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Abstract. We study the rank-one numerical index of a Banach space, namely the in�mum of the
numerical radii of those rank-one operators on the space which have norm-one. We show that the
rank-one numerical index is always greater or equal than 1/ e. We also present properties of this
index and some examples.

1. Introduction

The aim of this paper is to study the rank-one numerical index of Banach spaces. This concept
has been recently introduced in [12] to relate the numerical range and the usual norm of rank-one
operators on Lp-spaces as an analog to the deeply studied numerical index of Banach spaces.

Let us recall the relevant notation and de�nitions. Given a Banach space X over the �eld K (= R
or C), X∗ will stand for its topological dual, SX is the unit sphere of X, and L(X) is the Banach
algebra of all (bounded linear) operators on X. The numerical radius is the semi-norm de�ned on
L(X) by

v(T ) = sup{|x∗(Tx)| : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1}
(
T ∈ L(X)

)
.

Very often, v is actually a norm and it is equivalent to the operator norm ‖ · ‖. Thus, it is natural to
consider the so-called numerical index of the space X, namely the constant n(X) de�ned by

n(X) = inf{v(T ) : T ∈ L(X), ‖T‖ = 1}.
Equivalently, n(X) is the greatest constant k > 0 such that k‖T‖ 6 v(T ) for every T ∈ L(X). Note
that 0 6 n(X) 6 1, and n(X) > 0 if and only if v and ‖ · ‖ are equivalent norms on L(X).

Let us present some results about numerical index of Banach spaces. We refer the reader to the
expository paper [8] and references therein and the more recent papers [5, 12, 13]. First, some examples
of Banach spaces whose numerical index is known are the following: for a Hilbert space H of dimension
greater than one, one has n(H) = 1/2 in the complex case and n(H) = 0 in the real case. L1(µ)
spaces and their isometric preduals have numerical index 1 so, in particular, n(C(K)) = 1 for every
compact topological space K. The disk algebra A(D) and H∞ are other examples of Banach spaces
with numerical index one. The numerical index of Lp(µ) spaces is still unknown, but it has been
recently shown that n(Lp[0, 1]) = n(`p) and that, in the real case, this number is strictly positive
when p 6= 2. Some results about the numerical index that can be interesting for our discussion are the
following: it is known that v(T ) = v(T ∗) for every T ∈ L(X∗), so it follows that n(X∗) 6 n(X) for
every Banach space X; this inequality may be strict. The numerical index is continuous with respect
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to the Banach-Mazur distance between equivalent norms and this gives that the set of values of the
numerical index of a Banach space up to renorming is an interval (actually, a non-trivial interval).
The numerical index of the c0-, `1-, or `∞-sum of a family of spaces is equal to the in�mum of the
numerical index of the spaces and the numerical indices of the vector-valued function spaces C(K,X),
L1(µ,X), and L∞(µ,X) are equal to the numerical index of the range space.

Real and complex spaces behave di�erently with respect to the numerical index. Indeed, the set
of values of the numerical index of real Banach spaces �lls the whole interval [0, 1], while for complex
Banach spaces it �lls the interval [1/ e, 1]. The fact that n(X) > 1/ e in the complex case, known
as the Bonehnblust-Karlin theorem, has important consequences specially in the theory of Banach
algebras.

As mentioned above, the rank-one numerical index of a Banach space X was introduced in [12] as
the constant

n1(X) = max{k > 0 : k‖T‖ > v(T ) ∀T ∈ L(X) with dim(T (X)) 6 1}
= inf{v(T ) : T ∈ L(X), ‖T‖ = 1, dim(T (X)) 6 1}.

The main motivation to study rank-one operators and the rank-one numerical index is that in an
arbitrary Banach space, only for rank-one operators it is possible to give a formula for the operator
norm.

It is proved in [12] that for every 1 < p <∞ and every atomless measure µ, one has

n1(Lp(µ)) > p−
2
p q−

2
q

where q = p/(p− 1) is the conjugate exponent to p. It is also shown that n1(H) = 1/2 for every real
or complex Hilbert space H of dimension greater than one.

While the de�nition of rank-one numerical index was �rst given in [12], the study of numerical
radius of rank-one operators was initiated much earlier. For instance, in the 1999 paper [9], the
authors proved a number of results for Banach spaces with numerical index one, but they claimed
that all of them are also true for Banach spaces with rank-one numerical index equal to one, since
in all the proofs only rank-one operators are used. Actually, in [16] it is introduced the so-called
alternative Daugavet property. A Banach space X has the alternative Daugavet property if the norm
equality

max
|θ|=1

‖ Id +θT‖ = 1 + ‖T‖

holds for all rank-one operators on the space and, in such a case, all compact operators also satisfy
that equation (actually, this is true for all operators not �xing a copy of `1, as has been recently
proved in [1, Corollary 5.6]). The relation of this property with the rank-one numerical index comes
from the fact known from the 1970's [4] that for T ∈ L(X),

v(T ) = ‖T‖ ⇐⇒ max
|θ|=1

‖ Id +θT‖ = 1 + ‖T‖.

Therefore, a Banach space X has the alternative Daugavet property if and only if n1(X) = 1 and,
in such a case, we actually have v(T ) = ‖T‖ for every operator T ∈ L(X) which does not �x a copy
of `1 (in particular, for compact operators). It also follows that for a �nite-dimensional space X, if
n1(X) = 1, then n(X) = 1. This result is false in the in�nite-dimensional setting, an example being
C([0, 1], `2). Some interesting examples are the following: C(K,X) has the alternative Daugavet
property if and only if X does or K is perfect; the spaces L1(µ,X) and L∞(µ,X) have the alternative
Daugavet property if and only if X does or µ has no atoms.

In this paper, we �st prove that n1(X) > 1/ e for every Banach space X (a result which is new in the
real case) and provide an example of a two-dimensional space for which the equality is true. Next, we
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study stability properties of the rank-one numerical index. Among others, we show that the rank-one
numerical index of a c0-, `1-, and `∞-sum of spaces is the in�mum of the rank-one numerical index of
the summands, we calculate the rank-one numerical index of C(K,X), L1(µ,X) and L∞(µ,X), and
we show that n1(X∗) = n1(X) when X is an L-embedded space. We also prove that the rank-one
numerical index is continuous with respect to equivalent norms. Finally, we present an example of
a Banach space X such that n(X) < ncomp(X) < n1(X) (where ncomp(X) is the compact numerical
index, see section 4 for the de�nition) and a number of other interesting examples.

2. A sharp lower bound for the rank-one numerical index

Our �rst goal is to give a lower bound for the rank-one numerical index valid in the real case and
to show that it is best possible.

Theorem 2.1. Let X be a real Banach space. Then,

n1(X) >
1

e
.

We recall that given a real or complex Banach space X, one can de�ne the exponential function on
L(X) by

exp(T ) = Id +

∞∑
k=1

T k

k!

(
T ∈ L(X)

)
and that it follows from [2, Theorem 3.4] that

(1) ‖ exp(αT )‖ 6 e|α|v(T )
(
T ∈ L(X), α ∈ K

)
.

Proof of Theorem 2.1. Let us �x a rank-one operator T ∈ L(X). We �nd x∗0 ∈ X∗, x0 ∈ X such that

Tx = x∗0(x)x0 (x ∈ X)

and write λ = x∗0(x0). It is immediate to check that for each α ∈ R one has

(2) exp(αT ) =

{
Id +αT if λ = 0

Id + eλα−1
λ T if λ 6= 0.

Now, if v(T ) = 0 then λ = 0 (indeed, if x0 = 0 the result is clear; otherwise, just pick y∗ ∈ SX∗ such
that y∗(x0) = ‖x0‖, write y = x0/‖x0‖ ∈ SX and observe that y∗(y) = 1 and λ = y∗(Ty)). Therefore,
equations (1) and (2) give in this case that

‖ Id +αT‖ = ‖ exp(αT )‖ 6 1 (α ∈ R).

This obviously implies that T = 0 and thus ‖T‖ 6 e v(T ).

If otherwise v(T ) 6= 0, we can assume without loss of generality that v(T ) = 1 and so we have to
show that ‖T‖ 6 e. We distinguish two cases depending on wether λ = 0 or not. Suppose �rst that
λ = 0. Then, using equations (1) and (2) for α = 1 and α = −1, we obtain

‖ Id +T‖ 6 e and ‖ Id−T‖ 6 e

which gives

‖T‖ =
∥∥ 1

2 (Id +T )− 1
2 (Id−T )

∥∥ 6 e

2
+

e

2
= e,

as desired. Finally, when λ 6= 0 one can use (1) and (2) to obtain∥∥∥∥Id +
eλα−1

λ
T

∥∥∥∥ = ‖ exp(αT )‖ 6 e|α| (α ∈ R).
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Using this for α = 1 and α = −1 one gets∥∥∥∥Id +
eλ−1

λ
T

∥∥∥∥ 6 e and

∥∥∥∥Id +
e−λ−1

λ
T

∥∥∥∥ 6 e

and, therefore, one has∣∣∣∣eλ− e−λ

2λ

∣∣∣∣ ‖T‖ 6 1

2

∥∥∥∥Id +
eλ−1

λ
T

∥∥∥∥+
1

2

∥∥∥∥Id +
e−λ−1

λ
T

∥∥∥∥ 6 e .

The desired inequality follows now from the fact that inf
λ6=0

∣∣∣∣eλ− e−λ

2λ

∣∣∣∣ = 1. �

The following example shows that the inequality above is sharp. Let us comment that it is the real
version of the space given in [7] of a complex two-dimensional space with numerical index equal to
1/ e.

Example 2.2. There is a real two-dimensional Banach space X with n1(X) = 1/ e . Indeed, consider
the function Φ : [0,+∞[−→ R given by

Φ(t) =

{
et/e if t ∈ [0, e]

t if t > e.
(t ∈ [0,+∞[)

Then, by [4, Proposition 3.1] the mapping ‖ · ‖ : R2 −→ [0,+∞[ given by

‖(α, β)‖ =

{
|α|Φ( |β||α| ) if α 6= 0

|β| if α = 0

(
(α, β) ∈ R2

)
de�nes a norm on R2. Now denote X = (R2, ‖ · ‖) and consider the shift operator S ∈ L(X) given by
S(α, β) = (0, α). Using Lemma 3.3 in [4] one obtains that

‖S‖ = 1 and v(S) = sup
φ′

φ
= 1/ e ,

which give n1(X) 6 1/ e, as desired.

3. Some properties of the rank-one numerical index

We present in this section properties of the rank-one numerical index. In many cases, they are
analogous to the ones of the classical numerical index, but also there are some properties which
present a di�erent behavior.

Our �rst goal is to show that the rank-one numerical index behaves in the expected way when
suitable sums of Banach spaces are considered. Given an arbitrary family {Xλ : λ ∈ Λ} of Banach
spaces, we denote by

[⊕
λ∈ΛXλ

]
c0

the c0-sum of the family and
[⊕

λ∈ΛXλ

]
`p

denotes the `p-sum of

the family for a given p with 1 6 p 6∞.

For the case of c0-, `1-, and `∞-sums we have the following expected result.

Proposition 3.1. Let {Xλ : λ ∈ Λ} be a family of Banach spaces. Then

n1

([⊕
λ∈Λ

Xλ

]
c0

)
= n1

([⊕
λ∈Λ

Xλ

]
`1

)
= n1

([⊕
λ∈Λ

Xλ

]
`∞

)
= inf{n1(Xλ) : λ ∈ Λ}.
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The proof of the proposition above is just an adaptation of the one given in [17, Proposition 1] for
the numerical index. Indeed, it is enough to check that when in this proof one starts with rank-one
operators, all operators involved are also rank-one.

In the already cited paper [17] it is also commented that the numerical index of an `p-sum is less or
equal than the numerical index of the summands. This result has been generalized to absolute sums
of Banach spaces in [14, �2]. Again, all the proofs can be adapted to the rank-one numerical index
since when one starts with a rank-one operator, then all the operators appearing are rank-one. But,
actually, we are now presenting a more general result which is new even for the classical numerical
index. We will use this result later on.

Proposition 3.2. Let X be a Banach space and Y,Z closed subspaces of X such that X = Y ⊕ Z
and ‖y1 + z‖ = ‖y2 + z‖ for z ∈ Z and y1, y2 ∈ Y with ‖y1‖ = ‖y2‖. Then,

n(X) 6 n(Y ) and n1(X) 6 n1(Y ).

We need a lemma which gives, in the hypotheses of the above result, the possibility of extending
an operator from Y to X with the same norm and numerical radius.

Lemma 3.3. Let X be a Banach space and Y,Z nontrivial closed subspaces of X such that X = Y ⊕Z
and ‖y1 + z‖ = ‖y2 + z‖ for every z ∈ Z and every y1, y2 ∈ Y with ‖y1‖ = ‖y2‖. Then, given an

operator T ∈ L(Y ), the operator T̃ ∈ L(X) de�ned by

T̃ (y + z) = Ty (y ∈ Y, z ∈ Z),

satis�es ‖T̃‖ = ‖T‖ and v(T̃ ) = v(T ).

Proof. We start with two easy observations. First, the hypothesis gives us that the projections to Y
and Z given by the decomposition X = Y ⊕ Z have norm one. Indeed, given y ∈ Y and z ∈ Z, one
has y = 1

2 (y + z) + 1
2 (y − z) which, using the fact that ‖y − z‖ = ‖ − y + z‖ = ‖y + z‖, gives

‖y‖ 6 1

2
‖y + z‖+

1

2
‖y − z‖ = ‖y + z‖

and, analogously, we get ‖z‖ 6 ‖y + z‖.
Secondly, we show that X∗ is isometrically isomorphic to Y ∗ ⊕ Z∗. To do so, recall that X∗ =

Z⊥ ⊕ Y ⊥ and observe that Z⊥ ≡ Y ∗ and Y ⊥ ≡ Z∗. Indeed, consider the mapping J : Z⊥ −→ Y ∗

given by Jz⊥ = z⊥|Y for z⊥ ∈ Z⊥. Taking into account that z⊥(y + z) = z⊥(y) and ‖y + z‖ > ‖y‖
for z⊥ ∈ Z⊥, y ∈ Y, z ∈ Z, it is clear that ‖Jz⊥‖ = ‖z⊥‖. To see that J is onto, �x y∗ ∈ Y ∗, take
x∗ ∈ X∗ a Hahn-Banach extension of y∗, and write x∗ = z⊥ + y⊥ for some z⊥ ∈ Z⊥ and y⊥ ∈ Y ⊥.
Then one has Jz⊥ = z⊥|Y = x∗|Y = y∗. Analogous arguments show that Y ⊥ ≡ Z∗. Summarizing,
we have proved that X∗ ≡ Y ∗ ⊕ Z∗ and that the action on X is given by

[y∗ + z∗](y + z) = y∗(y) + z∗(z)
(
y + z ∈ X, y∗ + z∗ ∈ X∗

)
.

Now, since Y is 1-complemented in X, it is clear that ‖T̃‖ 6 ‖T‖ and the reversed inequality is

always true. To show that v
(
T̃
)
> v(T ), �xed y ∈ SY and y∗ ∈ SY ∗ satisfying y∗(y) = 1, take a

Hahn-Banach extension x∗ ∈ SX∗ of y∗ and observe that x∗(y) = 1 and x∗(T̃ (y)) = y∗(Ty). Therefore,

|y∗(Ty)| =
∣∣x∗(T̃ (y))

∣∣ 6 v(T̃ )

and we get the inequality taking supremum.
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Finally, to prove the inequality v
(
T̃
)
6 v(T ), �xed x ∈ SX and x∗ ∈ SX∗ satisfying x∗(x) = 1,

there are y ∈ Y, z ∈ Z, y∗ ∈ Y ∗, z∗ ∈ Z∗ such that

x = y + z, x∗ = y∗ + z∗, and Re x∗(x) = Re
(
y∗(y) + z∗(z)

)
= 1.

Moreover, it holds that ‖y‖ 6 ‖x‖ and ‖y∗‖ 6 ‖x∗‖. Hence, if we show that Re y∗(y) = ‖y∗‖‖y‖,
then

|x∗(T̃ x)| = |y∗(Ty)| 6 v(T )‖y∗‖‖y‖ 6 v(T )‖x∗‖‖x‖ = v(T )

and the proof will be �nished. To do so, given ε > 0, take yε ∈ BY with ‖yε‖ = ‖y‖ and such that

Re y∗(yε) > ‖y∗‖‖yε‖ − ε.

By hypothesis, we have that ‖yε + z‖ = ‖y + z‖ = 1 and, therefore,

Re y∗(y) + Re z∗(z) = Re [y∗ + z∗](y + z) = 1

> Re [y∗ + z∗](yε + z) = Re y∗(yε) + Re z∗(z)

> ‖y∗‖‖yε‖ − ε+ Re z∗(z)

which gives Re y∗(y) > ‖y∗‖‖y‖ − ε. Finally, the arbitrariness of ε tells us that Re y∗(y) > ‖y∗‖‖y‖.
�

Proof of Proposition 3.2. For the numerical index the result is an obvious consequence of the above
lemma, since for every T ∈ L(Y ) with T 6= 0, one has

n(X) 6
v(T̃ )

‖T̃‖
=
v(T )

‖T‖
.

Taking in�mum on T ∈ L(Y ) with T 6= 0, we get n(X) 6 n(Y ) as desired. The result for the rank-one

numerical index is exactly the same taking into account that when T is a rank-one operator, then T̃
is also a rank-one operator. �

As a particular case of Proposition 3.2 we have that the rank-one numerical index of an absolute
sum of Banach spaces is less or equal than the rank-one numerical index of each of the summands
(see [14, �2] for de�nitions and for a di�erent proof for the case of the classical numerical index). We
will only give here two particular cases.

Corollary 3.4. Let Λ be a nonempty set, let {Xλ : λ ∈ Λ} be a family of Banach spaces and
1 < p <∞. Then

n1

([⊕
λ∈Λ

Xλ

]
`p

)
6 inf{n1(Xλ) : λ ∈ Λ}.

Corollary 3.5.

(a) Let E be Rm endowed with an absolute norm, let X1, . . . , Xm be Banach spaces and write X
to denote their E-sum. Then

n1(X) 6 min
{
n1(X1), . . . , n1(Xm)

}
.

(b) Let E be a Banach space with a one-unconditional (in�nite) basis, let {Xj : j ∈ N} be a
sequence of Banach spaces and let X denote their E-sum. Then

n1(X) 6 inf
{
n1(Xj) : j ∈ N}.

The next result deals with the study of the rank-one numerical index of vector valued spaces. Its
behavior di�ers from that of the classical numerical index.
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Proposition 3.6. Let K be a compact Hausdor� space, µ a positive measure, and X a Banach space.
Then, the following hold:

n1

(
C(K,X)

)
=

{
1 if K is perfect,

n1(X) if K is not perfect,

n1

(
L1(µ,X)

)
=

{
1 if µ has no atoms,

n1(X) if µ has atomic part,

n1

(
L∞(µ,X)

)
=

{
1 if µ has no atoms,

n1(X) if µ has atomic part.

Proof. The proof for L1(µ,X) and L∞(µ,X) follows the same lines, so we only give the one for the
L1-case. Indeed, it is known that L1(µ,X) is isometrically isomorphic to a space of the form

`1(Γ, X)⊕1 L1(ν,X)

for suitable set Γ and atomless measure ν, being Γ empty when µ is actually atomless. Now, the
result follows from Proposition 3.1 and the fact that L1(ν,X) has the alternative Daugavet property
[16] and so, n1

(
L1(ν,X)

)
= 1.

Let us now prove the result for C(K,X). If K is perfect, C(K,X) has the alternative Daugavet
property [16] and so n1

(
C(K,X)

)
= 1. If K has an isolated point, then X is an `∞-summand of

C(K,X) and so Proposition 3.1 gives us that n1

(
C(K,X)

)
6 n1(X). For the reversed inequality, we

just follow the �rst part of the proof of [17, Theorem 5] but considering rank-one operators: there,
for a given operator T ∈ L(C(K,X)) with ‖T‖ = 1, an operator S ∈ L(X) such that ‖S‖ ' ‖T‖ and
v(T ) ' v(S) is constructed. If one observes that when T is rank-one, then S is also rank-one, the
mentioned fact shows that n1(C(K,X)) > n1(X). �

We may use the above result to give an example of a Banach space X such that n1(X∗) < n1(X).
Indeed, the space X = C([0, 1], `2) satis�es n1(X) = 1 but X∗ ≡ L1(µ, `2) for some measure µ which
clearly contains atoms, so n1(X∗) = n1(`2) = 1/2. Let us comment that this kind of examples have
appeared previously in the literature (see [16, Example 4.4]) using a characterization of the alternative
Daugavet property for C∗-algebras and von Neumann preduals. On the other hand, for a von Neumann
algebra A, it is shown in [16, Theorem 4.2] that A has the alternative Daugavet property if and only
if its predual A∗ does (equivalently, n1(A) = 1 i� n1(A∗) = 1) and this result was generalized to
L-embedded spaces in [10, Proposition 2.3]. Actually, we may give a more general result covering any
value of the rank-one numerical index. We recall that a Banach space X is said to be L-embedded if
X∗∗ = X ⊕1 Xs for some closed subspace Xs of X

∗∗.

Proposition 3.7. Let X be an L-embedded space. Then, n1(X) = n1(X∗).

The proof is just an adaptation of the one given in [10, Theorem 2.1] for the case of the classical
numerical index taking into account that in this proof, if one starts with rank-one operators then all
operators envolved are rank-one.

We �nish this section with a result on the continuity of the rank-one numerical index of Banach
spaces, analogous to the one given in [6] for the classical numerical index. Actually, the proofs are just
adaptations to the new index of the ones given there, so we will only comment the changes. We need
some de�nitions and notation used in the cited paper [6] which were actually taken from [3, �18].
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Given a Banach space X, we denote by E(X) the set of all equivalent norms on X. This is an
arcwise connected metric space when provided with the distance

d(p, q) = log (min{k > 1 : p 6 kq, q 6 kp}) (p, q ∈ E(X)).

If p ∈ E(X) and T ∈ L(X), we write vp(T ) for the numerical radius of T in the space (X, p), that is,

vp(T ) = sup{|x∗(Tx)| : x ∈ X, x∗ ∈ X∗, p(x) = p(x∗) = x∗(x) = 1}
and n1(X, p) will be the rank-one numerical index of the Banach space (X, p). Finally, we consider
the set

N1(X) = {n1(X, p) : p ∈ E(X)}
which represents all the values of the rank-one numerical index that X may have up to equivalent
renorming.

Proposition 3.8. Let X be a Banach space.

(a) The mapping (p, T ) 7−→ vp(T ) from E(X) × L(X) to R is uniformly continuous on bounded
sets.

(b) As a consequence, the mapping p 7−→ n1(X, p) from E(X) to R is continuous.
(c) Hence, N1(X) is an interval.
(d) If dim(X) > 1, then 1/ e ∈ N1(X).

Proof. Item (a) follows from an easy re�nement of the proof of [3, Corollary 18.4], as it was commented
in [6]. (b) follows from (a) in the same manner as the continuity of the classical numerical index is
deduced in [6]. Indeed, �x p0 ∈ E(X), let B be an open ball centered at p0 and S = {T ∈ L(X) :
p0(T ) = 1 dim(T (X)) = 1}, where we use the same symbol for a norm on X and the associated
operator norm. It follows from (a) that the mapping Ψ : B × S −→ R given by

Ψ(p, T ) =
vp(T )

p(T )
(p ∈ B, T ∈ S)

is uniformly continuous, which implies that the mapping

p 7−→ inf {Ψ(p, T ) : T ∈ S} = n1(X, p)

is continuous on B. (c) is an obvious consequence of (b). Finally, to prove (d) we take a two-
dimensional subspace Y of X, and write X = Y ⊕Z for suitable Z. Now, let W be a two-dimensional
space with n1(W ) = 1/ e (Example 2.2 for the real case and [7] for the complex case). Then, we have
X 'W ⊕1 Z, and Proposition 3.1 tells us that n1(W ⊕1 Z) = min{n1(W ), n1(Z)} = n1(W ). �

4. Some examples and remarks

Our goal in this section is to provide some interesting examples relating the rank-one numerical
index with other indices. Let us start by de�ning some more indices. Given a Banach space X, for
every r ∈ N we de�ne the rank-r numerical index by

nr(X) = inf{v(T ) : T ∈ SL(X), dim(T (X)) 6 r}
and the compact numerical index by

ncomp(X) = inf{v(T ) : T ∈ SL(X), T compact}.
It is immediate that nr(X) > nr+1(X) > ncomp(X) > n(X) for every r ∈ N.

We start providing a real Banach space whose compact numerical index is strictly between the
classical numerical index and the rank-one numerical index. Let us recall that when n1(X) = 1 for a
Banach space X, then ncomp(X) = 1 [16, Theorem 2.2].
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Example 4.1. There exists a real Banach space X such that

n(X) < ncomp(X) < n1(X).

Indeed, �x a su�ciently large even number k such that tan
(
π
2k

)
< 1/ e and take Xk to be the two-

dimensional real Banach space whose unit ball is the 2k-sided regular polygon centered at the origin,
having one of its vertices on the point (1, 0). Now, consider the space

X = C([0, 1], `2)⊕1 Xk.

Then, we have that n(X) = n(`2) = 0 by [17, Proposition 1 and Theorem 5], that n1(X) > 1/ e

by Theorem 2.1, and that ncomp(X) = ncomp(Xk) = n(Xk) = tan
(
π
2k

)
by [11, Theorem 5] and

Proposition 3.1.

Let us comment that we do not know if the equality ncomp(X) = n1(X) holds for every complex
Banach space X.

The next result we present is that for �nite-dimensional spaces, the values of the rank-one and the
rank-two numerical indices are sometimes related. We start with a lemma which does not require the
space to be �nite-dimensional.

Lemma 4.2. Let X be a Banach space. If there is T ∈ L(X) with dim(T (X)) = 2 and v(T ) = 0,
then n1(X) 6 1

2 .

Proof. By [19, Thorem 2.1], Y = T (X) is a two-dimensional well-embedded Hilbert subspace of X.
That is (see [19, p. 430] and [19, Proposition 1.11]), there exists a subspace Z ofX such thatX = Y ⊕Z
and ‖y1 + z‖ = ‖y2 + z‖ for every z ∈ Z and every y1, y2 ∈ Y with ‖y1‖ = ‖y2‖. Now, Proposition 3.2
gives that n1(X) 6 n1(Y ). Finally, we have that n1(Y ) = 1

2 by [12, Proposition 3.3] since Y is a
Hilbert space with dimension greater than one. �

As an immediate consequence we obtain that the numerical indices of rank-one and rank-two
operators are linked for �nite-dimensional Banach spaces.

Corollary 4.3. Let X be a �nite-dimensional (real) space with n2(X) = 0. Then, n1(X) 6 1
2 .

For two-dimensional spaces, the result actually deals with the classical numerical index.

Corollary 4.4. Let X be a two-dimensional (real) space. If n1(X) > 1/2, then n(X) > 0.

We do not know whether the above result is true for arbitrary Banach spaces.

When X is a two-dimensional real Hilbert space, one has that n2(X) = 0 and n1(X) = 1/2. In the
next example we show that something similar can happen for the numerical indices of higher rank.

Example 4.5. For every even number r there is a Banach space Xr of dimension r with nr(Xr) = 0
and ns(Xr) > 0 for every s < r. Indeed, �xed an even number r, [18, Theorem 3.10] provides us with
an r-dimensional real Banach space Xr and an onto operator T0 ∈ L(Xr) such that

{T ∈ L(Xr) : v(T ) = 0} = {λT0 : λ ∈ R}.

It follows that nr(Xr) = 0 since T0 6= 0 and that ns(Xr) > 0 for every s < r since the only non-null
operators with numerical radius zero are the non-null multiples of T0 which have rank r.

We may use the above example to produce an analogue to Example 4.1 for the numerical indices
of higher rank.
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Example 4.6. For every r ∈ N, there exists a real Banach space X such that

n(X) < ncomp(X) < nr(X).

Indeed, write Y = Xr+2 or Y = Xr+1 of the above example depending on whether r is even or odd.
We have then nr(Y ) > 0 and ncomp(Y ) = 0 since nr+1(Y ) = 0 or nr+2(Y ) = 0 depending on our
choice of Y . From Proposition 3.8.a (just the same proof as (b) there), we deduce that both ncomp

and nr are continuous with respect to equivalent norm. Therefore, as we may �nd polyhedral norms
as close to the norm of Y as we want, there exists a polyhedral norm such that, callingW to the space
Y endowed with the this norm, we still have ncomp(W ) < nr(W ). Moreover, since W is polyhedral it
cannot contain an isometric copy of C, so Theorem 2.4 in [15] tells us that ncomp(W ) 6= 0. Now, we
may follow the lines of the proof of Example 4.1 and consider the space

X = C([0, 1], `2)⊕1 W

which satis�es n(X) = n(`2) = 0 by [17, Proposition 1 and Theorem 5], nr(X) = nr(W ) and
ncomp(X) = ncomp(W ) since C([0, 1], `2) has the alternative Daugavet property and Proposition 3.1
is also true for the rank-r and the compact numerical indices.

We do not know if there is a Banach space X such that ncomp(X) 6= inf
r∈N

nr(X). If such an

example exists, it cannot have the approximation property since in that case compact operators can
be approximated in norm, and hence in numerical radius, by �nite-rank operators.
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