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Abstract

We construct infinite-dimensional Banach spaces and infinitely generated Banach algebras

of functions that, except for 0, satisfy some kind of special or pathological property. Three of

these structures are: a Banach algebra of everywhere continuous bounded functions which are

not Riemann-integrable; a Banach space of Lebesgue-integrable functions that are not Riemann-

integrable; an algebra of continuous unbounded functions defined on an arbitrary non-compact

metric space.
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1 Preliminaries

In mathematical analysis, many examples of functions with some sort of pathological behavior or
enjoying certain special properties have been studied. Moreover, large structures (dense manifolds,
Banach spaces, algebras, etc.) of functions enjoying such properties have been constructed. Given
a property, we say that the subset L of functions which satisfies it is spaceable if L ∪ {0} contains a
closed infinite dimensional subspace. The set L will be called lineable if L ∪ {0} contains an infinite
dimensional vector space. This terminology of lineable and spaceable was first introduced in [6] and,
later, in [1, 2, 13].

One of the first results in this direction was proved by Gurariy (see [11, 12]), who proved that
the set of nowhere differentiable functions on [0, 1] is lineable. Later, Fonf, Gurariy, and Kadeč ([7])
showed that this set is also spaceable. This last result was, later, improved ([14]) when Hencl showed
that any separable Banach space is isometrically isomorphic to a subspace of C[0, 1] whose non-zero
elements are nowhere approximately differentiable and nowhere Hölder. On the other hand, the
set of everywhere differentiable functions on [0, 1] is linear and, therefore, lineable, but it is not
spaceable ([11]). Recently, Enflo and Gurariy have shown ([6]) that for any infinite dimensional
subspace X ⊂ C[0, 1], the set of functions in X having infinitely many zeros in [0, 1] is spaceable in
X. Recently, Aron, Gurariy and the third author have shown that the set of everywhere surjective
functions contains a vector subspace of the largest possible dimension, 2c, and that the set DNM(R)
of differentiable functions on R which are nowhere monotone is lineable in C(R) ([2]).
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Aron, Pérez-Garćıa, and the third author showed in [3] that, given any set E ⊂ T of Lebesgue
measure zero, there exists an infinitely generated and dense algebra every non-zero element of which
is a continuous function whose Fourier series expansion is divergent at any point t ∈ E, introducing
the new concept of algebrability: We say that a set L is algebrable if L ∪ {0} contains an infinitely
generated algebra. The algebrability of certain subsets of functions has been studied, lately, by
several authors (see [4, 5, 9]).

In this paper we continue the search for large vector spaces and algebras of functions enjoying
these special or pathological properties. This paper is divided in several sections. In each of them
we focus on a particular property of a function. These properties are: almost everywhere continuous
functions that are not Riemann-integrable; Riemann integrable functions that are not Lebesgue-
integrable and viceversa; and continuous unbounded functions on any arbitrary non-compact metric
space.

Let us finish this introduction by fixing some notation. For any set I, B (I) will denote, as
usual, the Banach space of all real bounded functions on I, endowed with the supremum norm.
This space is also a Banach algebra with the usual product defined pointwise. When I = N, we
write, B(N) = `∞. Also, c0 and C(X) denote, respectively, the set of null sequences and the set of
continuous functions on X. Given an interval I (bounded or not) we denote by R(I) to the set of
Riemann-integrable functions on I, and by L(I) the set of Lebesgue-integrable functions on I.

2 Riemann-integrable functions, almost everywhere contin-

uos functions, and subalgebras of `∞

It is well known the theorem by Lebesgue about Riemann-integrability that states that if I is a
bounded interval and f : I −→ R is a bounded function, then f is Riemann-integrable if and
only if f is almost everywhere continuous (see e.g [19, Theorem 11.33]). The proof can be easily
adapted to show that a Riemann-integrable function on an arbitrary interval (bounded or not) is
always almost everywhere continuous. Obviously, the converse to this assertion is not true, since
one can consider any non-zero constant function on any unbounded interval. Here, our purpose
is, given any unbounded interval I, to construct an infinite-dimensional and infinitely generated
closed subalgebra of B(I) every non-zero element of which is almost everywhere continuous but not
Riemann-integrable. In order to do that, we need a similar result for `∞ \ c0.

Proposition 2.1
(
`∞ \ c0

)
∪ {0} contains a closed infinitely generated subalgebra. In particular,

`∞ \ c0 is spaceable and algebrable.

Proof Let us denote by P the set of all prime numbers. For every p ∈ P , let us consider the
bounded sequence xp given by

xp (j) =

{
1 j = pk for some k ∈ N,
0 otherwise.

Let us relabel the elements of P by writing P = {p1, p2, . . . } assuming that the sequence p1, p2, . . .

is increasing. Next, let us take the subspace of `∞ given by

V =

{ ∞∑
i=1

λixpi : (λi)i∈N ∈ `∞

}
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and write W = V . Now, our aim is to prove that W ∩ c0 = {0} and we will be done. For this, let
us pick a ∈W ∩ c0. Then, for every n ∈ N we can take zn ∈ V so that ‖zn − a‖ < 1/n, i.e.

|zn(j)− a(j)| 6 ‖zn − a‖ < 1
n

for every j ∈ N.

In first place, we can write zn =
∑∞

i=1 λi,nxpi
for every n ∈ N. We will now prove that |λi,n| < 1/n

for every i, n ∈ N. Fix i, n ∈ N. We have that, for every k ∈ N,∣∣λi,n − a
(
pk

i

)∣∣ =
∣∣zn

(
pk

i

)
− a

(
pk

i

)∣∣ 6 ‖zn − a‖ < 1
n
.

Since a ∈ c0, taking limit as k goes to ∞, we obtain

|λi,n| <
1
n
. (1)

Finally, let us see that a (j) = 0 for every j ∈ N. If j 6= pk
i for every i, k ∈ N, then (by construction)

zn (j) = 0 for every n ∈ N, and thus a (j) = 0. If j = pk
i for some i, k ∈ N, then zn (j) = λi,n for

every n ∈ N, and by equation (1), a (j) = 0. Thus, a = 0 and W ∩ c0 = {0}, as desired.
To finish the proof, since `∞ with the pointwise product is a Banach algebra, we observe that V

(and thus W ) is a subalgebra with an infinite number of generators. Indeed, we first observe that
for p, q ∈ P , p 6= q, the supports of xp and xq are disjoint. This implies that, on the one hand, the
product of two elements of V remains in V and, on the other hand, that {xp : p ∈ P} is a minimal
system of generators of V .

Remark 2.2 (a) It is worth mentioning that the spaceability of `∞\c0 was known to H. P. Rosen-

thal from the sixties (see [17, 18]). Indeed, it was shown in [17] that c0 is quasi-complemented
in `∞ (a closed subspace Y of a Banach space X is quasi-complemented if there is a closed
subspace Z of X such that Y ∩ Z = {0} and Y + Z is dense in X); this clearly implies that
`∞ \ c0 is spaceable. The algebrability of this set seems to be, to the authors’ knowledge, a new
result.

(b) The proof of Proposition 2.1 can be easily adapted to show that `∞(Γ) \ c0(Γ) is spaceable and

algebrable for every infinite set Γ. Let us comment that it was proved by J. Lindenstrauss [15]
that if Γ is uncountable, c0(Γ) in not quasi-complemented in `∞(Γ).

Now, we go back to our original set M of almost everywhere continuous functions on I. Let us
start by assuming, without loss of generality, that the interval I contains the interval [1,∞). Now,
we consider the function

φ : `∞ −→ B (I)

x 7−→ φ (x) = φx =
∞∑

n=1

x (n)χ(n,n+1).

Some properties enjoyed by this function φ are the following:

1. φ is a linear isometry and an algebra homomorphism.

2. φx is almost everywhere continuous for all x ∈ `∞.
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3. φx is Riemann-integrable if and only if
∑∞

n=1 x (n) converges. In that situation,∫
I

φx (t) dt =
∞∑

n=1

x (n) .

Next, by Proposition 2.1, there exists an infinite-dimensional and infinitely generated closed subalge-
bra W of `∞ such that c0∩W = {0}. Then, according to the third property above, φ (W ) ⊆M∪{0},
and by the first property above, φ (W ) satisfies the same properties than W . Therefore, we can state
the following theorem.

Theorem 2.3 Given an arbitrary unbounded interval I, the set of all almost everywhere continuous
bounded functions on I which are not Riemann-integrable contains an infinitely generated closed
subalgebra. In particular, this set is spaceable and algebrable.

With a very similar argument to the one above, it is also possible to prove the spaceability of the
set of bounded continuous functions which are not Riemann-integrable. Let us start by assuming,
without loss of generality, that the interval I contains the interval [1,∞), and for every n ∈ N, we
consider the bounded continuous function αn : [1,+∞) −→ R given by

αn(t) =


2(t− n) if n 6 t 6 n+ 1/2

2− 2(t− n) if n+ 1/2 < t 6 n+ 1

0 otherwise

i.e. αn is zero outside the interval (n, n+ 1), its value at n+ 1/2 is 1 and it is affine in [n, n+ 1/2]
and [n+ 1/2, n+ 1]. Now, we consider the linear isometry

ψ : `∞ −→ B (I)

x 7−→ ψ (x) = ψx =
∞∑

n=1

x (n)αn,

and, arguing as above, we obtain that the non-zero elements of ψ(`∞ \ c0) are continuous functions
which are not Riemann-integrable. Unfortunately, the function ψ is not an algebra homomorphism,
so the argument does not give algebrability.

Theorem 2.4 Given an arbitrary unbounded interval I, the set of all continuous bounded functions
on I which are not Riemann-integrable is spaceable.

3 Riemann-integrable functions versus Lebesgue-integrable

functions

It is well known that for a bounded interval I, R(I) ⊂ L(I) (see, e.g. [19]). If I is unbounded, it is
also well known that R(I) 6⊆ L(I); a representative and classical example is given by the function
f(x) = sin x

x for every x ∈ R. This function verifies that∫
R
f(x) dx = π and

∫
R
|f(x)| dx = ∞.

Conversely, on any interval I (bounded or unbounded), there is a bounded Lebesgue-integrable
function which is not equivalent to any Riemann-integrable function. An easy example of this type
can be found in [10, Example 8.31]. Let us present the details for the sake of completeness.
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Example 3.1 In any interval I, we consider a Cantor set A ⊂ I with positive and finite measure

(see, e.g. [10, Example 8.4]); then, the function f = χA is bounded, Lebesgue-integrable, but it is not

equivalent to any Riemann-integrable function. Indeed, everything is clear but the last statement.
To prove it, just observe that f = 0 in I \ A, which is dense in I and, moreover, if we change f in
a null-set B of I, then f = 0 in the still dense subset I \ (A ∪ B), and f = 1 in the set of positive
measure A \B.

Next we will study the lineability of the setsR(I)\L(I) when I is unbounded and the spaceability
of L(I) \ R(I), where I is both bounded and unbounded.

3.1 Lineability of R(I) \ L(I) for an unbounded interval I

Here, and without loss, we can consider I = R. We will construct an infinite dimensional vector
space of functions, E, with E ⊆ (R(R) \L(R))∪{0}. In order to do that, let us define the following
double sequences of natural numbers:

an,m =
n(n− 1)

2
+ 2m− 3 if m > 1 and n > 1,

bn,m =
n(n+ 1)

2
+m− 2 if m > 1 and n > m− 1

and the sequence of functions (fm)m>1, where fm : R −→ R is given by

fm(x) :=


sin (x− an,mπ)
x− an,mπ

if x ∈ [bn,mπ, (bn,m + 1)π] for some n > m− 1,

0 otherwise.

By construction we have that, for 1 < m ∈ N:

(P1) supp(fm) =
⋃

n>m−1

(bn,mπ, (bn,m + 1)π) .

(P2) supp(fi)
⋂

supp(fj) 6= ∅ if and only if i = j.

Property (P1) is clear by definition. Let us see that (P2) also holds. For that, suppose that
supp(fi)

⋂
supp(fj) 6= ∅ for some i, j > 1. Then, there exist p, q ∈ N with p > i− 1 and q > j − 1,

such that
(bp,iπ, (bp,i + 1)π)

⋂
(bq,jπ, (bq,j + 1)π) 6= ∅.

Since both of the above interval are open, have length π, and their extremes are integers multiples
of π, it follows that

bp,i = bq,j , (2)

which is equivalent to
p(p+ 1) + 2i = q(q + 1) + 2j. (3)

Suppose that i < j. From (3) and the above conditions, it follows that

p > q > j − 1 > i− 1. (4)

Now we will see that for every p > q it is bp,i > bq,j , which will lead to a contradiction. Indeed,
if p > q, then p = q + k for some 1 6 k ∈ N. For our purpose, it suffices to show that bq+1,i > bq,j ,
since (bq+k,i)k is an increasing sequence. Thus, for p = q + 1 we obtain:
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(q + 1)(q + 2) + 2i = q(q + 1) + 2q + 2 + 2i = q(q + 1) + 2(q + 1) + 2i
(4)

> q(q + 1) + 2j + 2i > q(q + 1) + 2j,

and, thus, bp,i > bq,j for every p > q, which contradicts (2). A similar contradiction is reached if we
suppose that i > j. Therefore, it must be i = j, and we are done.

Next, let us see that fm ∈ R(R) for every m > 1. Indeed, let us fix any 1 < m ∈ N, then∫
R
fm(x)dx =

∫
supp(fm)

fm(x)dx =
∑

n>m−1

∫ πbn,m+π

πbn,m

sin (x− an,mπ)
x− an,mπ

dx.

Next, making the substitution t = x− an,mπ, and noticing that

πbn,m − πan,m = (n−m+ 1)π,

we obtain that ∫
R
fm(x)dx =

∑
n>m−1

∫ πbn,m−πan,m+π

πbn,m−πan,m

sin t
t

dt

=
∑

n>m−1

∫ (n−m+2)π

(n−m+1)π

sin t
t

dt

=
∑
n>0

∫ (n+1)π

nπ

sin t
t

dt

=
∫ +∞

0

sin t
t

dt =
π

2
.

Similarly, one can see that for every m > 1, fm /∈ L(R). Indeed, repeating the previous calculations,
we obtain that: ∫

R
|fm(x)|dx =

∫ +∞

0

∣∣∣∣ sin tt
∣∣∣∣ dt = ∞.

We claim that
E = span{fm : 1 < m ∈ N}

is an infinite dimensional vector space such that E ⊆
(
R(R) \L(R)

)
∪{0}. First of all, and by (P2),

it is clear that dim(E) = ℵ0. Since R(R) is a vector space, it is clear than E ⊆ R(R).
Let us see that no f ∈ E \ {0} is Lebesgue-integrable on R. We write

f = α1fm1 + α2fm2 + · · ·+ αkfmk
,

where 0 6= αi ∈ R for every i ∈ {1, 2, . . . , k}, and 1 < mi ∈ N for every i ∈ {1, 2, . . . , k}. Also, call
Si = supp(fmi

) for every i ∈ {1, 2, . . . , k}. Then,∫
R
|f(x)|dx =

∫
⋃k

i=1 Si

|α1fm1(x) + α2fm2(x) + · · ·+ αkfmk
(x)|dx

(P2)
=

k∑
i=1

|αi| ·
∫

Si

|fmi(x)|dx =
k∑

i=1

|αi| ·
∫ +∞

0

∣∣∣∣ sin tt
∣∣∣∣ dt = ∞,

and, therefore f /∈ L(R).
We have proved the following result.

Theorem 3.2 Given any unbounded interval I, the set of Riemann-integrable functions on I that
are not Lebesgue-integrable is lineable.

Remark 3.3 It is not possible to obtain any kind of algebrability of R(I) \L(I). Indeed, for every
f ∈ R(I), either f2 /∈ R(I) or f2 = |f2| ∈ R(I) and, therefore, f2 ∈ L(I). Therefore,

Proposition 3.4 The set R(I) \ L(I) is not algebrable.
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3.2 Spaceability of L(I) \ R(I) for any interval I

The spaceability of L(I) \ R(I) is a consequence of an stronger result from [8, §4]. For the sake
of completeness of this paper, we include here a direct (and different) proof of this result. In
order to do that, let us fix an arbitrary non-trivial interval I. As we already mentioned, there is
a function f ∈ L(I) which is not equivalent to any Riemann-integrable function. This family of
functions will give us the spaceability. To do so, we write I =

⋃∞
n=1 In, where the In are non-trivial

disjoint intervals. As we did in Example 3.1, for every n ∈ N, we take a Cantor subset An of In
with λ(An) > 0, and notice that the function χAn

belongs to L(I) but it is not equivalent to any
Riemann-integrable function. By the disjointness of their supports, the same is true for any linear
combination of the χAn

. This proves the lineability, but the spaceability is also easy to establish.
Let us consider the function

φ : `1 −→ L (I)

x 7−→ φ (x) = φx =
∞∑

n=1

x (n)
λ(An)

χAn .

Then, φ is an isometric embedding and each of the the functions in φ(`1) \ {0} is not equivalent to
a Riemann-integrable function. Summarizing:

Theorem 3.5 Given any interval I, the set of Lebesgue-integrable functions that are not Riemann-
integrable is spaceable.

Remark 3.6 (a) In the case when I is unbounded, in the above construction we may choose all

the Cantor sets An with the same positive measure, and then, all the functions in φ(`1) are

bounded.

(b) When I is bounded, it is of course not possible to choose the Cantor sets with the same

positive measure and, therefore, there are unbounded functions in φ(`1). Even so, the linear

span of the functions χAn consists only of bounded functions. Therefore, the set of bounded

Lebesgue-integrable functions that are not Riemann-integrable is lineable.

4 Continuous unbounded functions on an arbitrary non-com-

pact metric space

In [10, Example 2.3] it is shown that for every arbitrary non-compact subset A of R there exists
a continuous unbounded function having the subset as domain. Such an example is given in [10]
as follows. If the set A is unbounded, then it suffices to consider the identity function on A. On
the other hand, if A is bounded and not close it is enough to consider c a limit point of A, and
let f(x) = (x − c)−1 for x ∈ A. Moreover, we can consider this more general example: If A is
not bounded, then each non-null polynomial is unbounded on A; if A is bounded and non-compact,

then there is c ∈ A \ A and the function x 7−→ 1
|x− c|n

is unbounded for every n ∈ N. It follows

easily that the set of continuous unbounded function on any non-compact subset A of R is lineable
and, with a little more of effort, it can be proved that it is algebrable (just change the potentials by
exponentials to get infinitely many algebraic independent functions).

Our purpose in this section is to simplify and extend the above arguments to show that on any
arbitrary non-compact metric space X one may constructs an infinite dimensional vector space every
non-zero element of which is a continuous unbounded function defined on X.
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Indeed, taking into account that X is not compact we can find a sequence (xn)n∈N with no
convergent subsequences. Then, the set A = {xn : n ∈ N} is closed and has the discrete topology.
Obviously, we can assume without loss of generality that xn 6= xm if n 6= m. Next, for every m ∈ N
let us consider the function

gm : A −→ R
x 7−→ gm (x) = mn if x = xn.

Since A is closed and has the discrete topology then, for every m ∈ N, there exists a continuous
function fm : X −→ R such that fm|A = gm (Tietze Extension Theorem, see e.g. [16, Theorem 35.1]).

Let us see that the family {fm : m ∈ N} is linearly independent. Take any linear combination
identically 0, i.e.

λ1fm1 + · · ·+ λkfmk
= 0, (5)

where λ1, . . . , λk ∈ R. Then, by evaluating equation (5) at x1, . . . , xk we obtain the following linear
system of equations: 

m1 m2 m3 · · · mk

m2
1 m2

2 m2
3 · · · m2

k
...

...
...

. . .
...

mk
1 mk

2 mk
3 · · · mk

k

 ·


λ1

λ2

...
λk

 =


0
0
...
0

 .

The matrix of the previous system is non-singular (it is a Van der Monde-type matrix). Therefore
we have that, necessarily, λ1 = λ2 = · · · = λk = 0.

Finally, let us see that every non-zero element in span {fm : m ∈ N} is a continuous unbounded
function. Take a linear combination

λ1fm1 + · · ·+ λkfmk

where k > 2 and λ1, . . . , λk ∈ R \ {0}. It is clear that this linear combination is a continuous
function. Let us see that it is an unbounded function. We can assume that m1 > mh for 2 6 h 6 k.
For every j > 1 we have

|(λ1fm1 + · · ·+ λkfmk
) (xj)| =

∣∣∣λ1m
j
1 + · · ·+ λkm

j
k

∣∣∣
>

∣∣∣λ1m
j
1

∣∣∣− ∣∣∣λ2m
j
2

∣∣∣− · · · − ∣∣∣λkm
j
k

∣∣∣
=

(
|λ1|
k − 1

mj
1 − |λ2|mj

2

)
+ · · ·+

(
|λ1|
k − 1

mj
1 − |λk|mj

k

)
.

Since m1 > mh for 2 6 h 6 k, we obtain that(
|λ1|
k − 1

mj
1 − |λh|mj

h

)
−→∞ as j →∞,

therefore
|(λ1fm1 + · · ·+ λkfmk

) (xj)| −→ ∞ as j →∞,

thus λ1fm1 + · · ·+ λkfmk
is unbounded.

Let us observe that what we have actually proved is that any non-zero linear combination of gm’s
is unbounded, and this fact allows us to obtain algebrability of the set of unbounded continuous
functions on X. Indeed, let us consider the usual structure of algebra on C(X) given by the pointwise
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product and let A be the subalgebra generated by the family {fm : m ∈ N}, i.e. the elements of A
are products of linear combinations of fm’s. Since, clearly,

gm1gm2 = gm1m2

for every m1,m2 ∈ N, we obtain, on the one hand, that A is infinitely generated (the functions fp

for p ∈ N prime are algebraically independent since the functions fp|A = gp are) and, on the other
hand, that every element of A is unbounded.

As a consequence of all of this we can state the following theorem.

Theorem 4.1 In every non-compact metric space, the set of all continuous unbounded functions
defined on it is algebrable.
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