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Abstract. We show that every in�nite dimensional Banach space has a closed and bounded
convex set that is not remotal. This settles a problem raised by Sababheh and Khalil in [8].

1. Introduction

Let X be a real Banach space and let E ⊂ X be a bounded set. We write ext(E) for the
set of extreme points of E and co(E) for the closed (in the norm topology) convex hull of E.

If τ is a locally convex topology in X, we will write co τ (E) to denote the τ -closed convex hull

of E. We denote by BX the closed unit ball of X.

The set E is said to be remotal from a point x ∈ X, if there exists a point e0 ∈ E such

that D(x,E) = sup{‖x − e‖ : e ∈ E} = ‖x − e0‖. The point e0 is called a farthest point of

E from x. E is said to be remotal (densely remotal) if it is remotal from all (on a dense set)

x ∈ X. Let F (x,E) = {e ∈ E : D(x,E) = ‖x − e‖}. In general this set can be empty. A

well known result of Lau ([5]) says that any weakly compact set is densely remotal. It seems

to be open, the question of whether every in�nite dimensional Banach space has a closed and

bounded convex set that is not remotal. This question was actually raised in [8] and some

partial positive answers were given in [8] and [7] in the case of re�exive Banach spaces and

Banach spaces that fail the Schur property. The aim of this note is to give a positive answer

to this question. We follow the notation and terminology of [8] and [7].

Let us outline the content of this paper. Let X be an in�nite dimensional Banach space and

let X∗ be its topological dual. Using a classical integral representation theorem, we �rst show

thatX∗ has a weak∗-compact convex setK that is not remotal. This should be compared with

[2, Proposition 1] where the authors exhibited a weak∗-compact convex set C ⊂ `1 that has no
farthest points. To prove the general result, we use a stronger form of integral representation

theorem for closed convex bounded sets with the Radon-Nikodým property (RNP for short)

due to Edgar ([4], see [6, Theorem 16.12]). Let E ⊂ X be a weakly closed and bounded

set. An interesting problem that is open is to determine conditions on co(E) so that co(E)
is remotal from x implies that E is remotal from x. We will give an example showing that E

being norm closed in a re�exive space is not enough for the validity of Theorem A in [8].
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2. Main result

We �rst prove a weak∗-version of [8, Theorem A]. In order to produce a weak∗-compact

convex non-remotal set, it is enough to show that if E is a weak∗-compact set having no vector

of maximum length, then the same is true of coweak
∗
(E) (weak∗-closed convex hull). For a

compact convex set K ⊂ X∗ and for a probability measure µ on K, let γ(µ) ∈ K denote its

resultant (or weak integral) with the property[
γ(µ)

]
(x) =

∫
K
k(x) dµ(x)

(
x ∈ X

)
.

We refer to [3, 6] for the results on integral representations we use here.

Theorem 1. Let X be an in�nite dimensional Banach space. Let E ⊂ X∗ be a weak∗-closed

and bounded set having no vector of maximum length. Then the weak∗-closed convex hull K

of E has no vector of maximum length. Equivalently, if E is not remotal from a point x ∈ X,

then neither is K.

Proof. Let M = D(0, E) = sup{‖e‖ : e ∈ E} = sup{‖k‖ : k ∈ K}. Suppose that there exists
x∗0 ∈ K such that ‖x∗0‖ = M . Let µ be a probability measure on K with µ(E) = 1 and such

that γ(µ) = x∗0 (see [6, Proposition 1.1]). We �x ε > 0 and take x ∈ X such that ‖x‖ = 1 and

x∗0(x) > M − ε. Now,

M − ε < x∗0(x) =
∫
K
x∗(x) dµ(x∗) =

∫
E
x∗(x) dµ(x∗) 6

∫
E
‖x∗‖ dµ 6M.

Letting ε ↓ 0, we get that
∫
E
‖x∗‖ dµ(x∗) = M and so, M = ‖k‖ µ-a.e. Hence M = ‖e‖ for

some e ∈ E. A contradiction. The last part of the statement is equivalent to the �rst one

just by translation. �

Corollary 2. Let X be an in�nite dimensional Banach space. Then there exists a weak∗-

compact convex set K ⊂ X∗ that is not remotal.

Proof. Since X is in�nite dimensional, by the well-known Josefson-Nissenzweig theorem (see

[3, p. 219]), there exists a sequence {x∗n}n>1 of unit vectors such that x∗n −→ 0 in the weak∗-

topology. Consider the set

E =
{

n

n+ 1
x∗n : n ∈ N

}
∪ {0},

which is clearly a weak∗-compact set having no vector of maximum length. Thus, by the above

theorem, the weak∗-closed convex hull K of E does not have vectors of maximum length, so

K is not remotal from 0. �

Remark 3. The arguments in Theorem 1 and Corollary 2 also work in the case of a weakly

compact set E and its closed convex hull K = co(E) (actually, the argument simpli�es in

this case and ε is not necessary). Thus, in a Banach space X that fail the Schur property, by

taking a sequence {xn}n>1 of unit vectors which converges to 0 in the weak topology, we get

that the set

K = co
({

n

n+ 1
xn : n ∈ N

}
∪ {0}

)
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is nonremotal from 0 (alternatively, the set does not have any vector of maximal length). This

gives an alternative proof of the main result from [7].

Remark 4. From the above arguments it is easy to see that for a weak∗-compact set E ⊂ X∗
and for any x∗ ∈ X∗, if the set F (x∗,K) of farthest points in the weak∗-closed convex hull K

of E to x∗ is non-empty, then it has a point of E. However the method of proof in [7] has the

advantage that it shows that there is an extreme point of K in F (x∗,K). Then by Milman's

theorem [3, p. 151], such an extreme point is also in E.

The following easy example shows that the hypothesis of weak∗-closedness can not be

omitted on the set E in Theorem 1 (weak-compactness in the case of Remark 3).

Example 5. Let {en}n>1 denote the canonical vector basis in `2. Let X = K ⊕∞ `2, where

K = R or K = C is the base �eld and ⊕∞ means the `∞-direct sum. Consider the set

E =
{(

n

n+ 1
,

n

n+ 1
en

)
: n ∈ N

}
.

Then E is a norm closed set which is not remotal from 0. Since co(E) = coweak(E) by Mazur's

theorem and {en}n>1 −→ 0 in the weak topology, (1, 0) ∈ co(E) and so, co(E) is remotal

from 0.

Remark 6. Let X be a Banach space and let E ⊂ X be a weakly closed and bounded set.

We do not know if remotality of K = co(E) from a point always implies that of E. Since any

strongly exposed point of K clearly lies in E, the answer is a�rmative if the farthest point in

K is actually strongly exposed. We may also ask whether the above question has a positive

answer for RNP sets (see [1, � 3] for these concepts).

We are now able to present the main result of our paper.

Theorem 7. Let X be an in�nite dimensional Banach space. Then, there exists a closed and

bounded convex set K that is not remotal.

Proof. As before, we will construct a closed and bounded set E which is not remotal from 0
and show that K = co(E) is also not remotal from 0.

In view of Remark 3 (or of [7]), we may assume without loss of generality that X has the

Schur property. Since X is in�nite dimensional, by Rosenthal's `1 Theorem (see [3, � XI]), X

contains an isomorphic copy of `1. Let ||| · ||| denote the norm on X∗. Now we will be done

if we can construct in every Banach space Y = (`1, ||| · |||) isomorphic to `1, a closed convex

bounded set K ⊆ Y which is not remotal from 0. Let us write τ for the weak∗-topology of `1
as dual of c0 inherited in Y . This is a locally convex topology on Y weaker than the norm

topology and any τ -closed norm-bounded set is compact in this topology. Observe now that

||| · ||| is not necessarily weak∗-lower semi-continuous (i.e. Y may not be a dual space) so, on

the one hand, Corollary 2 does not apply and, on the other hand, BY may not be τ -closed.

Let {en}n>1 be the canonical basis of `1. Consider the set

E =
{

n

n+ 1
en
|||en|||

: n ∈ N
}
∪ {0} ⊆ BY
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which is τ -compact since {en}n>1 τ -converges to 0 and ||| · ||| is equivalent to the usual norm of

`1. We consider the set K = co τ (E) ⊂ Y , which is τ -compact since it is τ -closed and norm-

bounded (indeed, E is contained in the τ -closed set MB`1 for some M > 0, so K ⊂MB`1).

Claim. K ⊆ BY . Indeed, since `1 (and so Y ) has the RNP, K is a set with the RNP. Therefore,

we have K = co
(
ext(K)

)
(closure in norm, see [1, � 3]). As K and E are τ -compact, Milman's

theorem gives us that ext(K) ⊆ E (see [3, p. 151]). Therefore, we have

K = co
(
ext(K)

)
⊆ co(E) ⊆ co τ (E) = K,

so K = co(E) ⊆ BY as claimed.

Suppose K is remotal from 0 in Y . As D(0, E) = 1 and K ⊆ BY , we also have D(0,K) = 1.
Therefore, there is a vector y0 ∈ K with |||y0||| = 1, and we may pick a functional y∗0 ∈ Y ∗
with

|||y∗0||| = 1 and y∗0(y0) = 1.

As K is a separable closed convex bounded set with the RNP, Edgar's integral representation

theorem ([4], see [6, Theorem 16.12]), gives us that there exists a probability measure µ on

K with µ
(
ext(K)

)
= 1 (so µ(E) = 1) such that

1 = y∗0(y0) =
∫
K
y∗0(y) dµ(y) =

∫
E
y∗0(y) dµ(y) 6

∫
E
|||y||| dµ(y) 6 1.

Therefore, |||y||| = 1 µ-a.e. in E, which is clearly false. Thus we get a contradiction and K is

nonremotal from 0. �

Since remotality from 0 is equivalent to having a vector of maximal norm, we get the

following corollary.

Corollary 8. Let X be an in�nite-dimensional Banach space. Then there is a closed convex

set K contained in the open unit ball of X such that sup{‖x‖ : x ∈ K} = 1.

Remark 9. Similar to Remark 4 (see also Remark 6), let us note that for a separable weakly

closed and bounded set E such that its closed convex hull K has the RNP, our arguments

show that if F (x,K) 6= ∅ then it has an extreme point of K.

Remark 10. Going into the details of the proofs of Remark 3 and Theorem 7, one realizes that

for every in�nite-dimensional Banach space X, there is a locally convex Hausdor� topology

τ , which is weaker than the norm topology and such that there is a τ -compact convex set K

which is not remotal (from 0). Indeed, if X does not have the Schur property, then the set K

is actually weak compact. Otherwise, X contains a subspace Y isomorphic to `1, and the set

K ⊂ Y is compact for the topology τ ′ of Y which it inherits from the weak∗ topology of `1 as

dual of c0. Since we may extend the topology τ ′ of Y to a locally convex Hausdor� topology

τ of X (still weaker than the norm topology of X), we get that K is τ -compact, as desired.
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