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Abstract. The only in�nite-dimensional complex space with 1-unconditional basis which has poly-
nomial numerical index of order 2 equal to 1 is c0. In the real case, there is no space of this type.
We also show that, in the complex case, if X is an in�nite-dimensional Banach sequence space with
absolute norm whose dual is norming and has polynomial numerical index of order 2 equal to 1, then
c0 ⊂ X ⊂ `∞. In the real case, again there is no space of this type.

1. Introduction

The aim of this paper is to show that among Banach sequence spaces with absolute norm there
are not too many spaces which have polynomial numerical index of order 2 equal to 1, improving, for
sequence spaces, our previous results with J. Merí [17]. Let us present the relevant de�nitions.

Let X be a Banach space over a scalar �eld K (= R or = C) and write BX for the closed unit ball,
SX for the unit sphere and X∗ for the dual space. T stands for the set of modulus-one scalars and
given a set A ⊂ X, conv(A) stands for the closed convex hull of A and, so, conv(TA) is the absolutely
closed convex hull of the set A. The set A is rounded if TA = A. Finally, given x∗ ∈ SX∗ which attains
its norm, the face generated by x∗ is F (x∗) := {x ∈ BX : x∗(x) = 1}. Let X and Y be Banach
spaces. For k ∈ N, a bounded k-homogeneous polynomial P : X −→ Y is P (x) = L(x, . . . , x) for all
x ∈ X, where L : X × · · · ×X −→ Y is a continuous k-multilinear map. We denote by P

(
kX;Y

)
the

space of all bounded k-homogeneous polynomials from X into Y . A polynomial on X is just a linear
combination of homogeneous polynomial and we write P (X;Y ) for the space of all polynomials from
X into Y , which is endowed with the norm

‖P‖ = sup{‖P (x)‖ : x ∈ BX}.
Then P

(
kX;Y

)
becomes a Banach space when considered as a subspace of P (X;Y ). Given a poly-

nomial P ∈ P (X;X), the numerical radius of P is

v(P ) = sup
{
|x∗(Px)| : (x, x∗) ∈ SX × SX∗ , x∗(x) = 1

}
.

In 2006, Y. S. Choi, D. García, S. G. Kim and M. Maestre [4] introduced the polynomial numerical

index of order k of a Banach space X as the constant n(k)(X) de�ned by

n(k)(X) = max
{
c > 0 : c ‖P‖ 6 v(P ) ∀P ∈ P

(
kX;X

)}
= inf

{
v(P ) : P ∈ P

(
kX;X

)
, ‖P‖ = 1

}
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for every k ∈ N. For k = 1, this number is known as the numerical index of X and it was �rst
suggested by G. Lumer in 1968 (see [8]). For more information and background, we refer the reader
to the survey paper [10] and to [4, 5, 6, 9, 14, 15, 16] and references therein. Some examples of spaces
whose polynomial numerical indices are known are the following. In the complex case, n(k)(C(K)) =
n(k)(c0) = 1 for every k ∈ N and n(2)(`1) 6 1

2 . In the real case, n(k)(R) = 1 and

n(2)(`m1 ) = n(2)(`m∞) = n(2)(c0) = n(2)(`1) = n(2)(`∞) = 1/2.

We write `m∞ and `m1 for the m-dimensional `∞-space and `1-space respectively.

A Banach sequence space with absolute norm is a K-linear subspace X of KN (the space of all
sequences) endowed with a complete norm ‖ · ‖X satisfying

(a) Given x, y ∈ KN with |y(n)| 6 |x(n)| for every n ∈ N, if x ∈ X, then y ∈ X with ‖y‖X 6 ‖x‖X .
(b) For every n ∈ N, the sequence en ∈ KN given by en(n) = 1, en(k) = 0 if k 6= n, belongs to X

with ‖en‖X = 1.

It can be easily deduced from the de�nition that

`1 ⊆ X ⊆ `∞
with contractive inclusions or, equivalently, that

sup{|x(n)| : n ∈ N} 6 ‖x‖X 6
∞∑
n=1

|x(n)| (x ∈ X).

We will write ‖ · ‖ = ‖ · ‖X when the space X is clear from the context.

A Banach sequence space with absolute norm X is actually a Köthe space on the counting measure
on N. We refer to [19] for background on Köthe spaces. From this book we take the following standard
terminology. The Köthe dual X ′ of X is the collection of all sequences y ∈ KN such that

‖y‖X′ := sup

{ ∞∑
n=1

|y(n)||x(n)| : x ∈ BX

}
<∞.

It is clear that (X ′, ‖ · ‖X′) is a Banach sequence space with absolute norm. Every element y ∈ X ′
de�nes naturally a continuous linear functional on X by the formula

x 7−→
∞∑
n=1

y(n)x(n)
(
x ∈ X

)
,

so we have X ′ ⊆ X∗ with isometric inclusion. For n ∈ N, we will write e′n for the functional
e′n(x) = x(n) for every x ∈ X (i.e., e′n is the sequence en ∈ X ′ viewed as an element of X∗). We
say that X is order continuous if 0 6 xα ↓ 0 and xα ∈ X imply that limα ‖xα‖ = 0. For Banach
sequence spaces, this is known to be equivalent to separability and to the fact that X ′ = X∗. If
X is order continuous (i.e. separable), the set of those sequences with �nite support is dense in X.
Moreover, {en} is a 1-unconditional basis of X. Reversely, if X is any in�nite-dimensional Banach
space with 1-unconditional basis {un}, we may de�ne an operator Φ : X −→ KN by Φ(x) = (an)n∈N
for x =

∑∞
n=1 an un/‖un‖ ∈ X. Then Φ(X) endowed with the norm inherited from X is an order

continuous Banach sequence space with absolute norm which is completely identi�ed with X. See [19]
for more details.

In the recent paper [17], some restrictions for a Banach space with absolute norm (a more general
concept than the one of Banach sequence space with absolute norm) to have polynomial numerical
index of order 2 equal to 1 were presented. In particular, it is shown that for a complex Banach
sequence space with absolute norm X such that n(2)(X) = 1, if X has the RNP then X = `m∞ for
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some m ∈ N; if X is Asplund, then X = c0. For real spaces, it is shown that a Banach sequence
space X with absolute norm satisfying n(2)(X) = 1 is one-dimensional if it has the RNP or it is
Asplund. These results generalize previous results of the �rst author of this paper [14, 16] to the
in�nite-dimensional setting.

In the present paper, we are able to remove the RNP and Asplund assumptions. Indeed, it is shown
that the only in�nite-dimensional complex separable Banach sequence space with absolute norm X
which satis�es n(2)(X) = 1 is X = c0; in the real case, we prove that for every in�nite-dimensional
separable Banach sequence space with absolute norm X, one has n(2)(X) < 1. This is equivalent to
say that c0 is the only complex in�nite-dimensional Banach space with 1-unconditional basis which
has polynomial numerical index of order 2 equal to 1 and that for every in�nite-dimensional real
Banach space with 1-unconditional basis, the polynomial numerical index of order 2 cannot be equal
to 1. We are also able to extend the above result to the nonseparable case when the Köthe dual is
norming. We show that a complex in�nite-dimensional Banach sequence space with absolute norm X
such that X ′ is norming for X satis�es n(2)(X) = 1 if and only if c0 ⊂ X ⊂ `∞. In the real case, we
prove that for every in�nite-dimensional Banach sequence space with absolute norm such that X ′ is
norming for X, one has n(2)(X) < 1.

The outline of the paper is the following. Section 2 is devoted to prove some needed preliminary
results on lush spaces and spaces with the alternative Daugavet property (de�nitions are there). Then
we present in section 3 the announced results on Banach sequence spaces with polynomial numerical
index one.

2. Preliminaries on lushness and on the alternative Daugavet property

A Banach space X is said to be lush [3] if for every x, y ∈ SX and every ε > 0, there is a slice
S = {x ∈ BX : Rex∗(x) > 1 − ε} with x∗ ∈ SX∗ such that x ∈ S and dist (y, conv(TS)) < ε.
Lush spaces have numerical index 1 [3, Proposition 2.2], but it has been very recently shown that the
converse result is not true [12]. We refer to [2, 3, 11] for background.

A Banach space X has the alternative Daugavet property [20] if every rank-one operator T ∈ L(X)
satis�es the norm equality

(aDE) max
θ∈T
‖ Id +θ T‖ = 1 + ‖T‖

and then all weakly compact operators on X also satisfy (aDE). Equivalently, X has the alternative
Daugavet property if and only if v(T ) = ‖T‖ for every rank-one (equivalently, for every weakly
compact) operator T ∈ L(X) [20, Theorem 2.2 and Lemma 2.3]. Therefore, if a Banach space has
numerical index 1, then it has the alternative Daugavet property, being the reverse implication false
in general [20, Example 3.2].

Summarizing, lushness implies numerical index 1 which implies the alternative Daugavet property,
and none of these two implications reverse.

We present now the preliminary results that we will use in the next section.

Proposition 2.1. Let X be a separable lush space. Then there exists a rounded subset C ⊂ SX∗

which is norming for X and satis�es

(a) |x∗∗(x∗)| = 1 for every x∗ ∈ C and every x∗∗ ∈ ext(BX∗∗).
(b) BX = conv

(
TF (x∗)

)
for every x∗ ∈ C.

(c) The set B =
⋃
x∗∈C F (x∗) is dense in SX .
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The proof of this proposition relied on [11, Theorem 4.3] and [1, Corollary 3.5]. We state them
here for the sake of completeness.

Lemma 2.2. [11, Theorem 4.3] Let X be a separable lush space. Then there exists a rounded subset
C ⊂ SX∗ which is norming for X and satis�es that |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext(BX∗∗) and every
x∗ ∈ C.

Lemma 2.3. [1, Corollary 3.5] Let X be a Banach space and let x∗ ∈ SX∗ such that |x∗∗(x∗)| = 1
for every x∗∗ ∈ ext(BX∗∗). Then F (x∗) 6= ∅ and, moreover, BX = conv

(
TF (x∗)

)
.

Proof of Proposition 2.1. We consider the set C ⊂ SX∗ given by Lemma 2.2 which satis�es (a) and
we observe that Lemma 2.3 gives (b).

Let us prove (c). Fix x0 ∈ SX and ε > 0, and we look for x ∈ B such that ‖x0 − x‖ < ε. Consider

0 < δ < 1 such that
√

2δ + 2δ + δ2/2 < ε and take x∗0 ∈ C such that

Rex∗0(x0) > 1− δ2/2.

As we have BX = conv
(
TF (x∗0)

)
by (b), we may �nd y ∈ BX such that

‖x0 − y‖ < δ2/2 and y =

m∑
k=1

λkθkxk

where xk ∈ F (x∗0), θk ∈ T, 0 6 λk 6 1 for k = 1, . . . ,m,
∑
λk = 1, and m ∈ N (in the real case it

is possible to take m = 2 and the argument simpli�es). From the above two equations, we get that
Rex∗0(y) > 1− δ2 and so

m∑
k=1

λk Re θk > 1− δ2.

We write

A =
{
k ∈ {1, . . . ,m} : Re θk > 1− δ

}
, B = {1, . . . ,m} \A, and µA =

∑
k∈A

λk ,

and prove that

µA > 1− δ and so
∑
k∈B

λk < δ

(which, in particular, shows that A is nonempty). Indeed, we have

1− δ2 <
m∑
k=1

λk Re θk 6 µA + (1− δ)(1− µA)

and an obvious simpli�cation gives the result. On the one hand, for k ∈ A we have Re θk > 1− δ and
an straightforward computation gives that

|θk − 1| <
√

2δ for every k ∈ A.
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Finally, we consider x =
∑
k∈A

λk
µA

xk ∈ F (x∗0) ⊂ B and estimate ‖x0 − x‖ as

‖x0 − x‖ 6 ‖y − x‖+ δ2/2 =

∥∥∥∥∥
m∑
k=1

λkθkxk −
∑
k∈A

λk
µA

xk

∥∥∥∥∥+ δ2/2

6

∥∥∥∥∥∑
k∈A

λk (θk − 1)xk

∥∥∥∥∥+

∥∥∥∥∥∑
k∈A

λk

(
1

µA
− 1

)
xk

∥∥∥∥∥+

∥∥∥∥∥∑
k∈B

λkθkxk

∥∥∥∥∥+ δ2/2

<
∑
k∈A

λk
√

2δ +
∑
k∈A

λk

(
1

µA
− 1

)
+ (1− µA) + δ2/2

< µA
√

2δ + (1− µA) + (1− µA) + δ2/2 <
√

2δ + 2δ + δ2/2 < ε. �

In the case of a space with 1-unconditional basis, it is posible to get more information about the
set C in Proposition 2.1. On the other hand, in this case lushness is equivalent to the alternative
Daugavet property. All of this are collected in the next statement.

Corollary 2.4. Let X be a separable Banach sequence space with absolute norm which has the al-
ternative Daugavet property. Then there exist a rounded set C ⊂ SX′ (norming for X) satisfying
|x′| ∈ {0, 1}N for every x′ ∈ C, and a dense subset B ⊂ SX such that, for every x ∈ B, there is an
x′ ∈ C such that x′(x) = 1.

We will use the following result which is a particular case of [17, Lemma 3.2] and we state it for
completeness.

Lemma 2.5. [17, Lemma 3.2] Let X be a separable Banach sequence space with absolute norm and
let x′ ∈ SX′ such that |x∗∗(x′)| = 1 for every x∗∗ ∈ ext(BX∗∗). Then |x′(n)| ∈ {0, 1} for every n ∈ N.

Proof of Corollary 2.4. As we commented in the introduction, separable Banach sequence spaces with
absolute norm have 1-unconditional basis and then, it follows from [13, Corollary 3.2] that the alterna-
tive Daugavet property and lushness are equivalent for them. Therefore, X is lush and Proposition 2.1
applies, providing two sets C ⊂ SX′ and B ⊂ SX which do the job. Actually, the only assertion which
is not directly given by Proposition 2.1 is that |x′| ∈ {0, 1}N for every x′ ∈ C, but this follows from
Lemma 2.5. �

3. The main results

We are now able to prove the main result of the paper, i.e., that among Banach spaces with 1-
unconditional basis, the only ones which have polynomial numerical index of order 2 equal to 1 are c0
and `m∞ in the complex case, and R in the real case.

Theorem 3.1. Let X be a Banach space with 1-unconditional basis and n(2)(X) = 1. If X is a real
space, then X = R. If X is a complex space, then either X = c0 or there exists m ∈ N such that
X = `m∞.

Since the proof of this result is mainly deduced from [17, Proposition 4.1], for the sake of complete-
ness, we state here this result in the setting of sequence spaces.

Lemma 3.2. [17, Proposition 4.1] Let X be a Banach sequence space with absolute norm. Suppose
that there exists a dense subset B in SX and a set C ⊂ SX′ such that |x′| ∈ {0, 1}N for every x′ ∈ C
and satisfying that for every x ∈ B there is x′ ∈ C with x′(x) = 1. If n(2)(X) = 1, then given
x∗ ∈ BX∗ and k, j ∈ N such that |x∗(ej)| = |x∗(ek)| = 1, we get j = k.
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Proof of Theorem 3.1. Since the �nite-dimensional case is covered by [17, Theorems 4.2 and 4.3], we
suppose that the basis of X is in�nite for the sake of simplicity, but the proof for �nite bases follows
the same lines.

As it was commented in the introduction, if X has 1-unconditional basis, then it is (isometrically
isomorphic to) a separable Banach sequence space with absolute norm. Since n(2)(X) = 1, it fol-
lows that n(X) = 1 [4, Proposition 2.5] and so that X has the alternative Daugavet property [20,
Lemma 2.3]. Therefore, we may apply Corollary 2.4 to get a set C ⊂ SX′ (norming for X) satisfying
that |x′| ∈ {0, 1}N for every x′ ∈ C, and a dense subset B ⊂ SX such that, for every x ∈ B, there
exists x′ ∈ C such that x′(x) = 1. The existence of such sets is exactly the hypothesis of Lemma 3.2.
So, we conclude that there is no x′ ∈ SX∗ and k, j ∈ N, k 6= j, such that |x′(k)| = |x′(j)| = 1.
Applying this to the elements of the set C, whose coordinates are of modulus 0 or 1, we get that

C ⊆
{
ω e′n : ω ∈ T, n ∈ N} ⊂ BX∗ .

Being C norming for X, this gives that

‖x‖ = sup{|x(n)| : n ∈ N} (x ∈ X).

Since X is the closed linear span of {en : n ∈ N} we deduce that X is isometric to c0.

Finally, in the complex case, n(2)(c0) = 1 and this space is possible. In the real case, n(2)(c0) = 1/2
and, therefore, the in�nite-dimensional case gives no space. �

The rest of the paper is devoted to extend the result in Theorem 3.1 to nonseparable Banach
sequence spaces with absolute norm. First of all, we have to check that the hypotesis of n(2)(X) = 1
in this theorem can be weakened to the k-order alternative Daugavet property.

Analogously to the linear case, we say that a Banach space X has the k-order alternative Daugavet
property (k-ADP for short) [5] if for every scalar k-homogeneous polynomial p ∈ P

(
kX;K

)
and every

x ∈ X, the norm equality
max
θ∈T
‖ Id +θ p⊗ x‖ = 1 + ‖p⊗ x‖

holds (the norm is taken in the space P (X;X)). In this case, ‖ Id +P‖ = 1 + ‖P‖ or, equivalently,
v(P ) = ‖P‖, for every compact polynomial P ∈ P

(
kX;X

)
(see [5, Corollary 1.2 and Proposition 1.3]).

Let us observe that in the proof of Theorem 3.1 above, if we just assume that X has the 2-ADP, we
still have that X has the alternative Daugavet property [5, Proposition 3.7] and the set C and B there
are also given by Corollary 2.4. Moreover, going into the proof of [17, Proposition 4.1], one realizes
that only compact polynomials (actually, rank-two polynomials) are used and so the hypothesis of
n(2)(X) = 1 can be weakened to the 2-ADP. Therefore, we actually have the following formally
stronger result.

Remark 3.3. Let X be a separable Banach sequence space with absolute norm which has the 2-order
alternative Daugavet property. If X is real, then X = R. If X is complex, then either X = c0 or
X = `m∞ for some m ∈ N.

It is possible to extend the results of Theorem 3.1 to the nonseparable case, but only to those
sequence spaces for which the Köthe dual is norming. We only state the in�nite-dimensional case
since the �nite-dimensional case is covered by the theorem.

Corollary 3.4. Let X be an in�nite-dimensional Banach sequence space with absolute norm such
that X ′ is norming for X. In the complex case, if n(2)(X) = 1, then c0 ⊂ X ⊂ `∞ isometrically. In

the real case we always have that n(2)(X) < 1.

We need a technical lemma whose proof takes ideas from [13, Lemma 3.8].
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Lemma 3.5. Let X be a Banach sequence space with absolute norm such that X ′ is norming for X
and let k be a positive integer. Denote by E the closed linear span of the set of canonical basis vectors
en, n ∈ N. If X has the k-ADP, then E also has the k-ADP.

Proof. It is enough to show that for x0 ∈ SE , p ∈ P
(
kE;K

)
with ‖p‖ = 1 and ε > 0 �xed, we may

�nd y ∈ BE and θ ∈ T such that

|p(y)| > 1− ε and ‖θx0 + y‖ > 2− ε

(see [5, Corollary 1.2 and Proposition 1.3]). As X ′ is norming for X, X ⊆ E′′ with equality of norms
(this can be easily deduce from the results of [19, pp. 29-30]) and therefore, as E∗ = E′,

X ⊂ E′′ = (E′)′ = (E∗)′ ⊆ E∗∗

with equality of norms.

Now consider p̄ ∈ P
(
kE∗∗;K

)
the Aron-Berner extension of p, which satis�es ‖p̄‖ = 1 [7], consider

q = p̄|X and observe that ‖q‖ = 1 in X. As X has the k-ADP, we use again [5, Corollary 1.2 and
Proposition 1.3] to �nd x ∈ SX and θ ∈ T such that

|p̄(x)| = |q(x)| > 1− ε and ‖θx+ x0‖ > 2− ε.

Next we use Davie-Gamelin result [7] to �nd a net {xα} in BE which is polynomial star convergent
to x ∈ SE∗∗ (i.e. for every polynomial h on X, h(xα) −→ h̄(x)). In particular

|p(xα)| −→ |p̄(x)| = |q(x)| > 1− ε and lim sup
α
‖θxα + x0‖ > ‖θx+ x0‖ > 2− ε.

Therefore, there is α such that for y = xα ∈ BE one has

|p(y)| > 1− ε and ‖θy + x0‖ > 2− ε

as desired. �

Proof of Corollary 3.4. Let E be the closed linear span of the set of canonical basis vectors en, n ∈ N.
If n(2)(X) = 1, then X has the 2-ADP and so does E by the above lemma. But E is separable and
so Remark 3.3 applies. In the complex case, we get that E = c0. So the fact that E ⊂ X ⊂ E′′ shows
that c0 ⊂ X ⊂ `∞ isometrically. In the real case, we get that E = R, which is impossible since we
have supposed that X is in�nite-dimensional. Therefore, n(2)(X) < 1. �

It is not possible to get more in Corollary 3.4, as the following remarks show.

Remarks 3.6.

(a) Let X be any subspace of `∞ containing (the canonical copy of) c0. Then n(k)(X) = 1 for
every k ∈ N. Indeed, we just have to use [6, Theorem 3.2.f] with K = βN, U = N which is
open and dense, and observe that C(K) = `∞ and Y = {f ∈ C(K) : f(βN \ N) = 0} = c0.

(b) Let us consider the following closed subspace of the complex space `∞:

X =
{
x ∈ `∞, : ‖x‖∞ <∞, lim

n→∞
x(2n) = 0}

endowed with the `∞-norm. Then X is a Banach sequence space with absolute norm and X ′

is norming for X. As c0 ⊂ X ⊂ `∞, item (a) above gives that n(k)(X) = 1 for every k ∈ N.
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