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Abstract. We prove that for a given Banach space X, the subset of norm
attaining Lipschitz functionals in Lip0(X) is weakly dense but not strongly
dense. Then we introduce a weaker concept of directional norm attainment
and demonstrate that for a uniformly convex X the set of directionally norm
attaining Lipschitz functionals is strongly dense in Lip0(X) and, moreover,
that an analogue of the Bishop-Phelps-Bollobás theorem is valid.

1. Introduction and motivation

In this text, the letter X stands for a real Banach space. We denote, as usual,
by SX and BX the unit sphere and the closed unit ball of X, respectively. A
functional x∗ ∈ X∗ attains its norm, if there is x ∈ SX with x∗(x) = ‖x∗‖. If
X is reflexive, then all x∗ ∈ X∗ attain their norms and, according to the famous
James theorem (see [8, Chapter 1, theorem 3]), in every non-reflexive space there
are functionals that do not attain their norm. Nevertheless, in every Banach
space there are “many” norm attaining functional. Namely, the classical Bishop-
Phelps theorem ([5], see also [8, Chapter 1]) states that the set of norm attaining
functionals on a Banach space is norm dense in the dual space. Moreover, for
every closed bounded convex set C ⊂ X, the collection of functionals that attain
their maximum on C is norm dense in X∗.

The fact that every functional can be approximated by norm attaining ones is
quite useful, but sometimes one needs more. Namely, sometimes (in particular,
when one works with numerical radius of operators) one needs to approximate a
pair “element and functional” by a pair (x, x∗) such that x∗ attains its norm in
x. Such a modification of the Bishop-Phelps theorem was given by B. Bollobás
[6]. Below we cite it in a slightly modified form with sharp estimates [7].

Theorem 1.1 (Bishop-Phelps-Bollobás theorem). Let X be a Banach space. Sup-
pose x ∈ BX and x∗ ∈ BX∗ satisfy x∗(x) > 1− δ for δ ∈ (0, 2). Then there exists
(y, y∗) ∈ X ×X∗ with ‖y‖ = ‖y∗‖ = y∗(y) = 1 such that

max{‖x− y‖, ‖x∗ − y∗‖} 6
√

2δ. (1.1)

In this project we are searching for possible extensions of the Bishop-Phelps
theorem and the Bishop-Phelps-Bollobás theorem for non-linear Lipschitz func-
tionals f : X −→ R.
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In the sequel we use the letter E to denote a metric space, equipped with a
distinguished point 0 and such that E \{0} 6= ∅, and ρ denotes the given distance
of E. Recall that to such a pointed metric space one associates the Banach space
Lip0(E) that consists of functions f : E −→ R with f(0) = 0 which satisfy
(globally) the Lipschitz condition. This space is equipped with the norm

‖f‖ = sup

{
|f(x)− f(y)|

ρ(x, y)
: x, y ∈ E, x 6= y

}
. (1.2)

In other words, ‖f‖ is the smallest Lipschitz constant of f . We refer the reader
to the book [15] for background on Lipschitz spaces.

The most interesting results of our paper are related to definition 1.3 below,
which does not make sense for functions on general pointed metric spaces, but
only in the Banach space setting. That is why in this paper we mainly concentrate
on the case of Lip0(X), where X is a Banach space. Remark that in this case,
evidently, X∗ is a closed subspace of Lip0(X) with equality of norms.

As this paper deals with possible extensions of the Bishop-Phelps and Bishop-
Phelps-Bollobás theorems, we first have to say what we understand by a norm
attaining Lipschitz functional. We have a couple of possible definitions for this.

First, the most natural definition of norm attainment for a functional f ∈
Lip0(E) is the following.

Definition 1.2. A functional f ∈ Lip0(E) attains its norm in the strong sense if

there are x, y ∈ E, x 6= y such that ‖f‖ = |f(x)−f(y)|
ρ(x,y)

. The subset of all functionals

f ∈ Lip0(E) that attain their norm in the strong sense is denoted SA(E).

Unfortunately, in the sense of the Bishop-Phelps theorem, this definition is too
restrictive. Even in the one-dimensional case (X = R), the subset SA(X) is not
dense in Lip0(X) (see Example 2.1 and Theorem 2.3). Nevertheless, for every Ba-
nach space X, SA(X) is weakly sequentially dense in Lip0(X) (see Theorem 2.6).
This is the content of our section 2, where the results are actually proved for
metrically convex metric spaces.

It is then clear that a less restrictive way for a Lipschitz functional to attain
its norm is needed to get density. We will use the following definition.

Definition 1.3. A functional g ∈ Lip0(X) attains its norm at the direction
u ∈ SX if there is a sequence of pairs {(xn, yn)} in X × X, with xn 6= yn, such
that

lim
n→∞

xn − yn
‖xn − yn‖

= u and lim
n→∞

g(xn)− g(yn)

‖xn − yn‖
= ‖g‖.

In this case, we say that g attains its norm directionally. The set of all those
f ∈ Lip0(X) that attain their norm directionally is denoted by DA(X).

We start our consideration with two reasons of why the directional approach
is natural in our framework.

(a) If X is finite-dimensional, then DA(X) = Lip0(X) by a compactness
argument, so at least in this easiest case the directional Bishop-Phelps
theorem does not fail.
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(b) A linear functional attains its norm at direction u if and only if f(u) =
‖f‖, so it attains its norm in the usual sense.

We devote section 3 to study norm attaining seminorms. Continuous semi-
norms on a Banach space X form a closed cone in Lip0(X), and the Lipschitz
norm coincides with the uniform norm (i.e. the supremum on the unit sphere of
the space). Moreover, the respective sets of continuous seminorms, that attain
the norm strongly, that attain the norm directionally, and that attain the norm
uniformly, coincide (Lemma 3.2). We provide a general Bishop-Phelps-Bollobás
theorem for seminorms, but getting uniform density instead of density in the
Lipschitz norm (Proposition 3.4). Besides, we prove the Lipschitz-norm density
of norm attaining seminorms for Banach spaces with the Radon-Nikodým prop-
erty (Proposition 3.6), by using the Stegall’s version of the classical Bourgain-
Steagall non-linear optimization principle. Finally, we show that in every infinite-
dimensional Banach space, there is a continuous seminorm which does not attain
its norm (Example 3.3), so item (a) above actually characterizes finite dimension.

The main result of the paper is a Bishop-Phelps-Bollobás-type theorem for
Lipschitz functionals on uniformly convex spaces. Even though we only have one
kind of examples, it makes sense to introduce the following definition.

Definition 1.4. A Banach space X has the directional Bishop-Phelps-Bollobás
property for Lipschitz functionals (X ∈ LipBPB for short), if for every ε > 0
there is such a δ > 0, that for every f ∈ Lip0(X) with ‖f‖ = 1 and for every

x, y ∈ X with x 6= y satisfying f(x)−f(y)
‖x−y‖ > 1−δ, there is g ∈ Lip0(X) with ‖g‖ = 1

and there is u ∈ SX such that g attains its norm at the direction u, ‖g− f‖ < ε,

and
∥∥∥ x−y
‖x−y‖ − u

∥∥∥ < ε.

So, with this notation, the main result of the paper is to prove that uniformly
convex spaces have the LipBPB (Theorem 5.3), and even a stronger property
called local directional Bishop-Phelps-Bollobás property for Lipschitz functionals
introduced in Definition 4.3. This is the content of section 5. In the way to prove
such result, we need to provide a weak version of the property (Lemma 4.1), valid
for all Banach spaces, which is proved using the Lipschitz-free space (see definition
in section 4). We also prove (Lemma 4.4) that the requirements for a general
Banach space to have the (local) Bishop-Phelps-Bollobás property for Lipschitz
functionals can be relaxed in the sense that only “approximate” directional norm
attainment of g is required. These two preliminary results are the content of
section 4.

We should make it clear that we are not able to answer some natural easy-
looking questions related to our results. For example, we are not able to construct
a Banach space which has no (local) directional Bishop-Phelps-Bollobás property
for Lipschitz functionals. On the other hand, we refer to [9] for some negative
results on norm attaining Lipschitz maps between Banach spaces which do not
overlap with the results of this manuscript.

We finish this introduction recalling an important tool to construct Lipschitz
functionals: the classical McShane’s extension theorem. It says that if M is a
subspace of a metric space E and f : M −→ R is a Lipschitz functional, then
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there is an extension to a Lipschitz functional F : E −→ R with the same
Lipschitz constant; see [15, Theorem 1.5.6] or [4, p. 12/13].

2. Strongly attaining Lipschitz functionals

As announced in the introduction, there is no Bishop-Phelps type theorem
for Lipschitz functionals in the strong sense of the attainment, even in the one-
dimensional case.

Example 2.1. SA([0, 1]) is not dense in Lip0([0, 1]).

In order to demonstrate this, we need the following easy lemma.

Lemma 2.2. If f ∈ Lip0(E) attains its norm on a pair (x, y) ∈ E × E, x 6= y,
and z ∈ E \ {x, y} is such an element that ρ(x, y) = ρ(x, z) + ρ(z, y), then f
strongly attains its norm on the pairs (x, z) and (y, z), and

f(z) =
ρ(z, y)f(x) + ρ(x, z)f(y)

ρ(x, y)
. (2.1)

In particular, if E is a convex subset of a Banach space, then f is affine on the
closed segment conv{x, y}, i.e. f(θx+ (1− θ)y) = θf(x) + (1− θ)f(y) for every
θ ∈ [0, 1].

Proof. We may (and do) assume without loss of generality that f(x)− f(y) > 0
(otherwise we multiply f by −1). Since f attains its norm on the pair (x, y), we
have

‖f‖ρ(x, y) = f(x)− f(y) = f(x)− f(z) + f(z)− f(y)

6 ‖f‖ρ(x, z) + ‖f‖ρ(z, y) = ‖f‖ρ(x, y).

This means that the inequalities

f(x)− f(z) 6 ‖f‖ρ(x, z) and f(z)− f(y) 6 ‖f‖ρ(z, y)

which we used above are, in fact, equalities. So, f(x) = f(z) + ‖f‖ρ(x, z) and
f(y) = f(z)− ‖f‖ρ(z, y). Substituting the last two formulas into the right-hand
side of (2.1), we get the desired result. �

Proof of Example 2.1. It is well known (for example, [15, Example 1.6.5] or [12,
Propositions 6 and 2]) that Lip0([0, 1]) is isometric to L∞([0, 1]), and the corre-
sponding bijective isometry U : Lip0([0, 1]) −→ L∞([0, 1]) is just the differentia-
tion operator (the derivative of a Lipschitz function f : [0, 1] −→ R exists almost
everywhere). Under this isometry, every f ∈ SA([0, 1]) maps to a function, which
is equal either to ‖f‖ or to −‖f‖ on some non-void interval (here we use Lemma
2.2). Denote A a nowhere dense closed subset of [0, 1] of positive Lebesgue mea-
sure. and let g ∈ Lip0([0, 1]) be the function, whose derivative equals 1A (the
characteristic function of A) a.e. Then g cannot be approximated by functions
from SA([0, 1]). Actually, we claim that

‖g − f‖ = ‖1A − f ′‖∞ >
1

2
(2.2)

for every f ∈ SA(R).
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In fact, ‖g‖ = ‖1A‖∞ = 1 so, if ‖f ′‖∞ 6 1
2
, then (2.2) follows from the triangle

inequality. If ‖f ′‖∞ > 1
2
, then, as we remarked before, |f ′(t)| > 1

2
on some

open interval (a, b). But, since A is nowhere dense, there is a smaller interval
(c, d) ⊂ (a, b) such that 1A(t) = 0 for t ∈ (c, d). So |(1A−U(f))(t)| > 1

2
on (c, d),

which implies (2.2). Hence, SA([0, 1]) is not dense in Lip0([0, 1]). �

Recall, that a metric space E is said to be metrically convex if, for every pair
of distinct points x, y ∈ E, there is a curve ` ⊂ E which connects x and y and is
isometric to the segment [0, ρ(x, y)] ⊂ R. The next theorem demonstrates that
Example 2.1 extends to all non-trivial metrically convex pointed metric spaces,
and in particular to all Banach spaces.

Theorem 2.3. Let E be a metrically convex pointed metric space. Then SA(E)
is not dense in Lip0(E).

Proof. Fix x0 ∈ E \ {0}. Without loss of generality we may assume ρ(0, x0) = 1.
Denote ` ⊂ E the isometric copy of [0, 1] which connects 0 and x0. Again, without
loss of generality we may assume that ` = [0, 1] ⊂ E. Let u : E −→ [0, 1] be a
norm-1 Lipschitz function whose restriction to [0, 1] is the identity map (here we
apply McShane’s extension theorem) and let g ∈ Lip0([0, 1]) be the function from

Example 2.1. We are going to demonstrate that h := g ◦ u ∈ Lip0(E) \ SA(E).
Consider arbitrary f ∈ SA(E). Like in Example 2.1, we will show that

‖h− f‖ > 1
2
. Assume contrary

‖h− f‖ < 1

2
. (2.3)

Then ‖f‖ > 1/2. Denote (x, y) ∈ E × E, x 6= y a pair at which f attains its
norm. Due to metric convexity of E, there is an isometric copy γ of [0, ρ(x, y)]
which connects x and y. According to Lemma 2.2,

|f(z1)− f(z2)| = ‖f‖ρ(z1, z2)

for every z1, z2 ∈ γ, z1 6= z2. Consequently,

|h(z1)− h(z2)| > |f(z1)− f(z2)| − ‖h− f‖ρ(z1, z2) > 0

for all such z1, z2. This, in turn, implies that g(v1) 6= g(v2) for every pair of
distinct points v1, v2 in the non-void interval u(γ) ⊂ [0, 1]. But, according to the
definition of g, this is impossible. �

Even though in the sense of Definition 1.2 the Bishop-Phelps theorem does
not transfer to Lipschitz functionals, SA(X) cannot be too small. Namely, we
are going to demonstrate that SA(X) is weakly sequentially dense in Lip0(X) for
every Banach space X. Even more, we will prove an analogous fact for a wider
class of “local” metric spaces.

According to [11, Definition 2.2], a pointed metric space E is said to be local if
for every ε > 0 and for every function f ∈ Lip0(E) there are two distinct points
t1, t2 ∈ E such that ρ(t1, t2) < ε and

f(t2)− f(t1)

ρ(t1, t2)
> ‖f‖ − ε. (2.4)



6 V. KADETS, M. MARTÍN, M. SOLOVIOVA

Every local space evidently is infinite, and it is also easy to see that locality implies
the absence of isolated points (the function f = 1{τ} where τ is an isolated point
does not fit to the definition). Every metrically convex E is local [11, Proposition
2.3] and a partial converse statement is known [11, Proposition 2.9]: let E be
a metric subspace of a smooth locally uniformly rotund Banach space. If E is
compact and local, then E is convex.

At first, a helpful lemma.

Lemma 2.4. Let E be a local metric space, {fn} a sequence in SLip0(E), and
for each n ∈ N let Un := {x ∈ E : fn(x) 6= 0} be the corresponding supports.
Suppose that the sets Un are pairwise separated, i.e.

dn,m = inf{ρ(x, y) : x ∈ Un, y ∈ Um} > 0

for every n 6= m. Then, the sequence {fn} is isometrically equivalent to the
canonical basis of c0, i.e. for any finite collection {aj}nj=1 of reals∥∥∥∥∥

n∑
j=1

ajfj

∥∥∥∥∥ = max
k
|ak|. (2.5)

Proof. Denote f =
∑n

j=1 ajfj, dn = min{dk,j : k, j ∈ {1, 2, . . . , n}}. Fix an
ε > 0 satisfying ε < dn. According to the definition of locality, there are points
t1, t2 ∈ E such that 0 < ρ(t1, t2) < ε which fulfill (2.4). If one of ti belongs to
some Um, then the other one either belongs to the same Um, or lies outside of f ’s
support. Consequently, for this m

‖f‖ < f(t2)− f(t1)

ρ(t1, t2)
+ ε = am

fm(t2)− fm(t1)

ρ(t1, t2)
+ ε 6 |am|+ ε.

By the arbitrariness of ε, this implies ‖f‖ 6 maxk |ak|.
In order to get the reverse inequality, we fix such an m that maxk |ak| = |am|

and apply the locality condition to fm. We get points t1, t2 ∈ E such that
0 < ρ(t1, t2) < ε and

fm(t2)− fm(t1)

ρ(t1, t2)
> 1− ε.

If ε is small enough, this condition again means that one of ti belongs to Um and
the other one either belongs to Um, or lies outside of f ’s support. Consequently,

max
k
|ak| = |am| 6

1

1− ε
|am|
|fm(t2)− fm(t1)|

ρ(t1, t2)

=
1

1− ε
|f(t2)− f(t1)|

ρ(t1, t2)
6

1

1− ε
‖f‖. �

As an obvious consequence, we obtain the following.

Corollary 2.5. If E is a local metric space, then every bounded separately sup-
ported sequence in Lip0(E) converges weakly to zero.

We are now ready to prove the weak sequential density of strongly attaining
Lipschitz functionals.
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Theorem 2.6. If E is a local metric space, then SA(E) is weakly sequentially
dense in Lip0(E), i.e. for every g ∈ Lip0(E) there is a sequence {gn} in SA(E)
which converges weakly to g.

Proof. Without loss of generality we may assume ‖g‖ = 1. Let us choose a
sequence of pairwise disjoint balls {Un} with corresponding radii rn > 0, centers
xn and such that 0 6∈ Un. For every n ∈ N, select εn ∈ (0, 1

2
) and yn ∈ Un with

0 < ρ(xn, yn) = εnrn (here we use the absence of isolated points). For a fixed
n, consider En = (E \ Un) ∪ {xn, yn} ⊂ E. Define hn : En −→ R as follows:
hn(t) = g(t) for t ∈ En \ {xn} and hn(xn) = g(yn) − sn(1 + 2εn)ρ(xn, yn), where
sn = sign(g(yn)− g(xn)). We claim that the Lipschitz constant of hn is attained
at the pair (xn, yn) and equals 1 + 2εn. At first,

|hn(xn)− hn(yn)|
ρ(xn, yn)

= 1 + 2εn.

At second, if x, y ∈ En \ {xn}, then

|hn(x)− hn(y)|
ρ(xn, yn)

=
|g(x)− g(y)|

ρ(x, y)
6 1.

So, it remains to check that for every y ∈ E \ Un
|hn(xn)− hn(y)|

ρ(xn, y)
6 1 + 2εn.

In fact,

|hn(xn)− hn(y)|
ρ(xn, y)

=
|g(yn)− sn(1 + 2εn)ρ(xn, yn)− g(y)|

ρ(xn, y)

=
|g(yn)− sn(1 + 2εn)εnrn − g(y)|

ρ(xn, y)

6
|g(xn)− g(y)|

ρ(xn, y)
+
|g(yn)− g(xn)− sn(1 + 2εn)εnrn|

ρ(xn, y)

6 1 +
(1 + 2εn)εnrn

rn
6 1 + 2εn.

The claim is proved. Now, applying McShane’s extension theorem, we extend
hn to a functional gn on the whole of E preserving its Lipschitz constant. Then,
gn ∈ Lip0(X), ‖gn‖ = 1 + 2εn and

|gn(xn)− gn(yn)|
ρ(xn, yn)

=
|hn(xn)− hn(yn)|

ρ(xn, yn)
= 1 + 2εn,

so gn ∈ SA(E). On the other hand, supp(gn − g) ⊂ Un, so the functionals gn − g
are disjointly supported. According to Corollary 2.5, this implies that {gn − g}
converges weakly to 0. �

Remark 2.7. Choosing in the above proof sequences {εn} and {rn} converging
to zero, one gets additional properties of the approximating sequence gn. Namely,
one can get that {‖gn‖} −→ ‖g‖ and that {gn} converges uniformly on the whole
of E to g.
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As Banach spaces are local metric spaces, we may particularize Theorem 2.6
and Remark 2.7 to this case.

Corollary 2.8. Let X be a Banach space. Then, for every g ∈ Lip0(X) there is
a sequence {gn} in SA(X) which converges weakly to g. Moreover, the sequence
{gn} can be chosen in such a way that one also has that {‖gn‖} −→ ‖g‖ and that
{gn} converges uniformly on the whole of X to g.

3. Bishop-Phelps theorems for seminorms

Let X be a Banach space. We write Sem(X) for the set of all continuous
seminorms on X. As usual, we consider the set Sem(X) as a closed cone of
`∞(SX ,R), where for a set Γ, `∞(Γ,R) denotes the Banach space of all bounded
functions from Γ into R endowed with the uniform norm ‖·‖∞. We need a couple
of easy remarks on continuous seminorms: that they can be viewed as Lipschitz
functionals with equality of norms and that can be expressed in terms of the
norm of a bounded linear operator. We use the notation L(X, Y ) for the Banach
space of all bounded linear operators between the Banach spaces X and Y . Only
in this section, we will write ‖ · ‖Lip to denote the Lipschitz norm when there is
a possible confusion.

Remark 3.1. Let X be a Banach space.

(a) Sem(X) ⊆ Lip0(X) and ‖p‖Lip = ‖p‖∞ for every p ∈ Sem(X).
(b) For every p ∈ Sem(X), there exist a Banach space Y and T ∈ L(X, Y )

such that p(x) = ‖Tx‖ for all x ∈ X, which obviously satisfies ‖T‖ = ‖p‖.
Actually, one can consider Y = `∞(Γ,R) where Γ is a set whose cardinality
equals the density character of X.

Proof. (a) is a consequence of the triangle inequality. Indeed, for p ∈ Sem(X)
and x, y ∈ X with x 6= y, we have

|p(x)− p(y)|
‖x− y‖

6
p(x− y)

‖x− y‖
= p

(
x− y
‖x− y‖

)
6 ‖p‖∞,

so ‖p‖Lip 6 ‖p‖∞. Conversely, for every z ∈ SX we have

p(z) =
p(z)− p(0)

‖z − 0‖
6 ‖p‖Lip.

(b). Let Y be the completion of the quotient (X, p)/ ker p and let T ∈ L(X, Y ) be
the composition of the natural quotient map from X onto (X, p)/ ker p and the
inclusion into Y . It is then obvious that p(x) = ‖Tx‖ for every x ∈ X. For the
moreover part, just observe that the density character of Y is smaller or equal
than the one of X, so Y embeds isometrically into `∞(Γ,R) and one can view T
as an element of L(X, `∞(Γ,R)). �

Our goal in this section is to study norm attaining seminorms. As we have two
norms defined on Sem(X) and also we have two ways for a Lipschitz functional
to attain the norm, we have three possibilities. As a matter of fact, all of them
are the same for continuous seminorms.
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Lemma 3.2. Let X be a Banach space and p ∈ Sem(X). Then, the following
conditions are equivalent:

(i) p attains its norm as an element of `∞(SX ,R) (i.e. there exists z ∈ SX
such that p(z) = ‖p‖),

(ii) p ∈ SA(X) (i.e. there exists a pair (x, y) ∈ X ×X with x 6= y such that
|p(x)−p(y)|
‖x−y‖ = ‖p‖),

(iii) p ∈ DA(X) (i.e. there exists a sequence of pairs {(xn, yn)} in X ×X with

xn 6= yn for all n such that
{

xn−yn
‖xn−yn‖

}
is convergent and

{
p(xn)−p(yn)
‖xn−yn‖

}
−→

‖p‖,
(iv) for every Banach space Y and every such an operator T ∈ L(X, Y ) that

p(x) = ‖Tx‖ (x ∈ X), T attains its norm (i.e. there is z ∈ SX such that
‖Tz‖ = ‖T‖ = ‖p‖),

(v) there exist a Banach space Y and a norm attaining operator T ∈ L(X, Y )
such that p(x) = ‖Tx‖ (x ∈ X).

In case that p satisfies any (all) of the above condition, we will say that p is a
norm attaining seminorm.

Proof. For (i)⇒(ii), consider the pair (z, 0). (ii)⇒(iii), (iv)⇒(v) and (v)⇒(i) are
evident.

(iii)⇒(iv). Write u = lim xn−yn
‖xn−yn‖ , so T (u) = lim T (xn)−T (yn)

‖xn−yn‖ . Then

‖T (u)‖ = lim
‖T (xn)− T (yn)‖
‖xn − yn‖

> lim

∣∣‖T (xn)‖ − ‖T (yn)‖
∣∣

‖xn − yn‖

= lim
|p(xn)− p(yn)|
‖xn − yn‖

= ‖p‖. �

As a consequence of this result, we may provide an interesting example which
shows that there is a Lipschitz version of James theorem, but in this case it
characterizes finite-dimensionality instead of reflexivity.

Example 3.3. For every infinite-dimensional Banach space X, there is a contin-
uous seminorm p ∈ Sem(X) which does not attain its norm. As a consequence,
if DA(X) = Lip0(X) for a Banach space X, then X is finite-dimensional.

The example is based on [13, Lemma 2.2], but we include the details for the
sake of completeness.

Proof. Since X is infinite-dimensional, there is a sequence {x∗n} in SX∗ which
is weak-star convergent to 0 (this is the Josefson-Nissenzweig theorem). Now,
consider the seminorm p : X −→ R given by

p(x) = max

{
n |x∗n(x)|
n+ 1

: n ∈ N
}

(x ∈ X)

and observe that ‖p‖ = 1 but p(x) < 1 for every x ∈ SX . �

We are ready to prove the uniform density of the set of norm attaining semi-
norms. Actually, we may prove more.
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Proposition 3.4 (Bishop-Phelps-Bollobás theorem for seminorms in the uniform
norm). Let X be a Banach space. Then for every ε > 0 there is such a δ > 0 that
for every p0 ∈ Sem(X) with ‖p0‖ = 1 and every x0 ∈ SX with p0(x0) > 1 − δ,
there exist p ∈ Sem(X) with ‖p‖ = 1 and x ∈ SX such that

p(x) = 1 = ‖p‖, ‖x− x0‖ < ε, and ‖p− p0‖∞ = sup
x∈SX

|p(x)− p0(x)| < ε.

Proof. Let Γ be a set whose cardinality equals to the density character of X. It is
shown in [1, Theorem 2.2], that for every ε > 0, there is δ > 0 such that whenever
T0 ∈ L(X, `∞(Γ,R)) with ‖T0‖ = 1 and x0 ∈ SX satisfy that ‖T0(x0)‖ > 1 − δ,
there exist T ∈ L(X, `∞(Γ,R)) with ‖T‖ = 1 and x ∈ SX such that

‖Tx‖ = 1 = ‖T‖, ‖x− x0‖ < ε, ‖T − T0‖ < ε. (3.1)

Now, for a given ε > 0, consider such a δ > 0. By Remark 3.1, there is T0 ∈
L(X, `∞(Γ,R)) such that p0(x) = ‖T0(x)‖ for all x ∈ X. As p0(x0) > 1 − δ, we
have ‖T0(x0)‖ > 1 − δ and we may find T ∈ L(X, `∞(Γ,R)) with ‖T‖ = 1 and
x ∈ SX satisfying (3.1). Consider p ∈ Sem(X) be given by p(z) = ‖T (z)‖ for
every z ∈ X. Then, ‖p‖ = 1 = p(x), ‖x− x0‖ < ε and

|p(z)− p0(z)| =
∣∣‖T (z)‖ − ‖T0(z)‖

∣∣ 6 ‖T (z)− T0(z)‖ 6 ‖T − T0‖ < ε

for every z ∈ SX , so ‖p− p0‖∞ < ε, finishing the proof. �

One may wonder whether the above result is also true replacing ‖p− p0‖∞ by
‖p − p0‖Lip. In general, ‖p − q‖∞ 6 ‖p − q‖Lip for all p, q ∈ Sem(X), so the
uniform convergence of seminorms is weaker than the Lipschitz convergence, and
the next example shows that it is indeed strictly weaker.

Remark 3.5. The uniform convergence of seminorms does not force the Lipschitz
convergence, even in the finite-dimensional case. Indeed, let X be the two
dimensional space R2 endowed with the maximum norm, let p0 ∈ Sem(X) be
defined by p0(x1, x2) = |x1| for every (x1, x2) ∈ X, and for every n ∈ N let
pn ∈ Sem(X) be defined by pn(x1, x2) = max{|x1|, 1

n
|x2|} for every (x1, x2) ∈ X.

On the one hand, ‖pn − p0‖∞ 6 1/n, so {pn} is uniformly convergent to p0. On
the other hand,

‖pn − p0‖Lip >
∣∣(pn(0, n)− p0(0, n)

)
−
(
pn(1, n)− p0(1, n)

)∣∣
‖(0, n)− (1, n)‖

= 1.

Our last result in this section shows that the Radon-Nikodým property is suf-
ficient to assure that norm attaining seminorms are dense in the Lipschitz sense.

Proposition 3.6 (Bishop-Phelps theorem for seminorms in the Lipschitz norm
for RNP spaces). Let X be a Banach space with the Radon-Nikodým property.
Then, the set of norm attaining seminorms is Lipschitz-norm dense in Sem(X).

Proof. It is an easy consequence of the following (quite not easy) Stegall’s result
[14, Theorem on page 174] from which we are citing only the part which we need:
let D be an RNP set and f : D −→ R be upper semicontinuous and bounded
above. Then, for every ε > 0, there exists x∗ ∈ X∗ with ‖x∗‖ < ε such that
f + |x∗| attains its supremum on D. Now, let us apply this theorem to D = BX
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and f = p ∈ Sem(X). Then, the corresponding q := p+ |x∗| is again a continuous
seminorm, and q is norm-attaining. Finally,

‖p− q‖Lip =
∥∥|x∗|∥∥

Lip
=
∥∥|x∗|∥∥∞ = ‖x∗‖ < ε. �

4. Two preliminary results

In this section we demonstrate two preliminary results on the way to Theo-
rem 5.3. The first one is a weak version of the Bishop-Phelps-Bollobás theorem
for Lipschitz functionals, valid for all Banach spaces, which can be of independent
interest.

Lemma 4.1 (Preliminary LipBPB Theorem). Let X be a Banach space, f ∈
Lip0(X), ‖f‖ = 1, δ ∈ (0, 2) and let x, y ∈ X, x 6= y be such elements that

f(x)− f(y)

‖x− y‖
> 1− δ. (4.1)

Then for every h ∈ Lip0(X) with ‖h‖ = 1 and h(x)−h(y)
‖x−y‖ = 1, there exists g ∈

Lip0(X) with ‖g‖ = 1, ‖f − g‖ <
√

2δ and there exists a sequence of pairs
{(vn, wn)} in X ×X with vn 6= wn for every n, such that

h(vn)− h(wn)

‖vn − wn‖
> 1−

√
2δ for all n ∈ N and lim

n→∞

g(vn)− g(wn)

‖vn − wn‖
= 1.

The proof of this result is based on the Lipschitz-free space technique, so let us
first recall the relevant definitions and basic facts. For every x ∈ X, we denote
x̂ the corresponding evaluation functional on Lip0(X), i.e. x̂(f) = f(x). Then x̂
is an element of Lip0(X)∗. The subspace Lin{x̂ : x ∈ X} of Lip0(X)∗ is denoted
by F(X). The most common name for F(X) is the Lipschitz-free space of X.
This object was studied under various names by several authors ([3], [12], [10]),
and is known to be useful for Lipschitz maps study.

The elements of Lip0(X) are continuous linear functionals on F(X), moreover
F(X)∗ = Lip0(X) as Banach spaces. The map x 7−→ x̂ is a non-linear isometric
embedding of X into F(X) since ‖x̂− ŷ‖F(X) = ‖x− y‖X for all x, y ∈ X.

The action of f ∈ Lip0(X) on w ∈ F(X) is denoted by 〈f, w〉. With this
notation, 〈f, x̂〉 = f(x) and the formula (1.2) can be re-written as follows:

‖f‖ = sup

{∣∣∣∣〈f, x̂− ŷ
‖x− y‖

〉∣∣∣∣ : x, y ∈ X, x 6= y

}
. (4.2)

DenoteW =
{

x̂−ŷ
‖x−y‖ : x, y ∈ X, x 6= y

}
and observe thatW is a symmetric subset

of SF(X). The Hahn-Banach theorem, together with formula (4.2), gives us the
following result:

BF(X) = convW. (4.3)

We are now ready to prove our result.

Proof of Lemma 4.1. Consider w = x̂−ŷ
‖x−y‖ ∈ SF(X). The condition (4.1) gives us

that 〈f, w〉 > 1 − δ. Since f ∈ Lip0(X) = F(X)∗, the Bishop-Phelps-Bollobás
theorem (Theorem 1.1) is applicable. So, there are g ∈ Lip0(X) with ‖g‖ = 1
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and z ∈ F(X) with ‖z‖ = 1 such that ‖w − z‖ <
√

2δ, ‖f − g‖ <
√

2δ, and

〈g, z〉 = 1. Let ν > 0 be such a number that ‖w− z‖ < ν <
√

2δ. Fix a sequence
{δn} of positive numbers converging to 0. The formula (4.3) implies that we can
select a sequence {zn} in convW converging to z in such a way that

‖w − zn‖ < ν, and 〈g, zn〉 > 1− δn. (4.4)

The condition on h means 〈h,w〉 = 1, consequently

〈h, zn〉 > 〈h,w〉 − ‖w − zn‖ > 1− ν. (4.5)

Choose a sequence {αn} in (0, 1) satisfying the conditions

lim
n→∞

αn = 0 and lim
n→∞

δn
αn

= 0. (4.6)

Fix n ∈ N. Combining inequalities (4.4) and (4.5), we obtain

αn〈h, zn〉+ (1−αn)〈g, zn〉 > αn(1− ν) + (1−αn)(1− δn) = 1−αnν− (1−αn)δn.

Since zn ∈ convW , the last inequality implies that there exists un ∈ W such that

αn〈h, un〉+ (1− αn)〈g, un〉 > 1− αnν − (1− αn)δn.

Combining this fact with the evident estimates 〈h, un〉 6 1 and 〈g, un〉 6 1, we
deduce that

〈g, un〉 > 1− δn −
αn

1− αn

√
2δ

and

〈h, un〉 > 1− ν − δn
1− αn
αn

.

These inequalities, together with (4.6), imply that

〈g, un〉 −→ 1

and that

〈h, un〉 > 1−
√

2δ

for n ∈ N large enough. In order to complete the proof, it remains to recall that
every un ∈ W is of the form v̂n−ŵn

‖vn−wn‖ for some vn, wn ∈ X with vn 6= wn. �

Before stating the second result, we need a couple of definitions.

Definition 4.2. A functional g ∈ Lip0(X) attains its norm in a point v ∈ X at
the direction u ∈ SX if there is a sequence of pairs {(xn, yn)} in X × X, with
xn 6= yn, such that

lim
n→∞

xn = lim
n→∞

yn = v, lim
n→∞

xn − yn
‖xn − yn‖

= u and lim
n→∞

g(xn)− g(yn)

‖xn − yn‖
= ‖g‖.

In this case, we say that g attains its norm locally-directionally. The set of all
those f ∈ Lip0(X) that attain their norm locally-directionally is denoted by
LDA(X).
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Definition 4.3. A Banach space X has the local directional Bishop-Phelps-
Bollobás property for Lipschitz functionals (X ∈ LLipBPB for short), if for every
ε > 0 there is such a δ > 0, that for every f ∈ Lip0(X) with ‖f‖ = 1 and for

every x, y ∈ X with x 6= y satisfying f(x)−f(y)
‖x−y‖ > 1− δ, there is g ∈ Lip0(X) with

‖g‖ = 1 and there are v ∈ X, u ∈ SX such that g attains its norm in the point v

at the direction u, ‖g − f‖ < ε,
∥∥∥ x−y
‖x−y‖ − u

∥∥∥ < ε, and dist(v, conv{x, y}) < ε.

The second preliminary result of this section, which also can be of indepen-
dent interest, is a relaxation of the requirements for a Banach space to have the
LLipBPB.

Lemma 4.4. Let X be a Banach space. Suppose that for every ε > 0 there
is such a δ > 0 that for every f ∈ Lip0(X) with ‖f‖ = 1 and for every pair

(x, y) ∈ X ×X, x 6= y with f(x)−f(y)
‖x−y‖ > 1 − δ there is g ∈ Lip0(X) with ‖g‖ = 1

and a sequence of pairs {(vn, wn)} in X ×X with vn 6= wn for every n, such that

lim
n→∞

g(vn)− g(wn)

‖vn − wn‖
= 1, (4.7)

‖g−f‖ < ε,
∥∥∥ x−y
‖x−y‖ −

vn−wn

‖vn−wn‖

∥∥∥ < ε, ‖vn−wn‖ < ε, and dist(vn, conv{x, y}) < ε.

Then X ∈ LLipBPB.

Observe that the difference between the requirements of the lemma above and
the local directional Bishop-Phelps-Bollobás property is that here the convergence

of the sequences {vn}, {wn} and
{

vn−wn

‖vn−wn‖

}
is not required since these sequences

depend upon ε (but they are still well-controlled).

Proof. For a fixed ε > 0 let us select a decreasing sequence {εn} of positive
number such that

∑∞
n=1 εn < ε/4. For every n ∈ N, let δn = δ(εn) be from

the assumptions of the lemma for εn. We will demonstrate that δ = δ1 satisfies
conditions of Definition 4.3 for ε.

To this end, let us fix f ∈ Lip0(X) with ‖f‖ = 1 and a pair (x, y) ∈ X × X,

x 6= y, such that f(x)−f(y)
‖x−y‖ > 1− δ. Applying the hypotheses to ε1 = ε, δ1 = δ(ε1),

the norm-one Lipschitz functional f1 = f and the pair (x1, y1) = (x, y) in X ×X
which satisfy f1(x1)−f1(y1)

‖x1−y1‖ > 1− δ1, we get the corresponding g1 and the sequence

of pairs {(vn, wn)}. Thanks to (4.7), we can find such an n1 ∈ N that

g1(vn1)− g1(wn1)

‖vn1 − wn1‖
> 1− δ2.

Let us denote f2 = g1, x2 = vn1 , and y2 = wn1 . Then, ‖f1 − f2‖ < ε1,∥∥∥ x1−y1
‖x1−y1‖ −

x2−y2
‖x2−y2‖

∥∥∥ < ε1, dist(x2, conv{x1, y1}) < ε1, ‖x2 − y2‖ < ε1 and

f2(x2)− f2(y2)
‖x2 − y2‖

> 1− δ2.

The last condition enables us to apply again the hypotheses of the lemma to ε2,
δ2, f2 and (x2, y2) in order to get the corresponding f3 and (x3, y3). Repeating
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this process, we obtain sequences {fn} in Lip0(X) with ‖fn‖ = 1 and {(xn, yn)}
in X ×X with xn 6= yn having the following properties:

(a) ‖fn − fn+1‖ < εn,

(b)
∥∥∥ xn−yn
‖xn−yn‖ −

xn+1−yn+1

‖xn+1−yn+1‖

∥∥∥ < εn,

(c) fn(xn)−fn(yn)
‖xn−yn‖ > 1− δn,

(d) dist(xn+1, conv{xn, yn}) < εn,
(e) ‖xn − yn‖ < εn−1.

Conditions (d) and (e) imply that ‖xn+1 − xn‖ < 2εn−1, n = 2, 3, . . .. Conse-
quently, the sequence {xn} has some limit v ∈ X, and by (e) the sequence {yn}
has the same limit v. For this v we have

dist(v, conv{x, y}) 6 dist(x2, conv{x1, y1})+‖x2−v‖ < ε1 +
∞∑
n=2

‖xn−xn+1‖ < ε.

The condition (a) implies that the sequence {fn} has some limit g ∈ Lip0(X)

with ‖g‖ = 1, and the condition (b) implies that the sequence
{

xn−yn
‖xn−yn‖

}
has

some limit u ∈ SX . Moreover,

‖f − g‖ <
∞∑
n=1

εn < ε and

∥∥∥∥ x1 − y1
‖x1 − y1‖

− u
∥∥∥∥ < ∞∑

n=1

εn < ε.

Also,
g(xn)− g(yn)

‖xn − yn‖
> 1− δn − ‖g − fn‖,

so limn→∞
g(xn)−g(yn)
‖xn−yn‖ = 1, which proves that g attains its norm at v in the direc-

tion u. �

5. Bishop-Phelps-Bollobás theorem for uniformly convex spaces

Let us recall the well-known concept of uniform convexity.

Definition 5.1. A Banach space X is said to be uniformly convex, if for every
ε > 0 there is such a δ > 0, that for every pair x, y ∈ BX the condition ‖x−y‖ > ε
implies

∥∥x+y
2

∥∥ 6 1− δ. (Equivalently, ‖(x+ y)/2‖ > 1− δ ⇒ ‖x− y‖ < ε). The
best possible value of δ is denoted δX(ε).

The unit ball of a uniformly convex space has many small slices. Recall, that
if X is a Banach space, for given x∗ ∈ SX∗ and δ > 0 the corresponding slice
of the unit ball is defined as S(BX , x

∗, δ) := {x ∈ BX : x∗(x) > 1 − δ}. The
following easy result states a “uniform way” to find small slices on a uniformly
convex space. A proof of it can be found in [2, Lemma 2.1].

Lemma 5.2. Let X be a uniformly convex space and ε > 0. Then

diamS
(
BX , f, δX(ε)

)
< ε

for every f ∈ SX∗ and every ε > 0.

We may now state and prove the main result of the paper.
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Theorem 5.3. Every uniformly convex Banach space X has the local directional
Bishop-Phelps-Bollobás property for Lipschitz functionals.

This result implies, in particular, that for a uniformly convex Banach space X,
the set of those Lipschitz functions which attain their norm (locally-)directionally
is dense in the space Lip0(X) (with the Lipschitz norm). We do not know whether
this density holds in every Banach space X.

Proof of Theorem 5.3. For a fixed ε ∈ (0, 1/2) let us chose such a δ ∈ (0, ε2/2)

that
√

2δ < 1
2
δX(ε). Let f ∈ Lip0(X) with ‖f‖ = 1 and x, y ∈ X, x 6= y,

such that f(x)−f(y)
‖x−y‖ > 1 − δ. Select x̃, ỹ ∈ conv{x, y} in such a way that ‖x̃ −

ỹ‖ < 1
4

min{ε, ‖x̃‖, ‖ỹ‖}, the vector x̃ỹ looks at the same direction that xy (i.e.
x̃−ỹ
‖x̃−ỹ‖ = x−y

‖x−y‖) and such that still f(x̃)−f(ỹ)
‖x̃−ỹ‖ > 1− δ.

Define F ∈ Lip0(X) by the formula F (z) = max{‖x̃− ỹ‖ − ‖x̃− z‖, 0}. Then

‖F‖ = 1 and F (x̃)−F (ỹ)
‖x̃−ỹ‖ = 1. Let us denote x∗ ∈ SX∗ the supporting functional

at the point x̃−ỹ
‖x̃−ỹ‖ . Then, by linearity, x∗(x̃)−x∗(ỹ)

‖x̃−ỹ‖ = 1, so we can apply the

preliminary LipBPB Theorem (Lemma 4.1) with f , (x, y) and h = 1
2
(F + x∗) ∈

Lip0(X). According to it, there exist g ∈ Lip0(X) with ‖g‖ = 1, ‖f − g‖ <√
2δ < ε and a sequence of pairs {(vn, wn)} in X ×X with vn 6= wn, such that

h

(
vn − wn
‖vn − wn‖

)
=

1

2

(
F (vn)− F (wn)

‖vn − wn‖
+
x∗(vn)− x∗(wn)

‖vn − wn‖

)
> 1−

√
2δ (5.1)

for all n ∈ N, and

lim
n→∞

g(vn)− g(wn)

‖vn − wn‖
= 1.

The inequality (5.1) and the fact that ‖x∗‖ = ‖F‖ = 1 imply that

F (vn)− F (wn)

‖vn − wn‖
> 1− 2

√
2δ > 1− 2ε, (5.2)

and
x∗(vn)− x∗(wn)

‖vn − wn‖
> 1− 2

√
2δ > 1− δX(ε).

The last condition means geometrically that vn−wn

‖vn−wn‖ ∈ S(BX , x
∗, δX(ε)). Since

also x−y
‖x−y‖ = x̃−ỹ

‖x̃−ỹ‖ ∈ S(BX , x
∗, δX(ε)), we get from Lemma 5.2 that∥∥∥∥ x− y
‖x− y‖

− vn − wn
‖vn − wn‖

∥∥∥∥ < ε

for every n ∈ N. The function F takes only non-negative values, and the condition
(5.2) implies that F (vn)−F (wn) > 0, so vn ∈ suppF . Since the maximal possible
value of F is ‖x̃− ỹ‖ < ε/4, the condition (5.2) implies also that

‖vn − wn‖ <
F (vn)− F (wn)

1− 2ε
<

ε

4(1− 2ε)
< ε.

As vn ∈ suppF , we have that ‖vn− x̃‖ < ‖x̃− ỹ‖ < ε, so dist(vn, conv{x, y}) < ε.
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We have verified all the conditions of Lemma 4.4. The application of that
Lemma shows that X has the local directional Bishop-Phelps-Bollobás property
for Lipschitz functionals. �
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