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2 Norm equalities for operators on Banah spaesThe above equation is nowadays referred to as Daugavet equation. Few yearslater, this result was extended to various lasses of operators on some Banahspaes, inluding weakly ompat operators on C(K) for perfet K and on
L1(µ) for atomless µ (see [27℄ for an elementary approah). A new wave ofinterest in this topi surfaed in the eighties, when the Daugavet equation wasstudied by many authors in various ontexts. Let us ite, for instane, that aompat operator T on a uniformly onvex Banah spae (in partiular, on aHilbert spae) satis�es (DE) only if the norm of T is an eigenvalue [3℄. We referthe reader to the books [1, 2℄ for a brief study of this equation from di�erentpoints of view.In the late nineties, new ideas were infused into this �eld and, instead oflooking for new spaes and new lasses of operators on them for whih (DE) isvalid, the geometry of Banah spaes having the so-alled Daugavet propertywas studied. Following [18, 19℄, we say that a Banah spae X has the Daugavetproperty if every rank-one operator T ∈ L(X) satis�es (DE) (we write L(X)for the Banah algebra of all bounded linear operators on X). In suh a ase,every operator on X not �xing a opy of ℓ1 also satis�es (DE) [26℄; in partiular,this happens to every ompat or weakly ompat operator on X [19℄. Thereare several haraterizations of the Daugavet property whih do not involveoperators (see [19, 28℄). For instane, a Banah spae X has the Daugavetproperty if and only if for every x ∈ SX and every ε > 0 the losed onvex hullof the set

BX \
(
x + (2 − ε) BX

)oinides with the whole BX . Here and subsequently, BX and SX stand,respetively, for the losed unit ball and the unit sphere of a Banah spae
X. Let us observe that the above haraterization shows that the Daugavetproperty is somehow extremely opposite to the Radon-Nikodým property.Although the Daugavet property is learly of isometri nature, it indues var-ious isomorphi restritions. For instane, a Banah spae with the Daugavetproperty does not have the Radon-Nikodým property [29℄ (atually, every slieof the unit ball has diameter 2 [19℄), it ontains ℓ1 [19℄, it does not have un-onditional basis [15℄ and, moreover, it does not isomorphially embed into anunonditional sum of Banah spaes without a opy of ℓ1 [26℄. It is worthwhileto remark that the latter result ontinues a line of generalization ([16℄, [17℄,[19℄) of the known theorem of A. Peªzy«ski [24℄ from 1961 saying that L1[0, 1](and so C[0, 1]) does not embed into a spae with unonditional basis.The state-of-the-art on the Daugavet property an be found in [28℄; for veryreent results we refer the reader to [4, 6, 14℄ and referenes therein.In view of the deep onsequenes that the Daugavet property has on thegeometry of a Banah spae, one may wonder whether it is possible to de�neother interesting properties by requiring all rank-one operators on a Banahspae to satisfy a suitable norm equality. This is the aim of the present paper.



V. Kadets, M. Martín, and J. Merí 3Let us give some remarks on the question whih will also serve to presentthe outline of our further disussion. First, the Daugavet property learlyimplies that the norm of Id + T only depends on the norm of T . Then, apossible generalization of the Daugavet property is to require that every rank-one operator T on a Banah spae X satis�es a norm equality of the form
‖Id + T‖ = f(‖T‖)for a �xed funtion f : R

+
0 −→ R. It is easy to show (see Proposition 2.2) thatthe only property whih an be de�ned in this way is the Daugavet property.Therefore, we should look for equations in whih Id+T is replaed by anotherfuntion of T , i.e. we �x funtions g and f and we require that every rank-oneoperator T on a Banah spae X satis�es the norm equality

‖g(T )‖ = f(‖T‖).We need g to arry operators to operators and to apply to arbitrary rank-oneoperators, so it is natural to impose g to be a power series with in�nite radiusof onvergene, i.e. an entire funtion (when K = C this is the usual de�nition;when K = R, g is the restrition to R of a omplex entire funtion whiharries the real line into itself). Again, theonly non trivial possibility is the Daugavet property, as we will show insetion 3. Setion 4 is devoted to the last kind of equations we would like tostudy. Conretely, we onsider an entire funtion g, a ontinuous funtion f ,and a Banah spae X, and we require eah rank-one operator T ∈ L(X) tosatisfy the norm equality(1) ‖Id + g(T )‖ = f(‖g(T )‖).If X is a Banah spae with the Daugavet property and g is an entire funtion,then it is easy to see that the norm equality
‖Id + g(T )‖ = |1 + g(0)| − |g(0)| + ‖g(T )‖holds for every rank-one T ∈ L(X). Therefore, ontrary to the previous ases,our aim here is not to show that only few funtions g are possible in (1), butto prove that many funtions g produe the same property. Unfortunately, wehave to separate the omplex ase and the real ase, and only in the �rst onewe are able to give fully satisfatory results. More onretely, we onsider aomplex Banah spae X, an entire funtion g and a ontinuous funtion f ,suh that (1) holds for every rank-one operator T ∈ L(X). If Re g(0) 6= −1/2,then X has the Daugavet property. Surprisingly, the result is not true when

Re g(0) = −1/2 and another family of properties stritly weaker than theDaugavet property appears: there exists a modulus one omplex number ωsuh that the norm equality(2) ‖Id + ω T‖ = ‖Id + T‖holds for every rank-one T ∈ L(X). In the real ase, the disussion abovedepends upon the surjetivity of g, and there are many open questions when



4 Norm equalities for operators on Banah spaes
g is not onto. Finally, we give in setion 5 some remarks about the propertiesde�ned by norm equalities of the form given in (2).We �nish the introdution by ommenting that, although we have beenunable to �nd any result like the above ones in the literature, there are severalpapers in whih the authors work on inequalities whih remind the Daugavetequation. For instane, it is proved in [5℄ (see also [25, �9℄) that for every
1 < p < ∞, p 6= 2, there exists a funtion ϕp : (0,∞) −→ (0,∞) suh that theinequality(3) ‖Id + T‖ > 1 + ϕp(‖T‖)holds for every nonzero ompat operator T on Lp[0, 1] (see [8℄ for the ϕpestimates). This result has been reently arried to non-ommutative Lp-spaes and to some spaes of operators [22, 23℄. Finally, inequalities as (3) inwhih ϕp is linear are studied in [20℄.2. PreliminariesLet us start by �xing some notation. We use the symbols T and D to denote,respetively, the unit sphere and the losed unit ball of the base �eld K, and wewrite Re(·) to denote the real part funtion, whih is nothing than the identitywhen K = R. Given a Banah spae X, the dual spae of X is denoted by
X∗ and, when X is a omplex spae, XR is the underlying real spae. Given
x ∈ X and x∗ ∈ X∗, we write x∗ ⊗ x to denote the bounded linear operator

y 7−→ x∗(y) x (y ∈ X),whose norm is equal to ‖x‖ ‖x∗‖.It is straightforward to hek that if an operator T on a Banah spae Xsatis�es (DE), then all the operators of the form α T for α > 0 also satisfy(DE) (see [3, Lemma 2.1℄ for instane). We will use this fat along the paperwithout expliit mention.Next, let us observe that the de�nition of the Daugavet property for omplexspaes may be a bit onfusing, sine the meaning of a rank-one operator an beunderstood in two di�erent forms. Indeed, an operator T on a Banah spae Xis a rank-one operator if dim T (X) 6 1. Then, when X is a omplex spae, twodi�erent lasses of rank-one operators may be onsidered: the omplex-linearoperators whose ranks have omplex-dimension one (i.e. operators of the form
x∗⊗x for x∗ ∈ X∗ and x ∈ X) and, on the other hand, the real-linear operatorswhose ranks have real-dimension one (i.e. operators of the form Rex∗ ⊗ x for
Re x∗ ∈ (XR)∗ and x ∈ XR). As a matter of fats, the two possible de�nitionsof the Daugavet property that one may state are equivalent.Remark 2.1. Let X be a omplex Banah spae. Then, the following areequivalent:(i) Every (real) rank-one operator on XR satis�es (DE).(ii) Every (omplex) rank-one operator on X satis�es (DE).



V. Kadets, M. Martín, and J. Merí 5Proof. (i) ⇒ (ii) follows immediately from [19, Theorem 2.3℄, but a diretproof is very easy to state. Given a omplex rank-one operator T = x∗
0 ⊗ x0with ‖x∗

0‖ = 1 and ‖x0‖ = 1, we have ‖Id + Re x∗
0 ⊗ x0‖ = 2. Therefore, given

ε > 0, there exists x ∈ SX suh that ‖x + Re x∗
0(x)x0‖ > 2− ε. It follows that

|Rex∗
0(x)| > 1 − ε, and so | Imx∗

0(x)| 6 ε.Now, it is lear that
‖Id + T‖ > ‖x + Tx‖ = ‖x + x∗

0(x)x0‖

> ‖x + Rex∗
0(x)x0‖ − ‖ Im x∗

0(x)x0‖ > 2 − 2ε.

(ii) ⇒ (i). Let T = Rex∗
0 ⊗ x0 be a real rank-one operator with

‖Rex∗
0‖ = ‖x∗

0‖ = 1 and ‖x0‖ = 1.By (ii), we have that ‖Id + x∗
0 ⊗ x0‖ = 2 so, given ε > 0, there exists x ∈ SXsatisfying

‖x + x∗
0(x)x0‖ > 2 − ε.If we take ω ∈ T suh that ωx∗

0(x) = |x∗
0(x)|, then

x∗
0(ωx) = ωx∗

0(x) = Rex∗
0(ωx).Therefore,

‖Id + T‖ > ‖ωx + Re x∗
0(ωx)x0‖

= ‖ωx + ωx∗
0(x)x0‖ = ‖x + x∗

0(x)x0‖ > 2 − ε. �From now on, by a rank-one operator on a Banah spae over K, we willmean a bounded K-linear operator whose image has K-dimension less or equalthan one.As we ommented in the introdution, the aim of this paper is to disusswhether there are other isometri properties apart from the Daugavet propertywhih an be de�ned by requiring all rank-one operators on a Banah spaeto satisfy a norm equality. A �rst observation is that the Daugavet propertyimplies that for every rank-one operator T , the norm of Id + T only dependson the norm of T . It is easy to hek that the above fat only may happen ifthe Banah spae involved has the Daugavet property. We state and prove aslightly more general version of this result whih we will use later on.Proposition 2.2. Let f : R
+
0 −→ R

+
0 be an arbitrary funtion. Suppose thatthere exist a, b ∈ K and a non-null Banah spae X over K suh that the normequality

‖aId + b T‖ = f(‖T‖)holds for every rank-one operator T ∈ L(X). Then, f(t) = |a|+ |b| t for every
t ∈ R

+
0 . In partiular, if a 6= 0 and b 6= 0, then X has the Daugavet property.Proof. If a b = 0 we are trivially done, so we may assume that a 6= 0, b 6= 0 andwe write ω0 = b

|b|
a
|a|

∈ T. Now, we �x x0 ∈ SX , x∗
0 ∈ SX∗ suh that x∗

0(x0) = ω0



6 Norm equalities for operators on Banah spaesand, for eah t ∈ R
+
0 , we onsider the rank-one operator Tt = t x∗

0⊗x0 ∈ L(X).Observe that ‖Tt‖ = t, so we have
f(t) = ‖aId + b Tt‖ (t ∈ R

+
0 ).Then, it follows that

|a| + |b| t > f(t) = ‖aId + b Tt‖ >
∥∥[aId + b Tt](xt)

∥∥
= ‖a xt + b ω0t xt‖ = |a + b ω0t| ‖xt‖

=

∣∣∣∣a + b
b

|b|

a

|a|
t

∣∣∣∣ = |a| + |b| t.Finally, if the norm equality
‖aId + b T‖ = |a| + |b| ‖T‖holds for every rank-one operator on X, then X has the Daugavet property.Indeed, we �x a rank-one operator T ∈ L(X) and apply the above equality to

S = a
b
T to get

|a|
(
1 + ‖T‖

)
= |a| + |b| ‖S‖ = ‖aId + b S‖ = |a| ‖Id + T‖. �With the above property in mind, we have to look for Daugavet-type normequalities in whih Id + T is replaed by another funtion of T . If we wantsuh a funtion to arry operators to operators and to be applied to arbitraryrank-one operators on arbitrary Banah spaes, it is natural to onsider powerseries with in�nite radius of onvergene. Let us introdue some notation.We say that g : K −→ K is an entire funtion if g is represented by aneverywhere onvergent Taylor series; in other words, when K = C this is theusual de�nition of entire funtion, but when K = R, g is the restrition to Rof a omplex entire funtion whih arries the real line into itself. Given anentire funtion g, for eah operator T ∈ L(X), we de�ne

g(T ) =
∞∑

k=0

ak T k,where g(ζ) =
∑∞

k=0 ak ζk is the power series expansion of g. The following easyresult shows how to alulate g(T ) when T is a rank-one operator.Lemma 2.3. Let g : K −→ K be an entire funtion with power series expan-sion
g(ζ) =

∞∑

k=0

ak ζk (ζ ∈ K),and let X be a Banah spae over K. For x∗ ∈ X∗ and x ∈ X, we write
T = x∗ ⊗ x and α = x∗(x). Then, for eah λ ∈ K,

g(λT ) =

{
a0Id + a1λT if α = 0

a0Id + eg(αλ)
α

T if α 6= 0,



V. Kadets, M. Martín, and J. Merí 7where
g̃(ζ) = g(ζ) − a0

(
ζ ∈ K

)
.Proof. Given λ ∈ K, it is immediate to hek that

(λT )k = αk−1λk T (k ∈ N).Now, if α = 0, then T 2 = 0 and the result is lear. Otherwise, we have
g(λT ) = a0Id +

∞∑

k=1

ak αk−1 λk T

= a0Id +

(
1

α

∞∑

k=1

ak αkλk

)
T = a0Id +

g̃(αλ)

α
T. �3. Norm equalities of the form ‖g(T )‖ = f(‖T‖)We would like to study now norm equalities for operators of the form(4) ‖g(T )‖ = f(‖T‖),where f : R

+
0 −→ R

+
0 is an arbitrary funtion and g : K −→ K is an entirefuntion.Our goal is to show that the Daugavet property is the only non-trivial prop-erty that it is possible to de�ne by requiring all rank-one operators on a Banahspae of dimension greater than one to satisfy a norm equality of the form (4).We start by proving that g has to be a polynomial of degree less or equal thanone, and then we will dedue the result from Proposition 2.2.Theorem 3.1. Let g : K −→ K be an entire funtion and f : R

+
0 −→ R

+
0an arbitrary funtion. Suppose that there is a Banah spae X over K with

dim(X) > 2 suh that the norm equality
‖g(T )‖ = f(‖T‖)holds for every rank-one operator T on X. Then, there are a, b ∈ K suh that

g(ζ) = a + bζ
(
ζ ∈ K

)
.Proof. Let g(ζ) =

∑∞
k=0 ak ζk be the power series expansion of g and let g̃ =

g − a0. Given α ∈ D, we take x∗
α ∈ SX∗ and xα ∈ SX suh that x∗

α(xα) = α(we an do it sine dim(X) > 2), and we write Tα = x∗
α ⊗ xα, whih satis�es

‖Tα‖ = 1. Using Lemma 2.3, for eah λ ∈ K we obtain that
g(λT0) = a0Id + a1λ T0and
g(λTα) = a0Id +

1

α
g̃(λα) Tα (α 6= 0).



8 Norm equalities for operators on Banah spaesNow, �xed λ ∈ K, we have
f(|λ|) = ‖g(λT0)‖ = ‖a0Id + a1λT0‖,and
f(|λ|) = ‖g(λTα)‖ =

∥∥∥∥a0Id +
1

α
g̃(λα)Tα

∥∥∥∥ .Therefore, we have the equality(5) ∥∥∥∥a0Id +
1

α
g̃(λα)Tα

∥∥∥∥ = ‖a0Id + a1λT0‖ (λ ∈ K, 0 < |α| 6 1).In the omplex ase it is enough to onsider the above equality for α = 1 andto use the triangle inequality to get that(6) |g̃(λ)| 6 2|a0| + |a1| |λ| (λ ∈ C).From this, it follows by just using Cauhy's estimates, that g̃ is a polynomialof degree one (see [9, Exerise 1, p. 80℄ or [12, Theorem 3.4.4℄, for instane),and we are done.In the real ase, it is not possible to dedue from inequality (6) that g̃ is apolynomial, so we have to return to (5). From this equality, we an dedue byjust applying the triangle inequality that∣∣∣∣
g̃(λα)

α

∣∣∣∣− |a0| 6 |a0| + |a1| |λ| and |a1| |λ| − |a0| 6

∣∣∣∣
g̃(λα)

α

∣∣∣∣ + |a0|for every λ ∈ R and every α ∈ [−1, 1] \ {0}. It follows that(7) ∣∣∣∣

∣∣∣∣
g̃(λα)

α

∣∣∣∣− |a1| |λ|

∣∣∣∣ 6 2|a0|
(
λ ∈ R, α ∈ [−1, 1] \ {0}

)
.Next, for t ∈]1, +∞[ and k ∈ N, we use (7) with λ = tk and α = 1

tk−1 to obtainthat ∣∣ |g̃(t)| − |a1| t
∣∣ 6 2|a0|

tk−1so, letting k −→ ∞, we get that
|g̃(t)| = |a1| t

(
t ∈]1, +∞[

)
.Finally, an obvious ontinuity argument allows us to dedue from the aboveequality that g̃ oinides with a degree one polynomial in the interval ]1, +∞[,thus the same is true in the whole R by analytiity. �We summarize the information given in Proposition 2.2 and Theorem 3.1.Corollary 3.2. Let f : R

+
0 −→ R

+
0 be an arbitrary funtion and g : K −→

K an entire funtion. Suppose that there is a Banah spae X over K with
dim(X) > 2 suh that the norm equality

‖g(T )‖ = f(‖T‖)holds for every rank-one operator T on X. Then, only three possibilities mayhappen:



V. Kadets, M. Martín, and J. Merí 9(a) g is a onstant funtion (trivial ase).(b) There is a non-null b ∈ K suh that g(ζ) = b ζ for every ζ ∈ K (trivialase).() There are non-null a, b ∈ K suh that g(ζ) = a + b ζ for every ζ ∈ K,and X has the Daugavet property.4. Norm equalities of the form ‖Id + g(T )‖ = f(‖g(T )‖)Let X be a Banah spae over K. Our next aim is to study norm equalitiesof the form(8) ‖Id + g(T )‖ = f(‖g(T )‖)where g : K −→ K is entire and f : R
+
0 −→ R

+
0 is ontinuous.When X has the Daugavet property, it is lear that Eq. (8) holds for everyrank-one operator if we take g(ζ) = ζ and f(t) = 1 + t. But, atually, everyentire funtion g works with a suitable f .Remark 4.1. If X is a real or omplex Banah spae with the Daugavetproperty and g : K −→ K is an entire funtion, the norm equality

‖Id + g(T )‖ = |1 + g(0)| − |g(0)| + ‖g(T )‖holds for every weakly ompat operator T ∈ L(X). Indeed, write g̃ = g−g(0)and observe that g̃(T ) is weakly ompat whenever T is. Sine X satis�es theDaugavet property, we have
‖Id + g(T )‖ = ‖Id + g(0) Id + g̃(T )‖ = |1 + g(0)| + ‖g̃(T )‖

=
(
|1 + g(0)| − |g(0)|

)
+
(
|g(0)| + ‖g̃(T )‖

)

= |1 + g(0)| − |g(0)|+ ‖g(0) Id + g̃(T )‖

= |1 + g(0)| − |g(0)|+ ‖g(T )‖.With the above result in mind, it is lear that the aim of this setion annotbe to show that only few g's are possible in (8), but it is to show that many g'sprodue only few properties. Previous to formulate our results, let us disussthe ase when the Banah spae we onsider is one-dimensional.Remark 4.2.(a) Complex ase: It is not possible to �nd a non-onstant entire fun-tion g and an arbitrary funtion f : R
+
0 −→ R suh that the equality

|1 + g(ζ)| = f(|g(ζ)|)holds for every ζ ∈ C ≡ L(C). Indeed, we suppose otherwise thatsuh funtions g and f exist, and we use Piard Theorem to assure theexistene of λ > 0 suh that −λ, λ ∈ g(C). We get
f(λ) = |1 + λ| 6= |1 − λ| = f(| − λ|) = f(λ),a ontradition.



10 Norm equalities for operators on Banah spaes(b) Real ase: The equality
|1 + t2| = 1 + |t2|holds for every t ∈ R ≡ L(R).It follows that real and omplex spaes do not behave in the same way withrespet to equalities of the form given in (8). Therefore, from now on we studyseparately the omplex and the real ases. Let us also remark that when aBanah spae X has dimension greater than one, it is lear that
‖g(T )‖ > |g(0)|for every entire funtion g : K −→ K and every rank-one operator T ∈

L(X). Therefore, the funtion f in (8) has to be de�ned only in the inter-val [|g(0)|, +∞[.
• Complex ase:Our key lemma here states that the funtion g in (8) an be replaed by adegree one polynomial.Lemma 4.3. Let g : C −→ C be a non-onstant entire funtion, let
f : [|g(0)|, +∞[−→ R be a ontinuous funtion and let X be a Banah spaewith dimension greater than one. Suppose that the norm equality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X). Then,
∥∥(1 + g(0)

)
Id + T

∥∥ = |1 + g(0)| − |g(0)|+ ‖g(0) Id + T‖for every rank-one operator T ∈ L(X).Proof. We laim that the norm equality(9) ∥∥(1 + g(0)
)
Id + T

∥∥ = f
(
‖g(0) Id + T‖

)holds for every rank-one operator T ∈ L(X). Indeed, we write g̃ = g − g(0)and we use Piard Theorem to assure that g̃(C) equals C exept, at most, onepoint α0 ∈ C. Next, we �x a rank-one operator T = x∗ ⊗ x with x∗ ∈ X∗and x ∈ X. If x∗(x) 6= 0 and x∗(x) 6= α0, we may �nd ζ ∈ C suh that
g̃(ζ) = x∗(x), and we use Lemma 2.3 to get that

g

(
ζ

x∗(x)
T

)
= g(0) Id +

g̃(ζ)

x∗(x)
T = g(0) Id + T.We dedue that

∥∥(1 + g(0)
)
Id + T

∥∥ =

∥∥∥∥Id + g

(
ζ

x∗(x)
T

)∥∥∥∥

= f

(∥∥∥∥g
(

ζ

x∗(x)
T

)∥∥∥∥
)

= f
(
‖g(0) Id + T‖

)
.



V. Kadets, M. Martín, and J. Merí 11The remaining ases in whih x∗(x) = 0 or x∗(x) = α0 follow from the aboveequality thanks to the ontinuity of f .To �nish the proof, we have to show that
f(t) = |1 + g(0)| − |g(0)|+ t

(
t > |g(0)|

)
.Suppose �rst that g(0) = −1. We take x ∈ SX and x∗ ∈ SX∗ suh that

x∗(x) = 1 and, for every t > 1, we de�ne the rank-one operator
Tt = (1 − t) x∗ ⊗ x.It is immediate to show that

‖ − Id + Tt‖ = t and ‖Tt‖ = t − 1.Then, it follows from (9) that f(t) = t − 1, and we are done.Suppose otherwise that g(0) 6= −1. We take x ∈ SX and x∗ ∈ SX∗ suh that
x∗(x) = 1 and, for every t > |g(0)|, we de�ne the rank-one operator

Tt =
1 + g(0)

|1 + g(0)|

(
t − |g(0)|

)
x∗ ⊗ x.It is routine to show, by just evaluating at the point x, that

∥∥(1 + g(0)
)
Id + Tt

∥∥ = |1 + g(0)| + t − |g(0)|.Therefore, if follows from (9) that(10) f
(
‖g(0) Id + Tt‖

)
= |1 + g(0)|+ t − |g(0)|,and the proof �nishes by just proving that

‖g(0) Id + Tt‖ = t.On the one hand, it is lear that
‖g(0) Id + Tt‖ 6 |g(0)|+ ‖Tt‖ = |g(0)|+ t − |g(0)| = t.On the other hand, the onverse inequality trivially holds when g(0) = 0, sowe may suppose g(0) 6= 0 and we de�ne the rank-one operator

St =
g(0)

|g(0)|

(
‖g(0) Id + Tt‖ − |g(0)|

)
x∗ ⊗ x.It is routine to show, by using that ‖g(0) Id + St‖ > |g(0)| and evaluating atthe point x, that

‖g(0) Id + St‖ = ‖g(0) Id + Tt‖.From the above equality, (9), and (10), we dedue that
|1 + g(0)|+ t − |g(0)| = f

(
‖g(0) Id + St‖

)
=
∥∥(1 + g(0)

)
Id + St

∥∥
6 |1 + g(0)|+ ‖St‖ = |1 + g(0)|+ ‖g(0) Id + Tt‖ − |g(0)|,so t 6 ‖g(0) Id + Tt‖ and we are done. �



12 Norm equalities for operators on Banah spaesIn view of the norm equality appearing in the above lemma, two di�erentases arise: either |1 + g(0)| 6= |g(0)| or |1 + g(0)| = |g(0)|; equivalently,
Re g(0) 6= −1/2 or Re g(0) = −1/2. In the �rst ase, we get the Daugavetproperty.Theorem 4.4. Let X be a omplex Banah spae with dim(X) > 2. Supposethat there exist a non-onstant entire funtion g : C −→ C with Re g(0) 6=
−1

2
and a ontinuous funtion f :

[
|g(0)|, +∞

[
−→ R

+
0 , suh that the normequality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X). Then, X has the Daugavetproperty.Proof. Let us �rst suppose that Re g(0) > −1/2 so that
M = |1 + g(0)| − |g(0)| > 0.Then, dividing by M the equation given by Lemma 4.3, we get that the normequality(11) ∥∥∥ 1+g(0)

M
Id + 1

M
T
∥∥∥ = 1 +

∥∥∥g(0)
M

Id + 1
M

T
∥∥∥holds for every rank-one operator T ∈ L(X). Now, we take ω, ξ ∈ T suh that

ω (1 + g(0)) = |1 + g(0)| and ξ g(0) = |g(0)|,we �x a rank-one operator T ∈ L(X), and we observe that
∥∥∥1+g(0)

M
Id + 1

M
T
∥∥∥ =

∥∥∥ |1+g(0)|
M

Id + ω
M

T
∥∥∥ =

∥∥∥Id + |g(0)|
M

Id + ω
M

T
∥∥∥and ∥∥∥ g(0)

M
Id + 1

M
T
∥∥∥ =

∥∥∥ |g(0)|
M

Id + ξ
M

T
∥∥∥ .Therefore, from (11) we get

∥∥∥Id + |g(0)|
M

Id + ω
M

T
∥∥∥ = 1 +

∥∥∥ |g(0)|
M

Id + ξ
M

T
∥∥∥ .It follows straightforwardly from the arbitrariness of T that the norm equality(12) ∥∥∥Id + |g(0)|

M
Id + T

∥∥∥ = 1 +
∥∥∥ |g(0)|

M
Id + ξ

ω
T
∥∥∥holds for every rank-one operator T ∈ L(X). Now, we laim that(13) ∥∥∥ |g(0)|

M
Id + T

∥∥∥ =
∥∥∥ |g(0)|

M
Id + ξ

ω
T
∥∥∥for every rank-one operator T ∈ L(X). Indeed, by the triangle inequality, wededue from (12) that

∥∥∥ |g(0)|
M

Id + T
∥∥∥ >

∥∥∥ |g(0)|
M

Id + ξ
ω

T
∥∥∥for every rank-one operator T ∈ L(X) and, for every n ∈ N, applying theabove inequality n times, we get that∥∥∥ |g(0)|

M
Id + T

∥∥∥ >

∥∥∥ |g(0)|
M

Id + ξ
ω

T
∥∥∥ > · · · >

∥∥∥ |g(0)|
M

Id +
(

ξ
ω

)n
T
∥∥∥ ;



V. Kadets, M. Martín, and J. Merí 13the laim follows from the easy fat that the sequene {( ξ
ω

)n}
n∈N

has a sub-sequene whih onverges to 1.Now, given a rank-one operator T ∈ L(X), it follows from (12) and (13)that ∥∥∥Id + |g(0)|
M

Id + T
∥∥∥ = 1 +

∥∥∥ |g(0)|
M

Id + T
∥∥∥holds and, therefore, for every n ∈ N we get

∥∥∥Id + 1
n

(
|g(0)|

M
Id + T

)∥∥∥ = 1 +
∥∥∥ 1

n

(
|g(0)|

M
Id + T

)∥∥∥ .To �nish the proof, we �x a rank-one operator S ∈ L(X) and n ∈ N, and weapply the above equality to T = n S to get that
∥∥∥Id + S + |g(0)|

n M
Id
∥∥∥ = 1 +

∥∥∥ |g(0)|
n M

Id + S
∥∥∥ .We let n → ∞ to dedue that

‖Id + S‖ = 1 + ‖S‖,so X has the Daugavet property.In ase that Re g(0) < −1
2
, we write

M = −|1 + g(0)| + |g(0)| > 0and we dedue from Lemma 4.3 that the norm equality
∥∥∥ g(0)

M
Id + 1

M
T
∥∥∥ = 1 +

∥∥∥ 1+g(0)
M

Id + 1
M

T
∥∥∥holds for every rank-one operator T ∈ L(X). The rest of the proof is om-pletely analogous, using the above equality instead of (11). �When Re g(0) = −1

2
, the above proof does not work. Atually, ontrary toall the previous ases, another family of properties apart from the Daugavetproperty appears. More onretely, let X be a omplex Banah spae withdimension greater than one, let g : C −→ C be a non-onstant entire funtionwith Re g(0) = −1/2, and let f : [|g(0)|, +∞[−→ R be a ontinuous funtion,suh that the norm equality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X). Then, we get from Lemma 4.3that ∥∥(1 + g(0)
)
Id + T

∥∥ = ‖g(0) Id + T‖for every rank-one operator T ∈ L(X). Therefore, being |1 + g(0)| = |g(0)|,we dedue that there are ω1, ω2 ∈ C with ω1 6= ω2 and |ω1| = |ω2|, suh that
‖Id + ω1 T‖ = ‖Id + ω2 T‖for every rank-one operator T ∈ L(X) or, equivalently, that there is ω ∈ T\{1}suh that
‖Id + ω T‖ = ‖Id + T‖



14 Norm equalities for operators on Banah spaesfor every rank-one operator T ∈ L(X). It is routine to hek that, �xed aBanah spae X, the set of those ω ∈ T whih make true the above equalityfor all rank-one operators on X is a multipliative losed subgroup of T. Reallthat suh a subgroup of T is either the whole T or the set of those nth-rootsof unity for an integer n > 2. Let us state the result we have just proved.Theorem 4.5. Let X be a omplex Banah spae with dim(X) > 2. Supposethat there exist a non-onstant entire funtion g : C −→ C with Re g(0) =
−1

2
and a ontinuous funtion f :

[
|g(0)|, +∞

[
−→ R

+
0 , suh that the normequality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X). Then, there is ω ∈ T \ {1} suhthat
‖Id + ωT‖ = ‖Id + T‖for every rank-one operator T ∈ L(X). Moreover, two possibilities may hap-pen:(a) If ωn 6= 1 for every n ∈ N, then
‖Id + ξ T‖ = ‖Id + T‖for every rank-one operator T ∈ L(X) and every ξ ∈ T.(b) Otherwise, if we take the minimum n ∈ N suh that ωn = 1, then
‖Id + ξ T‖ = ‖Id + T‖for every rank-one operator T ∈ L(X) and every nth-root ξ of unity.Remark 4.6. The above theorem is atually a haraterization. Namely, letus �x ω ∈ T \ {1} and let X be a Banah spae suh that
‖Id + ω T‖ = ‖Id + T‖for every rank-one operator T ∈ L(X). Then, there are an entire funtion gwith Re g(0) = −1

2
, and a ontinuous funtion f suh that the norm equality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X). Indeed, if we take α ∈ R suhthat (
1

2
+ α i

) (
−

1

2
+ α i

)−1

= ωand we onsider
f(t) = t (t ∈ R

+
0 ), g(ζ) =

(
−

1

2
+ α i

)
+

(
−

1

2
+ α i

)
ζ (ζ ∈ C),it is routine to hek that the norm equality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X).



V. Kadets, M. Martín, and J. Merí 15The next example shows that all the properties appearing in Theorem 4.5are stritly weaker than the Daugavet property.Example 4.7. The real or omplex Banah spae X = C[0, 1]⊕2 C[0, 1] doesnot have the Daugavet property. However, the norm equality
‖Id + ω T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X) and every ω ∈ T.Proof. X does not have the Daugavet property sine the ℓ2 sum of two non-zero spaes never has the Daugavet property [6, Corollary 5.4℄. For the seondassertion, we �x ω ∈ T and a rank-one operator T = x∗ ⊗ x on X (we take

x ∈ SX and x∗ ∈ X∗), and it is enough to hek that
‖Id + ω T‖2 > ‖Id + T‖2.To do so, we write x∗ = (x∗

1, x
∗
2) and x = (x1, x2), with x∗

1, x∗
2 ∈ C[0, 1]∗ and

x1, x2 ∈ C[0, 1], and we may and do assume that
x∗

1 = µ1 +

n1∑

j=1

αjδrj
x∗

2 = µ2 +

n2∑

j=1

βjδsj
,where α1,. . . , αn1

, β1,. . . , βn2
∈ C, r1,. . . , rn1

, s1,. . . , sn2
∈ [0, 1], and µ1,

µ2 are non-atomi measures on [0, 1] (indeed, eah rank-one operator an beapproximated by operators satisfying the preeding ondition).Now, we �x 0 < ε < 1 and we onsider y = (y1, y2) ∈ SX suh that(14) ‖y + Ty‖2 = ‖y1 + x∗(y)x1‖
2 + ‖y2 + x∗(y)x2‖

2 > ‖Id + T‖2 − ε.Sine x1, x2, y1, and y2 are ontinuous funtions and [0, 1] is perfet, we an�nd open intervals ∆1, ∆2 ⊂ [0, 1] so that(15) |yi(t) + x∗(y)xi(t)| > ‖yi + x∗(y)xi‖ − ε
(
t ∈ ∆i, i = 1, 2

)and(16) ∆1 ∩ {rj : j = 1, . . . , n1} = ∅, ∆2 ∩ {sj : j = 1, . . . , n2} = ∅Furthermore, using that µ1, µ2 are non-atomi and reduing ∆1, ∆2 if nees-sary, we an assume that they also satisfy(17) |µ1(f)| < ε ‖f‖, |µ2(g)| < ε ‖g‖for every f, g ∈ C[0, 1] with supp(f) ⊂ ∆1, supp(g) ⊂ ∆2.Now, we �x t1 ∈ ∆1 and t2 ∈ ∆2. For i = 1, 2, we take piee-wise linearontinuous funtions φi : [0, 1] −→ [0, 1] suh that
φi(ti) = 1 and φi

(
[0, 1] \ ∆i

)
= {0},and we de�ne

ỹi = yi(1 − φi + ωφi).It is easy to hek that
|1 − φi(t) + ωφi(t)| 6 1

(
t ∈ [0, 1]

)
,



16 Norm equalities for operators on Banah spaesso, ‖ỹi‖ 6 ‖yi‖. This implies that ‖ỹ‖ = ‖(ỹ1, ỹ2)‖ 6 1 and, therefore,(18) ‖Id + ωT‖2 > ‖ỹ + ωT (ỹ)‖2 = ‖ỹ1 + ωx∗(ỹ)x1‖
2 + ‖ỹ2 + ωx∗(ỹ)x2‖

2.Sine, learly,
yi − ỹi = (1 − ω)yiφi, (i = 1, 2)we dedue from (16), (17), and the fat that supp(φi) ⊂ ∆i, that

|x∗(y − ỹ)| 6 |x∗
1(y1 − ỹ1)| + |x∗

2(y2 − ỹ2)| 6 4 εM,where M = max{‖x∗
1‖, ‖x

∗
2‖}. Using this, (15), and the fat that ‖x‖ = 1, weobtain the following for i = 1, 2:

‖ỹi + ω x∗(ỹ)xi‖ > ‖ỹi + ω x∗(y) xi‖ − |x∗(y − ỹ)|

> |ỹi(ti) + ω x∗(y) xi(ti)| − 4 εM

= |ω yi(ti) + ω x∗(y) xi(ti)| − 4 εM

= |yi(ti) + x∗(y) xi(ti)| − 4 εM

> ‖yi + x∗(y) xi‖ − ε − 4 εM.Finally, using this together with (14) and (18), it is not hard to �nd a suitableonstant K > 0 suh that
‖Id + ωT‖2 > ‖Id + T‖2 − K ε,whih �nishes the proof. �

• Real ase:The situation in the real ase is far away from being so lear. On the onehand, the proof of Lemma 4.3 remains valid if the funtion g is surjetive (thissubstitutes Piard Theorem) and then, the proofs of Theorems 4.4 and 4.5 arevalid. In addition, Example 4.7 was also stated for the real ase. The followingresult summarizes all these fats.Theorem 4.8. Let X be a real Banah spae with dimension greater or equalthan two. Suppose that there exists a surjetive entire funtion g : R −→
R and a ontinuous funtion f :

[
|g(0)|, +∞

[
−→ R

+
0 , suh that the normequality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X).(a) If g(0) 6= −1/2, then X has the Daugavet property.(b) If g(0) = −1/2, then the norm equality
‖Id − T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X).



V. Kadets, M. Martín, and J. Merí 17() The real spae X = C[0, 1]⊕2 C[0, 1] does not have the Daugavet prop-erty but the norm equality
‖Id − T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X).On the other hand, we do not know if a result similar to the above theoremis true when the funtion g is not onto. Let us give some remarks about twoeasy ases:

g(t) = t2 (t ∈ R) and g(t) = −t2 (t ∈ R).In the �rst ase, it is easy to see that if the norm equality
‖Id + T 2‖ = f(‖T 2‖)holds for every rank-one operator, then f(t) = 1 + t and, therefore, the inter-esting norm equality in this ase is(19) ‖Id + T 2‖ = 1 + ‖T 2‖.This equation is satis�ed by every rank-one operator T on a Banah spae Xwith the Daugavet property. Let us also reall that the equality
|1 + t2| = 1 + |t2|holds for every t ∈ L(R) ≡ R (Remark 4.2). For the norm equality

‖Id − T 2‖ = f(‖T 2‖),we are not able to get any information about the shape of the funtion f .Going to the one-dimensional ase, we get that
|1 − t2| = max{1 − |t2|, |t2| − 1}for every t ∈ L(R) ≡ R, but it is not possible that the orresponding normequality holds for all rank-one operators on a Banah spae with dimensiongreater than one (in this ase, ‖Id−T 2‖ > 1). On the other hand, if a Banahspae X has the Daugavet property, then(20) ‖Id − T 2‖ = 1 + ‖T 2‖for every rank-one operator T ∈ L(X). Therefore, an interesting norm equalityof this form ould be the above one.Let us haraterize the properties whih �ow out from the norm equalities(19) and (20). We need some notation. By a slie of a subset A of a normedspae X we mean a set of the form

S(A, x∗, α) =
{
x ∈ A : Re x∗(x) > sup Re x∗(A) − α

}where x∗ ∈ X∗ and α ∈ R+. If X is a dual spae, by a weak∗-slie of a subset
A of X we mean a slie of A de�ned by a weak∗-ontinuous funtional or,equivalently, a weak∗-open slie of A.Proposition 4.9. Let X be a real Banah spae.



18 Norm equalities for operators on Banah spaes(a) The following are equivalent:(i) ‖Id + T 2‖ = 1 + ‖T 2‖ for every rank-one operator T .(ii) ‖Id + x∗ ⊗ x‖ = 1 + ‖x∗ ⊗ x‖ for x∗ ∈ X∗, x ∈ X with x∗(x) > 0.(iii) For every x ∈ SX, x∗ ∈ SX∗ with x∗(x) > 0, and every ε > 0,there exists y ∈ SX suh that
‖x + y‖ > 2 − ε and x∗(y) > 1 − ε.(iv) For every x ∈ SX, x∗ ∈ SX∗ with x∗(x) > 0, and every 0 < ε < 1,there exist δ > 0 and y∗ ∈ SX∗ with y∗(x) > 0 suh that every

y ∈ S(BX , y∗, δ) satis�es
y ∈ S(BX , x∗, ε) and ‖x + y‖ > 2 − ε.(b) The following are equivalent:(i) ‖Id − T 2‖ = 1 + ‖T 2‖ for every rank-one operator T .(ii) ‖Id + x∗ ⊗ x‖ = 1 + ‖x∗ ⊗ x‖ for x∗ ∈ X∗, x ∈ X with x∗(x) 6 0.(iii) For every x ∈ SX, x∗ ∈ SX∗ with x∗(x) 6 0, and every ε > 0,there exists y ∈ SX suh that
‖x + y‖ > 2 − ε and x∗(y) > 1 − ε.(iv) For every x ∈ SX, x∗ ∈ SX∗ with x∗(x) < 0, and every 0 < ε < 1,there exist δ > 0 and y∗ ∈ SX∗ with y∗(x) = 0 suh that every

y ∈ S(BX , y∗, δ) satis�es
y ∈ S(BX , x∗, ε) and ‖x + y‖ > 2 − ε.Proof. We start by proving item (a).

(i) ⇒ (ii). We onsider x ∈ X and x∗ ∈ X∗ with x∗(x) > 0, and we write
T = x∗ ⊗ x. Let us observe that the rank-one operator S =

(
x∗(x)

)−1/2
Tsatis�es S 2 = T , so we get

1 + ‖T‖ = 1 + ‖S 2‖ = ‖Id + S 2‖ = ‖Id + T‖.To �nish the argument, it su�es to observe that any x∗ ⊗ x with x∗(x) = 0an be approximated in norm by operators of the form y∗ ⊗ y with y∗(y) > 0,and that the set of rank-one operators satisfying (DE) is losed.
(ii) ⇒ (i). Just observe that for every rank-one operator T = x∗ ⊗ x, it islear that T 2 = x∗(x) T and, therefore, T 2 = y∗ ⊗ x where y∗ = x∗(x) x∗ with

y∗(x) =
(
x∗(x)

)2
> 0.Finally, for the equivalene between (ii), (iii), and (iv) just follow the proofof [19, Lemma 2.1℄ or [1, Lemma 11.46℄.For item (b), the proofs of the equivalenes between (i), (ii) and (iii) areanalogous to those for item (a). Thus, we only prove the equivalene between

(ii) and (iv).
(ii) ⇒ (iv). Let us mention that the following argument follows the linesof that in [19, Lemma 2.1℄ or [1, Lemma 11.46℄. Let x ∈ SX , x∗ ∈ SX∗ with
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x∗(x) < 0. Then

‖IdX∗ + x ⊗ x∗‖ = ‖Id + x∗ ⊗ x‖ = 2and, therefore,
‖−x∗(x) IdX∗ + x ⊗ x∗‖ = 1 + |x∗(x)|.Thus, there is a funtional y∗

0 ∈ SX∗ suh that
‖ − x∗(x) y∗

0 + y∗
0(x) x∗‖ > 1 + |x∗(x)| − ε |x∗(x)| and y∗

0(x) > 0.If we write
y∗ =

−x∗(x) y∗
0 + y∗

0(x) x∗

‖ − x∗(x) y∗
0 + y∗

0(x) x∗‖
, δ = 1 −

1 + |x∗(x)| − ε |x∗(x)|

‖ − x∗(x) y∗
0 + y∗

0(x) x∗‖
,it is lear that y∗(x) = 0 and, on the other hand, given y ∈ S(BX , y∗, δ), wehave

(
− x∗(x) y∗

0 + y∗
0(x) x∗

)
(y) > (1 − δ)‖ − x∗(x) y∗

0 + y∗
0(x) x∗‖

= 1 + |x∗(x)| − ε |x∗(x)|.Therefore,(21) |x∗(x)| y∗
0(y) + y∗

0(x) x∗(y) > 1 + |x∗(x)| − ε |x∗(x)|,whih implies (using the fat that y∗
0(x) > 0) that

x∗(y) > 1 − ε |x∗(x)| > 1 − ε.Furthermore, (21) also tells us that
|x∗(x)| y∗

0(y) + y∗
0(x) > 1 + |x∗(x)| − ε |x∗(x)|and, therefore

|x∗(x)|
(
y∗

0(y) + y∗
0(x)

)
> (2 − ε)|x∗(x)|.Finally we obtain that

‖x + y‖ > y∗
0(x) + y∗

0(y) > 2 − ε.

(iv) ⇒ (ii). It is lear that (ii) holds for x ∈ X, x∗ ∈ X∗ with x∗(x) < 0.The argument �nishes using that the set of rank-one operators satisfying (DE)is losed. �Remark 4.10. We do not know if any of the two properties appearing inProposition 4.9 implies the Daugavet property. However, both imply the so-alled alternative Daugavet property. Following [21℄, we say that a Banahspae X has the alternative Daugavet property if for every rank-one operator
T there is ω ∈ T suh that ω T satis�es (DE). Examples of Banah spaeshaving the alternative Daugavet property and failing the Daugavet propertyare c0, ℓ1 and ℓ∞. It is easy to hek that they also fail the two propertiesappearing in Proposition 4.9.Let us �nish the setion with the following open question whih was askedto us by Gilles Godefroy when disussing these topis.



20 Norm equalities for operators on Banah spaesQuestion 4.11. Is there any real Banah spae X (di�erent from R) suhthat the norm equality
‖Id + T 2‖ = 1 + ‖T 2‖holds for every T ∈ L(X)?The following remark shows that the answer is negative for a wide lass ofspaes.Remark 4.12. Suppose that a real Banah spae X deomposes in the form

X = Z ⊕E for some losed subspaes Z and E 6= 0, where E is isomorphi to
Y ⊕ Y for some Banah spae Y . If the norm equality

‖Id + T 2‖ = 1 + ‖T 2‖holds for every T ∈ L(X), then the norm of every projetion PZ ∈ L(X)from X onto Z is greater or equal than 2. In partiular, neither �nite-dimensional spaes nor spaes whih are isomorphi to squares solve positivelyQuestion 4.11.Indeed, let PZ ∈ L(X) be suh a projetion. Then its kernel is isomorphi to
E. So we an represent X as X = Z⊕Y ⊕Y in suh a way that ker PZ = Y ⊕Y .Consider the operator T ∈ L(X) given by

T (z, y1, y2) = (0,−y2, y1)
(
(z, y1, y2) ∈ Z ⊕ Y ⊕ Y

)
.Sine PZ = Id + T 2, we have

‖PZ‖ = ‖Id + T 2‖ = 1 + ‖T 2‖ > 2.5. Additional propertiesOur aim in this setion is to give some remarks onerning the propertiesappearing at Theorems 4.5 and 4.8.b, i.e. we onsider a non-trivial multiplia-tive subgroup A of T and study those Banah spaes for whih all rank-oneoperators satisfy the norm equalities
‖Id + ω T‖ = ‖Id + T‖ (ω ∈ A).In the real ase, only one property arises; in the omplex ase, there are in�n-itely many properties and we do not know if all of them are equivalent.Our �rst (easy) observation is that all these properties pass from the dualof a Banah spae to the spae. We will see later that the onverse result isnot valid.Remark 5.1. Let X be a Banah spae and let ω ∈ T. Suppose that thenorm equality

‖Id + ω T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X∗). Then, the same is true forevery rank-one operator on X. Indeed, the result follows routinely by justonsidering the adjoint operators of the rank-one operators on X.



V. Kadets, M. Martín, and J. Merí 21Our next results deal with the shape of the unit ball of the Banah spaeshaving any of these properties.Proposition 5.2. Let X be a real or omplex Banah spae and let A be anon-trivial losed subgroup of T. Suppose that the norm equality
‖Id + ω T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X) and every ω ∈ A. Then, the sliesof BX and the weak∗-slies of BX∗ have diameter greater or equal than

2 − inf
{
|1 + ω| : ω ∈ A

}
.Proof. We give the arguments only for slies of BX , being the proof for weak∗-slies of BX∗ ompletely analogous. We �x x∗ ∈ SX∗ and 0 < α < 2. Given

0 < ε < α, we take x ∈ SX suh that Re x∗(x) > 1 − ε and so, in partiular,
x ∈ S(BX , x∗, α). We de�ne the rank-one operator T = x∗ ⊗ x and observethat

‖Id + T‖ > ‖x + x∗(x) x‖ = ‖x‖ |1 + x∗(x)| > |1 + Re x∗(x)| > 2 − ε.By hypothesis, for every ω ∈ A we may �nd y ∈ SX suh that
‖y + ω x∗(y) x‖ > 2 − εso, in partiular,

|x∗(y)| > 1 − ε.We take ξ ∈ T suh that ξ x∗(y) = |x∗(y)| and we dedue that
ξ y ∈ S(BX , x∗, α).From the inequalities

‖ξy − x‖ =
∥∥ξy + ωx∗(ξy)x− ωx∗(ξy)x− x

∥∥

>
∥∥ξy + ωx∗(ξy)x

∥∥−
∣∣1 + ωx∗(ξy)

∣∣

> 2 − ε −
∣∣1 + ω|x∗(y)|

∣∣and
∣∣1 + ω|x∗(y)|

∣∣ 6
∣∣1 + ω + ω(|x∗(y)| − 1)

∣∣

6 |1 + ω| +
∣∣1 − |x∗(y)|

∣∣ < |1 + ω| + ε,we get
‖ξy − x‖ > 2 − 2 ε − |1 + ω|. �It is well-known that the unit ball of a Banah spae X with the Radon-Nikodým property has many denting points and the unit ball of the dual of anAsplund spae has many weak∗-denting points. Reall that x0 ∈ BX is saidto be a denting point of BX if it belongs to slies of BX with arbitrarily smalldiameter. If X is a dual spae and the slies an be taken to be weak∗-open,then we say that x0 is a weak∗-denting point. We refer to [7, 11℄ for moreinformation on these onepts.



22 Norm equalities for operators on Banah spaesCorollary 5.3. Let X be a real or omplex Banah spae and let ω ∈ T \ {1}.If the norm equality
‖Id + ω T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X), then BX does not have anydenting point and BX∗ does not have any w∗-denting point. In partiular, Xis not an Asplund spae and it does not have the Radon-Nikodým property.In view of this result, it is easy to show that the onverse of Remark 5.1 isnot true.Example 5.4. The real or omplex spae X = C[0, 1] satis�es that the normequality
‖Id + ω T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X) and every ω ∈ T, in spite of thefat that for every ω ∈ T \ {1}, there is a rank-one operator S ∈ L(X∗) suhthat
‖Id + ω S‖ < ‖Id + S‖.Indeed, the �rst assertion follows from the fat that X has the Daugavetproperty; the seond one follows from Corollary 5.3 sine the unit ball of X∗is plenty of denting points.One of the properties we are dealing with is related to a property for one-odimensional projetions.Remark 5.5. Consider a Banah spae X suh that the equality
‖Id + T‖ = ‖Id − T‖holds true for every rank-one operator T ∈ L(X). If we apply this equality toan operator P whih is a rank-one projetion, we get

‖Id − P‖ > 2,i.e. every one-odimensional projetion in L(X) is at least of norm 2. Suhspaes were introdued reently [13℄ and are alled �spaes with bad proje-tions�.Aknowledgements: The authors would like to express their gratitude toIves Dutriex, Gilles Godefroy, Gilles Lanien, Armando Villena, and DirkWerner for fruitful onversations about the subjet of this paper. Thanksare also given to the referee, whose omments have improved the �nal form ofthe paper. Referenes[1℄ Y. Abramovih and C. Aliprantis, An invitation to Operator Theory, GraduateTexts in Math. 50, AMS, Providene, RI, 2002.[2℄ Y. Abramovih and C. Aliprantis, Problems in Operator Theory, Graduate Textsin Math. 51, AMS, Providene, RI, 2002.
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