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Abstract. We study when a Banach space with absolute norm may have polynomial numerical
indices equal to one. In the real case, we show that a Banach space X with absolute norm, which
has the Radon-Nikodým property or is Asplund, satis�es n(2)(X) < 1 unless it is one-dimensional.
In the complex case, we show that the only Banach spaces X with absolute norm and the Radon-
Nikodým property which satisfy n(2)(X) = 1 are the spaces `m∞. Also, the only Asplund complex
space X with absolute norm which satis�es n(2)(X) = 1 is c0(Λ).

1. Introduction

Let X be a Banach space over a scalar �eld K (= R or = C). We write BX for the closed unit ball,
SX for the unit sphere, X∗ for the dual space, and T for the set of modulus-one scalars. We de�ne
Π(X) to be the subset of X ×X∗ given by

Π(X) = {(x, x∗) ∈ SX × SX∗ : x∗(x) = 1} .
For k ∈ N, a bounded k-homogeneous polynomial P : X −→ X is P (x) = L(x, . . . , x) for all x ∈ X,
where L : X × · · · ×X −→ X is a continuous k-multilinear map. We denote by P

(
kX;X

)
the space

of all bounded k-homogeneous polynomials from X into X endowed with the norm

‖P‖ = sup{‖P (x)‖ : x ∈ BX}.
Given P ∈ P

(
kX;X

)
, the numerical range of P is the subset of the scalar �eld given by

V (P ) = {x∗(Px) : (x, x∗) ∈ Π(X)},
and the numerical radius of P is

v(P ) = sup{|x∗(Px)| : (x, x∗) ∈ Π(X)}.
In 2006, Y. S. Choi, D. García, S. G. Kim and M. Maestre [1] introduced the polynomial numerical

index of order k of a Banach space X as the constant n(k)(X) de�ned by

n(k)(X) = max
{
c > 0 : c ‖P‖ 6 v(P ) ∀P ∈ P

(
kX;X

)}
= inf

{
v(P ) : P ∈ P

(
kX;X

)
, ‖P‖ = 1

}
for every k ∈ N. This concept is a generalization of the numerical index of a Banach space (recovered
for k = 1), �rst suggested by G. Lumer in 1968 (see [3]). For more information and background, we
refer the reader to the survey paper [5] and to [1, 2, 4, 6, 7, 8] and references therein.
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Let us recall some facts about the polynomial numerical index which are relevant to our discussion.
The easiest examples are n(k)(R) = 1 and n(k)(C) = 1 for every k ∈ N. In the complex case,
n(k)(C(K)) = 1 for every k ∈ N and n(2)(`1) 6 1

2 . The real spaces `m1 , `m∞, c0, `1 and `∞ have

polynomial numerical index of order 2 equal to 1/2. The inequality n(k+1)(X) 6 n(k)(X) holds for
every real or complex Banach space X and every k ∈ N, giving that n(k)(H) = 0 for every k ∈ N and

every real Hilbert space H of dimension greater than one. On the other hand, n(k)(X) > k
k

1−k for
every complex Banach space X and every k > 2. The inequality n(k)(X∗∗) 6 n(k)(X) holds for every
real or complex Banach space X and every k ∈ N, and may be strict.

Our main goal in this paper is to extend two known results in the �nite-dimensional case to
in�nite-dimensional Banach spaces with absolute norms (see the exact de�nition of an absolute norm
in section 2 but, roughly speaking, it is a complete norm on a linear subspace of KΛ which depends
only on the modulus of the coordinates). In the complex case, it has been proved in [6] that the unique
�nite-dimensional Banach spaces X with absolute norm satisfying that n(2)(X) = 1 are the spaces `m∞
for some m ∈ N. We give two extensions of this result. Let X be a complex Banach space X with
absolute norm satisfying n(2)(X) = 1. If X has the Radon-Nikodým property (RNP in short), then
X is isometric to `m∞ for some m. If X is an Asplund space, then X = c0(Λ) for some nonempty set
Λ. In the real case, it was proved in [8] that there is no �nite-dimensional real space with polynomial
numerical index of order two equal to one. We extend this result to in�nite-dimensional Banach spaces
with absolute norm which have the RNP or are Asplund.

The outline of the paper is as follows. We present in section 2 the de�nitions and background on
absolute norms. Section 3 is devoted to give a description of Banach spaces with absolute norm which
have numerical index one. Finally, we give in section 4 the results on polynomial numerical indices
commented above.

We �nish this introduction with some needed notation. Given a nonempty set Λ, we write `∞(Λ) to
denote the Banach space of all bounded functions from Λ to the base �eld endowed with the supremum
norm. The Banach space c0(Λ) is the completion (actually the closure in `∞(Λ)) of the subspace of
`∞(Λ) consisting of all �nitely valued functions from Λ to K. Equivalently, a function x ∈ `∞(Λ)
belongs to c0(Λ) if and only if for every ε > 0, the set {λ ∈ Λ : |x(λ)| > ε} is �nite. For 1 6 p <∞,
we write `p(Λ) for the Banach space of all functions x : Λ −→ K such that

∑
λ∈Λ |x(λ)|p is summable,

endowed with the norm ‖x‖ =
[∑

λ∈Λ |x(λ)|p
] 1

p . When Λ is in�nite and countable, we just write
`∞ = `∞(Λ), c0 = c0(Λ) and `p = `p(Λ). If Λ has m-elements, we write `m∞ = `∞(Λ) = c0(Λ) and
`mp = `p(Λ).

2. Preliminaries on absolute norms

Let Λ be a nonempty set and let X be a K-linear subspace of KΛ (the space of all functions from
Λ to the base �eld K). An absolute norm on X is a complete norm ‖ · ‖X satisfying

(a) Given x, y ∈ KΛ with |x(λ)| = |y(λ)| for every λ ∈ Λ, if x ∈ X, then y ∈ X with ‖y‖X = ‖x‖X .
(b) For every λ ∈ Λ, the function eλ : Λ −→ K given by eλ(ξ) = δλξ for ξ ∈ Λ, belongs to X with
‖eλ‖X = 1.

We will write ‖ · ‖ = ‖ · ‖X when the space X is clear from the context.

Remark 2.1. The following two results can be deduced from the de�nition of absolute norm.
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(c) `1(Λ) ⊆ X ⊆ `∞(Λ) with contractive inclusions. Equivalently,

sup{|x(λ)| : λ ∈ Λ} 6 ‖x‖X 6
∑
λ∈Λ

|x(λ)| (x ∈ X).

(d) Given x, y ∈ KΛ with |y(λ)| 6 |x(λ)| for every λ ∈ Λ, if x ∈ X, then y ∈ X with ‖y‖X 6 ‖x‖X .

By the sake of completeness, we include a sketch of the proof of the above remark which has been
given to us by V. Kadets.

Proof. (c). It is straightforward from (b) that `1(Λ) ⊆ X with contractive inclusion. The other
inclusion follows from the fact that given x ∈ X and A ⊆ Λ, the function y = xχA belongs to X and
‖y‖X 6 ‖x‖X , which can be easily proved by a convexity argument.

(d). We �rst observe that if h ∈ `∞(Λ) takes only a �nite number of values, then h|x| ∈ X and
‖h|x| ‖X 6 ‖h‖∞ ‖x‖X (this can be deduced from (a) and (b) by a convexity argument and induction
on the number of values of h). Now, we write y = h|x| with h ∈ [−1, 1]Λ, take any sequence (hn)
in [−1, 1]Λ of functions taking a �nite number of values such that (hn) −→ h uniformly (this exists
thanks to Lebesgue approximation theorem) and consider the sequence yn = hn|x|. On the one hand,
yn ∈ X with ‖yn‖X 6 ‖x‖X since hn takes a �nite number of values. On the other hand,

‖yn − ym‖X 6 ‖hn − hm‖∞ ‖x‖X (n,m ∈ N)

and so (yn) is a Cauchy sequence in X. As X is complete, (yn) converges to some z ∈ X with
‖z‖X 6 ‖x‖X . Finally, since convergence in X forces uniform convergence, we have y = z. �

We write supp(x) for the support of an element x ∈ X, i.e. supp(x) = {λ ∈ Λ : x(λ) 6= 0}.
Examples of Banach spaces with absolute norm are c0(Λ), `p(Λ) for 1 6 p 6∞ and every Banach

space with a one-unconditional basis, �nite or in�nite, viewed as subspace of Km or KN via the basis.

Observe that a (real) Banach space X ⊂ RΛ with absolute norm is a Banach lattice in the pointwise
order. Actually, X can be viewed as a Köthe space on the measure space (Λ,P(Λ), ν) where ν is the
counting measure on Λ, which is non-necessarily σ-�nite, see [9] for background on Köthe spaces
(over σ-�nite measures). We say that X is order continuous if 0 6 xα ↓ 0 and xα ∈ X imply that
lim ‖xα‖ = 0. This is known to be equivalent to the fact that X does not contain an isomorphic copy
of `∞ (since X is order complete, see [9]). If X is order continuous, the set of those functions with
�nite support is dense in X. Actually, for every x ∈ X, one has x =

∑
λ∈Λ x(λ) eλ in norm. If Λ is

countable, this exactly means that the set {eλ : λ ∈ Λ} is a one-unconditional basis. In the complex

case, given a linear subspace X ⊂ CΛ with absolute norm, we may consider the real part X̃ of X
(just taking the real part of every function in X) which is a linear subspace of RΛ with absolute norm

(the restriction of the one in X) and apply all the de�nitions above to X̃. Therefore, if X is order
continuous (i.e. it does not contain `∞), then the set of those functions with �nite support is dense in
X and, actually, for every x ∈ X, one has x =

∑
λ∈Λ x(λ) eλ in norm, as in the real case.

The Köthe dual X ′ of a Banach space X ⊂ KΛ with absolute norm is the linear subspace of KΛ

de�ned by

X ′ =

{
y ∈ KΛ : ‖y‖X′ := sup

x∈BX

∑
λ∈Λ

|y(λ)||x(λ)| <∞

}
.

It is clear that the norm ‖·‖X′ on X ′ is absolute. Every element y ∈ X ′ de�nes naturally a continuous
linear functional on X by the formula

x 7−→
∑
λ∈Λ

y(λ)x(λ)
(
x ∈ X

)
,
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so we have X ′ ⊆ X∗ and this inclusion is isometric. For λ ∈ Λ, we will write e′λ for the functional
provided by the function eλ ∈ X ′ when viewed as an element of X∗. If X is order continuous, it is
easy to prove using that functions with �nite support are dense in X, that the inclusion X ′ ⊆ X∗

is surjective and so X∗ completely identi�ed with the Banach space with absolute norm X ′. Let us
comment that this fact is well known for Köthe spaces de�ned on a σ-�nite measure space and that
the Radon-Nikodým theorem is used in the proof. In the case we are studying here, the measure
spaces are not necessarily σ-�nite, but since they are discrete, the Radon-Nikodým theorem is not
needed and the proof of the fact that X ′ = X∗ is straightforward.

We give now elementary results on Banach spaces with absolute norm. We give their proof for the
sake of completeness. We write ext(A) to denote the set of extreme points of a convex set A and #[B]
is the cardinal of a set B.

Proposition 2.2. Let Λ be a nonempty set and let X be a linear subspace of KΛ with an absolute
norm.

(a) If there is an element x0 ∈ BX such that |x0(λ)| = 1 for every λ ∈ Λ, then X = `∞(Λ) with
equality of norms.

(b) If ext(BX∗) ⊆
{
ω e′λ : ω ∈ T, λ ∈ Λ

}
⊆ X ′, then X = c0(Λ) with equality of norms. In

particular, if X∗ = X ′ = `1(Λ), then X = c0(Λ).

Proof. (a). Take x ∈ `∞(Λ) and observe that |x(λ)| 6
∣∣‖x‖∞ x0(λ)

∣∣ for every λ ∈ Λ and that
‖x‖∞ x0 ∈ X. Therefore, x ∈ X and ‖x‖X 6 ‖x‖∞. Since one always has that X ⊆ `∞(Λ) and that
‖x‖∞ 6 ‖x‖X , we get that X = `∞(Λ) with equality of norms.

(b). We �rst observe that, thanks to the Krein-Milman and Hahn-Banach theorems, for every
x ∈ X, ‖x‖X = max{|x∗(x)| : x∗ ∈ ext(BX∗)}. Since e′λ(x) = x(λ) for every λ ∈ Λ, it then follows
that

(1) ‖x‖X = max{|x(λ)| : λ ∈ Λ}

for every x ∈ X. Therefore, X ⊆ `∞(Λ) with equality of norms. Since functions with �nite support
are contained in X, which is complete, we obtain that c0(Λ) ⊆ X. Let us prove the reversed inclusion.
Suppose, for the sake of contradiction, that for an element x ∈ X there is ε > 0 and an in�nite subset
Γ of Λ such that |x(λ)| > ε for every λ ∈ Γ. Since Γ is in�nite, we may take a sequence (λn) ⊂ Γ of
di�erent elements of Γ. Then, the function given by

y(λn) = ε

(
1− 1

n

)
for n ∈ N and y(λ) = 0 for λ /∈ {λn : n ∈ N}

belongs to X but the set {|y(λ)| : λ ∈ Λ} has no maximum, a contradiction with (1). Therefore, for
every x ∈ X and every ε > 0, the set {λ ∈ Λ : |x(λ)| > ε} is �nite. This shows that X ⊆ c0(Λ), as
desired. �

3. Banach spaces with absolute norm and numerical index one

The following characterization of real �nite-dimensional Banach spaces with absolute norm which
has numerical index one in terms of extreme points was given in [11] and extended to the complex
case in [6].

Proposition 3.1. [6, 11] Let X be Km endowed with an absolute norm. Then, n(X) = 1 if and only
if for every x ∈ ext(BX) and every x′ ∈ ext(BX∗),

|x| ∈ {0, 1}m, |x′| ∈ {0, 1}m and #
[
supp(x) ∩ supp(x′)

]
= 1.
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Our goal in this section is to extend this result to some in�nite-dimensional spaces. We start by
proving some technical lemmas which will be useful in the sequel.

Lemma 3.2. Let Λ be a nonempty set and let X be a linear subspace of KΛ with absolute norm. If
x0 ∈ SX satis�es |x∗(x0)| = 1 for all x∗ ∈ ext(BX∗), then |x0| ∈ {0, 1}Λ.

Proof. We �x λ ∈ Λ, consider x∗ ∈ ext(BX∗) such that x∗(eλ) = 1 (such an extreme point exists
thanks to the Kreim-Milman theorem) and write y = x0 − x0(λ)eλ to get x0 = x0(λ)eλ + y. Now, for
every ω ∈ T, consider the operator Φω : X −→ X given by

[Φω(x)](λ) = ωx(λ), [Φω(x)](ξ) = x(ξ) if ξ 6= λ.

Then Φω is an onto isometry on X and so Φ∗ω(x∗) ∈ ext(BX∗). Therefore,

1 =
∣∣[Φ∗ω(x∗)](x0)

∣∣ =
∣∣x∗(Φω(x0))

∣∣ =
∣∣x∗(ωx0(λ)eλ + y

)∣∣ =
∣∣ωx0(λ) + x∗(y)

∣∣.
Moving ω ∈ T, we get that |x0(λ)| ∈ {0, 1} (indeed, it follows that |x0(λ)|+ |x∗(y)| = 1 and

∣∣|x0(λ)|−
|x∗(y)|

∣∣ = 1 and this clearly gives |x0(λ)|, |x∗(y)| ∈ {0, 1}). �

We need some notation for the second lemma. We write conv(A) to denote the convex hull of a
subset A of a Banach space X and conv(A) denotes the closure of conv(A) in the norm topology of

X. If X is a dual space, convw
∗
(A) denotes the closure of conv(A) in the weak∗-topology.

Lemma 3.3. Let Λ be a nonempty set and let X be a linear subspace of KΛ with absolute norm.

(a) Suppose that X is order continuous and there is A ⊂ SX such that BX = conv(A) and
|x′(x)| = 1 for every x ∈ A and every x′ ∈ ext(BX∗). Then

|x|, |x′| ∈ {0, 1}Λ and #
[
supp(x) ∩ supp(x′)

]
= 1

(
x ∈ A, x′ ∈ ext(BX∗)

)
.

(b) Suppose that both X and X∗ = X ′ are order continuous and there is A ⊂ SX∗ such that

BX∗ = convw
∗
(A) and |x′′(x′)| = 1 for every x′ ∈ A and every x′′ ∈ ext(BX∗∗). Then

|x′|, |x′′| ∈ {0, 1}Λ and #
[
supp(x′) ∩ supp(x′′)

]
= 1

(
x′ ∈ A, x′′ ∈ ext(BX∗∗)

)
.

Proof. (a). Fix x ∈ A and x′ ∈ ext(BX∗). It follows directly from Lemma 3.2 that |x| ∈ {0, 1}Λ.
Since BX = conv(A), we have BX∗∗ = convw

∗
(A) and so ext(BX∗∗) ⊆ A

w∗

by the reversed Krein-
Milman theorem. It then follows that |x∗∗(x′)| = 1 for every x∗∗ ∈ ext(BX∗∗) and Lemma 3.2 gives
|x′| ∈ {0, 1}Λ. Now, suppose that there are λ, ξ ∈ supp(x) ∩ supp(x′) with λ 6= ξ. Then

|x(λ)| = |x(ξ)| = |x′(λ)| = |x′(ξ)| = 1

and, if we consider y′ ∈ X ′ given by y′(µ) = |x′(µ)|sign
(
x(µ)

)
for every µ ∈ Λ, then y′ ∈ ext(BX∗)

(since the norm of X ′ is absolute) and

|y′(x)| =
∑
µ∈Λ

|x′(µ)||x(µ)| > |x(λ)|+ |x(ξ)| = 2,

a contradiction.

(b). Fix x′ ∈ A and x′′ ∈ ext(BX∗∗). First, Lemma 3.2 gives directly that |x′| ∈ {0, 1}Λ. To
see that |x′′| ∈ {0, 1}Λ, we �x λ ∈ Λ and take x′0 ∈ A such that x′0(λ) =: θ ∈ T (we may take
such x′0 since, otherwise, x′(λ) = x′(eλ) = 0 for every x′ ∈ A and this contradicts the fact that

e′λ ∈ BX∗ = convw
∗
(A)). Now, we write x′0 = θe′λ + y′, for every ω ∈ T consider the surjective

isometry Φω ∈ L(X∗) de�ned by

[Φω(x′)](λ) = ωx′(λ), [Φω(x′)](ξ) = x′(ξ) if ξ 6= λ,
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and use that Φ∗ω(x′′) ∈ ext(BX∗∗) to get

1 =
∣∣[Φ∗ω(x′′)](x′0)

∣∣ =
∣∣x′′(Φω(x′0))

∣∣ =
∣∣x′′(ωθe′λ + y

)∣∣ =
∣∣ωθx′′(λ) + x′′(y′)

∣∣.
Since θ ∈ T, moving ω ∈ T, we get that |x′′(λ)| ∈ {0, 1}.

Finally, to get that the intersection of the supports has exactly one element, we argue as in item
(a). �

Let us comment that Proposition 3.1 follows from the above lemma by using McGregor's charac-
terization of �nite-dimensional spaces with numerical index one (see [5, �3], for instance): a �nite-
dimensional space X satis�es n(X) = 1 if and only if |x∗(x)| = 1 for every x ∈ ext(BX) and every
x∗ ∈ ext(BX∗).

In the in�nite-dimensional case we do not know of any characterization of Banach spaces with
numerical index 1 which does not involve operators. Nevertheless, it is possible to get necessary
conditions for a Banach space to have numerical index 1 similar to McGregor's characterization above,
by using denting points and w∗-denting points (see [10] or [5, �3]). For Asplund spaces and for spaces
having the RNP, these necessary conditions are also su�cient, and this allows us to use Lemma 3.3 to
get two results similar to Proposition 3.1, one for spaces with the RNP and one for Asplund spaces,
which we will use in the next section. We need some notation. Let X be a Banach space. A slice
of BX is the non-empty intersection of BX with an open half-space. A point x ∈ SX is said to be a
denting point if its belongs to slices of BX of arbitrarily small diameter. If X is a dual space and one
can take slices with arbitrarily small diameter coming from w∗-open half-spaces, we say that x is a
w∗-denting point.

We start with the result for Banach spaces with the RNP.

Theorem 3.4. Let Λ be a nonempty set and let X be a linear subspace of KΛ with absolute norm. If
X has the Radon-Nikodým property (and so X is order continuous), then the following are equivalent:

(i) n(X) = 1,
(ii) |x|, |x′| ∈ {0, 1}Λ and #

[
supp(x) ∩ supp(x′)

]
= 1 for every denting point x ∈ BX and every

x′ ∈ ext(BX∗).

Proof. X is order continuous since it has the RNP and so it does not contain `∞. Write A to denote
the set of denting points of BX . Since X has the RNP, BX = conv(A).

(i) ⇒ (ii). If n(X) = 1, it follows from [10, Lemma 1] that |x′(x)| = 1 for every x ∈ A and every
x′ ∈ ext(BX∗). Then Lemma 3.3.a gives (ii).

(ii) ⇒ (i). It clearly follows from (ii) that |x′(x)| = 1 for every x ∈ A and every x′ ∈ ext(BX∗)
and this implies n(X) = 1 for spaces with the RNP (since conv(A) = BX), see [5, Proposition 6]. �

Here is the result for Asplund spaces.

Theorem 3.5. Let Λ be a nonempty set and let X be a linear subspace of KΛ with absolute norm.
If X is an Asplund space (and so X and X∗ = X ′ are order continuous), then the following are
equivalent:

(i) n(X) = 1,
(ii) |x′|, |x′′| ∈ {0, 1}Λ and #

[
supp(x′)∩ supp(x′′)

]
= 1 for every w∗-denting point x′ of BX∗ and

every x′′ ∈ ext(BX∗∗).

Proof. X and X∗ are order continuous since they do not contain `∞ (since X is Asplund and so X∗

has the RNP). The proof of the equivalence is analogous to the one of Theorem 3.4, we give the details
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for the sake of completeness. We consider A to be the set of w∗-denting points of BX∗ , and observe
that BX∗ = convw

∗
(A) since X is Asplund.

(i)⇒ (ii). If n(X) = 1, it follows from [10, Lemma 1] that |x′′(x′)| = 1 for every x′ ∈ A and every
x′′ ∈ ext(BX∗∗). Then Lemma 3.3.b gives (ii).

(ii)⇒ (i). It clearly follows from (ii) that |x′′(x′)| = 1 for every x′ ∈ A and every x′′ ∈ ext(BX∗∗),

and this implies n(X) = 1 for Asplund spaces (since convw
∗
(A) = BX∗), see [5, Proposition 6]. �

Let us �nish the section with the following remark.

Remark 3.6. Given a nonempty set Λ and a linear subspace X ⊂ KΛ with absolute norm, no matter
K = R or K = C, it is possible to de�ne the real and the complex versions of X as

X(R) = {x : Λ −→ R : |x| ∈ X}, X(C) = {x : Λ −→ C : |x| ∈ X}.

Then, X(R) is a (real) linear subspace of RΛ with absolute norm and X(C) is a (complex) linear
subspace of CΛ with absolute norm. They are related since X(C) = X(R) + iX(R). It follows from
Theorems 3.4 and 3.5 that, for Asplund spaces and for spaces having the RNP, n(X(C)) = 1 if and only
if n(X(R)) = 1. We do not know whether the same is true without the Asplund or RNP assumptions.

4. Polynomial numerical index

The aim of this section, which is the main aim of the paper, is to show that there are not too many
spaces with absolute norm which have polynomial numerical index of order 2 equal to one among
Asplund spaces or spaces with the RNP. The �rst result is a general su�cient condition for a Banach
space with absolute norm to have polynomial numerical index smaller than one, from which we will
deduce the main results of the paper.

Proposition 4.1. Let Λ be a nonempty set and let X be a linear subspace of KΛ with absolute norm.
Suppose that there is a set B dense in SX and a set C ⊂ SX′ such that |x′| ∈ {0, 1}Λ for every x′ ∈ C
and satisfying that for every x ∈ B there is x′ ∈ C with x′(x) = 1. If there exist x∗0 ∈ BX∗ and s, t ∈ Λ
with s 6= t such that |x∗0(es)| = |x∗0(et)| = 1, then n(2)(X) 6 9/16.

Proof. We �rst observe that

(2) |x(s)|+ |x(t)| 6 ‖x‖ (x ∈ X).

Indeed, we take ω1, ω2 ∈ T such that

ω1 x
∗
0(es)x(s) = |x(s)| and ω2 x

∗
0(et)x(t) = |x(t)|

and observe that

‖x‖ > ‖x(s)es + x(t)et‖ = ‖ω1x(s)es + ω2x(t)et‖
>
∣∣x∗0(ω1x(s)es + ω2x(t)et)

∣∣ = |x(s)|+ |x(t)|.

Now, we de�ne P ∈ P
(
kX;X

)
by

P (x) =

(
1

2
x(s)2 +

3

2
x(s)x(t)

)
es −

(
1

2
x(t)2 +

3

2
x(s)x(t)

)
et (x ∈ X),

and use (2) to get that ‖P‖ > ‖P ( 1
2 (es + et)‖ = ‖ 1

2 (es + et)‖ > 1 (actually, ‖P‖ = 1). We claim that
v(P ) 6 9/16. Indeed, since B is dense in SX , we may use [12, Theorem 2.5] to get that

v(P ) = sup
{∣∣x′(P (x)

)∣∣ : x ∈ B, x′ ∈ C, x′(x) = 1
}
.



8 LEE, MARTÍN, AND MERÍ

Pick x ∈ B and x′ ∈ C such that x′(x) = 1, write J = supp(x′) and I = supp(x), and write
x(k) = rk eiθk where rk = |x(k)| and θk ∈ [0, 2π[ for all k ∈ Λ. Then

1 = x′(x) =
∑
k∈I∩J

x′(k)x(k) 6
∑
k∈I∩J

|x′(k)||x(k)| 6 |x′|(|x|) 6 ‖|x′|‖ ‖|x|‖ 6 1

and therefore, x′(k)x(k) = |x′(k)||x(k)| for every k ∈ I ∩ J . Since |x′| ∈ {0, 1}Λ, we get that
x′(k) = e−iθk for every k ∈ I ∩ J . Let us �rst suppose that {s, t} ⊂ I ∩ J . Then∣∣x′(P (x)

)∣∣ =

∣∣∣∣[1

2
r2
s ei2θs +

3

2
rsrt eiθt+iθs

]
e−iθs −

[
1

2
r2
t ei2θt +

3

2
rsrt eiθs+iθt

]
e−iθt

∣∣∣∣
=

∣∣∣∣12r2
s eiθs +

3

2
rsrt eiθt −1

2
r2
t e
iθt − 3

2
rsrte

iθs

∣∣∣∣ 6 ∣∣∣∣12r2
s −

3

2
rsrt

∣∣∣∣+

∣∣∣∣32rsrt − 1

2
r2
t

∣∣∣∣ .
Since 0 6 rs + rt 6 1 by (2), we get that |x′(P (x))| 6 1/2. If s ∈ I ∩ J and t /∈ I ∩ J , we have∣∣x′(P (x)

)∣∣ 6 1

2
r2
s +

3

2
rsrt 6

9

16

where the last inequality follows again from the fact that 0 6 rs + tt 6 1. Analogously, |x′(P (x))| 6
9/16 if s /∈ I ∩ J and t ∈ I ∩ J , and clearly |x′(P (x))| = 0 if s /∈ I ∩ J and t /∈ I ∩ J . Summarizing,
we have shown that v(P ) 6 9/16 and ‖P‖ > 1, which gives n(2)(X) 6 9/16 as desired. �

We may now state the two main results of the paper.

Theorem 4.2. Let Λ be a nonempty set and let X be a (complex) linear subspace of CΛ with absolute

norm such that n(2)(X) = 1.

(a) If X has the Radon-Nikodým property, then Λ is �nite and X = `m∞ for some m ∈ N.
(b) If X is an Asplund space, then X = c0(Λ).

Proof. (a). The subspace X is order continuous since it has the RNP. We take B = BX and C =
ext(BX∗), and use Theorem 3.4 (we have n(X) = 1 since n(2)(X) = 1) to get that |x|, |x′| ∈ {0, 1}Λ
and #

[
supp(x′) ∩ supp(x)

]
= 1 for every denting point x in BX and every x′ ∈ C. Therefore, B and

C satisfy the hypotheses of Proposition 4.1. Pick now any denting point x0 ∈ SX and any λ ∈ Λ. We
may �nd x′ ∈ C such that x′(λ) = x′(eλ) = 1 and we deduce that x′(µ) = x′(eµ) = 0 for every µ 6= λ
by Proposition 4.1. Therefore, supp(x′) ∩ supp(x0) ⊆ {λ} and, since #

[
supp(x′)∩ supp(x0)

]
= 1 and

|x0| ∈ {0, 1}Λ, we get |x0(λ)| = 1. We deduce from Proposition 2.2.a that X = `∞(Λ) with equality
of norms. Since `∞(Λ) has the RNP if and only if Λ is �nite, we get X = `m∞ for some m ∈ N.

(b). First, X and X∗ = X ′ are order continuous since X is Asplund. We take B to be the set of
points in SX where the norm of X is Fréchet di�erentiable and C to be the set of w∗-denting points
of BX∗ . Since X is Asplund, B is dense in SX and for every x ∈ B, the unique x′ ∈ BX∗ such that
x′(x) = 1 belongs to C (indeed, x de�nes slices of BX∗ of arbitrary small diameter containing x′).
We also have |x′| ∈ {0, 1}Λ for every x′ ∈ C by Theorem 3.4 (we have n(X) = 1 since n(2)(X) = 1).
Moreover, from Theorem 3.4 we deduce that |x′|, |x′′| ∈ {0, 1}Λ and #

[
supp(x′) ∩ supp(x′′)

]
= 1 for

every x′ ∈ C and every x′′ ∈ ext(BX∗∗). Pick now any x′′0 ∈ ext(BX∗∗) and any λ ∈ Λ. We may
�nd x′ ∈ C such that x′(λ) = x′(eλ) 6= 0 and since |x′(λ)| ∈ {0, 1}, we get |x′(eλ)| = 1 and we
deduce that x′(µ) = x′(eµ) = 0 for every µ 6= λ by Proposition 4.1 and the fact that |x′| ∈ {0, 1}Λ.
Therefore, supp(x′′0) ∩ supp(x′) ⊆ {λ} and, since #

[
supp(x′′0) ∩ supp(x′)

]
= 1 and |x′′0 | ∈ {0, 1}Λ, we

get |x′′0(λ)| = 1. We then deduce from Proposition 2.2.a that X ′′ = `∞(Λ) with equality of norms and,
therefore, X ′ = `1(Λ) (`1(Λ) is the unique isometric predual of `∞(Λ)). Finally, Proposition 2.2.b
gives us that X = c0(Λ) with equality of norms. �
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Theorem 4.3. Let Λ be a nonempty set and let X be a (real) linear subspace of RΛ with absolute

norm such that n(2)(X) = 1. If X has the Radon-Nikodým property or X is an Asplund space, then
X = R.

Proof. We may follow literally the proof of the complex case to get X = `m∞ or X = c0(Λ) but, in
the real case, n(2)(`m∞) = 1/2 if m > 2 and n(2)(c0(Λ)) = 1/2 if #Λ > 2 [7, Corollary 2.5], Therefore,
X = R as desired. �
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