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ABSTRACT. We construct an example of a real Banach space whose group of surjective
isometries has no uniformly continuous one-parameter semigroups, but the group of sur-
jective isometries of its dual contains infinitely many of them. Other examples concerning
numerical index, hermitian operators and dissipative operators are also shown.

1. INTRODUCTION

Given a real or complex Banach space X, its dual space is denoted by X∗ and the Banach
algebra of all bounded linear operators on X by L(X). If T ∈ L(X), T∗ ∈ L(X∗) denotes
the adjoint operator of T.

To understand the geometry of a Banach space, it is very useful to know the structure
of its surjective isometries, i.e. surjective linear applications which preserve the norm. We
refer the reader to the recent books by R. Fleming and J. Jamison [13, 14] and references
therein for background.

In this paper, we would like to investigate the relationship between the group Iso(X)
of all surjective isometries on a Banach space X and the one of its dual. It is well-known
that the map T 7−→ (T∗)−1 is a group monomorphism from Iso(X) into Iso(X∗). There
are situations in which this application is an isomorphism. Namely, when X is reflexive
(obvious) and, more generally, when X is M-embedded [16, Proposition III.2.2] and, even
more generaly, when there exists a unique norm-one projection π : X∗∗∗ −→ X∗ with
w∗-closed kernel [15, Proposition VII.1]. Other condition to get that all the surjective
isometries of X∗ are w∗-continuous is to assure that X has a shrinking 1-unconditional
basis [26]. On the other hand, the above map is not always surjective, i.e. it is possible to
find surjective isometries on the dual of a Banach space which are not w∗-continuous (see
[26, pp. 184] for an easy example on C[0, 1]).

Therefore, in some sense, the group Iso(X∗) is bigger than Iso(X). Our aim in this
paper is to show that this phenomenon could be even stronger. We construct a Banach
space X such that the geometry of Iso(X) around the identity is trivial (the tangent space
to Iso(X) at Id is zero), while the geometry of Iso(X∗) around the identity is as rich as
the one of a Hilbert space (the tangent space to Iso(X∗) at Id is infinite-dimensional). By
the tangent space of the group of surjective isometries on a Banach space Z at Id we mean
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the set

T (Iso(Z), Id) =
{

f ′(0) : f : [−1, 1] −→ Iso(Z), f (0) = Id, f differentiable at 0
}

.

Equivalently (see Proposition 2.1), T (Iso(Z), Id) is the set of the generators of uni-
formly continuous one-parameter semigroup of isometries. By a uniformly continuous
one-parameter semigroup of surjective isometries on a Banach space Z we mean a contin-
uous function Φ : R+

0 −→ L(Z) valued in Iso(Z) such that Φ(t + s) = Φ(t)Φ(s) for
every s, t ∈ R; equivalently (see [17, Chapter IX] for instance), a group of the form

{exp(ρ T) : ρ ∈ R}
for some T ∈ L(Z) which is contained in Iso(Z), where exp(·) denotes the exponential

function, i.e. exp(T) =
∞

∑
n=0

Tn

n!
∈ L(Z).

The main aim of this paper is to make a construction which allows us, among others, to
present the following result (see Example 4.1).

There exists a real Banach space X such that Iso(X) does not contain any
non-trivial uniformly continuous one-parameter subgroup, while Iso(X∗)
contains infinitely many different uniformly continuous one-parameter
subgroups. Equivalently, T (Iso(X), Id) = {0} but T (Iso(X∗), Id) is
infinite-dimensional.

The paper is divided into four sections, including this introduction. The second one is
devoted to explain the main tool we are using, the numerical range of operators on Banach
spaces and its relationship with isometries. In the third section, for every separable Banach
space E, we construct a C-rich subspace X(E) of C[0, 1] (see Definition 3.1) such that
E∗ is (isometrically isomorphic to) an L-summand of X(E)∗. These spaces inherit some
properties from C[0, 1] while their dual spaces share properties with the particular spaces
E. This allows us to present, in section 4, the aforementioned example and other ones
concerning the numerical index, hermitian operators, and dissipative operators.

We finish the introduction with some notation. Given a real or complex Banach space
X, we write BX for the closed unit ball and SX for the unit sphere of X. We write T to
denote the set of all modulus-one scalars, i.e. T = {−1, 1} in the real case and T ={

ei θ : θ ∈ R
}

in the complex case. A closed subspace Z of X is an L-summand if X =
Z ⊕1 W for some closed subspace W of X, where ⊕1 denotes the `1-sum. A closed
subspace Y of a Banach space X is said to be an M-ideal of X if the annihilator Y⊥ of Y
is an L-summand of X∗. We refer the reader to the monograph by P. Harmand, D. Werner
and W. Werner [16] for background on L-summands and M-ideals.

2. THE TOOL: NUMERICAL RANGE AND ISOMETRIES

The main tool we are using in the paper is the relationship between isometries and the
numerical range of operators on Banach spaces, a concept independently introduced by
F. Bauer [5] and G. Lumer [27] in the sixties to extend the classical field of values of
matrices (O. Toeplitz, 1918 [34]). We refer the reader to the monographs by F. Bonsall and
J. Duncan [7, 8] from the seventies for background and more information. Let X be a real
or complex Banach space. The numerical range of an operator T ∈ L(X) is the subset
V(T) of the scalar field defined by

V(T) = {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}.
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This is Bauer’s definition, while Lumer’s one depends upon the election of a compatible
semi-inner product on the space (a notion also introduced by Lumer [27]). But concerning
our applications, both of them are equivalent in the sense that they have the same closed
convex hull. The numerical radius is the seminorm defined by

v(T) = sup{|λ| : λ ∈ V(T)}

for every T ∈ L(X). It is clear that v is continuous; actually, v(T) 6 ‖T‖ for every
T ∈ L(X). We say that T ∈ L(X) is skew-hermitian if Re V(T) = {0}; we write A(X)
for the closed subspace of L(X) consisting of all skew-hermitian operators on X, which is
called the Lie algebra of X by H. Rosenthal [31]. In the real case, T ∈ A(X) if and only
if v(T) = 0.

Let us give a clarifying example. If H is a n-dimensional Hilbert space, it is easy to
check that A(H) is the space of skew-symmetric operators on H (i.e. T∗ = −T in the
Hilbert space sense), so it identifies with the space of skew-symmetric matrices. It is a
classical result from the theory of linear algebra that a n× n matrix A is skew-symmetric
if and only if exp(ρA) is an orthogonal matrix for every ρ ∈ R (see [4, Corollary 8.5.10]
for instance). The same is true for an infinite-dimensional Hilbert space by just replacing
orthogonal matrices by unitary operators (i.e. surjective isometries).

The above fact extends to general Banach spaces. Indeed, for an arbitrary Banach space
X and an operator T ∈ L(X), by making use of the exponential formula [7, Theorem 3.4]

sup Re V(T) = lim
β↓0

‖Id + β T‖ − 1
β

= sup
α>0

log ‖ exp(α T)‖
α

,

the following known result is easy to prove.

Proposition 2.1 ([31, Theorem 1.4]). Let X be a real or complex Banach space and T ∈
L(X). Then, the following are equivalent.

(i) T is skew-hermitian.
(ii) ‖ exp(ρ T)‖ 6 1 for every ρ ∈ R.
(iii) {exp(ρ T) : ρ ∈ R} ⊂ Iso(X), i.e. T is the generator of a uniformly continuous

one-parameter subgroup of isometries.
(iv) T ∈ T (Iso(X), Id).

Therefore,A(X) coincides with T (Iso(X), Id) and with the set of generators of uniformly
continuous one-paremeter subgroups of isometries.

In the real case, the above result leads us to consider when the numerical radius is a
norm on the space of operators. A related concept to this fact is the numerical index of a
(real or complex) Banach space X, introduced by G. Lumer in 1968, which is the constant
n(X) defined by

n(X) = inf{v(T) : T ∈ L(X), ‖T‖ = 1}
or, equivalently, the greatest constant k > 0 such that k‖T‖ 6 v(T) for every T ∈ L(X).
Let us mention here a couple of facts concerning the numerical index which will be relevant
to our discussion. For more information, recent results and open problems, we refer the
reader to the very recent survey [20] and references therein. First, real or complex C(K)
and L1(µ) spaces have numerical index 1, and the numerical index of a Hilbert space of
dimension greater than one is 0 in the real case and 1/2 in the complex case. The set of
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values of the numerical index is given by the following equalities:

{n(X) : X complex Banach space } = [e−1, 1],
{n(X) : X real Banach space } = [0, 1].

Finally, since v(T) = v(T∗) for every T ∈ L(X) (this can be proved by making use of
the exponential formula, for example), it follows that n(X∗) 6 n(X) for every Banach
space X. Very recently, K. Boyko, V. Kadets, D. Werner and the author proved that the
reversed inequality does not always hold [9, Example 3.1], answering in the negative way
a question which had been latent since the beginning of the seventies.

Let us observe that, for a real Banach space X, as a consequence of Proposition 2.1, if
T (Iso(X), Id) is non-trivial, then n(X) = 0. Let us state this result for further reference.

Proposition 2.2. Let X be a real Banach space with n(X) > 0. Then, T (Iso(X), Id)
reduces to zero.

In the finite-dimensional case, the above implication reverses and, actually, the numer-
ical index zero characterizes those finite-dimensional real Banach spaces with infinitely
many isometries [31, Theorem 3.8]. We refer the reader to the just cited [31] and to
[29, 32] for further results on finite-dimensional spaces with infinitely many isometries.
In the infinite-dimensional case, the situation is different and it is possible to find a real
Banach space X such that n(X) = 0 but T (Iso(X), Id) = {0}, i.e. the numerical radius
it is a (necessarily non-complete) norm on L(X) which is not equivalent to the usual one.

We will also use another concept related to the numerical range: the so-called Daugavet
equation. A bounded linear operator T on a Banach space X is said to satisfy the Daugavet
equation if

(DE) ‖Id + T‖ = 1 + ‖T‖.

This norm equality appears for the first time in a 1963 paper by I. Daugavet [11], where it
was proved that every compact operator on C[0, 1] satisfies it. Following [22, 23], we say
that a Banach space X has the Daugavet property if every rank-one operator T ∈ L(X)
satisfies (DE). In such a case, every operator on X not fixing a copy of `1 also satisfies
(DE) [33]; in particular, this happens to every compact or weakly compact operator on X
[23]. Examples of spaces with the Daugavet property are C(K) when the compact space
K is perfect, and L1(µ) when the positive measure µ is atomless. An introduction to the
Daugavet property can be found in the books by Y. Abramovich and C. Aliprantis [1, 2]
and the state-of-the-art can be found in the survey paper by D. Werner [35]; for more recent
results we refer the reader to [6, 10, 19, 21] and references therein.

The relation between the Daugavet equation and the numerical range is given as follows
[12]. Given a Banach space X and T ∈ L(X),

T satisfies (DE) ⇐⇒ sup Re V(T) = ‖T‖.

The following result is an straightforward consequence of this fact.

Proposition 2.3. Let X be a real or complex Banach space and T ∈ L(X). If λ T satisfies
(DE), then ‖T‖ ∈ λ V(T). In particular, if X has the Daugavet property, then every
operator T ∈ L(X) which does not fix a copy of `1 satisfies

‖T‖T ⊂ V(T).
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We finish this section collecting some easy results concerning L-summands of Banach
spaces, numerical ranges, and isometries. We include a proof for the sake of completeness.

Proposition 2.4. Let X be a real or complex Banach space and suppose that X = Y⊕1 Z
for closed subspaces Y and Z.

(a) Given an operator S ∈ L(Y), the operator T ∈ L(X) defined by

T(y, z) = (Sy, 0)
(
y ∈ Y, z ∈ Z

)
satisfies ‖T‖ = ‖S‖ and V(T) ⊂ [0, 1] V(S).

(b) For every S ∈ Iso(Y), the operator

T(y, z) = (Sy, z)
(
y ∈ Y, z ∈ Z

)
belongs to Iso(X).

Proof. (a). It is clear that ‖T‖ = ‖S‖. On the other hand, given

λ = (y∗, z∗)
(
T(y, z)

)
= y∗(Sy) ∈ V(T),

where (y, z) ∈ SX and (y∗, z∗) ∈ SX∗ with (y∗, z∗)(y, z) = 1, we have

1 = (y∗, z∗)(y, z) = y∗(y) + z∗(z) 6 ‖y∗‖‖y‖+ ‖z∗‖‖z‖ 6 ‖y‖+ ‖z‖ = 1.

We deduce that y∗(y) = ‖y∗‖ ‖y‖. If ‖y∗‖ ‖y‖ = 0, then λ = 0 ∈ [0, 1] V(S). Other-
wise,

(1) λ = ‖y∗‖‖y‖ y∗

‖y∗‖

(
S

y
‖y‖

)
∈ [0, 1] V(S).

(b). For (y, z) ∈ X, we have

‖T(y, z)‖ = ‖(Sy, z)‖ = ‖Sy‖+ ‖z‖ = ‖y‖+ ‖z‖ = ‖(y, z)‖. �

3. THE CONSTRUCTION

Our aim here is to construct closed subspaces of C[0, 1], which share some properties
with it, but such that their duals could be extremely different from C[0, 1]∗. The idea of
our construction is to squeeze the one that was given in [9, Examples 3.1 and 3.2] to show
that the numerical index of the dual of a Banach space can be different than the numerical
index of the space. Let us comment that all the results in this section are valid in the real
and in the complex case. We need one definition.

Definition 3.1 ([9, Definition 2.3]). Let K be a compact Hausdorff space. A closed sub-
space X of C(K) is said to be C-rich if for every nonempty open subset U of K and every
ε > 0, there is a positive continuous function h of norm 1 with support inside U such that
the distance from h to X is less than ε.

Our interest in C-rich subspaces of C(K) is that they inherit some geometric properties
from C(K), as the following result summarizes.

Proposition 3.2 ([9, Theorem 2.4] and [24, Theorem 3.2]). Let K be a perfect compact
Hausdorff space and let X be a C-rich subspace of C(K). Then n(X) = 1 and X has the
Daugavet property.

We are now able to present the main result of the paper.
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Theorem 3.3. Let E be a separable Banach space. Then, there is a C-rich subspace
X(E) of C[0, 1] such that X(E)∗ contains (an isometrically isomorphic copy of) E∗ as an
L-summand.

Proof. By the Banach-Mazur Theorem, we may consider E as a closed subspace of C(∆),
where ∆ denotes the Cantor middle third set viewed as a subspace of [0, 1]. We write
P : C[0, 1] −→ C(∆) for the restriction operator, i.e.[

P( f )
]
(t) = f (t)

(
t ∈ ∆, f ∈ C[0, 1]

)
.

We define the closed subspaces X(E) and Y of C[0, 1] by

X(E) = { f ∈ C[0, 1] : P( f ) ∈ E} , Y = ker P.

Since [0, 1] \ ∆ is open and dense in [0, 1], it is immediate to show that X(E) is C-
rich in C[0, 1]. Indeed, for every nonempty open subset U of [0, 1], we consider the
nonempty open subset V = U ∩

(
[0, 1] \ ∆

)
and we take a norm-one continuous function

h : [0, 1] −→ [0, 1] whose support is contained in V. Therefore, h belongs to Y ⊆ X(E),
and the support of h is contained in U.

Since Y is an M-ideal in C[0, 1] (see [16, Example I.1.4(a)]), it is a fortiori an M-ideal
in X(E) by [16, Proposition I.1.17], meaning that Y⊥ ≡ (X(E)/Y)∗ is an L-summand of
X(E)∗.

It only remains to prove that X(E)/Y is isometrically isomorphic to E. To do so, we
define the operator Φ : X(E) −→ E given by Φ( f ) = P( f ) for every f ∈ X(E). Then
Φ is well-defined, ‖Φ‖ 6 1, and ker Φ = Y. To see that the canonical quotient operator
Φ̃ : X(E)/Y −→ E is a surjective isometry, it suffices to show that

Φ
(
{ f ∈ X(E) : ‖ f ‖ < 1}

)
= {g ∈ E : ‖g‖ < 1}.

Indeed, the left side is contained in the right side since ‖Φ‖ 6 1. On the other hand, for
every g ∈ E ⊂ C(∆) with ‖g‖ < 1, we consider any isometric extension f ∈ C[0, 1] (it is
easy to construct it by just considering an affine extension, see [3, page 18] for instance).
It is clear that f ∈ X(E) with ‖ f ‖ = ‖g‖ < 1 and that Φ( f ) = g. �

Remarks 3.4.

(c) Let us observe that the spaces X(E) has a strong version of C-richness which
can be read as the validity of the Urysohn lemma in X(E). Namely, for every
nonempty open subset U of [0, 1], there is a non-null positive continuous function
h ∈ X(E) whose support is contained in U.

(b) Also, following the proof of the theorem, it is easy to check what we have actually
proved is that X(E)∗ ≡ E∗⊕1 L1(µ) for a suitable localizable positive measure µ.
Indeed, we have shown that Y is an M-ideal in X(E) and Y⊥ = (X(E)/Y)∗ ≡
E∗. By [16, Remark I.1.13], one gets X(E)∗ ≡ E∗ ⊕1 Y∗. On the other hand,
Y is an M-ideal in C[0, 1] and so, Y∗ is (isometrically isomorphic to) an L1(µ)
space. To this end, one may make use of [16, Example I.1.6(a)] and of the fact that
C[0, 1]∗ is isometric to an L1(ν) space for some localizable positive measure ν.

(c) The above observation leads us to give a direct and simple proof of the fact that
n(X(E)) = 1 for every E, without calling Proposition 3.2. Indeed, in the identifi-
cation X(E)∗ ≡ E∗ ⊕1 Y∗, the evaluation functionals

A = {δt : t ∈ [0, 1] \ ∆}
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(where, as usual, δt( f ) = f (t)) belong to Y∗ ≡ L1(µ) (see [16, Proposition I.1.12]).
Being [0, 1] \ ∆ dense in [0, 1], it follows that BX(E)∗ is the w∗-closed convex
hull of A. On the other hand, every extreme point of the unit ball of X(E)∗∗ ≡
E∗∗ ⊕∞ L∞(µ) is of the form (e∗∗, h) where e∗∗ is extreme in BE∗∗ and h is ex-
treme in BL∞(µ). It implies that

|x∗∗(a)| = 1
(
a ∈ A, x∗∗ extreme point of BX∗∗

)
.

Now, by just using that v(T) = v(T∗) for every T ∈ L(X(E)), it is easy to check
that n(X(E)) = 1 (see [20, Proposition 6] for example).

The construction in Theorem 3.3 can be easily extended to the general case in which E
is not separable by just replacing [0, 1] by a convenient perfect compact space K. The main
difference is that, obviously, there is no universal such a K.

Proposition 3.5. Let E be a Banach space. Then there is a perfect Hausdorff compact
space K and a C-rich subspace X(E) of C(K) such that E∗ is an L-summand of X(E)∗.

Proof. We consider E as a closed subspace of C
(
(BE∗ , w∗)

)
, we write K for the perfect

compact space (BE∗ , w∗)× [0, 1], P : C(K) −→ C
(
(BE∗ , w∗)

)
for the operator[

P( f )
]
(t) = f (t, 0)

(
t ∈ BE∗ , f ∈ C(K)

)
,

and we consider the space

X(E) = { f ∈ C(K) : P( f ) ∈ E} .

Now, it is easy to adapt the proof of Theorem 3.3 to this situation. �

4. THE EXAMPLES

Our aim here is to use Theorem 3.3 with some particular spaces E to produce some
interesting examples. The first one is the promised space whose group of isometries is
much smaller than the one of its dual.

Example 4.1. The real Banach space X(`2) produced in Theorem 3.3 satisfies that Iso(X(`2))
does not contain any non-trivial uniformly continuous one-parameter subgroup, while
Iso(X(`2)∗) contains infinitely many uniformly continuous one-parameter subgroups. Equiv-
alently, T (Iso(X(`2)), Id) = {0} but T (Iso(X(`2)∗), Id) is infinite-dimensional.

Proof. Being n(X(`2)) = 1 by Proposition 3.2, the tangent space at Id of the group
Iso
(
X(`2)

)
is null by Proposition 2.2. On the other hand, Proposition 2.4.b gives us that

the group of isometries of X(`2)∗ contains Iso(`2) as a subgroup, and so T
(
X(`2)∗, Id

)
is infinite-dimensional. �

The above example gives us, in particular, with a real Banach space with numerical in-
dex 1 such that its dual has numerical index 0. An example of this kind was given in [9,
Example 3.2.a] as a c0-sum of spaces whose duals have positive numerical index. There-
fore, the dual of that example does not contain any non-null skew-hermitian operator (see
[30, Example 3.b] for a proof). Thus, the existence of a space like the one given in Ex-
ample 4.1 is not contained in [9, Example 3.2.a]. On the other hand, the new construction
can be used to give the following improvement of the examples given in [9]: the dual of a
Banach space with numerical index 1 may have any possible value of the numerical index.
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Proposition 4.2.

{n(X∗) : X complex Banach space with n(X) = 1 } = [e−1, 1],
{n(X∗) : X real Banach space with n(X) = 1 } = [0, 1].

Proof. Indeed, just take two-dimensional spaces E with any possible value of the numerical
index (see [12]) and consider X(E). Then, by Theorem 3.3 and Remark 3.4.b, n(X(E)) =
1 while X(E)∗ = E∗ ⊕1 L1(µ) for a suitable measure µ. Now, [30, Proposition 1] gives

n(X(E)∗) = min{n(E∗), L1(µ)} = min{n(E∗), 1} = n(E∗) = n(E). �

In a 1977 paper [18], T. Huruya determined the numerical index of a (complex) C∗-
algebra. Part of the proof was recently clarified by A. Kaidi, A. Morales, and A. Rodrı́guez-
Palacios in [25], where the result is extended to preduals of von Neumann algebras. Namely,
the numerical index of a C∗-algebra is equal to 1/2 when it is not commutative and 1 when
it is commutative, and the numerical index of the predual of a von Neumann algebra co-
incides with the numerical index of the algebra. Therefore, if X is a C∗-algebra or the
predual of a von Neumann algebra, then n(X) = n(X∗), and the same is true for all the
successive duals of X. The following example shows that we can not extend this result to
successive preduals.

Example 4.3. There exists a Banach space X such that X∗∗ is (isometrically isomorphic
to) a C∗-algebra, n(X) = 1 and n(X∗) = 1/2.

Proof. We consider E = K(`2), the space of compact linear operators on `2. Then, the
space X(E) given in Theorem 3.3 has numerical index 1 and Remark 3.4.b gives us that

X(E)∗ ≡ K(`2)∗ ⊕1 L1(µ)

for a suitable positive localizable measure µ. Then, n(X(E)∗) = n(K(`2)∗) = 1/2 and
X(E)∗∗ is isometrically isomorphic to the C∗-algebra L(`2)⊕∞ L∞(µ). �

Let us observe that the adjoint of a skew-hermitian operator on a Banach space X is also
skew-hermitian, and Example 4.1 shows that there might be skew-hermitian operators on
X∗ which are not w∗-continuous. The next two examples show that the same is true for
hermitian operators and dissipative operators.

Let X be a complex Banach space. An operator T ∈ L(X) is said to be hermitian if
V(T) ⊂ R (i.e. the operator i T is skew-hermitian), equivalently (see Proposition 2.1),
if exp(iρ T) ∈ Iso(X) for every ρ ∈ R. Hermitian operators have been deeply stud-
ied and many results on Banach algebras depend on them; for instant, the Vidav-Palmer
characterization of C∗-algebras. We refer to [7, 8, 27] for more information.

Example 4.4. Let us consider the complex space X(`2) produced in Theorem 3.3. Then,
every non-null hermitian operator T on X fixes a copy of `1 whereas X(`2)∗ has an infinite-
dimensional real subspace of finite-rank hermitian operators.

Proof. The space X(`2) has the Daugavet property by Proposition 3.2, and so Proposi-
tion 2.3 gives us ‖T‖T ⊆ V(T) for every operator T which does not fix a copy of `1. This
implies that T is not hermitian. On the other hand, being `2 an L-summand of X(`2)∗, ev-
ery finite-dimensional orthogonal projection on `2 (which is clearly hermitian) canonically
extend to a finite-rank hermitian operator on X(`2)∗ by Proposition 2.4. �
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Our last example deals with dissipative operators, a concept translated from the Hilbert
space setting to general Banach spaces by G. Lumer and R. Phillips [28] in 1961. Let X
be a real or complex Banach space. An operator T ∈ L(X) is said to be dissipative if
Re V(T) ⊂ R−0 or, equivalently, if ‖ exp(ρT)‖ 6 1 for every ρ ∈ R+ (i.e. T is the
generator of a one-parameter semigroup of contractions). We refer to [7, 8, 28] for more
information and background.

Example 4.5. Let us consider the real or complex space X(`2) produced in Theorem 3.3.
Then, every non-null dissipative operator T on X fixes a copy of `1 whereas X(`2)∗ has
infinitely many linear independent finite-rank dissipative operators.

Proof. The space X(`2) has the Daugavet property by Proposition 3.2, and so Proposi-
tion 2.3 gives us ‖T‖T ⊆ V(T) for every operator T which does not fix a copy of `1. This
implies that T is not dissipative. On the other hand, being `2 an L-summand of X(`2)∗,
the negative of every finite-dimensional orthogonal projection on `2 (which is clearly dis-
sipative) canonically extend by zero to a finite-rank dissipative operator on X(`2)∗. �
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