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SLICELY COUNTABLY DETERMINED BANACH SPACES

ANTONIO AVILÉS, VLADIMIR KADETS, MIGUEL MARTÍN, JAVIER MERÍ, AND VARVARA SHEPELSKA

ABSTRACT. We introduce the class of slicely countably determined Banach spaces which contains in
particular all spaces with the RNP and all spaces without copies of `1. We present many examples and
several properties of this class. We give some applications to Banach spaces with the Daugavet and the
alternative Daugavet properties, lush spaces and Banach spaces with numerical index 1. In particular,
we show that the dual of a real infinite-dimensional Banach with the alternative Daugavet property
contains `1 and that operators which do not fix copies of `1 on a space with the alternative Daugavet
property satisfy the alternative Daugavet equation.

1. INTRODUCTION

The aim of this paper is to introduce the class of slicely countably determined Banach spaces, give
many examples and several properties of this class and, finally, to use this concept to give some appli-
cations to Banach spaces with the Daugavet property and to Banach spaces with numerical index 1.
Let us introduce the needed notation and definitions.

Given a Banach space over K (K = R or K = C), we write SX for its unit sphere and BX for its
closed unit ball. The dual space of X is denoted by X∗ and L(X) is the Banach algebra of all bounded
linear operators from X to X. The space X has the Daugavet property [19] if every rank-one operator
T ∈ L(X) satisfies

(DE) ‖Id + T‖ = 1 + ‖T‖.
In this case, all operators on X which do not fix copies of `1 (in particular, weakly compact operators)
also satisfy (DE) [29]. If every rank-one operator T ∈ L(X) satisfies the norm equality

(aDE) max
θ∈T
‖Id + θ T‖ = 1 + ‖T‖

(T being the set of modulus one scalars), X has the alternative Daugavet property [25] and then all
weakly compact operators on X also satisfy (aDE). A Banach space is said to have numerical index 1
[13] if every T ∈ L(X) satisfies that v(T) = ‖T‖, where

v(T) =
{
|x∗(Tx)| : x ∈ SX, x∗ ∈ SX∗ , x∗(x) = 1

}
is the numerical radius of the operator T. It is known [13] that

v(T) = ‖T‖ ⇐⇒ T satisfies (aDE).
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Then, X has numerical index 1 if and only if every T ∈ L(X) satisfies (aDE). It follows from the
above discussion that�� ��Daugavet property ==⇒

�� ��Alternative Daugavet property ⇐==
�� ��Numerical index 1

None of the above implications reverses in general [25, Example 3.2]. For the first implication, it is
even known that it is not reversible under any isomorphic property [25, Corollary 3.3]. On the other
hand, it is known that the second implication reverses for Asplund spaces and for Banach spaces with
the Radon-Nikodým property [23, Remark 6]. We refer the interested reader to [15, 16, 18, 24] and
the already cited references for recent results, more information and background on these properties.

We will say that X is slicely countably determined (SCD in short) if every bounded convex subset
A of X is an SCD set, i.e. there is a sequence {Sn : n ∈ N} of slices of A such that A ⊆ conv(B)
whenever B ⊆ A intersects all the Sn’s. Here a slice of a convex set A is the subset given by

S(A, x∗, ε) = {x ∈ A : Re x∗(x) > sup Re x∗(A)− ε}
and conv(·) stands for the closed convex hull. This isomorphic property, which clearly implies
separability, is sufficient to get numerical index 1 from the alternative Daugavet property and it is
weaker than both RNP and being Asplund (for separable spaces). Actually, this property is satisfied
by both separable strongly regular spaces and separable Banach spaces which do not contain copies
of `1. This is the main motivation of the study of SCD spaces.

In section 2 we study SCD sets, giving examples and elementary properties. We show, for instance,
that the sequence of slices can be replaced by a sequence of relatively weakly open sets or by a
sequence of convex combinations of slices. In section 3 we study SCD spaces and show some stability
properties. For instance, it is a three space property, so it is stable for finite sums, and it is stable for
some infinite unconditional sums.

Since it is not easy to deal with Banach spaces with numerical index 1, there are in the literature
several geometrical sufficient conditions (see [18]), the weakest one being the so-called lushness. A
Banach space X is said to be lush [8] if for every x, y ∈ SX and every ε > 0, there is a slice S =
S(BX, x∗, ε) with x∗ ∈ SX∗ such that x ∈ S and dist (y, aconv(S)) < ε (where aconv(A) denotes
the absolutely convex hull of the set A). Lush spaces have numerical index 1 [8, Proposition 2.2],
but it has been very recently shown that the converse result is not true [17]. We refer to [7, 8] for
background.

It is actually shown in section 4 that an SCD Banach space with the alternative Daugavet property
is lush. This result allows us to show that `1 embeds in the dual of every real infinite-dimensional
Banach space with the alternative Daugavet property. This answers in the positive [18, Problem 18].

Section 5 is devoted to SCD-operators and hereditary-SCD-operators. A bounded linear operator
T : X −→ Y between two Banach spaces X and Y is said to be an SCD-operator if T(BX) is an
SCD set, and T is a hereditary-SCD-operator if every bounded convex subset of T(BX) is SCD. We
show that SCD-operators on a Banach space with the alternative Daugavet property satisfy (aDE).
Therefore, operators which do not fix copies of `1 on a Banach space with the alternative Daugavet
property satisfy (aDE). For a Banach space with the Daugavet property it is shown that every SCD-
operator is strong Daugavet (and so it satisfies (DE)), and every hereditary-SCD-operator is narrow.

Section 6 is devoted to the study of sets with a countable π-base of the weak topology. It is shown
in section 2 that these sets are SCD, but it is not known whether the converse result is true. It is
also shown in section 2 that separable sets without `1 sequences have countable π-bases of the weak
topology, and in this section we show that the same is true for CPCP sets and for bounded convex
subsets of both c0(`1) and `1(c0). We also show some characterizations of SCD sets which remind
of the existence of countable π-bases of the weak topology. One of these characterizations allows us
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to show that the set of extreme points of the weak∗-closure (in the bidual space) of an SCD set has a
countable π-base of the weak∗ topology, and so it is weak∗ separable. The set of extreme points of a
convex set B will be denoted by ext(B).

Finally, section 7 contains several open questions.

2. SLICELY COUNTABLY DETERMINED SETS

Definition 2.1. Let X be a Banach space and let A be a convex bounded subset of X. A countable
family {Vn : n ∈N} of subsets of A is called determining for A if A ⊆ conv(B) for every B ⊆ A
intersecting all the sets Vn. Equivalently, {Vn : n ∈ N} is determining for A if for every sequence
{vn}n∈N with vn ∈ Vn (n ∈N), one has A ⊆ conv

(
{vn : n ∈N}

)
.

We give three easy observations which will be useful later on. The first one is a consequence of
the Hahn-Banach theorem. The second and third ones are straightforward.

Proposition 2.2. Let X be a Banach space and let A be a convex bounded subset of X. A sequence
{Vn : n ∈N} of subsets of A is determining if and only if every slice of A contains one of the Vn.

Proof. The “if” part is evident: if B ⊆ A intersects all the Vn, then it intersects all the slices of A,
and then by the Hahn-Banach theorem conv(B) ⊇ A. Now the “only if” part. Assume that some
slice S of A does not contain any of the Vn. Then A \ S is a convex relatively closed subset of A
intersecting all the Vn. But A \ S 6= A, which means that {Vn : n ∈N} is not determining. �

Remark 2.3. Let X be a Banach space and let A be a convex bounded subset of X. Suppose that
there is a sequence {an : n ∈ N} of points in A such that A ⊆ conv

(
{an : n ∈ N}

)
and that for

every n ∈N, there is sequence {Vn,m : m ∈N} of subsets of A such that an ∈ conv(B) whenever
B ⊆ A intersects Vn,m for every m ∈N. Then, the family {Vn,m : n, m ∈N} is determining for A.

As an immediate consequence of the above result, we get the following.

Remark 2.4. Let X be a Banach space and let A be a separable convex bounded subset of X. Suppose
that for every a ∈ A there is a sequence {Va

m : m ∈ N} of subsets of A such that a ∈ conv(B)
whenever B ⊆ A intersects Va

m for every m ∈ N. Then, taking a dense sequence {an : n ∈ N} in
A, the family {Van

m : n, m ∈N} is determining for A.

We can now give the main definition of this section.

Definition 2.5. A convex bounded subset A of a Banach space X is said to be slicely countably
determined (SCD set in short) if there is a determining sequence of slices of A.

Two remarks are pertinent.

Remark 2.6. It is clear from the definition that every SCD set is separable.

Remark 2.7. A convex bounded subset A of a Banach space X is SCD if and only if the closure of
A is an SCD set.

Proof. Let us show first that A is SCD when A is. Consider a determining sequence of slices Sn =
S(A, x∗n, εn) (n ∈ N) for A, and let us prove that the slices S′n = S(A, x∗n, εn/2) (n ∈ N) form a
determining sequence for the closure of A. Consider an arbitrary slice S = S(A, x∗, ε) of A. Then,
S(A, x∗, ε/2) ∩ A = S(A, x∗, ε/2) is a slice of A, so there is n ∈ N such that S(A, x∗, ε/2) ⊇ Sn
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by Proposition 2.2. Therefore, S contains the closure of Sn, which in turn contains S′n, and again
Proposition 2.2 gives us that {S′n} is determining for A.

For the converse implication, we consider a determining sequence {S(A, x∗n, εn) : n ∈ N} for
A, and it is straightforward to show that {S(A, x∗n, εn) : n ∈N} is determining for A. �

Our fist goal is to present the basic examples related to Definition 2.5: Radon-Nikodým and As-
plund sets are SCD, whereas the unit ball of a Banach space with the Daugavet property is not.

We start with subsets having sufficiently many denting points. Let X be a Banach space and let A
be a closed convex bounded subset of X. A point of A is said to be a denting point if it belongs to
slices of A of arbitrarily small diameter. We write dent(A) to denote the set of denting points of A.
We say that A is dentable (in the sense of Ghoussoub-Godefroy-Maurey-Schachermayer [14, §III])
if A = conv

(
dent(A)

)
[14, Proposition III.3].

Proposition 2.8. Let X be a Banach space and let A be a closed convex bounded subset of X. If A
is separable and dentable, then A is SCD.

Proof. Since A separable, so is the set of its denting points, so we may find a countable collection
of denting points {an : n ∈ N} of A which is dense in dent(A). Now, for every n, m ∈ N, we
consider a slice Sn,m of A containing an and having diameter less than 1/m. Then, the sequence
{Sn,m : n, m ∈ N} is determining for A. Indeed, if B ⊆ A intersects all the Sn,m, then an ∈ B for
every n ∈N, so

A ⊆ conv
(
dent(A)

)
= conv

(
{an : n ∈N}

)
⊆ conv(B) = conv(B). �

We recall that there is a concept of Radon-Nikodým set (defined in terms of vector measures) which
is equivalent to dentability of all its closed convex bounded subsets (see [3, §5] or [6, §2]).

Example 2.9. Let X be a Banach space and let A be a closed convex bounded separable Radon-
Nikodým subset of X. Then, A is an SCD set.

The norm ‖ · ‖ on a Banach space X is said to be LUR at x0 ∈ SX, if lim ‖xn− x0‖ = 0 whenever
(xn)n∈N ⊆ BX is such that lim ‖xn + x0‖ = 2. If the norm is LUR at each point of SX, we say that
X (or its norm) is LUR (see [11, Chapter II] for background). It is clear that every point in the unit
sphere of a Banach space X with a LUR norm is denting so, in this case, BX is dentable.

Example 2.10. Let X be a separable Banach space with a LUR norm. Then, BX is SCD.

It is well known that every separable Banach space admits a LUR renorming (see [11, Theo-
rem II.2.6.]). Therefore, the following result follows immediately from Proposition 2.8.

Example 2.11. Every separable Banach space X admits an equivalent norm | · | such that B(X,|·|) is
an SCD set.

Our second family of elementary examples of SCD sets deals with the so-called Asplund property,
a concept related to differentiability of convex continuous functions, which can be equivalently re-
formulated in terms of separability and duality [6, §5]. A separable closed convex bounded subset
A of a Banach space X has the Asplund property if and only if the semi-normed space (X∗, ρA) is
separable, where

ρA(x∗) = sup{|x∗(a)| : a ∈ A} (x∗ ∈ X∗).

Of course, separable closed convex bounded subsets of Asplund spaces have the Asplund property.
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Example 2.12. Let X be a Banach space and let A be a closed convex bounded subset of X. If A is
separable and has the Asplund property, then, A is SCD.

Proof. We take a ρA-dense countable family {x∗n : n ∈N} in (X∗, ρA), and consider the slices

Sn,m = S(A, x∗n, 1/m) (n, m ∈N).

We are done by just proving that if {vn,m : n, m ∈N} satisfies that vn,m ∈ Sn,m for every n, m ∈N,
then

A ⊆ conv ({vn,m : n, m ∈N}) .
Indeed, suppose to the contrary that there are a ∈ A, x∗ ∈ X∗, and δ > 0 such that

Re x∗(a) > sup
n,m

Re x∗(vn,m) + δ.

Now, we may find N ∈N such that ρA(x∗N − x∗) < δ/2 and so

Re x∗N(a) + δ/2 > Re x∗(a) > sup
n,m

Re x∗(vn,m) + δ

> sup
m

Re x∗(vN,m) + δ > sup
m

Re x∗N(vN,m) + δ/2 = sup Re x∗N(A) + δ/2,

a contradiction. �

We now show that there are convex bounded subsets of separable Banach spaces which are not
SCD.

Example 2.13. Let X be a separable Banach space with the Daugavet property. Then, BX is not an
SCD set. In particular, BC[0,1] and BL1[0,1] are not SCD sets.

Proof. Fix x0 ∈ SX and an arbitrary sequence of slices (Sn)n∈N. We will get the result by show-
ing that there is a sequence (xn)n∈N such that xn ∈ Sn for every n ∈ N and such that x0 /∈
lin{xn : n ∈N}. To do so, we use [19, Lemma 2.8] which says, in particular, that for every finite-
dimensional subspace Y ⊆ X, every ε > 0, and every slice S of BX, there is an x ∈ S such that

‖y + tx‖ > (1− ε)(‖y‖+ | t|) ∀y ∈ Y.

Using this result, one can select inductively elements xn ∈ Sn, n ∈N, in such a way, that

‖y + txn‖ >
(

1− 1
4n

)
(‖y‖+ | t|)

(
y ∈ lin{xk : k < n}

)
.

Then, {xn : n = 0, 1, . . .} form a sequence equivalent to the unit vector basis of `1, so x0 is not in
the closure of lin{xn : n ∈N}, as desired. �

For the case of C[0, 1], it is possible to give a direct proof without using the Daugavet property,
which we include here for the sake of completeness.

Example 2.14. If K is an uncountable metrizable compact space, then the unit ball of C(K) is not an
SCD set.

Proof. Let M be a maximal family of mutually orthogonal continuous measures in C(K)∗. This
induces a decomposition of C(K)∗ as

(1) C(K)∗ =

⊕
µ∈M

L1(µ)


`1

⊕1 `1(K),
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where `1(K) is the family of all discrete measures (see [1, pp. 84–85], for instance). As a conse-
quence, we have

(2) C(K)∗∗ =

⊕
µ∈M

L∞(µ)


`∞

⊕∞ `∞(K).

Let us write the slices of BC[0,1] in the form

U[ν, α] =
{

x ∈ BC(K) : Re ν(x) > α
}

,

where ν ∈ C(K)∗, ‖ν‖ = 1, and −1 < α < 1. Suppose, for the sake of contradiction, that there
existed a countable family of slices B0 such that every other slice contains one from the family. Then,
for every µ ∈ M, there exist Vµ = U[νµ, αµ] ∈ B0 such that Vµ ⊆ U[µ, 0].

Now, for each ν ∈ C(K)∗ we write

SuppM(ν) =
{

µ ∈ M : µ 6⊥ ν
}

.

Notice that this is a countable set which corresponds to the support of ν in the left-hand side of the
decomposition (1). We claim that µ ∈ SuppM(νµ) for every µ ∈ M. This leads to a contradiction
with the facts that B0 and all the sets SuppM(νµ) are countable, while M is uncountable. Let us
prove the claim. Suppose that µ 6∈ SuppM(νµ) and let g be an element of the unit ball of C(K)∗∗

where νµ attains its norm. Consider f ∈ L∞(µ) the µ-coordinate of g when we view g as an element
of the `∞-sum according to (2). Let now g′ be the element of C(K)∗∗ obtained from g by changing
the µ-coordinate from f to − f . This is a new element of the unit ball of C(K)∗∗ which satisfies that
g′(µ) = −g(µ) while g′(νµ) = g(νµ) = 1. Hence, for either h = g or h = g′, we have an element
h in the unit ball of C(K)∗∗ such that h(νµ) = 1 and h(µ) < 0. Since the unit ball of C(K) is dense
in the unit ball of C(K)∗∗, it follows that Vµ \U[µ, 0] 6= ∅. �

Remark 2.15. A subset of an SCD set is not necessarily SCD. Indeed, let X = C[0, 1]. By Exam-
ple 2.11, there is an equivalent norm | · | on X such that A = B(X,|·|) is SCD. Now, it is possible to
find λ > 0 such that C = λ B(X,‖·‖∞) is contained in A. Finally, C is not SCD by Example 2.13.

Our next goal is to extend the above preliminary examples to more intriguing ones. We will use
several times the so-called Bourgain’s lemma [4, Lemma 5.3] (it was rediscovered in [29]), so we
state it for the sake of completeness. We refer the reader to [12, Lemma 7.3] for a reference easier to
get. We recall that a convex combination of slices of a convex bounded subset A of a Banach space

X is a subset of A of the form
m
∑

k=1
λi Si where λi > 0, ∑ λi = 1 and the Si’s are slices of A.

Lemma 2.16 (Bourgain’s lemma). Let X be a Hausdorff locally convex space and let K ⊆ X be
closed bounded and convex. Then, every nonempty relatively weakly open subset of K contains a
convex combination of slices.

Remark 2.17. The condition of closedness of the set in Bourgain’s lemma can be omitted. Indeed,
let A be a convex bounded set and let U be a relatively weakly open subset of A. We denote by V
a relatively weakly open subset of A such that V ∩ A = U. By Bourgain’s lemma, there are slices
S1, S2, . . . , Sn of A and coefficients λk > 0 of a convex combination, such that ∑n

1 λkSk ⊆ V. Then,
Sk ∩ A are slices of A and ∑n

1 λkSk ∩ A ⊆ V ∩ A = U.

The first consequence is an easy observation.

Proposition 2.18. In the definition of SCD sets, instead of slices one can take convex combinations
of slices. Hence, by Bourgain’s lemma above, one can also take relatively weakly open subsets.
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Proof. Let {Vn : n ∈ N} be a determining sequence formed by convex combination of slices of
A. Now, for every n ∈ N, there exists a collection of slices {Sn,m : m = 1, . . . kn} and positive

numbers {λn,m : m = 1, . . . kn} with
kn

∑
m=1

λn,m = 1, such that
kn

∑
m=1

λn,mSn,m ⊆ Vn. Then, the

collection of slices {Sn,m : n ∈ N, 1 6 m 6 kn} is determining for A. Indeed, let B be a subset
of A such that B ∩ Sn,m 6= ∅ for all n, m, and consider bn,m ∈ B ∩ Sn,m for every n, m. If we take

an =
kn

∑
m=1

λn,mbn,m, it is clear that an ∈ conv(B) ∩Vn. So we know that conv(B) ∩Vn 6= ∅ for all

n, which by the assumption gives us that conv(B) ⊇ A.

Finally, if A has a determining sequence of relatively weakly open subsets {Vn : n ∈ N},
Bourgain’s lemma allows us to find convex combinations of slices inside the Vn’s and the proof above
shows that A is SCD. �

The first consequence of this result is that Proposition 2.8 can be extended from dentable sets
to huskable sets (the same definition with relatively weakly open sets instead of slices). With not
much work, we are going to extend the result to the following more general setting. A closed convex
bounded subset A of a Banach space X has small combinations of slices [14, 26] if every slice of A
contains convex combinations of slices of A with arbitrarily small diameter.

Theorem 2.19. Let X be a Banach space and let A be a separable closed convex bounded subset of
X having small combinations of slices. Then, A is an SCD set.

Proof. By [14, Corollary III.7], for every x ∈ A and every ε > 0, there is a convex combination of
slices of A contained in B(x, ε). Now, we take a countable dense subset {xn : n ∈ N} of A and
for (n, m) ∈ N×N, we take Vn,m a convex combination of slices of A contained in B(xn, 1/m).
Then, if B ⊆ A intersects all the Vn,m, it intersects also all the balls B(xn, 1/m). Therefore, the set
{xn : n ∈ N} is contained in B and so, A = conv(B). Finally, Proposition 2.18 gives us that A is
SCD. �

RNP sets have small combinations of slices, so the above result extends Example 2.9. Even more,
strongly regular sets (in particular, huskable sets, CPCP sets) have small combinations of slices [14,
Proposition III.5]. We recall that a closed convex bounded subset A of a Banach space is said to be
strongly regular if every non-empty convex subset L of A contains a convex combination of slices of
L of arbitrarily small diameter. A has the convex point of continuity property (CPCP in short) if every
convex closed subset B of A contains a weak-to-norm point of continuity of the identity mapping. In
this case, for every convex subset B of A and for every ε > 0, there is a relatively weakly open subset
C ⊆ B with diam(C) < ε [5].

Corollary 2.20. Let X be a Banach space and let A be a closed convex bounded subset of X. If A is
separable and strongly regular, then A is SCD. In particular, separable CPCP sets are SCD.

Our next aim is to extend Example 2.12 to sets which do not contain `1 sequences. We need the
following topological definition. By a π-base of a topological space (T, τ) we understand a family
{Oi : i ∈ I} of nonempty open sets such that every nonempty open subset O of T contains one of
the elements of the family. The following result is another consequence of Bourgain’s lemma.

Proposition 2.21. Let X be a Banach space and let A be a convex bounded subset of X. If (A, σ(X, X∗))
has a countable π-base, then A is an SCD set.
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Proof. Let {Vn : n ∈ N} be a countable π-base of (A, σ(X, X∗)). Since slices of A have non-
empty weak interior, any of them contains some of the Vn. But then, Proposition 2.2 shows that the
sequence {Vn} is determining for A and Proposition 2.18 gives that A is SCD. �

The main consequence of the above proposition is the following. We recall that an `1-sequence of
a Banach space is just a bounded sequence which is equivalent to the natural basis of `1

Theorem 2.22. Let X be a Banach space and let A be a separable convex bounded subset of X which
contains no `1-sequences. Then, (A, σ(X, X∗)) has a countable π-base. In particular, A is an SCD
set.

Proof. By [12, Theorem 3.11], (A, σ(X, X∗)) is a relatively compact subset of the space of first Baire
class functions on (BX∗ , σ(X∗, X)), and we can apply [30, Lemma 4] by Todorčević, to deduce that
(A, σ(X, X∗)) has a σ-disjoint π-base (i.e. a π-base {Vi : i ∈ I} such that I =

⋃
n∈N In and each

subfamily {Vi : i ∈ In} is a pairwise disjoint family). Now, it is clear that a σ-disjoint family of
open subsets in a separable space has to be countable. Finally, A is SCD by Proposition 2.21. �

This result obviously extends Example 2.12 since Asplund sets cannot contain `1-sequences.

3. SLICELY COUNTABLY DETERMINED SPACES

Definition 3.1. A separable Banach space X is said to be slicely countably determined (SCD space
in short) if every convex bounded subset of X is an SCD set.

By just using the results of the previous section on SCD sets, we get the main examples of SCD
spaces.

Examples 3.2.

(a) If X is a separable strongly regular space, then X is SCD. In particular, RNP spaces (more
generally, CPCP spaces) are SCD.

(b) Separable spaces which do not contain copies of `1 are SCD. In particular, if X∗ is separable,
then X is SCD.

(c) Both families include reflexive separable spaces, which are then SCD spaces.

With respect to spaces which are not SCD, we only know of the Daugavet spaces.

Examples 3.3.

(a) If X is a separable Banach space which admits an equivalent renorming with the Daugavet
property, then X is not SCD.

(b) In particular, there is a Banach space with the Schur property which is not an SCD space.
Indeed, in [21] the existence of a separable space having the Schur property and the Daugavet
property at the same time was proved.

Let us state the following immediate observations.

Remarks 3.4.

(a) Every subspace of an SCD space is SCD.
(b) For quotients the situation is different. For instance, C[0, 1] is a non-SCD quotient of the

SCD space `1.
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Our next aim is to show some stability results for the SCD spaces. The first one is a “three space
property”. We need the following technical lemma which shows that in Definition 3.1 it suffices to
consider sets with nonempty interior.

Lemma 3.5. Let X be a separable Banach space. If every open convex bounded subset of X is SCD,
then X is SCD.

Proof. Our first observation is that our hypothesis forces that every bounded convex subset A of X
with nonempty interior is SCD. Indeed, notice that since A is convex, the closure of the interior of A
coincides with the closure of A, and we may apply Remark 2.7 two times to get that A is SCD.

Now, let A ⊆ X be bounded and convex. Since X is separable, we may find a sequence {xn :
n ∈N} ⊆ A which is dense in A. Let {εn}n∈N be a sequence of positive reals which tends to zero.
For every n, m ∈ N fixed, we denote An,m = conv

(
Bεm(xn) ∪ A

)
which clearly contains A. Since

the interior of An,m is not empty, we may find a determining sequence {Sk
n,m : k ∈ N} of slices of

An,m. Now, from the structure of An,m, it follows that either Sk
n,m ∩ Bεm(xn) 6= ∅, or Sk

n,m ∩ A 6= ∅.
Let Kn,m be the set of all indices k ∈N for which Sk

n,m intersects A, and denote S̃k
n,m = Sk

n,m ∩ A for
all k ∈ Kn,m, which are clearly slices of A. Also note that for every integer k /∈ Kn,m, the slice Sk

n,m
intersects Bεm(xn). Finally, the family{

S̃k
n,m : n, m ∈N, k ∈ Kn,m

}
is determining for A. Indeed, let B be a subset of A intersecting all the S̃k

n,m and fix some ε > 0.
Since the sequence {xn : n ∈ N} is dense in A, there is an integer n0 ∈ N and b ∈ B such that
‖b− xn0‖ 6 ε

2 . Also, there is m0 ∈N such that εm0 6
ε
2 , as εm → 0 when m→ ∞. We know that B

intersects all Sk
n0,m0

with k ∈ Kn,m. On the other hand, we also know that the slice Sk
n0,m0

intersects the
ball Bεm0

(xn0) for every k /∈ Kn,m. Hence we can deduce that the set Bn0,m0 = B∪ Bεm0
(xn0) ⊆ An,m

intersects all the Sk
n0,m0

which implies that

conv
(

Bn0,m0

)
⊇ An0,m0 ⊇ A.

Finally, notice that Bεm0
(xn0) ⊆ B ε

2
(xn0) ⊆ Bε(b), which implies that Bn0,m0 ⊆ B + εBX. Therefore,

we can state that conv
(

B + εBX
)
⊇ A, and the arbitrariness of ε gives us that conv(B) ⊇ A. �

We may now state the promised stability result.

Theorem 3.6. Let X be a Banach space with a subspace Z such that Z and Y = X/Z are SCD
spaces. Then, X is also an SCD space.

Proof. We denote q : X −→ Y = X/Z the quotient map. Let us show that every open convex
bounded subset A ⊆ X is SCD, and then Lemma 3.5 will imply that X is SCD. To do so, as X is
separable since Y and Z are, and separability is a three-space property (see [9, Theorem 2.4.h]), we
only need to find, for every point a ∈ A, a sequence of weakly open subsets such that whenever
B ⊆ A intersects every member of the sequence, then a ∈ conv(B) (see Remark 2.4). We fix some
a ∈ A and denote Aa = {x ∈ A : q(x) = q(a)}. Then, Aa is affine isomorphic to an open
convex bounded subset of Z which is an SCD space (indeed, Aa = (Z + a) ∩ A). It follows that
there is a determining sequence {Sn} of slices of Aa. Let {S̃n} be their extensions to A. For every
n ∈ N, consider q(S̃n) ⊆ Y, which is open bounded and convex (its openness is a consequence
of the Open Mapping Theorem). Now, as long as Y is SCD, we may find a determining sequence
{Sn,m : m ∈ N} of slices of q(S̃n). Let Vn,m = S̃n ∩ q−1(Sn,m) for every n, m ∈ N. It is easy to
see that Vn,m are relatively weakly open. We will now prove that they are the sets we need.
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Let B ⊆ A be convex and such that B ∩Vn,m 6= ∅ for all n, m ∈ N. Fix some ε > 0, and denote
Bε = {x ∈ A : dist(x, B) < ε}. Evidently, Bε is an open convex set intersecting all the Vn,m. Fixed
n ∈N, we have that

Bε ∩Vn,m = Bε ∩ S̃n ∩ q−1(Sn,m) 6= ∅,

so
q
(

Bε ∩ S̃n
)
∩ Sn,m 6= ∅

and the choice of Sn,m allows us to get that

conv
(
q(Bε ∩ S̃n)

)
= q

(
Bε ∩ S̃n

)
⊇ q(S̃n).

Notice that Bε ∩ S̃n is open and convex, hence, so is q(Bε ∩ S̃n). This implies that the interior of the

set q(Bε ∩ S̃n) coincides with q(Bε ∩ S̃n). Now, using that q(S̃n) is open, we get that

q
(

Bε ∩ S̃n
)
⊇ q(S̃n)

and, in particular, q(Bε ∩ S̃n) 3 q(a). This means that there exists xn ∈ Bε ∩ S̃n, such that q(xn) =
q(a), i.e. that xn ∈ Bε ∩ Sn. Since Bε ⊆ A and {Sn} is a determining sequence for Aa, we get that
Bε ⊇ Aa. Finally, the arbitrariness of ε implies that B ⊇ Aa 3 a. �

Let us state two immediate consequences of this result.

Corollary 3.7. Let X be a separable Banach space which is not SCD.

(a) X contains copies of `1, and the quotient of X over any copy of `1 also contains `1.
(b) Consequently, for every `1 subspace Y1 of X, there is another `1 subspace Y2 such that Y1

and Y2 are mutually complemented in the closed linear span of Y1 + Y2 (i.e. Y1 + Y2 =
Y1 + Y2 = Y1 ⊕Y2). In particular, Y1 ∩Y2 = 0.

Proof. (a) is immediate from the above theorem and Theorem 2.22. (b) follows from (a) and the
“lifting” property of `1 [22, Proposition 2.f.7]. �

One may wonder whether item (b) of the above corollary can actually be a characterization of those
separable Banach spaces which are not SCD. This is not the case as the following remark shows.

Remark 3.8. The space X = `2(`1) (which is an SCD space, even more it has the RNP) has the
following property: it contains isomorphic copies of `1 and for every `1 subspace Y ⊆ X, there is
another `1 subspace Z ⊆ X, such that Z and Y are mutually complemented in the closed linear span
of Y + Z.

Proof. Let {Xn}∞
n=1 be a sequence of isometric copies of `1. Then, X is isometric to the `2 direct

sum of the spaces Xn, [
⊕

n∈N Xn]`2
. Fix an `1-subspace Y ⊆ X and let us prove that some of the Xn

can be taken as Z. Assume to the contrary that for every n ∈N

inf{‖y− x‖ : y ∈ SY, x ∈ Xn} = 0.

Then, for every n ∈ N there are yn ∈ SY and xn ∈ Xn with ‖yn − xn‖ < 10−n. Since (xn) forms
a bounded sequence of disjoint elements, (xn) −→ 0 in the weak topology. But then (yn) −→ 0 in
the weak topology as well, which is impossible since (yn) ⊆ SY and Y has the Schur property. �

Corollary 3.9. Let X1, . . . , Xn be SCD Banach spaces. Then, X1 ⊕ · · · ⊕ Xn is SCD.
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Our next goal is to deal with infinite sums. To do so, we need to recall the concept of uncondi-
tional sums. Given a sequence {(Xn, ‖ · ‖n) : n ∈N} of Banach spaces, and a Banach space E of
sequences whose norm satisfies

‖(ti)‖E = ‖(|ti|)‖E
(
(ti) ∈ E

)
,

we denote by [
⊕

n∈N Xn]E the Banach space of all sequences (xn) ∈ ∏∞
n=1 Xn, so that

‖(xn)‖ = ‖(‖xn‖n)‖E < ∞.

Theorem 3.10. Let {Xn : n ∈ N} be a sequence of SCD spaces and let E be a Banach space of
sequences whose canonical basis is a 1-unconditional and shrinking basis (i.e. E does not contain
copies of `1). Then, X = [

⊕
n∈N Xn]E is also an SCD space.

Proof. For every m ∈N, we denote

Ym =
[
X1 ⊕ X2 ⊕ . . .⊕ Xm ⊕ 0⊕ 0⊕ · · ·

]
E ⊆ X

and let Pm : X −→ Ym be the natural projection. Let A be a convex bounded subset of X. Now, for
every m ∈ N, Pm(A) is a convex bounded subset of Ym, which is an SCD space by Corollary 3.9.
Hence, there is a determining sequence {Sm,k : k ∈ N} of slices of Pm(A). Consider S̃m,k =
P−1

m
(
Sm,k

)
∩ A. We will prove that {S̃m,k : k, m ∈ N} is a determining countable collection of

slices of A.

Let B be a subset of A intersecting all the S̃m,k. We fix an arbitrary point a ∈ A and we will
prove that a ∈ conv(B). Since B intersects all the S̃m,k, Pm(B) intersects Sm,k for every integer k.
It follows that conv

(
Pm(B)

)
⊇ Pm(A). In particular, conv

(
Pm(B)

)
3 Pm(a). That means that

there exists bm ∈ convB such that ‖Pm(bm − a)‖ < 1
m . Then, it is easy to see that bm tends to a

coordinate-wise. But since the canonical basis of E is at the same time a shrinking basis, we get that
bm tends to a in the weak topology. So we can apply Mazur’s theorem and get a sequence {b′m} with
b′m ∈ conv

(
{bk : k > m}

)
⊆ conv(B) which tends to a in the norm topology. But this exactly

means that a ∈ conv(B), which was to be proved. �

The next result deals with unconditional sums when the natural basis of E is boundedly complete.
Its proof, which is more bulky than the above one, needs a preliminary result which can be of inde-
pendent interest.

Let X be a Banach space, A be a convex set in X and ε be a positive real. A point a ∈ A is called
an ε-accessible point of A if there is a sequence {Vn : n ∈N} of relatively weakly-open subsets of
A, such that for every B ⊆ A, if B intersects all the Vn, then dist(a, convB) < ε.

Lemma 3.11. Let X be a Banach space and let A be a separable convex bounded subset of X.
Suppose that for every convex C ⊆ A and every ε > 0, there is an ε-accessible point in C. Then, A
is an SCD set.

Proof. Notice that, since A is separable, to prove this lemma it is enough to show that for every ε > 0,
the set Aε of ε-accessible points of A is dense in A. Since Aε is convex, it is enough to show that Aε is
weakly dense in A. Fix some convex relatively weakly-open subset V ⊆ A. By the assumption, there
is an ε-accessible point of V. But this point is also an ε-accessible point of A since V is relatively
weakly-open. �

We are now able to state and prove the second result for unconditional sums.
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Theorem 3.12. Let {Xn : n ∈ N} be a sequence of SCD spaces and let E be a space of sequences
whose natural basis is a 1-unconditional and boundedly complete basis (i.e. E does not contain
isomorphic copies of c0). Then, X = [

⊕
n∈N Xn]E is an SCD space.

Proof. Let a convex bounded subset A of X and ε > 0 be fixed. Consider the subset

AE =
{
(an)n∈N ∈ E : ∃x = (xn)n∈N ∈ A with ‖xn‖ = |an| for all n ∈N}.

Since AE is a bounded subset of a space with the RNP, there are a functional b = (bn)n∈N ∈ E∗ and
a positive number α such that the slice

S(AE) =
{
(an)n∈N ∈ AE : ∑

n∈N

bnan > α
}

has diameter smaller than ε/4. Taking into account that AE is symmetric, we may assume that bn > 0
(the slice of AE defined by |b| = (|bn|)n∈N is isometric to S(AE)). Fix an x ∈ A with (‖xn‖)n∈N ∈
S(AE) and pick x∗n ∈ SX∗n such that x∗n(xn) = ‖xn‖. Write fn = bnx∗n, f = ( fn)n∈N ∈ X∗. We
claim that for the slice

S =

{
(xn)n∈N ∈ A : ∑

n∈N

fn(xn) > α

}
there is an m ∈N with the following property

(3)
∥∥(0, . . . , 0, ym+1, ym+2, . . .)

∥∥ <
ε

2
for all (yn)n∈N ∈ S.

To show this, it is sufficient to select m in such a way that ‖(0, . . . , 0, xm+1, xm+2, . . .)‖ < ε/4 and
to use that diam S(AE) < ε/4. In fact, with such a choice of m we get

‖(0, . . . , 0, ym+1, ym+2, . . .)‖ = ‖(0, . . . , 0, ‖ym+1‖, ‖ym+2‖, . . .)‖
6
∥∥(0, . . . , 0, ‖xm+1‖, ‖xm+2‖, . . .)

∥∥+
+
∥∥(0, . . . , 0,

∣∣‖xm+1‖ − ‖ym+1‖
∣∣, ∣∣‖xm+2‖ − ‖ym+2‖

∣∣, . . .)
∥∥

6
ε

4
+
∥∥(∣∣‖x1‖ − ‖y1‖

∣∣, ∣∣‖x2‖ − ‖y2‖
∣∣, . . .)

∥∥ 6 ε

2
.

Let us prove that x is an ε-accessible point of A. Consider

Ym =
[
X1 ⊕ X2 ⊕ . . .⊕ Xm ⊕ 0⊕ 0⊕ · · ·

]
E ⊆ X

and Pm : X −→ Ym the natural projection. By Corollary 3.9, Ym is an SCD space and, since
Pm(S) is a convex bounded set in Ym, there exists a determining sequence {Sn : n ∈ N} of slices
of Pm(S). Notice that Y∗m isometrically embeds into X∗. For every integer n ∈ N, we consider
S̃n = P−1

m Sn ∩ S, which is a slice of S and, obviously, relatively weakly-open in A. Let B be a
subset of A which intersects all the S̃n. We’ll now prove that then dist

(
x, conv(B)

)
< ε. Since B

intersects all the S̃n, we can find a sequence {yn} ⊆ B, such that yn ∈ S̃n for every n ∈ N. This
implies that Pm(yn) ∈ Sn for all n ∈ N and so conv

(
{Pm(yn) : n ∈ N}

)
⊇ Pm(S). In particular,

Pm(x) ∈ conv
(
{Pm(yn) : n ∈ N}

)
. But (3) gives us that the m-th tails of x and of all the yn are

small, that is,

‖x− Pm(x)‖ <
ε

2
and ‖yn − Pm(yn)‖ < ε/2

(
for all n ∈N

)
.

This gives us that dist
(
a, conv(B)

)
< ε and the proof is complete. �

An immediate consequence is the following.

Example 3.13. The spaces c0(`1) and `1(c0) are SCD.



SLICELY COUNTABLY DETERMINED BANACH SPACES 13

This result, together with those results of section 2, gives us the following examples.

Example 3.14. The spaces c0 ⊗ε c0, c0 ⊗π c0, c0 ⊗ε `1, c0 ⊗π `1, `1 ⊗ε `1, and `1 ⊗π `1 are SCD.
Indeed, it is well known that c0⊗ε c0 ≡ c0, c0⊗ε `1 ≡ c0(`1), c0⊗π `1 ≡ `1(c0), and `1⊗π `1 ≡ `1
(see [27, Examples 2.19 and 3.3], for instance), so these cases are clear from the above example. For
the remaining cases, just observe that

[
c0 ⊗π c0

]∗ ≡ `1 ⊗ε `1 (since [c0 ⊗π c0]∗ ≡ L(c0, `1) [27,
p. 24], K(c0, `1) ≡ `1 ⊗ε `1 [27, Corollary 4.13] and K(c0, `1) = L(c0, `1) since `1 has the Schur
property and c∗0 is separable), so c0 ⊗π c0 is Asplund and `1 ⊗ε `1 has the RNP.

Since for X and Y being c0 or `1 one has K(X, Y) ≡ X∗ ⊗ε Y [27, Corollary 4.13], the following
examples follow.

Example 3.15. The spaces K(c0) and K(c0, `1) are SCD. The spaces K(`1) and K(`1, c0) contain `∞
and so they are not separable, all the more not SCD.

Another example in this line is the following.

Example 3.16. The spaces `2 ⊗π `2 ≡ L1(`2), and `2 ⊗ε `2 ≡ K(`2) are SCD. Indeed, the first
space has the RNP and the second is an Asplund space.

4. AN APPLICATION TO SPACES WITH NUMERICAL INDEX 1

Our aim in this section is to show that SCD spaces with the alternative Daugavet property are lush.
To get such a result, we need to establish a characterization of the alternative Daugavet property which
can be of independent interest. We first recall a previous characterization in terms of slices.

Lemma 4.1 ([25, Proposition 2.1]). A Banach space X has the alternative Daugavet property if
and only if for every x ∈ SX, every ε > 0 and every slice S of BX, there is a y ∈ S such that
maxθ∈T ‖x + θy‖ > 2− ε.

We need some notation. Denote K(X∗) the weak∗-closure in X∗ of ext(BX∗), and for every slice
S of BX and every ε > 0, we write

D(S, ε) =
{

y∗ ∈ K(X∗) : S ∩TS(BX, y∗, ε) 6= ∅
}

=
{

y∗ ∈ K(X∗) : S ∩ aconv
(
S(BX, y∗, ε)

)
6= ∅

}
,

which is relatively weak∗-open in K(X∗). Here is the promised characterization of the alternative
Daugavet property.

Proposition 4.2. For a Banach space X, the following assertions are equivalent:

(i) X has the alternative Daugavet property.
(ii) For every x ∈ SX, every ε > 0 and every slice S ⊆ BX, there is y∗ ∈ K(X∗) such that

x ∈ S(BX, y∗, ε) and S ∩TS(BX, y∗, ε) 6= ∅.
(iii) For every x ∈ SX, every ε > 0 and every slice S ⊆ BX, there is y∗ ∈ D(S, ε) such that

x ∈ S(BX, y∗, ε).
(iv) For every ε > 0 and every slice S ⊆ BX, the set D(S, ε) is weak∗-dense in K(X∗).
(v) For every ε > 0 and every sequence {Sn : n ∈N} of slices of BX, the set

⋂
n∈N D(Sn, ε) is

weak∗-dense in K(X∗).

Proof. The implications (i)⇐⇒ (ii)⇐⇒ (iii) are easy consequences of Lemma 4.1.

(iii) =⇒ (iv). To show weak∗-density of D(S, ε) in K(X∗) it is sufficient to demonstrate that
the weak∗ closure of D(S, ε) contains every extreme point x∗ of SX∗ . Since weak∗-slices form a
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base of neighborhoods of x∗ in BX∗ , it is sufficient to prove that every weak∗-slice S(BX∗ , x, δ) with
δ ∈ (0, ε) intersects D(S, ε), i.e. that there is a point y∗ ∈ D(S, ε), such that y∗ ∈ S(BX∗ , x, δ). But
we know that there is a point y∗ ∈ D(S, δ) ⊆ D(S, ε), such that x ∈ S(BX, y∗, δ), which means that
y∗ ∈ S(BX∗ , x, δ).

(iv) =⇒ (iii). If D(S, ε) is weak∗-dense in K(X∗), then for every x ∈ SX there is a y∗ ∈ D(S, ε)
such that x ∈ S(BX, y∗, ε).

The remaining equivalence (iv)⇐⇒ (v) follows from the fact that D(S, ε) is not only weak∗-dense
but also weak∗-open, and K(X∗) is weak∗-compact, so Baire’s theorem is applicable. �

It is possible to give a result analogous to the above one for the Daugavet property. We need to
change a little bit the notation. For every slice S of BX and every ε > 0, we write

D̃(S, ε) =
{

y∗ ∈ K(X∗) : S ∩ S(BX, y∗, ε) 6= ∅
}

=
{

y∗ ∈ K(X∗) : S ∩ conv
(
S(BX, y∗, ε)

)
6= ∅

}
which is relatively weak∗-open in K(X∗). The proof of the next result is almost the same as the above
one, replacing Lemma 4.1 by [19, Lemma 2.2]. We include it here for future use.

Proposition 4.3. For a Banach space X, the following assertions are equivalent:

(i) X has the Daugavet property.
(ii) For every x ∈ SX, every ε > 0 and every slice S ⊆ BX, there is y∗ ∈ K(X∗) such that

x ∈ S(BX, y∗, ε) and S ∩ S(BX, y∗, ε) 6= ∅.
(iii) For every x ∈ SX, every ε > 0 and every slice S ⊆ BX, there is y∗ ∈ D̃(S, ε) such that

x ∈ S(BX, y∗, ε).
(iv) For every ε > 0 and every slice S ⊆ BX, the set D̃(S, ε) is weak∗-dense in K(X∗).
(v) For every ε > 0 and every sequence {Sn : n ∈N} of slices of BX, the set

⋂
n∈N D̃(Sn, ε) is

weak∗-dense in K(X∗).

We are now ready to show the main result of this section.

Theorem 4.4. Every Banach space X with the alternative Daugavet property whose unit ball is an
SCD set is lush. In particular, every SCD space with the alternative Daugavet property is lush.

Proof. Let {Sn : n ∈ N} be the sequence of slices of BX from the definition of an SCD set. Then,
by Proposition 4.2.v, for every ε > 0 the set

⋂
n∈N D(Sn, ε) is weak∗-dense in K(X∗). So, for every

x ∈ SX there is y∗ ∈ ⋂
n∈N D(Sn, ε) such that x ∈ S(BX, y∗, ε). According to the definition of

D(Sn, ε), this means that Sn ∩ aconv
(
S(BX, y∗, ε)

)
6= ∅ for all n ∈ N. Then, we obtain that

aconv
(
S(BX, y∗, ε)

)
= BX, which implies lushness of X [7, Theorem 2.1]. �

Remark 4.5. Let us observe that in the above proof a (formally) weaker version of an SCD set is used.
A convex bounded subset A of a Banach space X is said to be almost slicely countably determined
(almost-SCD in short) if there is a sequence {Vn : n ∈N} of subsets of A such that for every B ⊆ A
intersecting all the Vn, one has aconv(B) ⊇ A. The proof of the above theorem actually shows that
every Banach space X with the alternative Daugavet property whose unit ball is an almost-SCD is
lush.

Theorem 4.4 has already been known for Asplund spaces and for spaces with the RNP [23, Re-
mark 6], regardless of the separability (necessary for the SCD and so for our result). Our next goal is
to particularize Theorem 4.4 to more cases where we are able to remove the separability. The proof of
the following results is a consequence of the facts that lushness and the alternative Daugavet property
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are separably determined (see [7, Theorem 4.2] for the first case and the remark below for the second
one).

Remark 4.6. It is shown in [20, Theorem 4.5] that the Daugavet property is separably determined.
With a little effort, the proof can be adapted to the alternative Daugavet property: A Banach space X
has the alternative Daugavet property if and only if for every separable subspace Y ⊆ X there is a
separable subspace Z ⊆ X which contains Y and has the alternative Daugavet property.

Corollary 4.7. Let X be a Banach space with the alternative Daugavet property. If X is strongly
regular (in particular, CPCP), then X is lush.

Corollary 4.8. Let X be a Banach space with the alternative Daugavet property. If X does not
contain `1, then X is lush.

This latter result solves in the positive Problem 32 of [18] and it can be used to prove a necessary
isomorphic condition for a real Banach space to have the alternative Daugavet property.

Corollary 4.9. let X be an infinite-dimensional real Banach space with the alternative Daugavet
property. Then, X∗ contains `1.

Proof. If X contains `1, then X∗ contains a quotient isomorphic to `∞, so X∗ contains `1 as a quotient
and the “lifting” property of `1 [22, Proposition 2.f.7] gives us X∗ ⊇ `1. Otherwise, Corollary 4.8
gives us that X is lush. But the dual of an infinite-dimensional real lush space contains `1 [16,
Corollary 4.8]. �

In particular, since Banach spaces with numerical index 1 have the alternative Daugavet property,
we get the following corollary which answers in the positive Problem 18 of [18].

Corollary 4.10. Let X be an infinite-dimensional real Banach space with n(X) = 1. Then, X∗ ⊇ `1.

Let us comment that very recently it has been shown that there are Banach spaces with numerical
index 1 which are not lush [17], so the above result is not covered by [16, Corollary 4.9].

5. SCD OPERATORS

Definition 5.1. Let X and Y be Banach spaces. A bounded linear operator T : X −→ Y is said to
be an SCD-operator if T(BX) is an SCD set.

By just recalling the examples of SCD sets and SCD spaces given in sections 2 and 3, we get the
main examples of SCD-operators.

Examples 5.2. Let X and Y be Banach spaces and let T : X −→ Y be a bounded linear operator
such that T(X) is separable.

(a) If T(BX) has small combinations of slices, then T is an SCD-operator.
(b) In particular, if T(BX) is a Radon-Nikodým set (i.e. if T is a strong Radon-Nikodým opera-

tor), then T is an SCD-operator.
(c) If T(BX) does not contain `1-sequences, then T is an SCD-operator.
(d) In particular, if T does not fix copies of `1, then T is an SCD-operator. Indeed, if T(BX)

contains an `1-sequence (Ten)n∈N with en ∈ BX (n ∈N), then as in the proof of the “lifting”
property of `1 [22, Proposition 2.f.7], Y = lin{en : n ∈ N} is a copy of `1 and T|Y is an
isomorphic embedding, a contradiction (see [31, Proposition 1]).
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The aim of this section is to show that SCD-operators behave in a very good way with respect to
the Daugavet and the alternative Daugavet equations. We start with the best result we can get for the
alternative Daugavet property.

Theorem 5.3. Let X be a Banach space with the alternative Daugavet property and let T ∈ L(X)
be an SCD-operator. Then, max

θ∈T
‖Id + θ T‖ = 1 + ‖T‖.

Proof. Without loss of generality, we may assume that ‖T‖ = 1. We take a determining sequence
{Sn : n ∈ N} of slices of T(BX) and we notice that the sets T−1(Sn) ∩ BX are slices of BX.
Given ε > 0 fixed, we take a ∈ SX such that ‖T(a)‖ > 1 − ε. Now, Proposition 4.2.v gives
us that

⋂
n∈N D

(
T−1(Sn), ε

)
is weak∗-dense in K(X∗) (which is norming for X), so we may find

y∗ ∈ ⋂n∈N D
(
T−1(Sn), ε

)
such that

(4) Re y∗(T(a)) > ‖T(a)‖ − ε > 1− 2ε.

By the definition of D
(
T−1(Sn), ε

)
, we get that

aconv
(
S(BX, y∗, ε)

)
∩ T−1(Sn) 6= ∅ (n ∈N).

Thus, T
(
aconv

(
S(BX, y∗, ε)

))
∩ Sn 6= ∅ for all n ∈ N, and using the fact that {Sn : n ∈ N} is

determining, we deduce that

T
(
aconv

(
S(BX, y∗, ε)

))
= aconv

(
T
(
aconv

(
S(BX, y∗, ε)

))
⊇ T(BX).

In particular, T(a) ∈ T
(
aconv

(
S(BX, y∗, ε)

))
, which means that there is

z ∈ T
(
aconv

(
S(BX, y∗, ε)

))
with ‖T(a)− z‖ < ε,

and it follows from (4) that

(5) Re y∗(z) > 1− 3ε.

Notice that z can be represented in the following way

z = T

(
m

∑
k=1

λkθkxk

)
=

m

∑
k=1

λk θkT(xk)

where xk ∈ S(BX, y∗, ε), θk ∈ T, λk > 0 for k = 1, . . . , m and ∑m
k=1 λk = 1. Then, it follows from

(5) that there exists k0 ∈ {1, . . . , m} such that

Re y∗
(
θk0 T(xk0)

)
> 1− 3ε.

Now, since xk0 ∈ S(BX, y∗, ε), we get that

Re y∗
(
xk0 + θk0 T(xk0)

)
> 2− 4ε.

It follows that

‖Id + θk0 T‖ > ‖xk0 + θk0 T(xk0)‖ > Re y∗
(
xk0 + θk0 T(xk0)

)
> 2− 4ε.

Finally, the arbitrariness of ε gives the result. �

Remark 5.4. Analogously to the situation described in Remark 4.5, in the above proof we have used
a formally weaker property than being an SCD-operator. Therefore, the result proved is the following.
Let X be a Banach space with the alternative Daugavet property and let T ∈ L(X) such that T(BX)
is an almost-SCD set. Then, max

θ∈T
‖Id + θ T‖ = 1 + ‖T‖.

We can easily obtain a version of Theorem 5.3 for operators with non separable range which is
useful for applications.
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Corollary 5.5. Let X be a Banach space with the alternative Daugavet property and let T ∈ L(X)
be such that T(BY) is an SCD set for every separable subspace Y of X. Then, max

θ∈T
‖Id + θ T‖ =

1 + ‖T‖.

Proof. We first take a separable subspace Y1 of X such that ‖T|Y1‖ = ‖T‖. Then, Remark 4.6
provides us with a separable subspace Y2 with the alternative Daugavet property which contains⋃∞

k=0 Tk(Y1). We apply again Remark 4.6 to get a separable subspace Y3 with the alternative Dau-
gavet property which contains

⋃∞
k=0 Tk(Y2), and so on. Then, the space Y =

⋃
n∈N Yn is separable,

T-invariant, ‖T|Y‖ = ‖T‖, and it has the alternative Daugavet property (just use Lemma 4.1). Since
T(BY) is SCD, Theorem 5.3 gives us that

max
θ∈T
‖Id + θ T‖ > max

θ∈T
‖Id|Y + θ T|Y‖ = 1 + ‖T|Y‖ = 1 + ‖T‖. �

The following particular cases are especially interesting. The first one solves [18, Problem 33].

Corollary 5.6. Let X be a Banach space with the alternative Daugavet property and let T ∈ L(X)
be an operator which does not fix copies of `1. Then, max

θ∈T
‖Id + θ T‖ = 1 + ‖T‖.

Corollary 5.7. Let X be a Banach space with the alternative Daugavet property and let T ∈ L(X)
be an operator such that T(BX) is strongly regular. Then, max

θ∈T
‖Id + θ T‖ = 1 + ‖T‖.

It is possible to show an analogous result to Theorem 5.3 for spaces with the Daugavet property
and the Daugavet equation. Actually, it is possible to get a better result. We need some notation and
preliminary results. A bounded linear operator T : X −→ Y between two Banach spaces X and Y
is said to be a strong Daugavet operator if for every x, y ∈ SX and every ε > 0, there is an element
z ∈ SX such that

‖x + z‖ > 2− ε and ‖Ty− Tz‖ < ε

(see [20, §3] for the definition and the following properties). If T ∈ L(X) is a strong Daugavet
operator and X has the Daugavet property, then T satisfies Daugavet equation. On the other hand,
finite-rank operators from a space with the Daugavet property are strong Daugavet operators. Our
next goal is to show that actually, SCD-operators are strong Daugavet operators.

Proposition 5.8. Let X be a Banach space with Daugavet property, Y a Banach space, and let
T : X −→ Y be an SCD-operator. Then, T is a strong Daugavet operator.

Proof. Since T is an SCD-operator, we may find a determining sequence {Sn : n ∈ N} of slices of
T(BX), and we notice that the sets T−1(Sn) ∩ BX are slices of BX. We fix ε > 0 and x, y ∈ SX.

Since X has the Daugavet property, Proposition 4.3.v gives us that
⋂

n∈N D̃
(
T−1(Sn), ε

2

)
is weak∗-

dense in K(X∗) (which is norming for X), so we may find y∗ ∈ ⋂n∈N D̃
(
T−1(Sn), ε

2

)
such that

(6) x ∈ S(BX, y∗, ε
2 ).

Then, by the definition of D̃(T−1(Sn), ε
2 ), we have that S(BX, y∗, ε

2 ) ∩ T−1(Sn) 6= ∅ for every
n ∈N. Thus,

T
(

S(BX, y∗, ε
2 )
)
∩ Sn 6= ∅ (n ∈N).

Now, since the sequence {Sn : n ∈N} is determining, we deduce that

T(BX) ⊆ conv T
(

S(BX, y∗, ε
2 )
)

= T
(
S(BX, y∗, ε

2 )
)
.
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In particular, Ty ∈ T
(
S(BX, y∗, ε

2 )
)
, which means that there is a z ∈ S(BX, y∗, ε

2 ) such that

‖Ty− Tz‖ < ε.

Since x ∈ S(BX, y∗, ε
2 ) by (6), we also have that

‖x + z‖ > 2− ε.

Hence, this z meets all the requirements. �

In particular, we obtain the following analogue to Theorem 5.3.

Corollary 5.9. Let X be a Banach space with the Daugavet property. If T ∈ L(X) is an SCD-
operator, then ‖Id + T‖ = 1 + ‖T‖.

Our final goal in this section is to get a better result than Proposition 5.8 for a class of operators
more restrictive than the SCD-operators. We need some notation. A bounded linear operator T :
X −→ Y between two Banach spaces X and Y is said to be a narrow operator if for every x∗ ∈ X∗,
the operator

T+̃ Re x∗ : X −→ Y⊕1 R, x 7−→
(
Tx, Re x∗(x)

)
is a strong Daugavet operator (see [20, §3 and §4] for this definition and the following properties).
Equivalently, T is narrow if and only if for every x, y ∈ SX, every ε > 0, and every slice S of BX
containing y, there is an element z ∈ S such that

‖x + z‖ > 2− ε and ‖Ty− Tz‖ < ε.

A narrow operator is strong Daugavet, but the converse result is not true. It is known that strong
Radon-Nikodým operators and operators which do not fix copies of `1 from a Banach space with the
Daugavet property are narrow. We are going to extend these results to the so-called hereditary-SCD-
operators.

Definition 5.10. Let X and Y be Banach spaces. A bounded linear operator T : X −→ Y is said to
be a hereditary-SCD-operator if every convex subset of T(BX) is an SCD set.

Here is the promised result.

Theorem 5.11. Let X be a Banach space with Daugavet property and T : X −→ Y be a hereditary-
SCD-operator. Then, T is narrow.

We need the following lemma, which could be of independent interest.

Lemma 5.12. Let T : X −→ Y be a hereditary-SCD-operator. Then, for every x∗ ∈ X∗ the operator
T+̃ Re x∗ : X −→ Y⊕1 R is an SCD-operator.

Proof. Denote P1 : [T+̃ Re x∗](X) −→ T(X) and P2 : [T+̃ Re x∗](X) −→ R the natural co-
ordinate projections. What we need to show is that there is a determining sequence of relatively
weakly-open subsets of the set A = [T+̃ Re x∗](BX). Since A is separable, it is enough to prove
that for every a ∈ A there exists a sequence of relatively weakly open sets {Vn : n ∈ N} such that
for every B ⊆ A intersecting all the Vn, a ∈ conv(B) (see Remark 2.4).

We fix a ∈ A and denote
Aa =

{
b ∈ A : P1(b) = P1(a)

}
.

It is easy to see that Aa is of the form

Aa =
{
(P1(a), t) : t ∈ ∆a

}
,
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where ∆a is a bounded interval in R. We denote αa = inf ∆a and βa = sup ∆a and we consider

Sn,1 =
{

b ∈ A : P2(b) < αa + 1
n

}
and Sn,2 =

{
b ∈ A : P2(b) > βa − 1

n

}
,

which are non-empty slices of A (since they intersect Aa) for all n ∈ N and i = 1, 2. Now, since
T is a hereditary-SCD-operator and P1(Sn,i) ⊆ T(BX) is convex, for every n ∈ N and i = 1, 2 we
may find a determining sequence {Sm

n,i : m ∈N} of slices of P1(Sn,i). We write

Vm
n,i = Sn,i ∩ P−1

1 (Sm
n,i) (n, m ∈N, i = 1, 2)

which are relatively weakly open subsets of A. We will prove that they are the sets we need. Indeed,
let B ⊆ A be such that

∅ 6= B ∩Vm
n,i = B ∩ Sn,i ∩ P−1

1 (Sm
n,i) (n, m ∈N, i = 1, 2).

For every n ∈N, we observe that

P1(B ∩ Sn,i) ∩ Sm
n,i 6= ∅ (m ∈N, i = 1, 2),

so, since the sequences {Sm
n,i : m ∈N} are determining, we get that

P1(B ∩ Sn,i) = conv
(

P1(B ∩ Sn,i)
)
⊇ P1(Sn,i) (i = 1, 2).

In particular, P1(B ∩ Sn,i) 3 P1(a), meaning that for every n ∈ N, every i = 1, 2, and every ε > 0,
there exists xε

n,i ∈ B ∩ Sn,i such that

(7)
∥∥P1

(
xε

n,i
)
− P1(a)

∥∥ 6 ε.

Now, we fix some ε > 0 and, since obviously a ∈ Aa, we may take n ∈N such that

αa +
1
n
− ε < P2(a) < βa −

1
n

+ ε.

So, for the corresponding xε
n,1 and xε

n,2, we have

P2
(
xε

n,1
)
− ε < P2(a) < P2

(
xε

n,2
)
+ ε.

Then, there is a convex combination

xε
n = λ1 xε

n,1 + λ2 xε
n,2 (λ1 + λ2 = 1)

(so xε
n ∈ conv(B)) such that ∣∣P2

(
xε

n
)
− P2(a)

∣∣ < ε.

This, together with (7), implies that
∥∥xε

n − a
∥∥ < 2ε, and the arbitrariness of ε > 0 gives us that

a ∈ conv(B). �

Proof of Theorem 5.11. To prove that T is narrow, it is enough to show that for every x∗ ∈ X∗,
the operator T+̃ Re x∗ is a strong Daugavet operator. But this fact follows from Lemma 5.12 and
Proposition 5.8. �

As we did for the alternative Daugavet property in Corollary 5.5, we can extend Theorem 5.11 to
the non separable case.

Corollary 5.13. Let X be a Banach space with the Daugavet property and let T ∈ L(X) be such that
T|Y is an hereditary-SCD-operator for every separable subspace Y of X. Then, T is narrow and, in
particular, ‖Id + T‖ = 1 + ‖T‖.
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Proof. We fix x, y ∈ SX, a slice S of BX and ε > 0. We take a separable subspace Y1 of X such that
x, y ∈ Y1 and such that S∩Y1 6= ∅ and we follow the proof of Corollary 5.5, using [20, Theorem 4.5]
instead of Remark 4.6, to get a separable subspace Y of X, T-invariant, with the Daugavet property
and such that x, y ∈ SX and S ∩ Y 6= ∅. Now, T|Y is a hereditary-SCD-operator, so Theorem 5.11
gives us that T|Y is narrow. Then, we may find z ∈ S ∩Y ⊆ S such that ‖x + z‖ > 2− ε and

‖Ty− Tz‖ = ‖TY(y)− T|Y(z)‖ < ε. �

The following particular cases are especially interesting. The first one was proved in [20, Theo-
rem 4.13] with a different argument.

Corollary 5.14. Let X be a Banach space with the Daugavet property and let T ∈ L(X) be an
operator which does not fix copies of `1. Then, T is narrow.

Corollary 5.15. Let X be a Banach space with the Daugavet property and let T ∈ L(X) be an
operator such that T(BX) is strongly regular. Then, T is narrow.

Remarks 5.16.

(a) The class of hereditary-SCD-operators is a right operator ideal. Indeed, if T : X1 −→ X2
is an arbitrary operator and S : X2 −→ X3 is a hereditary-SCD-operator, then [ST](BX1) ⊆
S(‖T‖BX2), so ST is an hereditary-SCD-operator.

(b) The class of hereditary-SCD-operators is not a left operator ideal. Indeed, we consider a
norm-one projection T : L1[0, 1] −→ X ≡ `1 which is a hereditary-SCD-operator since `1 is
RNP. We also consider a quotient map S : `1 −→ `1/Y ≡ L1[0, 1] (by just using the factor
universality of `1). Then, ST(BL1[0,1]) = BL1[0,1] so ST is not even an SCD-operator.

(c) As a consequence, there are narrow operators which are not SCD-operators. Indeed, since
the set of narrow operators is clearly a left operator ideal, the operator ST above is narrow.

6. COUNTABLE π-BASES OF THE WEAK TOPOLOGY

It was shown in Proposition 2.21 that a convex bounded subset A of a Banach space X is SCD if it
has a countable π-base of the weak topology. But we do not know whether these two properties are
equivalent. The aim of this section is to discuss this possible equivalence. In a first subsection we will
show that the class of sets having countable π-bases of the weak topology contains separable CPCP
sets. We already know that it contains those sets which do not have `1-sequences (Theorem 2.22), so
this class covers most of the examples of SCD sets presented in this paper. In the second subsection
we will show that convex bounded subsets of both `1(c0) and c0(`1) also have countable π-bases of
the weak topology. Finally, the third subsection contains several characterizations of SCD sets which
remind of the property we are dealing with.

6.1. CPCP sets. We start with a sufficient condition to have a countable π-base of the weak topology.

Proposition 6.1. Let X be a Banach space and let A be a separable closed convex bounded subset
of X such that there is a weakly dense subset B of A consisting of points of continuity of Id :
(A, σ(X, X∗)) −→ (A, ‖ · ‖). Then, (A, σ(X, X∗)) has a countable π-base.

Proof. Let D be a countable norm dense subset of B, and for every d ∈ D and every n ∈ N let Un
d

be a weak open neighborhood of d in A of diameter less than 1
n . We claim that the countable family

{Un
d : n ∈ N, d ∈ D} is a π-base of A. Indeed, let W be a weakly open subset of A. Since B

is weakly dense in A, W ∩ B is non-empty and relatively norm open in B so, since D is norm dense
in B, there is d ∈ D ∩W. Now, W is a norm open neighborhood of d relative to A, so it contains
B(d, 1/n) ∩ A for some n ∈N and so Un

d ⊆W. We are done. �



SLICELY COUNTABLY DETERMINED BANACH SPACES 21

A first consequence of the above result deals with LUR renorming. It is clear from the definition
that denting points are points of weak-norm continuity of the identity map and so, as it was com-
mented before Example 2.10, the unit ball of a Banach space with a LUR norm fulfills the above con-
dition. It was also commented there that every separable Banach space can be equivalently renormed
with a LUR norm.

Example 6.2.

(a) Let X be a separable Banach space with a LUR norm. Then, BX has a countable π-base of
the weak topology.

(b) As a consequence, every separable Banach space X admits an equivalent norm | · | such that
B(X,|·|) has a countable π-base of the weak topology.

We are going to show that CPCP sets have countable π-bases for the weak topology. We recall
that a closed convex bounded subset A of a Banach space X has the CPCP if every convex closed
subset B of A contains a weak-to-norm point of continuity of the identity mapping. In this case, for
every convex subset B of A and for every ε > 0, there is a relatively weakly open subset C ⊆ B with
diam(C) < ε [5]. We need the following result which follows from [14, Lemma I.0]; we haven’t
found a direct reference, so we include a proof for the sake of completeness.

Lemma 6.3. Let X be a Banach space and let A be a closed convex bounded subset of X with the
CPCP. Then, there is a weakly dense subset D of A consisting of points of weak-norm continuity of
Id : (A, σ(X, X∗)) −→ (A, ‖ · ‖).

Proof. We fix a sequence of positive εn tending to zero and write

Dn =
⋃
{C : C is weakly open in A and diam(C) < εn}.

Let us prove that D =
⋂

n∈N Dn is weakly dense in A. Indeed, let U ⊆ A be relatively weakly
open. We pick U1 ⊆ U convex closed with non-empty interior. Then, there is a relatively weakly
open subset C1 of A of diameter less than ε1 such that C1 is contained in the weak interior of U1. We
repeat the process to find a decreasing sequence Cn of weakly open sets with non-empty interior such
that diam(Cn) < εn and Cn+1 ⊆ Cn. Then, the Cantor theorem tells us that there is x ∈ ⋂n∈N Cn.
Now, we have in particular that x ∈ C1 ⊆ U1 ⊆ U. On the other hand, for every n ∈N, x ∈ Cn and
diam(Cn) < εn, so x ∈ Dn. Therefore, x ∈ D. Finally, every point of D has weak neighborhoods
of arbitrarily small diameter, showing that it is a point of continuity. �

This result, together with Proposition 6.1 gives the main result of the subsection.

Corollary 6.4. Let X be a Banach space and let A be a separable closed convex bounded subset of
X with the CPCP. Then, A has a countable π-base for the weak topology.

With the above result, most of the types of SCD sets presented in the section 2 have a countable
π-base of the weak topology. The only exception is the family of strongly regular sets which are not
CPCP. There are two main examples of sets of this kind, but in both cases, the sets have a countable
π-base of the weak topology.

Examples 6.5.

(a) The set constructed by S. Argyros, E. Odell, and H. Rosenthal [2] which is strongly regular
but does not have the CPCP is a subset of c0, so it has a countable π-base of the weak topology
since it does not have `1-sequences.
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(b) The set constructed by W. Schachermayer [28] which is a subset C of a Banach space Z
which does not have the CPCP but Z∗∗ is strongly regular (so Z is strongly regular). But
then, (C, σ(X, X∗)) has a countable π-base of the weak topology since Z does not contain
`1.

6.2. c0(`1) and `1(c0). Our goal in this subsection is to show that convex bounded subsets of the
spaces c0(`1) and `1(c0) have a countable π-base of the weak topology. The first case is easier to
demonstrate.

Example 6.6. Every bounded convex subset A of the space c0(`1) has a countable π-base of the
weak topology.

Proof. Let X denote c0(`1). For every m ∈N, we denote

Ym =
[
`1 ⊕ `1 ⊕ m. . .⊕ `1 ⊕ 0⊕ 0⊕ · · ·

]
∞ ⊆ c0(`1)

and Pm : X −→ Ym for the natural projection. Since Pm(A) is a convex bounded subset of Ym and
Ym is isomorphic to `1, there is a countable π-base {Sm,k : k ∈N} of (Pm(A), σ(Ym, Y∗m)). We are
going to prove that the collection

S̃m,k =
[
P−1

m (Sm,k)
]
∩ A (m, k ∈N)

forms a countable π-base of (A, σ(X, X∗)). Indeed, let U, V be weak neighborhoods of 0, V + V ⊆
U, a ∈ A, and denote B = (a + U) ∩ A. Every relatively weakly open subset of A is of the same
form as B, so we have to prove that S̃m,k ⊆ B for some choice of m and k. Assume to the contrary that
none of S̃m,k is contained in B. For m ∈N big enough, all the Pm(A) intersect (a + V). Fix m ∈N

with Cm = (a + V) ∩ Pm(A) 6= ∅. Then there is k(m) ∈ N with Sm,k(m) ⊆ Cm. According to our
assumption S̃m,k(m) is not contained in B, so there is an xm ∈ S̃m,k(m) \ B. This xm can be written as
xm = ym + zm, where ym ∈ Sm,k(m) ⊆ Cm and zm ∈ KerPm. Since xm ∈ A and ym ∈ Pm(A), we
have that zm is a bounded sequence, and since by our construction (zm) tend to 0 coordinate-wise as
m → ∞, we can deduce that (zm) −→ 0 in the weak topology. Therefore, for some m big enough
zm ∈ V and consequently xm = ym + zm ∈ (a + V) + V ⊆ a + U. Since xm ∈ A, this means that
xm ∈ (a + U) ∩ A = B, which contradicts the selection of xm. �

Remark 6.7. The argument above also works for c0-sums of RNP spaces. Indeed, this follows from
the fact that a finite-sum of RNP spaces is again a RNP space (see [9, Theorem 6.5.b], for instance).

Let us remark with an example that to have a countable π-base of the weak topology does not
imply that any point has a countable base of weak neighborhoods.

Example 6.8. The unit ball of X = c0(`1) has no point with a countable base of relative weak
neighborhoods. Indeed, we consider an arbitrary x = (xn)n∈N ∈ BX, where xn ∈ `1, ‖xn‖ −→ 0
and maxn∈N ‖xn‖ 6 1. We fix n0 ∈N such that ‖xn0‖ < 1/2 and we consider the subset

A = {(yn)n∈N ∈ BX : yn = xn if n 6= n0, ‖xn0 − yn0‖ 6 1/2} .

Then, A is a closed subset of BX containing x, so if x has a countable base of relative weak neighbor-
hoods in BX, then x has also a countable base of relative weak neighborhoods in A. But the latter is
impossible, because A is affinely homeomorphic to B`1 , with x being the image of 0 ∈ B`1 .

To get the second example we need a technical result.

Lemma 6.9. Let X be a separable Banach space. Then, the following are equivalent.

(i) Every convex bounded subset of X has a countable π-base of the weak topology.
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(ii) Every closed convex bounded subset A of X has a point with a countable local π-base of
relatively weakly open subsets (i.e. there is x ∈ A and a sequence {Un : n ∈ N} of
relatively weakly open subsets of A such that for every relative weak neighborhood V of x
there is some Un ⊆ V.)

(iii) For every ε > 0, every closed convex bounded subset A of X has a point with a countable
local ε-base of relatively weakly open subsets (i.e. there is x ∈ A and a sequence {Un : n ∈
N} of relatively weakly open subsets of A such that for every weakly open neighborhood
V ⊆ X of x in the whole space there is n ∈N with Un ⊆ V + εBX.)

Proof. (i)⇒ (ii)⇒ (iii) are clear since a π-base is a local π-base, and a local π-base is an ε-base for
every ε > 0.

(iii) ⇒ (i). It is straightforward to show that it is enough to deal with closed convex bounded
subsets of X. Just observe that if {Un : n ∈ N} is a π-base for the weak topology of the closure of
a bounded convex subset A of X, then {Un ∩ A : n ∈ N} is a π-base of the weak topology of A
itself.

We then fix a closed convex bounded subset A ⊆ X. We first remark that, for every ε > 0,
the subset Bε ⊆ A of points having a countable local ε-base is weakly dense in A. Indeed, we
consider an arbitrary weakly open subset U of X intersecting A and we fix another weakly open
subset V ⊆ U ⊆ X intersecting A with Vσ(X,X∗) ⊆ U. According to our assumption, there is
x ∈ Vσ(X,X∗) ∩ A with a local ε-base {Un : n ∈ N}. But then, Vn = Un ∩ V form a countable
local ε-base of relatively weakly open subsets of A for x, i.e. x ∈ Bε ∩U, so B ∩U 6= ∅.

Now, for every k ∈ N we take a countable norm dense subset {bk,m : m ∈ N} in B1/k, and for
every bk,m, we select a 1/k-base {Uk,m,n : n ∈N}. Let us show that {Uk,m,n : k, n, m ∈N} forms
a π-base for (A, σ(X, X∗)). Indeed, let U, V be weak neighborhoods of 0, V + V ⊆ U, a ∈ A, and
denote G = (a + U) ∩ A. We have to prove that Uk,m,n ⊆ G for some choice of k, m, n ∈N. To do
this, we take k ∈ N big enough that 1

k BX ⊆ V. According to our construction, there is m ∈ N with
bk,m ∈ (a + V) ∩ A. Then, there is n ∈N with Uk,m,n ⊆ (a + V) + 1

k BX. Therefore

Uk,m,n ⊆
(

a + V +
1
k

BX

)
∩ A ⊆ (a + V + V) ∩ A ⊆ (a + U) ∩ A = G. �

We are now able to present the second example.

Example 6.10. Every bounded convex subset A of the space `1(c0) has a countable π-base of the
weak topology.

Proof. Let X denote `1(c0). For ε > 0 fixed, arguing the same way as in the beginning of the proof
of Theorem 3.12, we select an open slice S ⊆ A and an m ∈N with the following property

(8)
∥∥(0, . . . , 0, ym+1, ym+2, . . .)

∥∥ <
ε

2
(
(yn)n∈N ∈ S

)
.

Let us prove that every x0 ∈ S has a countable ε-base of relatively weakly open subsets and Lemma 6.9
will give the result.

We denote
Ym =

[
c0 ⊕ c0 ⊕ m. . .⊕ c0 ⊕ 0⊕ 0⊕ · · ·

]
`1
⊆ `1(c0)

and let Pm : X −→ Ym be the natural projection. Since Ym is isomorphic to c0, there is a countable
local π-base {Un : n ∈N} of Pm(x0) in (Pm(S), σ(X, X∗)). Consider

Ũn = P−1
m (Un) ∩ S (n ∈N)
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which are weakly open subsets of S, and hence they are weakly open in A. Let us show that {Ũn :
n ∈ N} forms an ε-base for x0 in A. Consider a weakly open neighborhood V ⊆ X of x0. By (8),
we have that

(9) ‖Pm(y)− y‖ < ε/2 (y ∈ S).

So
(
V + ε

2 BX
)
∩ Pm(S) is a weak neighborhood of Pm(x0) in Pm(S). So there is an n ∈ N such

that Un ⊆ V + ε
2 BX. Applying (9) once more, we obtain that

Ũn = P−1
m (Un) ∩ S ⊆ Un +

ε

2
BX ⊆ V + εBX. �

6.3. Two characterizations of SCD sets. The aim of this part of the section is to establish some
characterizations of SCD sets which remind of countable π-bases of the weak topology. The first one
deals with convex combinations of slices.

Theorem 6.11. A bounded convex subset A of a Banach space X is an SCD set if and only if there is
a sequence {Vn : n ∈ N} of convex combinations of slices of A such that every relatively weakly
open subset of A contains some of the Vn.

Proof. The “if” part is direct consequence of Propositions 2.2 and 2.18.

Conversely, asume that A is an SCD set and suppose without loss of generality that A ⊆ BX. Let
Sn = S(A, x∗n, εn) for n ∈N, be a determining sequence of slices for A. Let us show that the convex
combinations of the Sn’s with rational coefficients form the countable collection of convex combina-
tions of slices that we need. Indeed, let U be a relatively weakly open subset of A. Select another
relatively weakly open subset V ⊆ U such that α = dist(V, A \U) > 0. Due to Bourgain’s lemma
(Lemma 2.16), there is a convex combination of slices ∑m

j=1 λjGj ⊆ V. According to Proposition 2.2,
for every j = 1, 2, . . . , m there is n(j) ∈ N such that Sn(j) ⊆ Gj. Then, ∑m

j=1 λjSn(j) ⊆ V. What
remains is to find rationals µj > 0 with ∑m

j=1 µj = 1 and |µj− λj| < α. Then, the Hausdorff distance
between ∑m

j=1 µjSn(j) and ∑m
j=1 λjSn(j) is smaller than α, so ∑m

j=1 µjSn(j) ⊆ V + α BX ⊆ U. �

The second result gives a reformulation of SCD in terms of topological properties of the set of
extreme points of its weak∗ closure in the bidual. For a convex bounded subset A of a Banach space
X, denote A∗∗ the weak-star closure of A in X∗∗.

Theorem 6.12. Let X be a Banach space and let A be a convex bounded subset of X. Put W =(
ext
(

A∗∗
)
, σ(X∗∗, X∗)

)
. Then, the following are equivalent:

(i) A is an SCD set.
(ii) W has a countable π-base.

Proof. (i) =⇒ (ii). We take a sequence of slices Sn = S(A, x∗n, εn) for n ∈ N which is determining
for A and we write

S∗∗n = S
(

A∗∗, x∗n, εn
)
⊆ A∗∗

for the natural extensions of Sn to slices of A∗∗. Then, the family Un = S∗∗n ∩W for n ∈N forms a
π-base of W. Indeed, we consider a relatively weak∗-open subset U of W. Due to Choquet’s lemma
(that for any locally convex topology, slices containing an extreme point of a compact convex set
make up a neighborhood base of the extreme point, see [10, Definition 25.3 and Proposition 25.13]),
there is a slice S∗∗ = S

(
A∗∗, x∗, ε

)
of A∗∗ generated by some x∗ ∈ X∗ and ε > 0 such that

U ⊇ S∗∗ ∩W 6= ∅. Now, according to Proposition 2.2, there is an n ∈N such that

Sn ⊆ S(A, x∗, ε/2) ⊆ S
(

A∗∗, x∗, ε/2
)
.
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Then, S∗∗n is contained in the relative weak∗-closure of S
(

A∗∗, x∗, ε/2
)

in A∗∗, so S∗∗n ⊆ S∗∗ and

Un = S∗∗n ∩W ⊆ S∗∗ ∩W ⊆ U.

(ii) =⇒ (i). We consider a countable π-base {Un : n ∈N} of W consisting of relatively weak∗-
star open subsets. Again by Choquet’s lemma, there are x∗n ∈ X∗ and εn > 0 such that

Un ⊇ Ũn = S
(

A∗∗, x∗n, εn
)
∩W 6= ∅.

Let us prove that the slices Sn,m = S(A, x∗n, 1/m) with n, m ∈ N, form a determining sequence
for A. Indeed, we denote S∗∗n,m the closed slices of A∗∗ generated by x∗n and 1/m. For every slice
S = S(A, x∗, ε) of A, since {Ũn : n ∈N} is a π-base of W, there is n ∈N such that

S∗∗ ∩W ⊇ Ũn where S∗∗ = S
(

A∗∗, x∗, εn
)
,

so for m ∈N big enough we have

S∗∗ ∩W ⊇ S∗∗n,m ∩W.

Then, taking into account that, for every n ∈N,

Gn =
⋂

m∈N

S∗∗n,m

is a closed face of A∗∗, the Krein-Milman theorem gives us that

Gn = conv
(
Gn ∩W

)σ(X∗∗,X∗)
.

Therefore,

S∗∗ ⊇ conv
(
S∗∗ ∩W

)σ(X∗∗,X∗)
⊇ conv

( ⋂
m∈N

S∗∗n,m ∩W

)σ(X∗∗,X∗)

= Gn.

This means that the intersection of the decreasing sequence of σ(X∗∗, X∗) compact sets {S∗∗n,m : m ∈
N} is contained in S∗∗. But S∗∗ is a relatively σ(X∗∗, X∗) open set in A∗∗, so for sufficiently big
m ∈N, all the S∗∗n,m are subsets of S∗∗. For these m, we have

S = S∗∗ ∩ A ⊇ S∗∗n,m ∩ A ⊇ Sn,m.

Finally, we use the characterization of SCD sets from Proposition 2.2. �

The following is an easy consequence of the above result.

Corollary 6.13. Let X be a Banach space and let A be a bounded convex subset of X. If A is SCD,
then

(
ext
(

A∗∗
)
, σ(X∗∗, X∗)

)
is separable.

The particular case of the above corollary for subsets of separable Banach spaces without copies
of `1 should be previously known. Anyway, we include an easy direct proof of this fact.

Remark 6.14. Let X be a separable Banach space without copies of `1 and let A be a convex bounded
subset of X. Then,

(
ext
(

A∗∗
)
, σ(X∗∗, X∗)

)
is separable. Indeed, we write

C = conv
(
ext
(

A∗∗
))

and we observe that C is σ(X∗∗, X∗)-sequentially dense in its weak∗-closure A∗∗ (see [12, Theo-
rem 4.1]). Then, we take a sequence {yn : n ∈ N} dense in A and we consider those extreme
points of A∗∗ needed to approximate each yn by a sequence of convex combinations. The union of
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all these extreme points (while countable) is weak∗-dense in the set of all extreme points of A∗∗ by
the reversed Krein-Milman theorem.

7. OPEN QUESTIONS

Question 7.1. Let X be a Banach space and let A be a convex bounded subset of X. If A is SCD,
does A have a countable π-base for the weak topology?

Question 7.2. Let X be an SCD space. Does every convex bounded subset of X have a countable
π-base for the weak topology?

Related to these questions is the following one.

Question 7.3. Let L be a compact subset of a locally convex space and let K be its closed convex hull.
If L has a countable π-base, does it imply that K also has a countable π-base? What if L = ext(K)?

Let us explain why this question is related to the above two. Observe that if D is a dense subspace of
a topological space E and B is a π-base for E, then {B∩D : B ∈ B} is a π-base for D. In particular,
if (A∗∗, σ(X∗∗, X∗)) has a countable π-base, then so does (A, σ(X, X∗)). Thus, a positive answer
to the preceding question combined with Theorem 6.12 would imply a positive answer to Questions
7.1 and 7.2.

Questions 7.4.

(a) Is every Banach space with unconditional basis SCD?
(b) A simpler case: let X be a Banach space with 1-symmetric basis. Is BX an SCD set?

Question 7.5. Are the concepts of SCD sets and almost-SCD sets equivalent (see Remark 4.5 for the
definition)?

Questions 7.6. Let X be a separable Banach space such that no subspace of it can be renormed with
the Daugavet property. Is X SCD?

Questions 7.7.

(a) Is the sum of two SCD-operators an SCD-operator?
(b) Is the sum of two hereditary-SCD-operators a hereditary-SCD-operator?
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