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Abstract. It is known that there is a continuous linear functional on L∞ which is not
narrow. On the other hand, every order-to-norm continuous AM -compact operator from
L∞(µ) to a Banach space is narrow. We study order-to-norm continuous operators acting
from L∞(µ) with a finite atomless measure µ to a Banach space. One of our main results
asserts that every order-to-norm continuous operator from L∞(µ) to c0(Γ) is narrow while
not every such an operator is AM -compact.

1. Introduction

1.1. General.
Our notation and terminology are standard (see [11], [12] for Banach spaces and [2] for vector
lattices). We consider Banach spaces over the reals only. By L(X, Y ) and L(X) we denote the
spaces of all continuous linear operators acting from X to Y and from X to X respectively.
We consider the space Lp(µ), 1 6 p 6 ∞, on a measure space (Ω,Σ, µ) with a finite atomless
measure µ. For the Lebesgue measure space on [0, 1] we just write Lp instead of Lp(µ). By
1A we denote the characteristic function of a set A ∈ Σ, and A = B t C for A,B, C ∈ Σ
means that both A = B∪C and B∩C = ∅ hold, up to a measure null set. For any x ∈ Lp(µ)
the support of x is defined by suppx = {ω ∈ Ω : x(ω) 6= 0}. Clearly, it is defined, up to a
measure null set.

1.2. Order convergence and order-to-norm continuous operators.
Let E be a vector lattice and let (xα) be a net in E. The notation xα ↓ 0 is used to mean
that the net (xα) is decreasing (in the non-strict sense) and inf

α
xα = 0. A net (xα) in E order

converges to an element x ∈ E (notation xα
o−→ x) if there exists a net uα ↓ 0 in E with

|xα−x| 6 uα for all α. A subset M of E is said to be order bounded when there are x, y ∈ E
such that x 6 m 6 y for all m ∈ M .

Let E be a vector lattice and X be a Banach space. A map f : E → X is called order-to-
norm continuous if order converging nets from E it sends to norm converging nets in X, and
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order-to-norm σ-continuous if order converging sequences from E it sends to norm converging
sequences in X.

A map f : E → X is said to be AM -compact if f(A) is a relatively compact set in X for
any order bounded set A ⊂ E.

1.3. Narrow operators.
The notion of narrow operator (as a generalization of the notion of compact operator) was
introduced and studied by Plichko and Popov in [14] for operators acting from a symmetric
(in other terminology, rearrangement invariant) function space E with absolutely continuous
norm to a Banach space (or, more generally, to an F -space) X. Although the assumption of
absolute continuity of the norm in E is not used in the definition, it essentially has been used
by mathematicians in investigations on narrow operators for a long time. The definition can
be considered on a Köthe function space (as was considered in [4]).

Definition 1.1. Let E be a Köthe function space (Banach, or even F -space) on an atomless
finite measure space (Ω,Σ, µ) and X be a Banach (or F -space). An operator T ∈ L(E,X)
is called narrow if for every A ∈ Σ and every ε > 0 there exists an x ∈ E such that

|x| = 1A,

∫
Ω

x dµ = 0 and ‖Tx‖ < ε.

Here the conditions on x mean that x = 1B − 1C for some B,C ∈ Σ with A = B t C

and µ(B) = µ(C). The condition
∫

Ω
x dµ = 0 can be equivalently removed if the norm of

E is absolutely continuous [14]. We recall that the norm of a Köthe function space E is
absolutely continuous if for every x ∈ E and every decreasing sequence (An) in Σ with empty
intersection, one has limn

∥∥x · 1An

∥∥ = 0. Of course, the norm of L∞(µ) is not absolutely

continuous and we do not know whether the condition
∫

Ω
x dµ = 0 can be removed in this

case. We will discuss some particular cases in Section 3.

The notion of narrow operator naturally generalizes that of compact operator when the
domain space has absolutely continuous norm. So, the Daugavet property for compact oper-
ators on L1 proved by Lozanovskii and the pseudo-Daugavet property for compact operators
on Lp with 1 < p < ∞, p 6= 2 established by Benyamini and Lin [3] were extended to narrow
operators in [14].

Recently, some investigations have appeared on narrow operators defined on the space L∞
the norm of which is not absolutely continuous. A striking example of a continuous linear
functional on L∞ which is not narrow was constructed in [13]. Let Σ be the σ-algebra of
measurable subsets of [0, 1] which are identified up to measure null sets. Observe that Σ is
also a Boolean algebra, so let U be any ultrafilter on Σ in the sense of [5, p. 72]. Then the
linear functional fU : E → R defined by

fU (x) = lim
A∈U

1
λ(A)

∫
A

xdλ

is obviously bounded and it is not narrow. Indeed, for each x ∈ L∞ of the form x = 1A−1B

where [0, 1] = A t B one has fU (x) = ±1 depending on whether A ∈ U or B ∈ U . Let us
comment that the reason why fU is not narrow is that it is not order-to-norm continuous.
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It should be mentioned that in [8], Kadets and Popov introduced the following notion of
narrow operator defined on C(K)-spaces: an operator T ∈ L

(
C(K), X

)
is called C-narrow

if for every open nonempty set G ⊆ K and every ε > 0 there exists an x ∈ C(K) such that
‖x‖ = 1, suppx ⊆ G and ‖Tx‖ < ε. In view of the possible consideration of L∞(µ) as a
C(Kµ)-space, we have two different definitions of a narrow operator. Using arguments of [6,
Lemma 3.1], one can show that the definition of C-narrow operator for L∞(µ) = C(Kµ) means
exactly the following: T ∈ L

(
L∞(µ), X

)
is narrow if and only if, for any A ∈ Σ, µ(A) > 0

and every ε > 0 there exists an x ∈ L∞(A) such that ‖x‖ = 1 and ‖Tx‖ < ε. In other words,
if the restriction T |L∞(A) of T to L∞(A) is not an isomorphic embedding. Observe that if µ
is finite, then the inclusion operator J : L∞(µ) → L1(µ) is C-narrow but not narrow.

1.4. Motivation.
In the recent paper [9], it has been shown that the following two results on narrow operators
in Lp, 1 6 p < ∞ obtained in [14] can be extended to the case of p = ∞:

(A) there exists a narrow projection of the space Lp onto a subspace isometric to Lp,
(B) the sum of two narrow operators on Lp need not be narrow.

The following positive result on narrowness of operators from L∞ was also obtained in [13].

Theorem 1.2 ([13, Theorem 5.1]). Every AM -compact order-to-norm continuous linear op-
erator T : L∞(µ) → X is narrow for any Banach space X.

So, the following question naturally arises.

Question 1.3. Does there exist a Banach space X such that every order-to-norm continuous
operator T ∈ L(L∞, X) is narrow while not every such an operator is AM -compact?

We are going to give a positive answer to this question in the present paper.

1.5. Organization of the paper.
Section 2 is devoted to a study of order-to-norm continuous operators with domain space
L∞(µ). In particular, we show that order-to-norm continuous operators have separable “es-
sential domain” and separable range. Besides, we give a short proof of Theorem 1.2. In
Section 3 we consider several possible definitions of narrow operator and show that all of
them are equivalent for order-to-norm continuous operators. Finally, we show in Section 4
that X = c0(Γ) gives a positive answer to Question 1.3.

2. Order convergence in Lp(µ) and order-to-norm continuous operators from
L∞(µ) to a Banach space

The following lemma is probably well known, but having no reference concerning it we give
a sketch of its proof.

Lemma 2.1. A sequence (xn) in Lp(µ) with 1 6 p 6 ∞ order converges to an element
x ∈ Lp(µ) if and only if xn −→ x a.e. on Ω and it is order bounded in Lp(µ).
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Proof. It is a non-difficult technical exercise to show that for a decreasing sequence yn ↓
in Lp(µ), the conditions inf

n
yn = 0 and yn −→ 0 a.e. are equivalent. So, the condition

|xn − x| 6 yn ↓ 0 implies the order boundedness of (xn) and that xn −→ x a.e. Let now (xn)
be order bounded and xn −→ x a.e. We set yn(ω) = sup

m>n
|xm(ω)−x(ω)|. Then |xn−x| 6 yn

and yn ↓. By the above, yn ↓ 0. �

Corollary 2.2. Let 1 6 p < r 6 ∞ and xn, x ∈ Lr(µ). If xn
o−→ x in Lr(µ) then xn

o−→ x
in Lp(µ), but the converse is not true.

As an example of the fact that the implication above does not reverse, one can consider
the sequence xn(t) = t−1/r1( 1

n+1
, 1
n

](t) ∈ Lr. By Lemma 2.1, xn
o−→ 0 in Lp but not in Lr,

because (xn) is not order bounded in Lr.

It is worth mentioning that the order boundedness and the norm boundedness for sets in
L∞(µ) coincide. Thus, speaking of bounded sequences in L∞(µ), we need not specify the
kind of boundedness we mean.

One more application of Lemma 2.1 is the following short proof of Theorem 1.2 (the proof
given in [13] uses much more involved background in the setting when the domain space is a
general vector lattice).

Proof of Theorem 1.2. Let T ∈ L
(
L∞(µ), X

)
be AM -compact and order-to-norm continuous.

Fix any A ∈ Σ and ε > 0. Consider a Rademacher system (rn) on L∞(A), i.e. a system with

the properties |rn| = 1A,

∫
Ω
rndµ = 0 and if n 6= m then the function rn − rm takes values

−2 and 2 on some subsets of A of measure µ(A)/4 and vanishing outside these subsets. Since
(rn) is order bounded, (Trn) is relatively compact in X. Hence there are indices n 6= m

such that for x1 = (rn − rm)/2 one has |x1| = 1B1 , B1 ⊂ A, µ(B1) = µ(A)/2,

∫
Ω
x1dµ = 0

and ‖Tx1‖ < ε/2. Setting A1 = A \ B1 we do the same with the set A1 instead of A to

find x2 ∈ L∞(µ) with |x2| = 1B2 , B2 ⊂ A1, µ(B2) = µ(A1)/2 = µ(A)/4,

∫
Ω
x2dµ = 0 and

‖Tx2‖ < ε/4. Continuing the procedure in the obvious manner, we construct a sequence

(xn) in L∞(µ) such that |xn| = 1Bn , A =
∞⊔

n=1
Bn (up to a measure null set),

∫
Ω
xndµ = 0

and ‖Txn‖ < ε/2n. Now, we set x(ω) = xn(ω) for ω ∈ Bn and x(ω) = 0 for ω ∈ Ω \ A, and

observe that |x| = 1A,

∫
Ω
xdµ = 0 and

n∑
k=1

xk
o−→ x in L∞(µ) in view of Lemma 2.1. By the

order-to-norm continuity of T , the last condition implies that lim
n−→∞

∥∥∥T( n∑
k=1

xk

)∥∥∥ = ‖Tx‖.

And since
∥∥∥T( n∑

k=1

xk

)∥∥∥ 6
n∑

k=1

‖Txk‖ < ε, we obtain ‖Tx‖ 6 ε. �

Our next goal is to give some characterizations of order continuity for operators with
domain L∞(µ).
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Theorem 2.3. Let X be a Banach space. For any operator T ∈ L
(
L∞(µ), X

)
the following

conditions are equivalent.

(i) T is order-to-norm continuous.
(ii) T is order-to-norm σ-continuous.

(iii) For any bounded sequence (xn) in L∞(µ) tending to zero in measure, one has that
‖Txn‖ −→ 0.

(iv) Let p ∈ [1,∞). For any bounded sequence (xn) in L∞(µ), the condition ‖xn‖Lp(µ) −→
0 implies that ‖Txn‖ −→ 0.

Proof. (i) ⇒ (ii) is obvious.

(ii) ⇒ (iii) Let (xn) be bounded a sequence in L∞(µ) tending to zero in measure. Suppose,
for the sake of contradiction, that ‖Txn‖ > δ > 0 for infinitely many n ∈ N. Without loss
of generality we assume that this is true for all n ∈ N. Passing to a subsequence, we obtain
that xnk

−→ 0 a.e. and still ‖Txnk
‖ > δ > 0, what contradicts (ii).

(iii) ⇒ (iv) It is enough to note that ‖xn‖Lp(µ) −→ 0 implies that xn −→ 0 in measure.

(iv) ⇒ (ii) Suppose that xn
o−→ 0. Then |xn| 6 yn ↓ 0 for some sequence (yn) in L∞(µ).

By Lemma 2.1, yn −→ 0 a.e., from what we deduce that ‖yn‖Lp(µ) −→ 0. Taking into account
that ‖xn‖Lp(µ) 6 ‖yn‖Lp(µ) for each n, we obtain that ‖xn‖Lp(µ) −→ 0. By (iv), ‖Txn‖ −→ 0.

(ii) ⇒ (i) First we prove the following statement.

Claim. Let xα ↓ 0 in L∞(µ). Then there exists a strictly increasing sequence of indices (αn)
such that inf

n
xβn

= 0 for any sequence of indices βn > αn.

Indeed, since 0 6 xβn
6 xαn

, it is enough to show that inf
n

xαn
= 0. Set tα =

∫
Ω
xα dµ and

observe that there exists t0 = lim
α

tα because (tα) is decreasing and is bounded from below by

0. Now, choose a strictly increasing sequence of indices (αn) so that lim
n→∞

tαn
= t0. Since the

sequence (xαn
) decreases and is bounded from below by 0, z(ω) = lim

n→∞
xαn

(ω) > 0 exists a.e.

Observe that z = inf
n

xαn
and, by the Lebesgue theorem, t0 =

∫
Ω
z dµ. To prove the claim, it

is sufficient to show that t0 = 0. Suppose otherwise that t0 > 0. Since inf
α

xα = 0 and z 6= 0,
there exists an index β such that z ∧ xβ < z. Now, for every n ∈ N we choose an index γn so

that γn > β and γn > αn. Then y = inf
n

xγn < z and
∫

Ω
y dµ = lim

n→∞
tγn < t0, that contradicts

the choice of t0. Thus, the claim is proved.

Let T be order-to-norm σ-continuous. It is enough to prove that T is order-to-norm
continuous at zero. Suppose that a net (xα) order converges to 0, i.e. there is a net (uα) such
that |xα| 6 uα ↓ 0. Using the claim, choose a strictly increasing sequence of indices (αn)
with inf

n
uαn = 0.

Now, fix any ε > 0 and consider the index set Aε = {α : ‖Txα‖ > ε}. We show that the
set Aε is bounded from above, that is, there exists a β such that α < β for each α ∈ Aε.
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Indeed, supposing the contrary, we obtain that there exists a sequence (βn) of indices βn ∈ Aε

such that βn > αn for each n. Then |xβn | 6 uβn 6 uαn and inf
n

uαn = 0, which implies that

xβn

o−→ 0. However, we have that ‖Txβn‖ > ε which contradicts the order-to-norm σ-
continuity of T at zero, a contradiction. Therefore, the set Aε is bounded from above by
some β and hence, α 6∈ Aε (equivalently, ‖Txα‖ < ε) for every α > β. This means that T is
order-to-norm continuous at zero. �

By Theorem 2.3, if an operator T ∈ L(L∞(µ), X) can be continuously extended to Lp(µ)
with some p < ∞, then T is order-to-norm continuous. Nevertheless, in Section 4 we show
that not every order-to-norm continuous operator of L

(
L∞(µ), c0(Γ)

)
can be extended to

some Lp(µ) with 1 6 p < ∞.

The following characterization of order-to-norm continuity for operators will be used in
the sequel.

Lemma 2.4. Let X be a Banach space. An operator T ∈ L
(
L∞(µ), X

)
is order-to-norm

continuous if and only if for every ε > 0 there exists a δ > 0 such that for each x ∈ L∞(µ)
with ‖x‖ 6 1 and µ(suppx) < δ one has ‖Tx‖ < ε.

Proof. The “only if” part. Suppose to the contrary that for some ε > 0 there exists a
sequence xn ∈ L∞(µ), ‖xn‖ 6 1 such that µ(supp xn) −→ 0 as n −→ ∞ and ‖Txn‖ > ε for
each n ∈ N. Then xn −→ 0 a.e. and in view of Lemma 2.1, xn

o−→ 0. This contradicts the
order-to-norm continuity of T .

The “if” part. Let (xα) be an order converging to zero net and (uα) be a net with
|xα| 6 uα ↓ 0. Besides, we assume that ‖uα‖ 6 1. Fix ε > 0 and choose δ > 0 so that for
every x ∈ L∞(µ) with ‖x‖ 6 1 and µ(supp x) < δ we have that ‖Tx‖ < ε

2 . Then by the
boundedness of T , we choose δ1 > 0 so that ‖Tx‖ < ε

2 whenever ‖x‖ < δ1.

For each α we set Bα = {ω ∈ Ω : uα(ω) > δ1
2 }. Since

∫
Ω
uαdµ > δ1

2 µ(Bα) and

lim
α

∫
Ω
uαdµ = 0, we obtain lim

α
µ(Bα) = 0. Then there exists α0 such that µ(Bα) < δ

for every α > α0. Now, we denote yα = xα − xα1Bα and zα = xα1Bα . The condition
|xα(ω)| 6 uα(ω) 6 δ1

2 for each ω ∈ Ω \ Bα implies ‖yα‖ 6 δ1
2 < δ1. Hence, ‖Tyα‖ < ε

2 .
On the other hand, since supp zα ⊆ Bα, we have that µ(supp zα) < δ for each α > α0, and
‖zα‖ 6 ‖xα‖ 6 ‖uα‖ 6 1. Therefore, ‖Tzα‖ < ε

2 and so,

‖Txα‖ = ‖T (yα + zα)‖ 6 ‖T (yα)‖+ ‖T (zα)‖ <
ε

2
+

ε

2
= ε

for each α > α0. Thus, lim
α
‖Txα‖ = 0 and so T is order-to-norm continuous. �

The following two consequences of the above lemma assert that an order-to-norm con-
tinuous operator defined on L∞ has separable “essential domain” and hence, a separable
range.

Proposition 2.5. Let (hn)∞n=1 be the Haar system on [0, 1], X a Banach space and S, T ∈
L(L∞, X) order-to-norm continuous operators. If Shn = Thn for each n ∈ N then S = T .
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Proof. Observe that for the characteristic function of any dyadic interval w = 1[ k−1
2n , k

2n

)
we have that Sw = Tw (since w belongs to the linear span of the Haar system). Fix any

x ∈ L∞ and any ε > 0. First, choose a simple function y =
n∑

k=1

ak1Ak
, [0, 1] =

n⊔
k=1

Ak

with ‖x− y‖ < ε/
(
2 ‖S‖+ 2 ‖T‖

)
. Second, using Lemma 2.4, choose a δ > 0 so that for any

u ∈ L∞, ‖u‖ 6 1 if µ(supp u) < δ then ‖(S−T ) u‖ < ε/2. Third, for each k = 1, . . . , n choose
a disjoint union Bk of dyadic intervals so that Bi ∩ Bj = ∅ for i 6= j and µ(Ak4Bk) < δ/n.

Then we obtain µ(supp (y − z)) < δ for z =
n∑

k=1

ak1Bk
, and hence, ‖(S − T )(y − z)‖ < ε/2.

Besides, by the above argument, (S − T )z = 0. Hence,

‖Sx− Tx‖ 6 ‖(S − T )(x− y)‖+ ‖(S − T )(y − z)‖

6 ‖S − T‖ ‖x− y‖+
ε

2
6

ε

2
+

ε

2
= ε.

This proves the proposition by arbitrariness of ε. �

Proposition 2.6. Let X be a Banach space and T ∈ L(L∞, X) an order-to-norm continuous
operator. Then the range T (L∞) is separable.

Proof. Using the same arguments as in the proof of Proposition 2.5, one can show that the
linear span of the set {Thn : n ∈ N} is dense in T (L∞). �

3. Different definitions of narrow operators on L∞(µ)

It should be pointed out that Theorem 1.2 is proved for another definition of narrow
operator in a more general setting when the domain space is a vector lattice. Since in

a vector lattice there are no analogue for both conditions |x| = 1A and
∫

Ω
x dµ = 0, the

definition should be different. We are not going to recall here this definition in the most
general setting, referring the interested reader to [13], because our goal is to study operators
defined on L∞(µ).

Let X be a Banach space. For convenience, we consider the following properties of an
operator T ∈ L

(
L∞(µ), X

)
which mean different types of narrowness.

(i) For every A ∈ Σ and every ε > 0 there exists x ∈ L∞(µ) such that |x| = 1A,∫
Ω
x dµ = 0 and ‖Tx‖ < ε.

(ii) For every A ∈ Σ and every ε > 0 there exists x ∈ L∞(µ) such that |x| = 1A and
‖Tx‖ < ε.

(iii) For every y ∈ L∞(µ)+ and every ε > 0 there exists x ∈ L∞(µ) such that |x| = y and
‖Tx‖ < ε.

(iv) For every y ∈ L∞(µ)+ and every ε > 0 there exists x ∈ L∞(µ) such that |x| = y,∫
Ω
x dµ = 0 and ‖Tx‖ < ε.
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Let us give some comments on the definitions above. Property (i) means our Definition 1.1;
Property (iii) exactly means the definition of narrow operator when the domain space is a
vector lattice, and for which Theorem 1.2 was proved in [13]; Properties (ii) and (iv) are
their weakest and strongest form respectively. So, each property of (i), (iii) implies (ii) and
Property (iv) implies all the rest. Equivalence of (iii) and (i) was proved in [13] for operators
defined on a Köthe function space with absolutely continuous norm. Our goal is to show that
the four definitions are equivalent when the operator is order-to-norm continuous.

Theorem 3.1. Let X be a Banach space. For an order-to-norm continuous operator T ∈
L
(
L∞(µ), X

)
all definitions of narrow operator (i)− (iv) are equivalent.

Proof. By the above remarks, it is enough to prove the implication (ii) ⇒ (iv) only, so let us
do it. Let T 6= 0. Fix any y ∈ L∞(µ)+ and ε > 0. Without loss of generality we assume that

0 < ‖y‖ 6 1. Choose a simple function u =
m∑

i=1
ai1Ai 6= 0 with ai ∈ R+ and pair-wise disjoint

elements Ai ∈ Σ so that Ai ⊆ supp y = suppu and

(3.1) ‖y − u‖ <
ε

2 ‖T‖
.

Using Lemma 2.4, find δ > 0 so that for any z ∈ L∞(µ), ‖z‖ 6 1, if µ(supp z) < δ then

(3.2) ‖Tz‖ <
ε

4m‖u‖
.

Consider on Σ the measure µy generated by y, i.e. µy(A) =
∫

A
y dµ for any A ∈ Σ. We

shall use the following simple fact which proof we omit:

Claim: there exists n ∈ N such that for any A ∈ Σ with A ⊆ supp y, if µy(A) < µ(Ω)/n
then µ(A) < δ.

We pick such an n, and for each i = 1, . . . ,m divide Ai into n+1 parts of equal µy-measure

Ai =
n+1⊔
k=1

Ai,k, µy

(
Ai,k

)
=

µy(Ai)
n + 1

.

Now, for every i = 1, . . . ,m and k = 1, . . . , n, we use Property (ii) to find xi,k ∈ L∞(µ) so
that

∣∣xi,k

∣∣ = 1Ai,k
and

(3.3)
∥∥Txi,k

∥∥ <
ε

4nm‖u‖
.

Then we put βi,k =
∫

Ω
yxi,k dµ for i = 1, . . . ,m and k = 1, . . . , n, and observe that

(3.4)
∣∣βi,k

∣∣ 6 µy

(
Ai,k

)
=

µy(Ai)
n + 1

for each i = 1, . . . ,m and k = 1, . . . , n.
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Fix now any i. Using (3.4) and induction on ` = 1, . . . , n, it can be easily shown that there
are signs θi,1, . . . , θi,` ∈ {−1, 1} such that

∣∣∣∑̀
j=1

θi,jβi,j

∣∣∣ 6 µy(Ai)
n + 1

.

So, we choose such signs for ` = n. Then pick xi,n+1 ∈ L∞(µ) satisfying
∣∣xi,n+1

∣∣ = 1Ai,n+1

and

(3.5)
∫

Ω
yxi,n+1 dµ = −

n∑
k=1

θi,kβi,k.

By the Claim, since

µy

(
Ai,n+1

)
=

µy(Ai)
n + 1

<
µ(Ω)

n
,

one has that µ
(
Ai,n+1

)
< δ and hence by (3.2)

(3.6)
∥∥Txi,n+1

∥∥ <
ε

4m‖u‖
.

We finally set xi =
n∑

k=1

θi,kxi,k + xi,n+1 for i = 1, . . . ,m. From (3.3) and (3.6) we deduce

(3.7) ‖Txi‖ 6
n∑

k=1

∥∥Txi,k

∥∥+
∥∥Txi,n+1

∥∥ < n
ε

4nm‖u‖
+

ε

4m‖u‖
=

ε

2m‖u‖
.

Besides, by the above construction, |xi| = 1Ai and
∣∣∣ m∑
i=1

xi

∣∣∣ = 1supp y.

We finally set x = y
m∑

i=1
xi and v =

m∑
i=1

aixi. Observe that |x − v| = |y − u| a.e. on Ω and

hence, ‖x− v‖ = ‖y − u‖. Obviously, |x| = y. By (3.5),∫
Ω

xdµ =
m∑

i=1

∫
Ω

yxidµ =
m∑

i=1

(
n∑

k=1

θi,k

∫
Ω

yxi,kdµ +
∫

Ω
yxi,n+1dµ

)
= 0.

Finally, taking into account that ‖x − v‖ = ‖y − u‖ and |ai| 6 ‖u‖, using (3.7) and (3.1)
we obtain

‖Tx‖ 6 ‖Tv‖+ ‖T‖ ‖x− v‖ 6
m∑

i=1

|ai| ‖Txi‖+
ε

2
< m‖u‖ ε

2m‖u‖
+

ε

2
= ε. �

The following problem remains unsolved.

Problem 3.2. Does Property (ii) imply Property (iv) for every Banach space X and every
operator T of L(L∞, X)?
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4. Order-to-norm continuous operators from L∞(µ) to c0(Γ)

The main result of this section asserts that every order-to-norm continuous operator from
L∞(µ) to c0(Γ) is narrow, while not every order-to-norm continuous operator from L∞(µ) to
c0(Γ) is AM -compact (here and, in what follows, Γ is any infinite set). On the other hand, we
construct an example of an order-to-norm continuous operator from L∞ to c0 which cannot
be extended to a continuous linear operator on any of the spaces Lp with 1 6 p < ∞. So,
our main result cannot be deduced from the known fact that every operator T ∈ L(Lp, c0) is
narrow for any p, 1 6 p < ∞, due to Kadets and Popov [7]. Nevertheless, in our proof we
follow the ideas of the already mentioned paper.

Theorem 4.1. Every order-to-norm continuous operator from L∞(µ) to c0(Γ) is narrow but
not every such an operator is AM -compact.

Proof. Fix any ε > 0 and A ∈ Σ with µ(A) > 0, and consider the set

Kε,A =
{

x ∈ BL∞(µ) : ‖Tx‖ 6 ε and
∫

Ω
x dµ = 0

}
.

We claim that Kε,A is a convex and weakly compact subset of L2(µ). The convexity is
simply verified. The only thing that should be explained here is that Kε,A is weakly closed.
By convexity, it is enough to prove that it is norm closed in L2(µ). Let xn ∈ Kε,A and

‖xn − x‖L2(µ) −→ 0 as n −→ ∞. Then, obviously, ‖x‖L∞(µ) 6 1 and
∫

Ω
x dµ = 0. By

Theorem 2.3, ‖T (xn − x)‖ −→ 0 as n −→∞ which implies that ‖Tx‖ 6 ε.

Then, by the Krein-Milman theorem, there exists an extreme point x0 ∈ Kε,A. We show
that |x0| = 1A. Suppose, to the contrary, that there exist δ > 0 and a subset B ⊆ A with
µ(B) > 0 such that |x0(ω)| 6 1− δ for each ω ∈ B. Denote by (eγ)γ∈Γ the unit vector basis
for c0(Γ) and by (e∗γ)γ∈Γ its biorthogonal functionals. Now, choose a finite set Γ0 ⊂ Γ so that
|e∗γ(Tx0)| < ε/2 for each γ ∈ Γ \ Γ0.

We shall use the following elementary facts.

(1) Let S : X → Y be a linear operator acting between linear spaces. If a linear subspace
Y0 ⊆ Y has finite codimension in Y , say, m then X0 = T−1Y0 has finite codimension
in X (indeed, for any x1, . . . , xm+1 ∈ X there exists a non-trivial linear combination
α1Tx1 + . . . + αm+1Txm+1 ∈ Y0, and hence, α1x1 + . . . + αm+1xm+1 ∈ X0).

(2) If Z is an infinite dimensional subspace of a linear space X and Y is a linear subspace
of finite codimension in X then Y ∩ Z 6= {0}.

So, since Y0 = [eγ ]γ∈Γ\Γ0
has finite codimension in c0(Γ), the subspace

X0 = T−1Y0 ∩
{

x ∈ L∞(µ) :
∫

Ω
x dµ = 0

}
has finite codimension in L∞(µ). Since dim L∞(B) = ∞, there exists y0 ∈ L∞(B) ∩ X0

with y0 6= 0. Then choose α 6= 0 so that ‖αy0‖L∞(µ) 6 δ and ‖T (αy0)‖ < ε/2. Thus,
x0 ± αy0 ∈ Kε,A, a contradiction.

This gives that T is narrow by Corollary 3.1.
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Finally, we construct an example of an order-to-norm continuous operator S ∈ L(L∞, c0)
which is not AM -compact. This operator can be used in the obvious manner to obtain
an operator of L

(
L∞(µ), c0(Γ)

)
with the same properties. Denote by (rn) the Rademacher

system on [0, 1] and for every x ∈ L∞ set Sx = (ξ1, ξ2, . . .) where ξn =
∫

Ω
xrn dµ for each

n ∈ N. Since S can be extended to a continuous linear operator Ŝ ∈ L(L1, c0), it is order-
to-norm continuous by Theorem 2.3. Since the Rademacher system is an order bounded set
in L∞ which is sent by S to a non relatively compact subset of c0, the operator S is not
AM -compact. �

Let us now discuss possible extensions of the above results for operators from L∞ to `p.

Remarks 4.2.

(a) For 1 6 p < 2, every operator T ∈ L
(
L∞(µ), `p

)
is compact. Indeed, every operator

T ∈ L
(
L∞(µ), `p

)
factors through a Hilbert space ([10], Corollary 1 in p. 285 and

Corollary 2 in p. 291) and hence is compact by Pitt’s theorem (see [1, Theorem 2.1.4]).
(b) Since compact operators are AM-compact, the above observation and Theorem 1.2

give that for 1 6 p < 2 every order-to-norm continuous operator T ∈ L
(
L∞(µ), `p

)
is

narrow.
(c) For 2 6 p < ∞, there exists an order-to-norm continuous operator T ∈ L(L∞, `p)

which is not AM -compact. Indeed, the same operator T generated by the Rademacher
system as in the last part of the proof of Theorem 4.1 maps L∞ to `2, it is not AM-
compact but it is extendable to an operator from L2 to `2, so it is order-to-norm
continuous. For p > 2, `2 is continuously embedded in `p and so the same example
works.

(d) Let us also comment that the existence of non compact operators from L∞ to `p with
2 6 p < ∞ follows immediately from the fact that L1 contains subspaces isomorphic
to `q for 1 < q 6 2 (see [1, Theorem 6.4.18]) and so, L∞ contains quotient spaces
isomorphic to `p for p > 2.

The following question remains open.

Problem 4.3. Let 2 6 p < ∞. Is every order-to-norm continuous operator T ∈ L(L∞, `p)
narrow?

Now, we show that not every order-to-norm continuous operator from L∞ to c0 can be
extended to Lp with some p < ∞. Therefore, Theorem 4.1 cannot be deduced from results
of [7].

Example 4.4. There exists an order-to-norm continuous operator T ∈ L(L∞, c0) which
cannot be extended to Lp for any p < ∞.

Proof. First observe that it is sufficient for each given p, 1 6 p < ∞, to construct an order-
to-norm continuous operator T = Tp ∈ L(L∞, c0) that cannot be extended to Lp, because
then the desired operator can be easily obtained as the direct sum of such operators for any
sequence of pn’s tending to infinity.
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Therefore, we fix p ∈ [1,∞) and we first make a general observation.

Let (An) be any sequence of disjoint members of Σ and g ∈ L1. Then, for every x ∈ L∞,
we set

Tx = (ξ1, ξ2, . . .), where ξn =
∫

An

gx dµ.

Since gx ∈ L1 and µ(An) −→ 0, we have that Tx ∈ c0 by the absolute continuity of the
Lebesgue integral. Therefore, T : L∞ → c0 is a linear operator. Furthermore, given any

x ∈ L∞, one has that
∫

An

|g||x| dµ 6 ‖g‖L1‖x‖L∞ for every n ∈ N, hence T is bounded with

‖T‖ 6 ‖g‖L1 .

To show that T is order-to-norm continuous, we consider any sequence (xn) in L∞ order
converging to zero (i.e. |xn| 6 yn ↓ 0 for some sequence (yn) in L∞). By Lemma 2.1, (yn)
tends to zero a.e. on [0, 1]. Thus, the sequence (|g|yn) is decreasing and tends to zero a.e.

By the Lebesgue theorem, Gn =
∫

Ω
|g|yn dµ −→ 0 as n −→ ∞. On the other hand, for each

n, m ∈ N one has that∣∣∣∫
Am

gxn dµ
∣∣∣ 6 ∫

Ω
|g||xn| dµ 6

∫
Ω
|g|yn dµ = Gn,

whence we deduce that ‖Txn‖ 6 Gn −→ 0 as n −→∞. Thus, order-to-norm continuity of T
is established by Theorem 2.3.

Now, we choose a suitable sequence (An) and g ∈ L1 as follows. Let (An) be any disjoint
sequence in Σ with

µ(An) =
1

α n3p
, where α =

∞∑
k=1

1
n3p

for each n ∈ N and g =
∞∑

n=1
n3p−21An . Note that∫

Ω
g dµ =

∞∑
n=1

n3p−2 µ(An) =
1
α

∞∑
n=1

n3p−2n−3p =
1
α

∞∑
n=1

n−2 =
π2

6α
< ∞.

We show that T cannot be extended continuously to Lp in this case. Indeed, putting xn =(
µ(An)

)−1/p1An , one has ‖xn‖Lp = 1 and∫
An

gxn dµ = n3p−2
(
µ(An)

)− 1
p µ(An) = n3p−2

(
µ(An)

)1− 1
p

= n3p−2 1(
α n3p

)1− 1
p

= α
1
p
−1

n −→∞

as n −→∞. �
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[10] Lindenstrauss J., Pe lczyński A., Absolutely summing operators in Lp-spaces and their applications,

Studia Math, 1968, 29, 275-326.
[11] Lindenstrauss J., Tzafriri L. Classical Banach Spaces, Vol. 1, Sequence spaces, Springer–Verlag,

Berlin–Heidelberg–New York, 1977.
[12] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, Vol. 2, Function spaces, Springer–Verlag,

Berlin–Heidelberg–New York, 1979.
[13] Maslyuchenko O. V., Mykhaylyuk V. V., Popov M. M., A lattice approach to narrow operators,

Positivity, 2009, 13, 459–495.
[14] Plichko A. M., Popov M. M., Symmetric function spaces on atomless probability spaces, Dissertationes

Math. (Rozprawy Mat.), 1990, 306, 1–85.

(Krasikova) Department of Mathematics, Zaporizhzhya National University, str. Zhukovs’koho
2, Zaporizhzhya, Ukraine

E-mail address: yudp@mail.ru
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