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Abstract. We estimate the polynomial numerical indices of the spaces C(K) and L1(µ).

1. Introduction

For a given real or complex Banach space X and a positive integer k, the k-order polynomial numerical
index of X was introduced by Choi et al. in 2006 [2] as follows

n(k)(X) = inf
{
v(P ) : P ∈ P

(
kX;X

)
, ‖P‖ = 1

}
= max

{
k > 0 : k‖P‖ 6 v(P ) for all P ∈ P

(
kX;X

)}
.

P
(
kX;X

)
denotes the space of k-homogeneous continuous polynomials and v(·) is the numerical radius,

which is defined as

v(P ) = sup
{
|x∗(P (x))| : x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = 1, x∗(x) = 1

}
for P ∈ P

(
kX;X

)
(X∗ represents the dual space of X). When k = 1, we are actually dealing with the

classical numerical radius of operators due to Lumer and Bauer in the 1960’s and with the index of a Banach
space introduced by Lumer in 1970. The extension of the numerical radius to polynomials and other settings
was initiated by Harris in the 1970’s. We refer the reader to the survey paper [7] for a detailed account and
background on numerical radii and numerical indices. More recent results on polynomial numerical indices
can be found in [3, 5, 8, 9, 11, 12, 13].

Some spaces for which the polynomial numerical indices have been estimated are the following. In the
complex case, n(k)(C0(L)) = 1 for every k ∈ N and every locally compact space L, and n(2)(`1) 6 1

2 . In the

real case, n(k)(R) = 1 and

n(2)(c0) = n(2)(`1) = n(2)(`∞) = 1/2.

The main results of this paper are the following. In the real case, n(2)(C(K)) = 1/2 for every compact
Hausdorff space K with at least two points and n(2)(L1(µ)) = 1/2 for every positive measure µ. In the
complex case, n(2)(X) > 1/3 for every lush space and 1/3 6 n(2)(L1(µ)) 6 1/2 for every positive measure µ.

Given a compact Hausdorff space K, we denote by C(K) the Banach space of all continuous functions
from K into R or C. For a locally compact Hausdorff space L, we denote by C0(L) the Banach space of
all continuous functions from L into R or C vanishing at infinity. Also, given a measure space (Ω,Σ, µ),
we denote by L1(µ) the Banach space of all (equivalence classes of) integrable functions on (Ω,Σ, µ). As
usual, c0, `1 and `∞ will denote the classical Banach spaces of all null, absolutely summable and bounded
sequences, respectively.
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and FEDER grants G09-FQM-185 and P09-FQM-4911.

1
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2. The results

Our first aim is to show that, in the real case, n(2)(C(K)) = 1
2 for every compact Hausdorff space with

at least two points. We may also get some estimations on the polynomial numerical indices of higher degree
of real C(K) spaces improving the results obtained in [9, Corollary 2.5].

Theorem 1. Let K be a compact Hausdorff space with at least two points. Then

n(2)(C(K)) =
1

2
and n(2k)(C(K)) 6

1

2k
(k > 2)

hold in the real case.

Proof. Let us start with the case of degree 2. By [9, Corollary 2.4], n(2)(C(K)) > 1
2 . To prove the other

inequality, we fix a point t0 ∈ K, consider the polynomial of degree two on C(K) given by

P (f) = f(t0)2 1− 1

2
f2 (f ∈ C(K)),

where 1 stands for the unit function, and we observe that ‖P‖ > 1 and v(P ) = 1
2 . Indeed, we consider a

point t1 ∈ K \ {t0} and construct a norm-one function f ∈ C(K) satisfying f(t0) = 1 and f(t1) = 0. Then,

‖P (f)‖ > |P (f)(t1)| = 1.

On the other hand, since all elements in C(K) attain their norms, we have (see [14, Theorem 2.5]) that

v(P ) = sup{|P (f)(t)| : f ∈ C(K), t ∈ K, ‖f‖ = f(t) = 1}.

Therefore, in our case,

v(P ) = sup

{∣∣∣∣f(t0)2 − 1

2

∣∣∣∣ : f ∈ C(K), ‖f‖ = 1

}
=

1

2
,

which finishes the proof.

For higher degrees, we fix k ∈ N with k > 2, consider the polinomial Pk ∈ P(2kC(K), C(K)) given by
Pk(f) = P (f)k for every f ∈ C(K) (where P is the polynomial defined above), and we observe that ‖Pk‖ > 1

and v(Pk) =
1

2k
. �

With the same proof, considering bump functions instead of the unit function, the result above adapts to
C0(L) for every locally compact Hausdorff space L with at least two points.

Corollary 2. Let L be a locally compact Hausdorff space L with at least two points. Then

n(2)(C0(L)) =
1

2
and n(2k)(C0(L)) 6

1

2k
(k > 2)

hold in the real case.

Remark 3. It it easy to extend the proof of Theorem 1 to any closed subalgebra with dimension greater
than one of a real space C(K) . But, actually, all closed subalgebras of a real C(K) space are of the form

{f ∈ C(K) : f(ti) = λif(si) for all i ∈ I}

for a suitable index set I and suitable families {ti}, {si} ⊂ K and {λi} ⊂ {0, 1} (see [10, p. 68]).

Our next result deals with lush spaces. For a Banach space X, by BX and SX we will denote the open
unit ball and the unit sphere of X, respectively. A Banach space X is said to be lush [1] if for every x, y ∈ SX
and every ε > 0, there is a slice S = {x ∈ BX : Re x∗(x) > 1 − ε} with x∗ ∈ SX∗ such that x ∈ S and
the distance of y to the absolutely convex hull of S is less than ε. Lush spaces have numerical index 1 [1,
Proposition 2.2], but it has been very recently shown that the converse result is not true [6]. Examples of
lush spaces are L1(µ) spaces and their isometric preduals, in particular, C(K) spaces. In [9], inequalities for
the polynomial numerical indices of real lush spaces were given. In particular, it is proved that n(2)(X) > 1/2
for every real lush space and that the equality holds for c0, `1 and `∞, for instance. Actually, our Theorem 1
gives that such an equality also holds for all C(K) spaces. Our next goal is to give a similar result to the
one of [9] for complex lush spaces. We do not know whether this result is sharp.
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Theorem 4. Let X be a complex lush space. Then

n(2)(X) >
1

3
.

Proof. For P ∈ P
(

2X;X
)

with ‖P‖ = 1 and 0 < ε < 1 fixed, take x0 ∈ SX such that ‖P (x0)‖ > 1− ε, and

apply the definition of lushness to x0 and P (x0)
‖P (x0)‖ to find x∗ ∈ SX∗ with

P (x0)

‖P (x0)‖
∈ S := {x ∈ BX : Re x∗(x) > 1− ε2

4
} ,

λ1, . . . , λn ∈ [0, 1],
∑n
j=1 λj 6 1, µ1, . . . , µn, complex numbers of modulus one, and x1, . . . , xn ∈ S satisfying∥∥∥x0 −

n∑
j=1

λjµjxj

∥∥∥ < ε2

4
.

With this it is readily checked that

(1)
∥∥∥P (x0)− P

( n∑
j=1

λjµjxj

)∥∥∥ 6 2‖P̌‖ε
2

4
,

where P̌ is the associated symmetric bilinear map to P .

Our goal is to estimate
∣∣∣x∗ (P (∑n

j=1λjµjxj

))∣∣∣ from the above and below. We can write∣∣∣x∗ (P (∑n
j=1λjµjxj

))∣∣∣ 6 n∑
j=1

λ2
j

∣∣x∗(P (xj))
∣∣+ 2

∑
16j<k6n

λjλk
∣∣x∗(P̌ (xj , xk))

∣∣.
Moreover, by using [9, Lemma 2.3] one obtains∣∣x∗(P (y))

∣∣ 6 v(P ) + ε+ 2 ‖P̌‖ ε

for every y ∈ S. This, together with the fact that xj ,
xj+xk

2 ∈ S, tells us∣∣x∗(P̌ (xj , xk))
∣∣ 6 2

∣∣∣x∗ (P (xj+xk

2

))∣∣∣+
1

2

∣∣x∗(P (xj))
∣∣+

1

2

∣∣x∗(P (xk))
∣∣ 6 3

(
v(P ) + ε+ 2 ‖P̌‖ ε

)
.

Hence, we can continue the above estimation as follows:∣∣∣x∗ (P (∑n
j=1λjµjxj

))∣∣∣ 6
 n∑
j=1

λ2
j + 6

∑
16j<k6n

λjλk

(v(P ) + ε+ 2 ‖P̌‖ ε
)

6 sup
λj∈[0,1]

λ1+···+λn=1

 n∑
j=1

λ2
j + 6

∑
16j<k6n

λjλk

(v(P ) + ε+ 2 ‖P̌‖ ε
)

=

(
3− 2

n

)(
v(P ) + ε+ 2 ‖P̌‖ ε

)
6 3
(
v(P ) + ε+ 2 ‖P̌‖ ε

)
.

On the other hand, using (1) we have that∣∣∣x∗ (P (∑n
j=1λjµjxj

))∣∣∣ > |x∗(P (x0))| −
∣∣∣x∗(P (x0))− x∗

(
P
(∑n

j=1λjµjxj

))∣∣∣
= ‖P (x0)‖

∣∣∣∣x∗( P (x0)

‖P (x0)‖

)∣∣∣∣− ∣∣∣x∗(P (x0))− x∗
(
P
(∑n

j=1λjµjxj

))∣∣∣
> (1− ε)

(
1− ε2

4

)
− 2‖P̌‖ε

2

4
.

Therefore,

(1− ε)
(

1− ε2

4

)
− 2‖P̌‖ε

2

4
6 3
(
v(P ) + ε+ 2 ‖P̌‖ ε

)
which, letting ε→ 0, gives 1

3 6 v(P ) finishing the proof. �
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For L1(µ) spaces, we get the following result.

Theorem 5. Let (Ω,Σ, µ) be a measure space so that dim
(
L1(µ)

)
> 2. Then the following hold

n(2)
(
L1(µ)

)
=

1

2
in the real case and

1

3
6 n(2)

(
L1(µ)

)
6

1

2
in the complex case.

Proof. We start by showing that n(2)
(
L1(µ)

)
6 1

2 . To do so, we distinguish two cases depending on wether

µ is purely atomic or not. If µ is purely atomic, since dim
(
L1(µ)

)
> 2, we can write L1(µ) = `1(Γ) with

the cardinal of Γ greater or equal than 2 and then n(2)
(
L1(µ)

)
6 1

2 (see [4, p. 141]). If otherwise µ has
non-atomic part then it is possible to find disjoint sets A,B ∈ Σ satisfying 0 < µ(A) = µ(B) < ∞. Thus,

we can consider the polynomial P ∈ P
(2
L1(µ), L1(µ)

)
given by

P (f) =

(
1

2
f

∫
A

f dµ+ 2f

∫
B

f dµ

)
χA +

(
−f
∫
A

f dµ− 1

2
f

∫
B

f dµ

)
χB

(
f ∈ L1(µ)

)
which satisfies ‖P‖ > 1 and v(P ) 6 1

2 . Indeed, for f = 1
2µ(A)χA∪B ∈ SL1(µ) it is immediate to check that

P (f) =
5

8µ(A)
χA −

3

8µ(A)
χB

and so, ‖P‖ > ‖P (f)‖ = 1. To estimate v(P ), given f ∈ SL1(µ) and Φ ∈ SL1(µ)∗ with Φ(f) = 1, we write φ

for the unique element in SL∞(µ) which represents Φ (i.e. Φ(h) =
∫
φh dµ for every h ∈ L1(µ)) and observe

that ∫
A

fφ dµ =

∫
A

|f | dµ and

∫
B

fφ dµ =

∫
B

|f | dµ.

Hence, we can write

|Φ(Pf)| =
∣∣∣∣(1

2

∫
A

f dµ+ 2

∫
B

f dµ

)∫
A

fφ dµ−
(∫

A

f dµ+
1

2

∫
B

f dµ

)∫
B

fφ dµ

∣∣∣∣
=

∣∣∣∣(1

2

∫
A

|f | dµ−
∫
B

|f | dµ
)∫

A

f dµ+

(
2

∫
A

|f | dµ− 1

2

∫
B

|f | dµ
)∫

B

f dµ

∣∣∣∣
6

∣∣∣∣12
∫
A

|f | dµ−
∫
B

|f | dµ
∣∣∣∣ ∫
A

|f | dµ+

∣∣∣∣2∫
A

|f | dµ− 1

2

∫
B

|f | dµ
∣∣∣∣ ∫
B

|f | dµ.

Now, since

∫
A

|f | dµ+

∫
B

|f | dµ 6 1, we have

|Φ(Pf)| 6 max
x,y>0

x+y61

∣∣∣∣12 x− y
∣∣∣∣x+

∣∣∣∣2x− 1

2
y

∣∣∣∣ y =
1

2

which gives v(P ) 6 1
2 and, therefore, n(2)

(
L1(µ)

)
6 1

2 . Finally, the remaining inequalities follow from [9,
Theorem 2.1], Theorem 4, and the fact that L1(µ) is a lush space. �
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