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2 Numerical index of Banach spaces of weakly or weakly-star continuous functions

The numerical index of a Banach space is a constant relating the norm and the
numerical radius of operators on the space. Let us present the relevant definitions.
For a Banach space X, we write BX for the closed unit ball, SX for the unit sphere,
X∗ for the dual space, and Π(X) for the subset of X ×X∗ given by

Π(X) = {(x, x∗) ∈ X ×X∗ : x∗(x) = ‖x∗‖ = ‖x‖ = 1} .

For a bounded linear operator T on X, we define its numerical radius by

v(T ) = sup{|x∗(Tx)| : (x, x∗) ∈ Π(X)}.
The numerical index of the space X is then given by

n(X) = max{k > 0 : k ‖T‖ 6 v(T ) ∀T ∈ L(X)}
= inf{v(T ) : T ∈ L(X), ‖T‖ = 1},

where L(X) stands for the space of all bounded linear operators on X.

The concept of numerical index was first suggested by G. Lumer in 1968. At
that time, it was known that a Hilbert space of dimension greater than 1 has
numerical index 1/2 in the complex case, and 0 in the real case. Two years later,
J. Duncan, C. McGregor, J. Pryce, and A. White proved that L-spaces and M -
spaces have numerical index 1. They also determined the range of values of the
numerical index. More precisely, for a real Banach space X, n(X) can be any
number in the interval [0, 1], while {n(X) : X complex Banach space} = [1/ e, 1].
The remarkable result that n(X) > 1/e for every complex Banach space X goes
back to H. Bohnenblust and S. Karlin. The disk algebra is another example of a
Banach space with numerical index 1. For the above results and background, we
refer the reader to the books [2, 3] and to the expository paper [13]. More recent
results can be found in [7, 10, 12, 14, 15, 16, 17, 18] and the references therein.

Let us mention here a couple of facts concerning the numerical index which are
relevant to our discussion. First, one has v(T ∗) = v(T ) for every T ∈ L(X), where
T ∗ is the adjoint operator of T (see [2, § 9]) and it clearly follows that n(X∗) 6 n(X)
for every Banach space X. The question if this is actually an equality seems to be
open. Second, to calculate the numerical radius of an operator T ∈ L(X), it is not
needed to use the whole set Π(X), but a subset Γ of Π(X) whose first projection
is dense in SX [2, Theorem 9.3].

In [16, Theorem 5], it is proved that n(C(K, X)) = n(X) for every compact Haus-
dorff space K and every Banach space X. The first aim of this paper is to adapt
the arguments given there to prove that the same equality holds when C(K, X) is
replaced by Cω(K, X), the Banach space of all weakly continuous functions from
K into X, equipped with the supremum norm. We will need the following lemma,
whose first part appears in [8, Page 1905]. We include its proof for the sake of com-
pleteness. The second part gives us a dense subset of the unit sphere of Cω(K, X).

Lemma 1. Let K be a compact Hausdorff space and X a Banach space.

(a) For every f ∈ Cω(K, X), the set

{t ∈ K : f is norm continuous at t}
is dense in K.

(b) The set {
f ∈ SCω(K,X) : f attains its norm

}
is dense in SCω(K,X).

Proof. (a). For each n ∈ N, let

On = {t ∈ K : ∃ an open set V s.t. t ∈ V and diam f(V ) < 1/n}.
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Note that each On is open in K and⋂
n∈N

On = {t ∈ K : f is norm continuous at t}.

To get the result, it suffices to prove that each On is dense in K, and then Baire’s
Theorem applies. Indeed, for an open subset V of K and n ∈ N, since f(V ) is
dentable (see [5, Proposition VI.2.2]), there exists a weakly open set U in X with
U ∩ f(V ) nonempty and diam

(
U ∩ f(V )

)
< 1/n. Then, the set W = f−1(U) ∩ V

is nonempty, open and a subset of V ∩On.

(b). For f ∈ SCω(K,X) and 0 < ε < 1, by (a), we may find t0 ∈ K such that

‖f(t0)‖ > 1 − ε and f is norm continuous at t0. Therefore, writing x0 =
f(t0)
‖f(t0)‖

,

the point t0 does not belong to the closure of the set {t ∈ K : ‖f(t) − x0‖ > ε},
so it is possible to find a continuous function ϕ : K −→ [0, 1] such that

ϕ(t0) = 1 and ϕ(t) = 0 if ‖f(t)− x0‖ > ε.

Now, defining
g(t) = (1− ϕ(t)) f(t) + ϕ(t) x0 (t ∈ K),

we have g ∈ Cω(K, X) satisfying

‖g‖ = ‖g(t0)‖ = 1 and ‖f − g‖ < ε,

as desired. �

We can now state and prove the promised result.

Theorem 2. Let K be a compact Hausdorff space and let X be a Banach space.
Then,

n (Cω(K, X)) = n(X).

Proof. To show that n(Cω(K, X)) > n(X), we fix T ∈ L(Cω(K, X)) with ‖T‖ = 1
and prove that v(T ) > n(X). Given ε > 0, we may find f0 ∈ Cω(K, X) with
‖f0‖ = 1 and, by using Lemma 1.a, we may also find t0 ∈ K such that f0 is norm
continuous at t0 and

(1) ‖[Tf0](t0)‖ > 1− ε.

Denoting y0 = f0(t0), the continuity of f0 at t0 gives us that t0 does not belong
to the closure of the set {t ∈ K : ‖f0(t) − y0‖ > ε}, so it is possible to find a
continuous function ϕ : K → [0, 1] such that

ϕ(t0) = 1 and ϕ(t) = 0 if ‖f0(t)− y0‖ > ε.

Now, we write y0 = λx1 + (1− λ)x2 with 0 6 λ 6 1, x1, x2 ∈ SX , and we consider
the functions

fj = (1− ϕ)f0 + ϕxj ∈ Cω(K, X) (j = 1, 2).

Then, ‖ϕf0 − ϕy0‖ < ε, meaning that

‖f0 − (λf1 + (1− λ)f2)‖ < ε,

and, using (1), we must have

‖[Tf1](t0)‖ > 1− 2ε or ‖[Tf2](t0)‖ > 1− 2ε.

By making the right choice of x0 = x1 or x0 = x2 we get x0 ∈ SX such that

(2) ‖ [T ((1− ϕ)f0 + ϕx0)] (t0)‖ > 1− 2ε.

Next we fix x∗0 ∈ SX∗ with x∗0(x0) = 1, denote

Φ(x) = x∗0(x)(1− ϕ)f0 + ϕx ∈ Cω(K, X) (x ∈ X),
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and consider the operator S ∈ L(X) given by

Sx = [T (Φ(x))](t0) (x ∈ X).

Since, by (2),
‖S‖ > ‖Sx0‖ > 1− 2ε,

we may find x ∈ SX , x∗ ∈ SX∗ such that

x∗(x) = 1 and |x∗(Sx)| > n(X)[1− 2ε].

Now, define g ∈ SCω(K,X) by g = Φ(x), for this x, and consider the functional
g∗ ∈ SCω(K,X)∗ given by

g∗(h) = x∗(h(t0)) (h ∈ Cω(K, X)).

Since g(t0) = x, we have g∗(g) = 1 and

|g∗(Tg)| = |x∗(Sx)| > n(X)[1− 2ε].

Hence v(T ) > n(X), as required.

For the reverse inequality, take an operator S ∈ L(X) with ‖S‖ = 1, and define
T ∈ L(Cω(K, X)) by

[T (f)](t) = S(f(t)) (t ∈ K, f ∈ Cω(K, X)).

Then ‖T‖ = 1, so v(T ) > n(Cω(K, X)). By Lemma 1.b and [2, Theorem 9.3], the
numerical radius of T is given by

v(T ) = sup
{∣∣x∗([Tf ](t)

)∣∣ : f ∈ SCω(K,X), t ∈ K, x∗ ∈ SX∗ , x∗(f(t)) = 1
}

.

Therefore, given ε > 0, we may find f ∈ SCω(K,X), x∗ ∈ SX∗ , and t ∈ K, such that
x∗(f(t)) = 1 and

n(Cω(K, X))− ε <
∣∣x∗([Tf ](t)

)∣∣ = |x∗(S(f(t)))|.
It clearly follows that v(S) > n(Cω(K, X)), so n(X) > n(Cω(K, X)). �

It is well known (see [6, Theorem VI.7.1]) that the space Cω(K, X∗) can be iden-
tified with W (X, C(K)), the space of weakly-compact operators from the Banach
space X into C(K). Therefore, the above result also reads as

Corollary 3. Let K be a compact Hausdorff space and let X be a Banach space.
Then,

n
(
W (X, C(K))

)
= n(X∗).

Our next aim is to study the numerical index of Cω∗(K, X∗), the Banach space
of weakly-star continuous functions from a compact Hausdorff space K into the
dual of a Banach space X. Unfortunately, we are not able to completely determine
such numerical index, but some partial results can be established.

To state the first partial result, we need the following lemma, which gives us a
dense subset of the unit sphere of Cω∗(K, X∗). Let us first recall the well known
identification between Cω∗(K, X∗) and L(X, C(K)) (see [6, Theorem VI.7.1]): the
mapping Φ : L(X, C(K)) −→ Cω∗(K, X∗) given by

[Φ(T )](t) = T ∗(δt)
(
t ∈ K, T ∈ L(X, C(K))

)
is an isometric isomorphism. By δt we denote the evaluation at t, which is a linear
continuous functional on C(K).

Lemma 4. Let K be a compact Hausdorff space and let X be a Banach space.
Then, the set

A =
{
f ∈ SCω∗ (K,X∗) : f attains its norm

}
is dense in SCω∗ (K,X∗).
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Proof. By using the identification Φ given before, the set A coincides with the set of
those norm-one operators T ∈ L(X, C(K)) whose adjoints attain their norm at some
δt. By a result of Zizler [20, Proposition 4], the set of norm-one operators whose
adjoints attain their norms is always dense in the set of all norm-one operators. By
a result of T. Johannesen [11, Theorem 5.8] (see the proof of [1, Theorem 2]), when
the adjoint of an operator attains its norm, then it does at an extreme point of the
dual ball. Finally, the set of extreme points of the unit ball of C(K)∗ coincides
with {λ δt : t ∈ K, |λ| = 1}. �

Proposition 5. Let K be a compact Hausdorff space and X a Banach space. Then,

n (Cω∗(K, X∗)) 6 n(X).

Proof. We take an operator S ∈ L(X) with ‖S‖ = 1, and define the operator
T : Cω∗(K, X∗) −→ Cω∗(K, X∗) by

[T (f)](t) = S∗(f(t)) (t ∈ K, f ∈ Cω∗(K, X∗)).

It is clear that T ∈ L(Cω∗(K, X∗)) with ‖T‖ = 1, so v(T ) > n(Cω∗(K, X∗)). By
Lemma 4 and [2, Theorem 9.3], the numerical radius of T is equal to

sup
{∣∣x∗∗([Tf ](t)

)∣∣ : f ∈ SCω∗ (K,X∗), t ∈ K, x∗∗ ∈ SX∗∗ , x∗∗(f(t)) = 1
}

.

Therefore, given ε > 0, we may find f ∈ SCω∗ (K,X∗), x∗∗ ∈ SX∗∗ , and t ∈ K, such
that x∗∗(f(t)) = 1 and

n(Cω∗(K, X∗))− ε <
∣∣x∗∗([Tf ](t)

)∣∣ = |x∗∗(S∗(f(t)))| 6 v(S∗) = v(S).

Hence, n(X) > n(Cω∗(K, X∗)). �

We are not able to obtain a lower bound for n (Cω∗(K, X∗)) in the general case.
Our next partial result gives sufficient conditions on K or X to obtain the desired
bound. First we need another lemma, similar to Lemma 1.a.

Lemma 6. Let K be a compact Hausdorff space and X an Asplund space. Then,
for every f ∈ Cω∗(K, X∗) the set

{t ∈ K : f is norm continuous at t}

is dense in K.

Proof. Since X is Asplund, each bounded subset of X∗ is w∗-dentable (see [4,
Theorem 4.4.1]). Now, we can obviously adapt the proof of Lemma 1.a. �

Proposition 7. Let K be a compact Hausdorff space and X a Banach space. If X
is Asplund or K has a dense subset of isolated points then,

n(X∗) 6 n (Cω∗(K, X∗)) .

Proof. If X is Asplund, the first part of the proof of Theorem 2 can be straightfor-
wardly adapted, using Lemma 6 instead of Lemma 1.a.

If K has a dense subset of isolated points the thesis of Lemma 6 remains trivially
true, and the above argument applies. �

Using the identification between Cω∗(K, X∗) and L(X, C(K)), Propositions 5
and 7 read as
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Corollary 8. Let K be a compact Hausdorff space and X Banach space. Then,

n
(
L(X, C(K))

)
6 n(X).

If, in addition, X is an Asplund space or K has a dense subset of isolated points,
then

n(X∗) 6 n
(
L(X, C(K))

)
.

In view of Corollaries 3 and 8, one may wonder if they might be special cases
of a general result giving n

(
W (X, Y )

)
and n

(
L(X, Y )

)
as a function of n(X) and

n(Y ). The Example 10 of [16] says that this is not the case.

To finish the paper, let us give a stability result for the so-called Daugavet
property. A Banach space X is said to have the Daugavet property [9] if the equality

(DE) ‖Id + T‖ = 1 + ‖T‖

holds for every rank-one operator T ∈ L(X); in such a case, all weakly compact
operators also satisfy (DE). For a compact Hausdorff space K, the space Cω(K, X)
has the Daugavet property whenever K is perfect, for every Banach space X (see
[19]). The next remark is another criterion for determining that the space of X-
valued weakly continuous functions has the Daugavet property.

Remark 9. The first part of the proof of Theorem 2 can be easily adapted to get
that Cω(K, X) has the Daugavet property whenever X does, for every K. Indeed,
just assume that T ∈ L(Cω(K, X)) with ‖T‖ = 1 is a rank-one operator, build
S ∈ L(X) exactly as in the above proof, and note that S is a rank-one operator as
well. The Daugavet property of X gives an x ∈ SX which satisfies

‖x + Sx‖ > 1 + ‖S‖ − ε > 2− 3ε.

Now, we define the function g ∈ SCω(K,X) as in the proof of the theorem, and we
note that

‖Id + T‖ >
∥∥[

(Id + T )(g)
]
(t0)

∥∥ = ‖x + Sx‖ > 2− 3ε.

It is worth mentioning that the above argument is analogous to the one given for
C(K, X) in [16, Remark 6].

It is natural to ask if a result similar to the above one can be stated for the space
Cω∗(K, X∗), using Proposition 7 instead of Theorem 2. The only obstacle is that,
to apply this proposition, we need X to be Asplund or K to have a dense subset
of isolated points. In the first case, X cannot have the Daugavet property (see [9,
page 857]); in the second case, we obtain the following result: if K is a Hausdorff
compact space with a dense subset of isolated points and X is a Banach space with
the Daugavet property, then the space Cω∗(K, X∗) also has the Daugavet property.
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