y∗Sy|, ‖x− y‖ < ε, ‖x∗ − y∗‖ < ε and ‖S − T‖ < ε.

Notice that the only difference between this concept and the BPBp-nu is the normalization of the
operator S by the numerical radius. Of course, if the numerical radius and the operator norm are
equivalent, this two properties are the same. This equivalence is measured by the so-called numerical
index of the Banach space, as follows. For a Banach space X, the numerical index of X is defined by

n(X) = inf{v(T ) : T ∈ L(X), ‖T‖ = 1}.
It is clear that 0 6 n(X) 6 1 and n(X)‖T‖ 6 v(T ) 6 ‖T‖ for all T ∈ L(X). The value n(X) = 1 means
that v equals the usual operator norm. This is the case of X = L1(µ) and X = C(K), among many
others. On the other hand, n(X) > 0 if and only if the numerical radius is equivalent to the norm of
L(X). We refer the reader to [24] for more information and background.

The following result is immediate. We include a proof for the sake of completeness.

Proposition 3.3. Let X be a Banach space with n(X) > 0. Then, X has the BPBp-nu if and only if X
has the weak-BPBp-nu.

Proof. The necessity is clear. For the converse, assume that we have η(ε) > 0 satisfying the conditions
of the weak-BPBp-nu for all 0 < ε < 1. If T ∈ L(X) with v(T ) = 1 and (x0, x

∗
0) ∈ Π(X) satisfy

|x∗0Tx0| > 1− η(ε) for 0 < ε < 1, then there exist S ∈ L(X) and (y, y∗) ∈ Π(X) such that

v(S) = |y∗Sy|, ‖S − T‖ < ε, ‖x− y‖ < ε and ‖x∗ − y∗‖ < ε.

As v(S) > 0 by the above, let S1 = 1
v(S)S. Then we have

1 = v(S1) = |y∗S1y|, ‖x− y‖ < ε and ‖x∗ − y∗‖ < ε.

Finally, we have

‖S1 − T‖ 6
∥∥∥∥ 1

v(S)
S − S

∥∥∥∥+ ‖S − T‖ =
‖S‖
v(S)

|v(S)− 1|+ ‖S − T‖

6
1

n(X)
|v(S)− v(T )|+ ‖S − T‖

6

(
1

n(X)
+ 1

)
‖S − T‖ < n(X) + 1

n(X)
ε.

An obvious change of parameters finishes the proof. �
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We do not know whether the hypothesis of n(X) > 0 can be omitted in the above result.

Putting together Propositions 3.1 and 3.3, we get the following.

Corollary 3.4. Let X be a uniformly convex and uniformly smooth Banach space with n(X) > 0. Then
X has the BPBp-nu.

Let us comment that every complex Banach space X satisfies n(X) > 1/ e, so the above corollary
automatically applies in the complex case. In the real case, this is not longer true, as the numerical index
of a Hilbert space of dimension greater than or equal to two is 0. On the other hand, it is proved in [27]
that real Lp(µ) spaces have non-zero numerical index for every measure µ when p 6= 2. Therefore, we
have the following examples.

Examples 3.5.

(a) Complex Banach spaces which are uniformly smooth and uniformly convex satisfy the BPBp-nu.
(b) In particular, for every measure µ, the complex spaces Lp(µ) have the BPBp-nu for 1 < p <∞.
(c) For every measure µ, the real spaces Lp(µ) have the BPBp-nu for 1 < p <∞, p 6= 2.

Note added in revision: Very recently, H. J. Lee, M. Mart́ın and J. Meŕı have proved that Proposi-
tion 3.3 can be extended to some Banach spaces with numerical index zero as, for instance, real Hilbert
spaces. Hence, they have shown that Hilbert spaces have the BPBp-nu. These results will appear
elsewhere.

4. L1 spaces

In this section, we will show that L1(µ) has the BPBp-nu for every measure µ. In the proof, we are
dealing with complex integrable functions since the real case is followed easily by applying the same proof.
Our main result here is the following.

Theorem 4.1. Let µ be a measure. Then L1(µ) has the Bishop-Phelps-Bollobás property for numerical
radius. More precisely, given ε > 0, there exists η(ε) > 0 (which does not depend on µ) such that whenever
T0 ∈ L(L1(µ)) with v(T0) = 1 and (f0, g0) ∈ Π(L1(µ)) satisfy | 〈T0f0, g0〉 | > 1 − η(ε), then there exist
T ∈ L(L1(µ)), (f1, g1) ∈ Π(L1(µ)) such that

| 〈Tf1, g1〉 | = v(T ) = 1, ‖f0 − f1‖ < ε, ‖g0 − g1‖ < ε and ‖T − T0‖ < ε.

As a first step, we have to start dealing with finite regular positive Borel measures, for which a
representation theorem for operators exists.

Proposition 4.2. Let m be a finite regular positive Borel measure on a compact Hausdorff space Ω. Then
L1(m) has the Bishop-Phelps-Bollobás property for numerical radius. More precisely, given ε > 0, there
is η(ε) > 0 (which is independent of the measure m) such that if T is a norm-one element in L(L1(m))
and there exists an (f0, g0) ∈ Π(L1(m)) satisfying | 〈Tf0, g0〉 | > 1 − η(ε) , then there exist an operator
S ∈ L(L1(m)), (f1, g1) ∈ Π(L1(m)) such that

| 〈Sf1, g1〉 | = ‖S‖ = 1, ‖f0 − f1‖ 6 ε, ‖g0 − g1‖ 6 ε and ‖T − S‖ 6 ε.

To prove this proposition, we need some background on representation of operators on Lebesgue spaces
on finite regular positive Borel measures and several preliminary lemmas.

Let m be a finite regular positive Borel measure on a compact Hausdorff space Ω. If µ is a complex-
valued Borel measure on the product space Ω×Ω, then define their marginal measures µi on Ω (i = 1, 2)
as following: µ1(A) = µ(A×Ω) and µ2(B) = µ(Ω×B), where A and B are Borel measurable subsets of
Ω.

Let M(m) be the complex Banach lattice of measures consisting of all complex-valued Borel measures
µ on the product space Ω × Ω such that |µ|i are absolutely continuous with respect to m for i = 1, 2,
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endowed with the norm ∥∥∥∥d|µ|1dm

∥∥∥∥
∞
.

Each µ ∈M(m) defines a bounded linear operator Tµ from L1(m) to itself by

〈Tµ(f), g〉 =

∫
Ω×Ω

f(x)g(y) dµ(x, y),

where f ∈ L1(m) and g ∈ L∞(m). A. Iwanik [23] showed that the mapping µ 7−→ Tµ is a lattice isometric
isomorphism from M(m) onto L(L1(m)). Even though he showed this for the real case, it can be easily
generalized to the complex case. For details, see [23, Theorem 1] and [30, IV Theorem 1.5 (ii), Corollary
2].

We will also use that given an arbitrary measure µ, every T ∈ L(L1(µ)) satisfies v(T ) = ‖T‖ [18] (that
is, the space L1(µ) has numerical index 1).

Lemma 4.3 ([4, Lemma 3.3]). Let {cn} be a sequence of complex numbers with |cn| 6 1 for every n, and
let η > 0 be such that for a convex series

∑
αn, Re

∑∞
n=1 αncn > 1− η. Then for every 0 < r < 1, the

set A := {i ∈ N : Re ci > r}, satisfies the estimate∑
i∈A

αi > 1− η

1− r
.

From now on, m will be a finite regular positive Borel measure on the compact Hausdorff space Ω.

Lemma 4.4. Suppose that there exist a non-negative simple function f ∈ SL1(m) and a function g ∈
SL∞(m) such that

Re 〈f, g〉 > 1− ε3

16
.

Then there exist a nonnegative simple function f1 ∈ SL1(m) and a function g1 ∈ SL∞(m) such that

g1(x) = χsupp(f1)(x) + g(x)χΩ\supp(f1)(x),

〈f1, g1〉 = 1, ‖f − f1‖1 < ε, ‖g − g1‖∞ <
√
ε and supp(f1) ⊂ supp(f).

Proof. Letf =
∑m
j=1

βj
m(Bj)

χBj for some (βj) such that βj > 0 for all j and
∑m
j=1 βj = 1, and Bj ’s are

mutually disjoint. By the assumption, we have

Re 〈f, g〉 =

n∑
j=1

βj
1

m(Bj)

∫
Bj

Re g(x) dm(x) > 1− ε3

16
,

and letting

J = {j : 1 6 j 6 n,
1

m(Bj)

∫
Bj

Re g(x) dm(x) > 1− ε2

4
},

we have by Lemma 4.3 ∑
j∈J

βj > 1− ε

4
.

For each j ∈ J , we have

1− ε2

4
<

1

m(Bj)

∫
Bj

Re g(x) dm(x)

=
1

m(Bj)

∫
Bj∩{Re g61−ε}

Re g(x) dm(x) +

∫
Bj∩{Re g>1−ε}

Re g(x) dm(x)

6
1

m(Bj)
((1− ε)m(Bj ∩ {Re g 6 1− ε}) +m(Bj ∩ {Re g > 1− ε}))

= 1− εm(Bj ∩ {Re g 6 1− ε})
m(Bj)

.
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This implies that
m(Bj ∩ {Re g 6 1− ε})

m(Bj)
<
ε

4
.

Define B̃j = Bj ∩ {Re g > 1 − ε} for all j ∈ J , f1 = 1∑
j∈J βj

∑
j∈J βj

χB̃j
m(B̃j)

and g1(x) = 1 on supp(f1)

and g1(x) = g(x) elsewhere. Then it is clear that supp(f1) ⊂ supp(f), ‖g − g1‖∞ <
√
ε and 〈f1, g1〉 = 1.

Finally we will show that ‖f − f1‖ < ε. Notice first that∥∥∥∥∥∥
∑
j∈J

βj
χB̃j

m(B̃j)
−
∑
j∈J

βj
χBj
m(Bj)

∥∥∥∥∥∥ 6
∥∥∥∥∥∥
∑
j∈J

βj
χB̃j

m(B̃j)
−
∑
j∈J

βj
χB̃j
m(Bj)

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
j∈J

βj
χB̃j
m(Bj)

−
∑
j∈J

βj
χBj
m(Bj)

∥∥∥∥∥∥
= 2

∑
j∈J

βj
m(Bj \ B̃j)
m(Bj)

<
ε

2
.

Hence

‖f − f1‖ 6

∥∥∥∥∥∥ 1∑
j∈J βj

∑
j∈J

βj
χB̃j

m(B̃j)
−
∑
j∈J

βj
χB̃j

m(B̃j)

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
j∈J

βj
χB̃j

m(B̃j)
− f

∥∥∥∥∥∥
6

1−
∑
j∈J βj∑

j∈J βj

∥∥∥∥∥∥
∑
j∈J

βj
χB̃j

m(B̃j)

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
j∈J

βj
χB̃j

m(B̃j)
−
∑
j∈J

βj
χBj
m(Bj)

∥∥∥∥∥∥+
ε

4

= (1−
∑
j∈J

βj) +
ε

2
+
ε

4

6
ε

4
+
ε

2
+
ε

4
= ε. �

Lemma 4.5 ([17, Lemma 3.3]). Suppose that Tµ is a norm-one element in L(L1(m)) for some µ ∈
M(m) and there is a nonnegative simple function f0 such that f0 is a norm-one element of L1(m) and
‖Tµf0‖ > 1−ε3/26 for some 0 < ε < 1. Then there exist a norm-one bounded linear operator Tν for some
ν ∈ M(m,m) and a nonnegative simple function f1 in SL1(m) such that ‖Tµ − Tν‖ 6 ε, ‖f1 − f0‖ 6 3ε

and d|ν|1
dm (x) = 1 for all x ∈ supp(f1).

Lemma 4.6. Suppose that Tν ∈ L(L1(m)) is a norm-one operator, f =
∑n
i=1 βi

χBi
m(Bi)

, where m(Bj) > 0

for all 1 6 j 6 n and {Bj}nj=1 are mutually disjoint Borel subsets of Ω, is a norm-one nonnegative simple
function and g is an element of SL∞(m) such that

Re 〈g, Tνf〉 > 1− ε6

27

for some 0 < ε < 1 and
d|ν|1

dm
(x) = 1, g(x) = 1

for all x in the support of f .

Then there exist a nonnegative simple function f̃ ∈ SL1(m), a function g̃ ∈ SL∞(m) and an operator
Tν̃ in L(L1(m), L1(m)) such that〈

g̃, Tν̃ f̃
〉

= ‖Tν̃‖ = 1, ‖Tν − Tν̃‖ 6 2ε, ‖f − f̃‖ 6 3ε, ‖g − g̃‖ 6
√
ε and

〈
f̃ , g̃
〉

= 1.

Proof. Since

Re 〈g, Tνf〉 > 1− ε6

27
,

we have

1− ε6

27
< Re 〈g, Tνf〉 =

∫
Ω×Ω

f(x) Re g(y) dµ(x, y) =

n∑
j=1

βj

∫
Ω×Ω

χBj (x)

m(Bj)
Re g(y) dν(x, y).
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Let J = {j :
∫

Ω×Ω

χBj (x)

m(Bj)
Re g(y) dν(x, y) > 1− ε3

26 }. Then from Lemma 4.3 we have
∑
j∈J βj > 1− ε3

2 .

Let f1 =
∑
j∈J β̃j

χBj
m(Bj)

, where β̃j = βj/(
∑
j∈J βj) for all j ∈ J . Then

‖f1 − f‖ 6

∥∥∥∥∥∥
∑
j∈J

(β̃j − βj)
χBj
m(Bj)

∥∥∥∥∥∥+
∑
j∈J

βj 6 ε
3 6 ε.

Note that there is a Borel measurable function h on Ω × Ω such that dν(x, y) = h(x, y) d|ν|(x, y) and
|h(x, y)| = 1 for all (x, y) ∈ Ω× Ω. Let

C =

{
(x, y) : |g(y)h(x, y)− 1| <

√
ε

23/2

}
.

Define two measures νf and νc as follows:

νf (A) = ν(A \ C) and νc(A) = ν(A ∩ C)

for every Borel subset A of Ω× Ω. It is clear that

dν = dνf + dνc, d|νf | = h̄dνf , d|νc| = h̄dνc, and d|ν| = d|νf |+ d|νc|.

Since d|ν|1
dm1

(x) = 1 for all x ∈
⋃n
j=1Bj , we have

1 =
d|ν|1

dm1
(x) =

d|νf |1

dm1
(x) +

d|νc|1

dm1
(x)

for all x ∈ B =
⋃n
j=1Bj , and we deduce that |ν|1(Bj) = m1(Bj) for all 1 6 j 6 n.

We claim that
|νf |1(Bj)
m1(Bj)

6 ε2

22 for all j ∈ J . Indeed, if |g(y)h(x, y)− 1| >
√
ε

23/2 , then Re (g(y)h(x, y)) 6
1− ε

24 . So we have

1− ε3

26
6

1

m1(Bj)
Re

∫
Ω×Ω

χBj(x)g(y) dν(x, y)

=
1

m1(Bj)

∫
Ω×Ω

χBj(x) Re
(
g(y)h(x, y)

)
d|ν|(x, y)

=
1

m1(Bj)

∫
Ω×Ω

χBj(x) Re
(
g(y)h(x, y)

)
d|νf |(x, y)

+
1

m1(Bj)

∫
Ω×Ω

χBj(x) Re
(
g(y)h(x, y)

)
d|νc|(x, y)

6
1

m1(Bj)

(
(1− ε

24
)|νf |1(Bj) + |νc|1(Bj)

)
= 1− ε

24

|νf |1(Bj)

m1(Bj)
.

This proves our claim.

We also claim that for each j ∈ J , there exists a Borel subset B̃j of Bj such that(
1− ε

2

)
m1(Bj) 6 m1(B̃j) 6 m1(Bj)

and
d|νf |1

dm1
(x) 6

ε

2

for all x ∈ B̃j . Indeed, set B̃j = Bj ∩
{
x ∈ Ω :

d|νf |1
dm1

(x) 6 ε
2

}
. Then∫

Bj\B̃j

ε

2
dm1(x) 6

∫
Bj

d|νf |1

dm1
(x) dm1(x) = |ν1

f |(Bj) 6
ε2

22
m1(Bj).

This shows that m1(Bj \ B̃j) 6 ε
2m1(Bj). This proves our second claim.
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Now, we define g̃ by g̃(y) = g(y)
|g(y)| if |g(y)| > 1−

√
ε

23/2 and g̃(y) = g(y) if |g(y)| < 1−
√
ε

23/2 , and we write

f̃ =
∑
j∈J β̃j

χB̃j
m1(B̃j)

. It is clear that g̃ ∈ SL∞(m), ‖g − g̃‖ <
√
ε and g̃(y) = 1 for all x ∈ suppf̃ .

Finally, we define the measure

dν̃(x, y) =
∑
j∈J

χB̃j (x)g̃(y)h(x, y)dνc(x, y)

(
d|νc|1

dm1
(x)

)−1

+ χJ1\B̃(x)dν(x, y),

where B̃ =
⋃
j∈J B̃j . It is easy to see that d|ν̃|1

dm1
(x) = 1 on B̃ and d|ν̃|1

dm1
(x) 6 1 elsewhere. Note that

d(ν̃ − ν)(x, y) =
∑
j∈J

χB̃j (x)

[
g̃(y)h(x, y)

(
d|νc|1

dm1
(x)

)−1

− 1

]
dνc(x, y)

−
∑
j∈J

χB̃j (x)dνf (x, y).

If (x, y) ∈ C, then |g(y)| > 1−
√
ε

23/2 > 1− 1
23/2 and

∣∣∣g̃(y)h(x, y)− 1
∣∣∣ =

∣∣∣∣ g(y)

|g(y)|
h(x, y)− 1

∣∣∣∣
6
|g(y)h(x, y)− 1|

|g(y)|
+

∣∣1− |g(y)|
∣∣

|g(y)|

6 2
|g(y)h(x, y)− 1|

|g(y)|
6 2

√
ε

23/2

23/2

23/2 − 1
6 2
√
ε.

Hence, for all (x, y) ∈ C we have

∣∣∣∣∣g̃(y)h(x, y)

(
d|νc|1

dm1
(x)

)−1

− 1

∣∣∣∣∣ 6 ∣∣∣g̃(y)h(x, y)− 1
∣∣∣ (d|νc|1

dm1
(x)

)−1

+

∣∣∣∣∣
(
d|νc|1

dm1
(x)

)−1

− 1

∣∣∣∣∣
6 2
√
ε

(
d|νc|1

dm1
(x)

)−1

+

∣∣∣∣∣
(
d|νc|1

dm1
(x)

)−1

− 1

∣∣∣∣∣ .
So, we have for all x ∈ J1,

d|ν̃ − ν|1

dm1
(x) 6

∑
j∈J

χB̃j (x)

[
2
√
ε

(
d|νc|1

dm1
(x)

)−1

+

∣∣∣∣∣
(
d|νc|1

dm1
(x)

)−1

− 1

∣∣∣∣∣
]
d|νc|1

dm1
(x)

+
∑
j∈J

χB̃j (x)
d|νf |1

dm1
(x)

6
∑
j∈J

χB̃j (x)

(
2
√
ε+

(
1− d|νc|1

dm1
(x)

))
+
∑
j∈J

χB̃j (x)

(
d|νf |1

dm1
(x)

)
6 2
√
ε+ ε < 3

√
ε.
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This gives that ‖Tν − Tν̃‖ < 3
√
ε. Note also that, for all j ∈ J ,〈

Tν̃
χB̃j

m1(B̃j)
, g̃

〉
=

∫
Ω×Ω

χB̃j (x)

m1(B̃j)
g̃(y) dν̃(x, y)

=

∫
Ω×Ω

χB̃j (x)

m1(B̃j)
h(x, y)

(
d|νc|1

dm1
(x)

)−1

dνc(x, y)

=

∫
Ω

χB̃j (x)

m1(B̃j)

(
d|νc|1

dm1
(x)

)−1

d|νc|1(x)

=

∫
Ω

χB̃j (x)

m1(B̃j)
dm1(x) = 1.

Hence we get
〈
Tν̃ f̃ , g̃

〉
= 1, which implies that ‖Tν̃ f̃‖ = ‖Tν̃‖ = 1. Finally,

‖f̃ − f‖ 6 ‖f̃ − f1‖+ ‖f1 − f‖

=

∥∥∥∥∥∥
∑
j∈J

β̃j
χB̃j

m1(B̃j)
−
∑
j∈J

β̃j
χBj

m1(Bj)

∥∥∥∥∥∥+ ε

6
∑
j∈J

β̃j

(∥∥∥∥∥ χB̃j

m1(B̃j)
−

χBj

m1(B̃j)

∥∥∥∥∥+

∥∥∥∥∥ χBj

m1(B̃j)
−

χBj
m1(Bj)

∥∥∥∥∥
)

+ ε

= 2
∑
j∈J

β̃j
m1(Bj \ B̃j)
m1(B̃j)

+ ε

6 2
∑
j∈J

β̃j

ε
2m1(Bj)

m1(B̃j)
+ ε 6

ε

1− ε/2
+ ε < 3ε. �

We are now ready to present the proof of the main result in the case of finite regular positive Borel
measures.

Proof of Proposition 4.2. Let δ1 =
δ32

5·24 , δ2 =
δ123

32·214 and δ3 =
(
ε
10

)2
for some 0 < ε < 1. Suppose that

T ∈ L(L1(m)) with ‖T‖ = 1 and that there is an f0 ∈ SL1(m) and g0 ∈ SL∞(m) such that 〈f0, g0〉 = 1

and | 〈Tf0, g0〉 | > 1 − δ31
26 . Then there is an isometric isomorphism Ψ from L1(m) onto itself such that

Ψ(f0) = |f0| and there is a scalar number α in SR such that | 〈Tf0, g0〉 | = 〈αTf0, g0〉. Then letting
f1 = Ψf0, g1 = (Ψ−1)∗g0 and T1 = αΨTΨ−1, we have

〈Sf1, g1〉 =
〈
αΨT0Ψ−1Ψf0, (Ψ

−1)∗g0

〉
= 〈αTf0, g0〉 > 1− δ3

1

26
and 〈f1, g1〉 =

〈
Ψf0, (Ψ

−1)∗g0

〉
= 1.

Since ‖T1f1‖ > 1− δ δ
3
1

26 , by Lemma 4.5, there exists a norm-one bounded operator Tν and a nonnegative

simple function f2 ∈ SL1(m) such that ‖T1−Tν‖ 6 δ1, ‖f2−f1‖ 6 3δ1 and d|ν|1
dm1

(x) = 1 for all x ∈ supp(f2).
Then

〈Tνf2, g1〉 = 〈T1f1, g1〉 − 〈T1f1 − T1f2, g1〉 − 〈T1f2 − Tνf2, g1〉
> 〈T1f1, g1〉 − ‖f1 − f2‖ − ‖T1 − Tν‖

> 1− δ3
1

26
− 3δ1 − δ1 > 1− 5δ1 = 1− δ3

2

16
.

Notice also that

〈f2, g1〉 = 〈f1, g1〉 − 〈f1 − f2, g1〉 > 1− ‖f1 − f2‖ > 1− 3δ1 > 1− 5δ1 = 1− δ3
2

16
.
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By Lemma 4.4 there are a nonnegative simple function f3 ∈ SL1(m) and a function g3 ∈ SL∞(m) such
that

g3(x) = χsuppf3(x) + g2(x)χΩ\suppf3(x)

‖f2 − f3‖ 6 δ2, ‖g3 − g1‖ 6
√
δ2 and 〈f3, g3〉 = 1.

So we have

〈Tνf3, g3〉 = 〈Tνf2, g1〉 − 〈Tνf2 − Tνf3, g1〉 − 〈Tνf3, g1 − g3〉

> 1− δ3
2

16
− 2
√
δ2 > 1− 3

√
δ2 = 1− δ6

3

27
.

By Lemma 4.6, there exist f4 ∈ SL1(m) and g4 ∈ SL∞(m) and an operator T4 such that

〈g4, T4f4〉 = 1 = ‖T4‖, ‖T4 − Tν‖ 6 2δ3, ‖f4 − f3‖ 6 3δ3, ‖g4 − g3‖ 6
√
δ3 and 〈f4, g4〉 = 1.

So we have

‖T4 − T1‖ 6 ‖T4 − Tν‖+ ‖Tν − T1‖ 6 δ1 + 2δ3 6 3δ3

‖f1 − f4‖ 6 ‖f1 − f2‖+ ‖f2 − f3‖+ ‖f3 − f4‖ 6 3δ1 + δ2 + 3δ3 6 10δ3

‖g1 − g4‖ 6 ‖g1 − g3‖+ ‖g3 − g4‖ 6 δ2 +
√
δ3 6 2

√
δ3.

Let S = αΨ−1T4Ψ, f̃ = Ψ−1f4 and g̃ = Ψ∗g4, then we have

‖T − S‖ = ‖T − αΨ−1T4Ψ‖ = ‖αΨTΨ−1 − T4‖ = ‖T1 − T4‖ 6 3δ3

‖f0 − f̃‖ = ‖f0 −Ψ−1f4‖ = ‖f1 − f4‖ 6 10δ3

‖g0 − f̃‖ = ‖g0 −Ψ∗g4‖ = ‖(Ψ−1)∗g0 − g4‖ = ‖g1 − g4‖ 6 2
√
δ3〈

f̃ , g̃
〉

=
〈
Ψ−1f4,Ψ

∗g4

〉
= 〈f4, g4〉 = 1

and ∣∣∣〈Sf̃ , g̃〉∣∣∣ = |
〈
αΨ−1T4ΨΨ−1f4,Ψ

∗g4

〉
| = |α| = 1.

This completes the proof. �

Finally, we may give the proof of the main result in full generality.

Proof of Theorem 4.1. Notice that the Kakutani representation theorem (see [26] for a reference) says
that for every σ-finite measure ν, the space L1(ν) is isometrically isomorphic to L1(m) for some positive
Borel regular measure on a compact Hausdorff space. Then, by Proposition 4.2, there is a universal
function ε 7−→ η(ε) > 0 which gives the BPBp-nu for L1(ν) for every σ-finite measure ν.

Fix ε > 0. Suppose that T0 ∈ L(L1(µ)) with v(T0) = 1 and (f0, f
∗
0 ) ∈ Π(L1(µ)) satisfy

| 〈f∗0 , T0f0〉 | > 1− η(ε).

Choose a sequence {fn} in L1(µ) such that supn ‖T0fn‖ = 1 and let G be the closed linear span of{
Tnfm : n,m ∈ N ∪ {0}

}
.

As G is separable, there is a dense subset {gn : n ∈ N} of G and let E =
⋃∞
n=1 supp gn, where supp gn

is the support of gn. Then the measure µ|E is σ-finite. Let Y = {f ∈ L1(µ) : supp(f) ⊂ E} be a closed
subspace of L1(µ). It is clear that L1(µ) = Y ⊕1 Z and Y is isometrically isomorphic to L1(µ|E). So Y
has the BPBp-nu with η(ε).

Now, write S0 = T0|Y : Y −→ Y , consider y0 = f0 ∈ SY , y∗0 = f∗0 |Y ∈ SY ∗ and observe that y∗0(y0) = 1
and |y∗0(S0y0)| = |f∗0 (T0f0)| > 1− η(ε). Hence, there exist S ∈ L(Y ) and (ỹ0, ỹ

∗
0) ∈ Π(Y ) such that

|ỹ∗0(Sỹ0)| = 1 = v(S), ‖S − S0‖ < ε, ‖y0 − ỹ0‖ < ε and ‖y∗0 − ỹ∗0‖ < ε.

Finally consider the operator T ∈ L(L1(µ)) given by

T (y, z) = (Sy, 0) + T0(0, z)
(
(y, z) ∈ L1(µ) ≡ Y ⊕1 Z

)
.
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We have ‖T‖ = 1 (and so v(T ) = 1). Indeed, ‖T (y, z)‖ = ‖(Sy, 0)‖ + ‖T0(0, z)‖ 6 ‖y‖ + ‖z‖ = ‖(y, z)‖
for all (y, z) ∈ L1(µ) and ‖T (ỹ0, 0)‖ = ‖(Sỹ0, 0)‖ = ‖Sỹ0‖ = 1. Let x = (ỹ0, 0) and x∗ = (ỹ∗0 , f0|Z). Then
(x, x∗) ∈ Π(L1(µ)). Moreover, we have

|x∗Tx| = |ỹ∗0Sy0| = 1 = v(T ),

‖x− f0‖ = ‖y − y0‖ < ε,

‖x∗0 − f∗0 ‖ = max{‖y − f∗0 |Y ‖, ‖f∗0 |Z − f∗0 |Z‖} = ‖y∗ − y∗0‖ < ε

and

‖T − T0‖ = sup
‖y‖+‖z‖61

‖T (y, z)− T0(y, z)‖ = sup
‖y‖61

‖Sy − S0y‖ = ‖S − S0‖ < ε.

This completes the proof. �

5. Examples of spaces failing the Bishop-Phelps-Bollobás property for numerical
radius

Our goal here is to prove that the density of numerical radius attaining operators does not imply the
BPBp-nu. Actually, we will show that among separable spaces, there is no isomorphic property implying
the BPBp-nu other than finite-dimensionality.

We need to relate the BPBp-nu with the Bishop-Phelps-Bollobás property for operators which, as
mentioned in the introduction, was introduced in [4]. A pair (X,Y ) of Banach spaces has the Bishop-
Phelps-Bollobás property for operators (in short, BPBp), if given ε > 0 there exists η(ε) > 0 such that
given T ∈ L(X,Y ) with ‖T‖ = 1 and x ∈ SX such that ‖Tx‖ > 1 − η(ε), then there exist z ∈ SX and
S ∈ L(X,Y ) satisfying

‖S‖ = ‖Sz‖ = 1, ‖x− z‖ < ε and ‖T − S‖ < ε.

We refer the reader to [4, 8, 17] and references therein for more information and background. Among the
interesting results on the BPBp, we emphasize that a pair (X,Y ) when X is finite-dimensional does not
necessarily have the BPBp. For instance, if Y is a strictly convex space which is not uniformly convex,

then the pair (`
(2)
1 , Y ) fails to have the BPBp (this is contained in [4], see [8, Section 3]).

The next result relates the BPBp-nu with the BPBp for operators in a particular case. We will deduce
our example from it.

Theorem 5.1. If L1(µ)⊕1 X has the BPBp-nu, then the pair (L1(µ), X) has the BPBp for operators.

Before proving this proposition, we will use it to get the main examples of this section. The first
example shows that the density of numerical radius attaining operators does not imply the BPBp-nu.

Example 5.2. There is a reflexive space (and so numerical radius attaining operators on it are dense)
which fails to have the BPBp-nu. Indeed, let Y be a reflexive separable space which is not superreflexive
and we may suppose that Y is strictly convex. Observe that Y cannot be uniformly convex since it is not

superreflexive. Now, X = `
(2)
1 ⊕1 Y is reflexive, but the pair (`

(2)
1 , Y ) fails the BPBp since Y is strictly

convex but not uniformly convex [8, Corollary 3.3]. Therefore, Theorem 5.1 gives us that X does not
have the BPBp-nu.

The example above can be extended to get the result that every infinite-dimensional separable Banach
space can be renormed to fail the BPBp-nu. This follows from the fact that every infinite-dimensional
separable Banach space can be renormed to be strictly convex but not uniformly convex (this result
can be proved “by hand”; an alternative categorical argument for it can be found in [21] and references
therein). With a little more of effort, we may get the main result of the section.

Theorem 5.3. Every infinite-dimensional separable Banach space can be renormed to fail the weak-
BPBp-nu (and so, in particular, to fail the BPBp-nu).



14 KIM, LEE, AND MARTÍN

We need the following result which is surely well known. As we have not found a reference, we include
a nice and easy proof kindly given to us by Vladimir Kadets. We recall that, given a Banach space Y ,
the set of all equivalent norms on Y can be viewed as a metric space using the Banach-Mazur distance.

Lemma 5.4. Let Y be an infinite-dimensional separable Banach space. Then the set of equivalent norms
on Y which are strictly convex and are not (locally) uniformly convex is dense in the set of all equivalent
norms on Y (with respect to the Banach-Mazur distance).

Proof. Fix e ∈ SY and e∗1 ∈ SY ∗ such that e∗1(e) = 1. For a fixed ε ∈ (0, 1/2), denote

q(y) = max
{

(1− ε)‖y‖, |e∗1(y)|
}

(y ∈ Y ).

Evidently, (1− ε)‖y‖ 6 q(y) 6 ‖y‖ for every y ∈ Y . Fix a sequence {e∗k : k > 2} of norm-one functionals
separating the points of Y , and denote

p(y) =

√√√√ ∞∑
k=1

1

2k
|e∗k(y)|2 (y ∈ Y ).

Then, p is a strictly convex norm on Y , p(e) > 1√
2

and p(y) 6 ‖y‖ for all y ∈ X. Finally, write

‖y‖1 = (1− ε)q(y) + ε
p(y)

p(e)
(y ∈ Y ).

Then, ‖ · ‖1 is a strictly convex norm on Y and

(1− ε)2‖y‖ 6 ‖y‖1 6 (1 + ε)‖y‖ (y ∈ Y ).

We will finish the proof by showing that ‖ ·‖1 is not uniformly convex (actually, it is not locally uniformly
convex). Indeed, for each n ∈ N we select yn ∈

⋂n
k=1 ker e∗k with ‖yn‖ = 1 and consider en = e + ε

4yn.
Then, q(e) = 1, q(en) = 1, and q(e + en) = 2. At the same time, p(yn) −→ 0, so p(en) −→ p(e) and
p(e+ en) −→ 2p(e). Consequently,

‖e‖1 = 1, ‖en‖1 −→ 1, and ‖e+ en‖1 −→ 2,

but ‖e− en‖1 = ε
4‖yn‖1 > (1− ε)2 ε

4 , which means the absence of local uniform convexity at e. �

Proof of Theorem 5.3. Let X be an infinite-dimensional separable Banach space. Take a closed subspace
Y of X of codimension two. By [20, Propositon 2], the map carrying every equivalent norm on Y to its
numerical index is continuous and so, the set of values of the numerical index of Y up to reforming is a
non-trivial interval [20, Theorem 9]. Then Lemma 5.4 allows us to find an equivalent norm | · | on Y in
such a way that (Y, | · |) is strictly convex, is not uniformly convex, and n(Y, | · |) > 0. Now, the space

X̃ = `
(2)
1 ⊕1 (Y, | · |) is an equivalent renorming of X which does not have the BPBp-nu (indeed, otherwise,

the pair
(
`
(2)
1 , (Y, | · |)

)
would have the BPBp for the operator norm and so, (Y, | · |) would be uniformly

convex by [8, Corollary 3.3], a contradiction.) Moreover, as

n
(
X̃
)

= min
{
n(`

(2)
1 ), n(Y, | · |)

}
> 0

(see [24, Proposition 2] for instance), X̃ also fails the weak-BPBp-nu by Proposition 3.3. �

To finish the section with the promised proof of Theorem 5.1, we first state the following stability
result.

Lemma 5.5. Let X =
[⊕∞

k=1Xk

]
c0

or
[⊕∞

k=1Xk

]
`1

. If X has the Bishop-Phelps-Bollobás property for

numerical radius with a function η, then each Banach space Xi has the Bishop-Phelps-Bollobás property
for numerical radius with ηnu(Xi) > η. That is, infi ηnu(Xi)(ε) > ηnu(X)(ε) for all 0 < ε < 1.
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Proof. Let Pi : X −→ Xi and P ′i : X∗ −→ X∗i be the natural projections, and let Qi : Xi −→ X and
Q′i : X∗i −→ X∗ be the natural embeddings.

Assume that an operator Ti : Xi −→ Xi and a pair (xi, x
∗
i ) ∈ Π(Xi) satisfy that

v(Ti) = 1 and |x∗i Tixi| > 1− η(ε).

We define an operator T : X −→ X and (x, x∗) ∈ Π(X) by

T = Qi ◦ Ti ◦ Pi and (x, x∗) = (Qixi, Q
′
ix
∗
i ),

then clearly we have that

|x∗Tx| = |x∗i Tixi| > 1− η(ε).

From the assumption, there exist S : X −→ X and a pair (y, y∗) ∈ Π(X) such that

|y∗Sy| = 1 = v(S), ‖S − T‖ < ε, ‖y∗ − x∗‖ < ε, and ‖y − x‖ < ε.

Since this clearly shows that

‖Pi ◦ S ◦Qi − Ti‖ < ε, ‖P ′iy∗ − x∗i ‖ < ε, and ‖Piy − xi‖ < ε,

we only need to show that |P ′iy∗(Pi ◦ S ◦Qi)Piy| = 1.

We first show the case of c0 sum. Since ‖Pjy‖ = ‖Pjy − Pjx‖ 6 ‖y − x‖ < ε for every j 6= i, we have

1 = y∗(y) =
∑
j∈N

P ′jy
∗(Pjy) 6

∑
j∈N
‖P ′jy∗‖‖Pjy‖

6 ‖P ′iy∗‖+ ε
∑

j∈N, j 6=i
‖P ′jy∗‖ 6 ‖y∗‖ = 1.

This shows that ‖P ′iy∗‖ = 1 and P ′jy
∗ = 0 for every j 6= i. So y∗ = Q′iP

′
iy
∗ and P ′iy

∗(Piy) = 1. This

and the fact that ‖y −QiPiy‖ < ε imply that (QiPiy + 1
ε (y −QiPiy), Q′iP

′
iy
∗) ∈ Π(X). So we get that

(Q′iP
′
iy
∗)S(QiPiy + 1

ε (y −QiPiy)) 6 v(S) = 1. Hence, we have

1 = |y∗Sy| = |(Q′iP ′iy∗)Sy|

=

∣∣∣∣(1− ε)(Q′iP ′iy∗)S(QiPiy) + ε(Q′iP
′
iy
∗)S

(
QiPiy +

1

ε
(y −QiPiy)

)∣∣∣∣ 6 1,

and so we get |P ′iy∗(Pi ◦ S ◦Qi)Piy| = |(Q′iP ′iy∗)S(QiPiy)| = 1.

We next show the case of `1 sum. The proof is almost the same as that of the c0 case. However, for
the sake of completeness, we provide it here.

Since ‖P ′jy∗‖ = ‖P ′jy∗ − P ′jx∗‖ 6 ‖y∗ − x∗‖ < ε for every j 6= i, we have

1 = y∗(y) =
∑
j∈N

P ′jy
∗(Pjy) 6

∑
j∈N
‖P ′jy∗‖‖Pjy‖

6 ‖Piy‖+ ε
∑

j∈N, j 6=i
‖Pjy‖ 6 ‖y‖ = 1,

which shows ‖Piy‖ = 1 and Pjy = 0 for every j 6= i. Since this implies (QiPiy,Q
′
iP
′
iy
∗+ 1

ε (y∗−Q′iP ′iy∗)) ∈
Π(X), we get that

∣∣(Q′iP ′iy∗ + 1
ε (y∗ −Q′iP ′iy∗))S(QiPiy)

∣∣ 6 v(S) = 1. Hence, we have

1 = |y∗Sy| = |y∗S(QiPiy)|

= |(1− ε)(Q′iP ′iy∗)S(QiPiy) + ε(Q′iP
′
iy
∗ +

1

ε
(y∗ −Q′iP ′iy∗))S(QiPiy) 6 1,

and so we get |P ′iy∗(Pi ◦ S ◦Qi)Piy| = |(Q′iP ′iy∗)S(QiPiy)| = 1. �
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Proof of Theorem 5.1. Note that ηnu(L1(µ) ⊕1 X)(ε) −→ 0 as ε −→ 0. Fix 0 < ε0 < 1 and choose
0 < ε < 1 such that 6ε+ ηnu(L1(µ)⊕1 X)(ε) < ε0. Let η(ε0) = ηnu(L1(µ)⊕1 X)(ε).

Suppose that T0 ∈ L(L1(µ), X) with ‖T0‖ = 1 and f0 ∈ SL1(µ) satisfy

‖T0f0‖ > 1− η(ε0).

For any measurable subset B, let L1(µ|B) = {f |B : f ∈ L1(µ)} with the norm ‖f |B‖ = ‖fχB‖1.
Then it is easy to see that L1(µ|B) is isometrically isomorphic to a complemented subspace of L1(µ).
Let PB : L1(µ) −→ L1(µ|B) be the restriction defined by PB(f) = f |B for all f ∈ L1(µ) and let
JB : L1(µ|B) −→ L1(µ) be the extension defined by JB(f)(ω) = f(ω) if ω ∈ B and JB(f)(ω) = 0
otherwise. It is clear that PBJB = IdL1(µ|B) and JBPB(f) = fχB for all f ∈ L1(µ). Notice also that
L1(µ) is isometrically isomorphic to L1(µ|B)⊕1 L1(µ|Bc).

Let A = suppf0 and g0 = PAf0. Then ‖T0JAg0‖ = ‖T0f0‖ > 1 − η(ε0) > 0 and define the operator

TA : L1(µ|A) −→ X by TAf = T0JAf
‖T0JA‖ for every f ∈ L1(µ|A). Then,

‖TAg0‖ > ‖T0f0‖ > 1− η(ε0).

Since µ|A is σ-finite, L1(µ|A)∗ = L∞(µ|A). Let g∗0 ∈ SL∞(µ|A) be a function such that 〈g∗0 , g0〉 = 1, and
choose x∗0 ∈ SX∗ such that x∗0(TAg0) = ‖TAg0‖. Define the operator S0 ∈ L(L1(µ|A)⊕1 X) by

S0(f, x) = (0, TAf)
(
(f, x) ∈ L1(µ|A)⊕1 X

)
and observe that ‖S0‖ = v(S0) = 1. Indeed,

‖S0‖ 6 1 = ‖TA‖ = sup{|x∗TAf | : x∗ ∈ SX∗ , f ∈ SL1(µ|A)}
= sup{|(f∗, x∗)S0(f, x)| : ((f∗, x∗), (f, x)) ∈ Π(L1(µ|A)⊕1 X)}
= v(S0) 6 ‖S0‖.

It is immediate that

(g∗0 , x
∗
0)S0(g0, 0) = x∗0(TAg0) = ‖TAg0‖ > 1− η(ε0).

By Lemma 5.5, L1(µ|A) ⊕1 X has the BPBp-nu with the function η. Therefore, there exist S1 ∈
L(L1(µ|A)⊕1 X), (g1, x1) ∈ SL1(µ|A)⊕1X and (g∗1 , x

∗
1) ∈ SL∞(µ|A)⊕∞X∗ such that

‖(g1, x1)− (g0, 0)‖ < ε, ‖(g∗1 , x∗1)− (f∗0 , x
∗
0)‖ < ε, ‖S1 − S0‖ < ε,

〈(g∗1 , x∗1), (g1, x1)〉 = 1 and |(g∗1 , x∗1)S1(g1, x1)| = v(S1) = 1.

Claim 1. We claim that x1 = 0.
Otherwise,

1 = Re 〈(g∗1 , x∗1), (g1, x1)〉 = ‖g1‖ Re

〈
(g∗1 , x

∗
1),

(g1, 0)

‖g1‖

〉
+ ‖x1‖ Re

〈
(g∗1 , x

∗
1),

(0, x1)

‖x1‖

〉
6 1.

We deduce that (
(g1, 0)

‖g1‖
, (g∗1 , x

∗
1)

)
,

(
(0, x1)

‖x1‖
, (g∗1 , x

∗
1)

)
∈ Π(L1(µ|A)⊕1 X).

Since
∥∥∥S1( (0,x1)

‖x1‖ )
∥∥∥ =

∥∥∥(S1 − S0)
(

(0,x1)
‖x1‖

)∥∥∥ < ε, we get that

1 = | 〈(g∗1 , x∗1), S1(g1, x1)〉 |

=

∣∣∣∣‖g1‖
〈

(g∗1 , x
∗
1), S1

(
(g1, 0)

‖g1‖

)〉
+ ‖x1‖

〈
(g∗1 , x

∗
1), S1

(
(0, x1)

‖x1‖

)〉∣∣∣∣
6 ‖g1‖v(S1) + ε‖x1‖ < ‖g1‖+ ‖x1‖ = 1,

a contradiction. This proves the claim.

We define the operator S2 : L1(µ|A) ⊕1 X −→ L1(µ|A) ⊕1 X by S2(f, x) = S1(f, 0) for every
f ∈ L1(µ|A) and for every x ∈ X. Then we have

v(S2) = |(g∗1 , x∗1)S2(g1, 0)| = 1 and ‖S1 − S2‖ 6 ε.
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Indeed, from Claim 1, we have

v(S1) = |(g∗1 , x∗1)S1(g1, x1)| = |(g∗1 , x∗1)S1(g1, 0)| = |(g∗1 , x∗1)S2(g1, 0)| 6 v(S2).

On the other hand, we have that

|(f∗, x∗)S2(f, x)| = |(f∗, x∗)S1(f, 0)| 6 ‖f‖v(S1) 6 v(S1)

for every ((f∗, x∗), (f, x)) ∈ Π(L1(µ|A)⊕1 X). So v(S2) 6 v(S1). Also,

‖S1 − S2‖ 6 sup
x∈SX

‖S1(0, x)‖ = sup
x∈SX

‖S1(0, x)− S0(0, x)‖ 6 ε.

Claim 2. There exists an operator S3 : L1(µ|A)⊕1X −→ L1(µ|A)⊕1X such that ‖S3(g1, 0)‖ = ‖S3‖ = 1,
S3(0, x) = 0, S3(f, x) ∈ {0} ⊕1 X for every (f, x) ∈ L1(µ|A)⊕1 X and ‖S3 − S2‖ < 4ε.

Indeed, using the trivial decomposition, write S1 = (D1, D2), where D1 : L1(µ|A) ⊕1 X −→ L1(µ|A)
and D2 : L1(µ|A)⊕1 X −→ X. We have that

sup
{
|g∗D1(g1, 0) + x∗D2(g1, 0)| : x∗ ∈ SX∗ , 〈g∗, g1〉 = 1, g∗ ∈ SL∞(µ|A)

}
= sup

{
|g∗D1(g1, 0)|+ ‖D2(g1, 0)‖ : 〈g∗, g1〉 = 1, g∗ ∈ SL∞(µ|A)

}
= sup

{
|g∗D1(g1, 0)| : 〈g∗, g1〉 = 1, g∗ ∈ SL∞(µ|A)

}
+ ‖D2(g1, 0)‖

6 v(S2) =
∣∣(g∗1 , x∗1)S2(g1, 0)

∣∣ =
∣∣g∗1D1(g1, 0) + x∗1D2(g1, 0)

∣∣.
This implies that

|x∗1D2(g1, 0)| = ‖D2(g1, 0)‖
and

|g∗1D1(g1, 0)| = sup{|g∗D1(g1, 0)| : 〈g∗, g1〉 = 1, g∗ ∈ L∞(µ|A)}.

Therefore, |g∗1 | equals 1 on the support of D1(g1, 0). As | 〈g∗1 , g1〉 | = 1, we also have that |g∗1 | equals 1 on
the support of g1. Changing the values of g∗1 by the ones of f∗0 on A \

(
supp(D1(g1, 0)) ∪ supp(g1)

)
, we

may and do suppose that |g∗1 | = 1 on the whole A.

We also have ‖D2(g1, 0)‖ > 0 Indeed,

‖S2(g1, 0)− S0(g0, 0)‖ 6 ‖S2(g1, 0)− S0(g1, 0)‖+ ‖S0(g1, 0)− S0(g0, 0)‖
< 2ε+ ε = 3ε.

So we have

‖D2(g1, 0)− TAg0‖ 6 ‖D1(g1, 0)‖+ ‖D2(g1, 0)− TAg0‖
= ‖(D1(g1, 0), D2(g1, 0))− (0, TAg0)‖
= ‖S2(g1, 0)− S0(g0, 0)‖ < 3ε

and ‖D2(g1, 0)‖ > ‖TAg0‖ − 3ε > 1− η(ε0)− 3ε > 0.

Finally define the operator S3 by

S3(f, x) =
(

0, D2(f, 0) + g∗1(D1(f, 0)) D2(g1,0)
x∗1D2(g1,0)

)
for (f, x) ∈ L1(µ|A)⊕1 X.

It is clear that ‖S3‖ 6 supf∈SL1(µ|A)
(‖D2(f, 0)‖+ |g∗1D1(f, 0)|). Notice also that

‖D1(f, 0)‖ 6 ‖D1(f, 0)‖+ ‖D2(f, 0)− TAf‖
= ‖(D1(f, 0), D2(f, 0))− (0, TAf)‖
= ‖S2(f, x)− S0(f, x)‖

for all (f, x) ∈ L1(µ|A)⊕1 X. Hence we have

‖S3 − S2‖ = 2 sup
f∈SL1(µ|A)

‖D1(f, 0)‖ 6 2‖S2 − S0‖ < 4ε.
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On the other hand, let G : L1(µ|A) −→ L1(µ|A) be defined by G(f) = g∗1f for every f ∈ L1(µ|A). Then,
we have

v(S2) = sup{|z∗S2z| : (z, z∗) ∈ Π(L1(µ|A)⊕1 X)}

> sup

{∣∣∣∣x∗D2

(
G

(
1

µ(C)
χC

)
, 0

)
+ g∗1D1

(
G

(
1

µ(C)
χC

)
, 0

)∣∣∣∣ : x∗ ∈ SX∗ , C ∈ ΣA, µ(C) > 0

}
= sup

{∥∥∥∥D2

(
G

(
1

µ(C)
χC

)
, 0

)∥∥∥∥+

∣∣∣∣g∗1D1

(
G

(
1

µ(C)
χC

)
, 0

)∣∣∣∣ : C ∈ ΣA, µ(C) > 0

}
,

where ΣA is the family of measurable subsets of A.

Hence, for any simple function s =
∑n
i=1

αi
µ(Ai)

χAi ∈ SL1(µ|A), where {Ai}i is a family of disjoint

measurable subsets with strictly positive measure, we have

v(S2) >
n∑
i=1

|αi|
(∥∥∥∥D2

(
G

(
1

µ(Ai)
χAi

)
, 0

)∥∥∥∥+

∣∣∣∣g∗1D1

(
G

(
1

µ(Ai)
χAi

)
, 0

)∣∣∣∣)
> ‖D2(G(s), 0)‖+ |g∗1D1(G(s), 0)|.

Since |g∗1 | = 1, G is an isometric isomorphism, so for each f ∈ SL1(µ|A) there exists a sequence of norm-one
simple functions (sk) such that G(sk) converges to f . Therefore,

v(S2) > sup
f∈SL1(µ|A)

(
‖D2(f, 0)‖+ |g∗1D1(f, 0)|

)
> ‖S3‖.

On the other hand, we have that

‖S3‖ > |(g∗1 , x∗1)S3(g1, 0)| = |x∗1D2(g1, 0) + g∗1D1(g1, 0)| = v(S2) = 1.

Therefore, 1 = ‖S3‖ = ‖S3(g1, 0)‖ which proves Claim 2.

Finally, we write S3 = (0, T̃ ) for a suitable T̃ : L1(µ|A) ⊕1 X −→ X and we define the operator
T1 : L1(µ) −→ X by

T1(f) = T0(fχAc) + T̃ (PAf, 0) for every f ∈ L1(µ).

Then, we have

‖T1(f)‖ 6 ‖T0‖‖fχAc‖+ ‖T̃‖‖fχA‖ = ‖f‖

for every f ∈ L1(µ), so ‖T1‖ 6 1. Also,

‖T1(JAg1)‖ = ‖S3(g1, 0)‖ = ‖S3‖ = 1,

so T1 attains its norm on JAg1 ∈ L1(µ), and

‖JAg1 − f0‖ = ‖g1 − g0‖ < ε.

We also have that for any f ∈ SL1(µ),

‖T0(f)− T1(f)‖ = ‖T0(fχA)− T̃ (PAf, 0)‖

6 ‖T0(JAPAf)− TA(PAf)‖+ ‖TA(PAf)− T̃ (PAf, 0)‖
6 ‖T0JA − TA‖+ ‖S0 − S3‖
< η(ε0) + 6ε.

Hence ‖T0 − T1‖ 6 η(ε0) + 6ε < ε0. This completes the proof. �
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