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2 Norm equalities for operators on Bana
h spa
esThe above equation is nowadays referred to as Daugavet equation. Few yearslater, this result was extended to various 
lasses of operators on some Bana
hspa
es, in
luding weakly 
ompa
t operators on C(K) for perfe
t K and on
L1(µ) for atomless µ (see [27℄ for an elementary approa
h). A new wave ofinterest in this topi
 surfa
ed in the eighties, when the Daugavet equation wasstudied by many authors in various 
ontexts. Let us 
ite, for instan
e, that a
ompa
t operator T on a uniformly 
onvex Bana
h spa
e (in parti
ular, on aHilbert spa
e) satis�es (DE) only if the norm of T is an eigenvalue [3℄. We referthe reader to the books [1, 2℄ for a brief study of this equation from di�erentpoints of view.In the late nineties, new ideas were infused into this �eld and, instead oflooking for new spa
es and new 
lasses of operators on them for whi
h (DE) isvalid, the geometry of Bana
h spa
es having the so-
alled Daugavet propertywas studied. Following [18, 19℄, we say that a Bana
h spa
e X has the Daugavetproperty if every rank-one operator T ∈ L(X) satis�es (DE) (we write L(X)for the Bana
h algebra of all bounded linear operators on X). In su
h a 
ase,every operator on X not �xing a 
opy of ℓ1 also satis�es (DE) [26℄; in parti
ular,this happens to every 
ompa
t or weakly 
ompa
t operator on X [19℄. Thereare several 
hara
terizations of the Daugavet property whi
h do not involveoperators (see [19, 28℄). For instan
e, a Bana
h spa
e X has the Daugavetproperty if and only if for every x ∈ SX and every ε > 0 the 
losed 
onvex hullof the set

BX \
(
x + (2 − ε) BX

)
oin
ides with the whole BX . Here and subsequently, BX and SX stand,respe
tively, for the 
losed unit ball and the unit sphere of a Bana
h spa
e
X. Let us observe that the above 
hara
terization shows that the Daugavetproperty is somehow extremely opposite to the Radon-Nikodým property.Although the Daugavet property is 
learly of isometri
 nature, it indu
es var-ious isomorphi
 restri
tions. For instan
e, a Bana
h spa
e with the Daugavetproperty does not have the Radon-Nikodým property [29℄ (a
tually, every sli
eof the unit ball has diameter 2 [19℄), it 
ontains ℓ1 [19℄, it does not have un-
onditional basis [15℄ and, moreover, it does not isomorphi
ally embed into anun
onditional sum of Bana
h spa
es without a 
opy of ℓ1 [26℄. It is worthwhileto remark that the latter result 
ontinues a line of generalization ([16℄, [17℄,[19℄) of the known theorem of A. Peª
zy«ski [24℄ from 1961 saying that L1[0, 1](and so C[0, 1]) does not embed into a spa
e with un
onditional basis.The state-of-the-art on the Daugavet property 
an be found in [28℄; for veryre
ent results we refer the reader to [4, 6, 14℄ and referen
es therein.In view of the deep 
onsequen
es that the Daugavet property has on thegeometry of a Bana
h spa
e, one may wonder whether it is possible to de�neother interesting properties by requiring all rank-one operators on a Bana
hspa
e to satisfy a suitable norm equality. This is the aim of the present paper.



V. Kadets, M. Martín, and J. Merí 3Let us give some remarks on the question whi
h will also serve to presentthe outline of our further dis
ussion. First, the Daugavet property 
learlyimplies that the norm of Id + T only depends on the norm of T . Then, apossible generalization of the Daugavet property is to require that every rank-one operator T on a Bana
h spa
e X satis�es a norm equality of the form
‖Id + T‖ = f(‖T‖)for a �xed fun
tion f : R

+
0 −→ R. It is easy to show (see Proposition 2.2) thatthe only property whi
h 
an be de�ned in this way is the Daugavet property.Therefore, we should look for equations in whi
h Id+T is repla
ed by anotherfun
tion of T , i.e. we �x fun
tions g and f and we require that every rank-oneoperator T on a Bana
h spa
e X satis�es the norm equality

‖g(T )‖ = f(‖T‖).We need g to 
arry operators to operators and to apply to arbitrary rank-oneoperators, so it is natural to impose g to be a power series with in�nite radiusof 
onvergen
e, i.e. an entire fun
tion (when K = C this is the usual de�nition;when K = R, g is the restri
tion to R of a 
omplex entire fun
tion whi
h
arries the real line into itself). Again, theonly non trivial possibility is the Daugavet property, as we will show inse
tion 3. Se
tion 4 is devoted to the last kind of equations we would like tostudy. Con
retely, we 
onsider an entire fun
tion g, a 
ontinuous fun
tion f ,and a Bana
h spa
e X, and we require ea
h rank-one operator T ∈ L(X) tosatisfy the norm equality(1) ‖Id + g(T )‖ = f(‖g(T )‖).If X is a Bana
h spa
e with the Daugavet property and g is an entire fun
tion,then it is easy to see that the norm equality
‖Id + g(T )‖ = |1 + g(0)| − |g(0)| + ‖g(T )‖holds for every rank-one T ∈ L(X). Therefore, 
ontrary to the previous 
ases,our aim here is not to show that only few fun
tions g are possible in (1), butto prove that many fun
tions g produ
e the same property. Unfortunately, wehave to separate the 
omplex 
ase and the real 
ase, and only in the �rst onewe are able to give fully satisfa
tory results. More 
on
retely, we 
onsider a
omplex Bana
h spa
e X, an entire fun
tion g and a 
ontinuous fun
tion f ,su
h that (1) holds for every rank-one operator T ∈ L(X). If Re g(0) 6= −1/2,then X has the Daugavet property. Surprisingly, the result is not true when

Re g(0) = −1/2 and another family of properties stri
tly weaker than theDaugavet property appears: there exists a modulus one 
omplex number ωsu
h that the norm equality(2) ‖Id + ω T‖ = ‖Id + T‖holds for every rank-one T ∈ L(X). In the real 
ase, the dis
ussion abovedepends upon the surje
tivity of g, and there are many open questions when



4 Norm equalities for operators on Bana
h spa
es
g is not onto. Finally, we give in se
tion 5 some remarks about the propertiesde�ned by norm equalities of the form given in (2).We �nish the introdu
tion by 
ommenting that, although we have beenunable to �nd any result like the above ones in the literature, there are severalpapers in whi
h the authors work on inequalities whi
h remind the Daugavetequation. For instan
e, it is proved in [5℄ (see also [25, �9℄) that for every
1 < p < ∞, p 6= 2, there exists a fun
tion ϕp : (0,∞) −→ (0,∞) su
h that theinequality(3) ‖Id + T‖ > 1 + ϕp(‖T‖)holds for every nonzero 
ompa
t operator T on Lp[0, 1] (see [8℄ for the ϕpestimates). This result has been re
ently 
arried to non-
ommutative Lp-spa
es and to some spa
es of operators [22, 23℄. Finally, inequalities as (3) inwhi
h ϕp is linear are studied in [20℄.2. PreliminariesLet us start by �xing some notation. We use the symbols T and D to denote,respe
tively, the unit sphere and the 
losed unit ball of the base �eld K, and wewrite Re(·) to denote the real part fun
tion, whi
h is nothing than the identitywhen K = R. Given a Bana
h spa
e X, the dual spa
e of X is denoted by
X∗ and, when X is a 
omplex spa
e, XR is the underlying real spa
e. Given
x ∈ X and x∗ ∈ X∗, we write x∗ ⊗ x to denote the bounded linear operator

y 7−→ x∗(y) x (y ∈ X),whose norm is equal to ‖x‖ ‖x∗‖.It is straightforward to 
he
k that if an operator T on a Bana
h spa
e Xsatis�es (DE), then all the operators of the form α T for α > 0 also satisfy(DE) (see [3, Lemma 2.1℄ for instan
e). We will use this fa
t along the paperwithout expli
it mention.Next, let us observe that the de�nition of the Daugavet property for 
omplexspa
es may be a bit 
onfusing, sin
e the meaning of a rank-one operator 
an beunderstood in two di�erent forms. Indeed, an operator T on a Bana
h spa
e Xis a rank-one operator if dim T (X) 6 1. Then, when X is a 
omplex spa
e, twodi�erent 
lasses of rank-one operators may be 
onsidered: the 
omplex-linearoperators whose ranks have 
omplex-dimension one (i.e. operators of the form
x∗⊗x for x∗ ∈ X∗ and x ∈ X) and, on the other hand, the real-linear operatorswhose ranks have real-dimension one (i.e. operators of the form Rex∗ ⊗ x for
Re x∗ ∈ (XR)∗ and x ∈ XR). As a matter of fa
ts, the two possible de�nitionsof the Daugavet property that one may state are equivalent.Remark 2.1. Let X be a 
omplex Bana
h spa
e. Then, the following areequivalent:(i) Every (real) rank-one operator on XR satis�es (DE).(ii) Every (
omplex) rank-one operator on X satis�es (DE).



V. Kadets, M. Martín, and J. Merí 5Proof. (i) ⇒ (ii) follows immediately from [19, Theorem 2.3℄, but a dire
tproof is very easy to state. Given a 
omplex rank-one operator T = x∗
0 ⊗ x0with ‖x∗

0‖ = 1 and ‖x0‖ = 1, we have ‖Id + Re x∗
0 ⊗ x0‖ = 2. Therefore, given

ε > 0, there exists x ∈ SX su
h that ‖x + Re x∗
0(x)x0‖ > 2− ε. It follows that

|Rex∗
0(x)| > 1 − ε, and so | Imx∗

0(x)| 6 ε.Now, it is 
lear that
‖Id + T‖ > ‖x + Tx‖ = ‖x + x∗

0(x)x0‖

> ‖x + Rex∗
0(x)x0‖ − ‖ Im x∗

0(x)x0‖ > 2 − 2ε.

(ii) ⇒ (i). Let T = Rex∗
0 ⊗ x0 be a real rank-one operator with

‖Rex∗
0‖ = ‖x∗

0‖ = 1 and ‖x0‖ = 1.By (ii), we have that ‖Id + x∗
0 ⊗ x0‖ = 2 so, given ε > 0, there exists x ∈ SXsatisfying

‖x + x∗
0(x)x0‖ > 2 − ε.If we take ω ∈ T su
h that ωx∗

0(x) = |x∗
0(x)|, then

x∗
0(ωx) = ωx∗

0(x) = Rex∗
0(ωx).Therefore,

‖Id + T‖ > ‖ωx + Re x∗
0(ωx)x0‖

= ‖ωx + ωx∗
0(x)x0‖ = ‖x + x∗

0(x)x0‖ > 2 − ε. �From now on, by a rank-one operator on a Bana
h spa
e over K, we willmean a bounded K-linear operator whose image has K-dimension less or equalthan one.As we 
ommented in the introdu
tion, the aim of this paper is to dis
usswhether there are other isometri
 properties apart from the Daugavet propertywhi
h 
an be de�ned by requiring all rank-one operators on a Bana
h spa
eto satisfy a norm equality. A �rst observation is that the Daugavet propertyimplies that for every rank-one operator T , the norm of Id + T only dependson the norm of T . It is easy to 
he
k that the above fa
t only may happen ifthe Bana
h spa
e involved has the Daugavet property. We state and prove aslightly more general version of this result whi
h we will use later on.Proposition 2.2. Let f : R
+
0 −→ R

+
0 be an arbitrary fun
tion. Suppose thatthere exist a, b ∈ K and a non-null Bana
h spa
e X over K su
h that the normequality

‖aId + b T‖ = f(‖T‖)holds for every rank-one operator T ∈ L(X). Then, f(t) = |a|+ |b| t for every
t ∈ R

+
0 . In parti
ular, if a 6= 0 and b 6= 0, then X has the Daugavet property.Proof. If a b = 0 we are trivially done, so we may assume that a 6= 0, b 6= 0 andwe write ω0 = b

|b|
a
|a|

∈ T. Now, we �x x0 ∈ SX , x∗
0 ∈ SX∗ su
h that x∗

0(x0) = ω0



6 Norm equalities for operators on Bana
h spa
esand, for ea
h t ∈ R
+
0 , we 
onsider the rank-one operator Tt = t x∗

0⊗x0 ∈ L(X).Observe that ‖Tt‖ = t, so we have
f(t) = ‖aId + b Tt‖ (t ∈ R

+
0 ).Then, it follows that

|a| + |b| t > f(t) = ‖aId + b Tt‖ >
∥∥[aId + b Tt](xt)

∥∥
= ‖a xt + b ω0t xt‖ = |a + b ω0t| ‖xt‖

=

∣∣∣∣a + b
b

|b|

a

|a|
t

∣∣∣∣ = |a| + |b| t.Finally, if the norm equality
‖aId + b T‖ = |a| + |b| ‖T‖holds for every rank-one operator on X, then X has the Daugavet property.Indeed, we �x a rank-one operator T ∈ L(X) and apply the above equality to

S = a
b
T to get

|a|
(
1 + ‖T‖

)
= |a| + |b| ‖S‖ = ‖aId + b S‖ = |a| ‖Id + T‖. �With the above property in mind, we have to look for Daugavet-type normequalities in whi
h Id + T is repla
ed by another fun
tion of T . If we wantsu
h a fun
tion to 
arry operators to operators and to be applied to arbitraryrank-one operators on arbitrary Bana
h spa
es, it is natural to 
onsider powerseries with in�nite radius of 
onvergen
e. Let us introdu
e some notation.We say that g : K −→ K is an entire fun
tion if g is represented by aneverywhere 
onvergent Taylor series; in other words, when K = C this is theusual de�nition of entire fun
tion, but when K = R, g is the restri
tion to Rof a 
omplex entire fun
tion whi
h 
arries the real line into itself. Given anentire fun
tion g, for ea
h operator T ∈ L(X), we de�ne

g(T ) =
∞∑

k=0

ak T k,where g(ζ) =
∑∞

k=0 ak ζk is the power series expansion of g. The following easyresult shows how to 
al
ulate g(T ) when T is a rank-one operator.Lemma 2.3. Let g : K −→ K be an entire fun
tion with power series expan-sion
g(ζ) =

∞∑

k=0

ak ζk (ζ ∈ K),and let X be a Bana
h spa
e over K. For x∗ ∈ X∗ and x ∈ X, we write
T = x∗ ⊗ x and α = x∗(x). Then, for ea
h λ ∈ K,

g(λT ) =

{
a0Id + a1λT if α = 0

a0Id + eg(αλ)
α

T if α 6= 0,



V. Kadets, M. Martín, and J. Merí 7where
g̃(ζ) = g(ζ) − a0

(
ζ ∈ K

)
.Proof. Given λ ∈ K, it is immediate to 
he
k that

(λT )k = αk−1λk T (k ∈ N).Now, if α = 0, then T 2 = 0 and the result is 
lear. Otherwise, we have
g(λT ) = a0Id +

∞∑

k=1

ak αk−1 λk T

= a0Id +

(
1

α

∞∑

k=1

ak αkλk

)
T = a0Id +

g̃(αλ)

α
T. �3. Norm equalities of the form ‖g(T )‖ = f(‖T‖)We would like to study now norm equalities for operators of the form(4) ‖g(T )‖ = f(‖T‖),where f : R

+
0 −→ R

+
0 is an arbitrary fun
tion and g : K −→ K is an entirefun
tion.Our goal is to show that the Daugavet property is the only non-trivial prop-erty that it is possible to de�ne by requiring all rank-one operators on a Bana
hspa
e of dimension greater than one to satisfy a norm equality of the form (4).We start by proving that g has to be a polynomial of degree less or equal thanone, and then we will dedu
e the result from Proposition 2.2.Theorem 3.1. Let g : K −→ K be an entire fun
tion and f : R

+
0 −→ R

+
0an arbitrary fun
tion. Suppose that there is a Bana
h spa
e X over K with

dim(X) > 2 su
h that the norm equality
‖g(T )‖ = f(‖T‖)holds for every rank-one operator T on X. Then, there are a, b ∈ K su
h that

g(ζ) = a + bζ
(
ζ ∈ K

)
.Proof. Let g(ζ) =

∑∞
k=0 ak ζk be the power series expansion of g and let g̃ =

g − a0. Given α ∈ D, we take x∗
α ∈ SX∗ and xα ∈ SX su
h that x∗

α(xα) = α(we 
an do it sin
e dim(X) > 2), and we write Tα = x∗
α ⊗ xα, whi
h satis�es

‖Tα‖ = 1. Using Lemma 2.3, for ea
h λ ∈ K we obtain that
g(λT0) = a0Id + a1λ T0and
g(λTα) = a0Id +

1

α
g̃(λα) Tα (α 6= 0).



8 Norm equalities for operators on Bana
h spa
esNow, �xed λ ∈ K, we have
f(|λ|) = ‖g(λT0)‖ = ‖a0Id + a1λT0‖,and
f(|λ|) = ‖g(λTα)‖ =

∥∥∥∥a0Id +
1

α
g̃(λα)Tα

∥∥∥∥ .Therefore, we have the equality(5) ∥∥∥∥a0Id +
1

α
g̃(λα)Tα

∥∥∥∥ = ‖a0Id + a1λT0‖ (λ ∈ K, 0 < |α| 6 1).In the 
omplex 
ase it is enough to 
onsider the above equality for α = 1 andto use the triangle inequality to get that(6) |g̃(λ)| 6 2|a0| + |a1| |λ| (λ ∈ C).From this, it follows by just using Cau
hy's estimates, that g̃ is a polynomialof degree one (see [9, Exer
ise 1, p. 80℄ or [12, Theorem 3.4.4℄, for instan
e),and we are done.In the real 
ase, it is not possible to dedu
e from inequality (6) that g̃ is apolynomial, so we have to return to (5). From this equality, we 
an dedu
e byjust applying the triangle inequality that∣∣∣∣
g̃(λα)

α

∣∣∣∣− |a0| 6 |a0| + |a1| |λ| and |a1| |λ| − |a0| 6

∣∣∣∣
g̃(λα)

α

∣∣∣∣ + |a0|for every λ ∈ R and every α ∈ [−1, 1] \ {0}. It follows that(7) ∣∣∣∣

∣∣∣∣
g̃(λα)

α

∣∣∣∣− |a1| |λ|

∣∣∣∣ 6 2|a0|
(
λ ∈ R, α ∈ [−1, 1] \ {0}

)
.Next, for t ∈]1, +∞[ and k ∈ N, we use (7) with λ = tk and α = 1

tk−1 to obtainthat ∣∣ |g̃(t)| − |a1| t
∣∣ 6 2|a0|

tk−1so, letting k −→ ∞, we get that
|g̃(t)| = |a1| t

(
t ∈]1, +∞[

)
.Finally, an obvious 
ontinuity argument allows us to dedu
e from the aboveequality that g̃ 
oin
ides with a degree one polynomial in the interval ]1, +∞[,thus the same is true in the whole R by analyti
ity. �We summarize the information given in Proposition 2.2 and Theorem 3.1.Corollary 3.2. Let f : R

+
0 −→ R

+
0 be an arbitrary fun
tion and g : K −→

K an entire fun
tion. Suppose that there is a Bana
h spa
e X over K with
dim(X) > 2 su
h that the norm equality

‖g(T )‖ = f(‖T‖)holds for every rank-one operator T on X. Then, only three possibilities mayhappen:



V. Kadets, M. Martín, and J. Merí 9(a) g is a 
onstant fun
tion (trivial 
ase).(b) There is a non-null b ∈ K su
h that g(ζ) = b ζ for every ζ ∈ K (trivial
ase).(
) There are non-null a, b ∈ K su
h that g(ζ) = a + b ζ for every ζ ∈ K,and X has the Daugavet property.4. Norm equalities of the form ‖Id + g(T )‖ = f(‖g(T )‖)Let X be a Bana
h spa
e over K. Our next aim is to study norm equalitiesof the form(8) ‖Id + g(T )‖ = f(‖g(T )‖)where g : K −→ K is entire and f : R
+
0 −→ R

+
0 is 
ontinuous.When X has the Daugavet property, it is 
lear that Eq. (8) holds for everyrank-one operator if we take g(ζ) = ζ and f(t) = 1 + t. But, a
tually, everyentire fun
tion g works with a suitable f .Remark 4.1. If X is a real or 
omplex Bana
h spa
e with the Daugavetproperty and g : K −→ K is an entire fun
tion, the norm equality

‖Id + g(T )‖ = |1 + g(0)| − |g(0)| + ‖g(T )‖holds for every weakly 
ompa
t operator T ∈ L(X). Indeed, write g̃ = g−g(0)and observe that g̃(T ) is weakly 
ompa
t whenever T is. Sin
e X satis�es theDaugavet property, we have
‖Id + g(T )‖ = ‖Id + g(0) Id + g̃(T )‖ = |1 + g(0)| + ‖g̃(T )‖

=
(
|1 + g(0)| − |g(0)|

)
+
(
|g(0)| + ‖g̃(T )‖

)

= |1 + g(0)| − |g(0)|+ ‖g(0) Id + g̃(T )‖

= |1 + g(0)| − |g(0)|+ ‖g(T )‖.With the above result in mind, it is 
lear that the aim of this se
tion 
annotbe to show that only few g's are possible in (8), but it is to show that many g'sprodu
e only few properties. Previous to formulate our results, let us dis
ussthe 
ase when the Bana
h spa
e we 
onsider is one-dimensional.Remark 4.2.(a) Complex 
ase: It is not possible to �nd a non-
onstant entire fun
-tion g and an arbitrary fun
tion f : R
+
0 −→ R su
h that the equality

|1 + g(ζ)| = f(|g(ζ)|)holds for every ζ ∈ C ≡ L(C). Indeed, we suppose otherwise thatsu
h fun
tions g and f exist, and we use Pi
ard Theorem to assure theexisten
e of λ > 0 su
h that −λ, λ ∈ g(C). We get
f(λ) = |1 + λ| 6= |1 − λ| = f(| − λ|) = f(λ),a 
ontradi
tion.



10 Norm equalities for operators on Bana
h spa
es(b) Real 
ase: The equality
|1 + t2| = 1 + |t2|holds for every t ∈ R ≡ L(R).It follows that real and 
omplex spa
es do not behave in the same way withrespe
t to equalities of the form given in (8). Therefore, from now on we studyseparately the 
omplex and the real 
ases. Let us also remark that when aBana
h spa
e X has dimension greater than one, it is 
lear that
‖g(T )‖ > |g(0)|for every entire fun
tion g : K −→ K and every rank-one operator T ∈

L(X). Therefore, the fun
tion f in (8) has to be de�ned only in the inter-val [|g(0)|, +∞[.
• Complex 
ase:Our key lemma here states that the fun
tion g in (8) 
an be repla
ed by adegree one polynomial.Lemma 4.3. Let g : C −→ C be a non-
onstant entire fun
tion, let
f : [|g(0)|, +∞[−→ R be a 
ontinuous fun
tion and let X be a Bana
h spa
ewith dimension greater than one. Suppose that the norm equality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X). Then,
∥∥(1 + g(0)

)
Id + T

∥∥ = |1 + g(0)| − |g(0)|+ ‖g(0) Id + T‖for every rank-one operator T ∈ L(X).Proof. We 
laim that the norm equality(9) ∥∥(1 + g(0)
)
Id + T

∥∥ = f
(
‖g(0) Id + T‖

)holds for every rank-one operator T ∈ L(X). Indeed, we write g̃ = g − g(0)and we use Pi
ard Theorem to assure that g̃(C) equals C ex
ept, at most, onepoint α0 ∈ C. Next, we �x a rank-one operator T = x∗ ⊗ x with x∗ ∈ X∗and x ∈ X. If x∗(x) 6= 0 and x∗(x) 6= α0, we may �nd ζ ∈ C su
h that
g̃(ζ) = x∗(x), and we use Lemma 2.3 to get that

g

(
ζ

x∗(x)
T

)
= g(0) Id +

g̃(ζ)

x∗(x)
T = g(0) Id + T.We dedu
e that

∥∥(1 + g(0)
)
Id + T

∥∥ =

∥∥∥∥Id + g

(
ζ

x∗(x)
T

)∥∥∥∥

= f

(∥∥∥∥g
(

ζ

x∗(x)
T

)∥∥∥∥
)

= f
(
‖g(0) Id + T‖

)
.



V. Kadets, M. Martín, and J. Merí 11The remaining 
ases in whi
h x∗(x) = 0 or x∗(x) = α0 follow from the aboveequality thanks to the 
ontinuity of f .To �nish the proof, we have to show that
f(t) = |1 + g(0)| − |g(0)|+ t

(
t > |g(0)|

)
.Suppose �rst that g(0) = −1. We take x ∈ SX and x∗ ∈ SX∗ su
h that

x∗(x) = 1 and, for every t > 1, we de�ne the rank-one operator
Tt = (1 − t) x∗ ⊗ x.It is immediate to show that

‖ − Id + Tt‖ = t and ‖Tt‖ = t − 1.Then, it follows from (9) that f(t) = t − 1, and we are done.Suppose otherwise that g(0) 6= −1. We take x ∈ SX and x∗ ∈ SX∗ su
h that
x∗(x) = 1 and, for every t > |g(0)|, we de�ne the rank-one operator

Tt =
1 + g(0)

|1 + g(0)|

(
t − |g(0)|

)
x∗ ⊗ x.It is routine to show, by just evaluating at the point x, that

∥∥(1 + g(0)
)
Id + Tt

∥∥ = |1 + g(0)| + t − |g(0)|.Therefore, if follows from (9) that(10) f
(
‖g(0) Id + Tt‖

)
= |1 + g(0)|+ t − |g(0)|,and the proof �nishes by just proving that

‖g(0) Id + Tt‖ = t.On the one hand, it is 
lear that
‖g(0) Id + Tt‖ 6 |g(0)|+ ‖Tt‖ = |g(0)|+ t − |g(0)| = t.On the other hand, the 
onverse inequality trivially holds when g(0) = 0, sowe may suppose g(0) 6= 0 and we de�ne the rank-one operator

St =
g(0)

|g(0)|

(
‖g(0) Id + Tt‖ − |g(0)|

)
x∗ ⊗ x.It is routine to show, by using that ‖g(0) Id + St‖ > |g(0)| and evaluating atthe point x, that

‖g(0) Id + St‖ = ‖g(0) Id + Tt‖.From the above equality, (9), and (10), we dedu
e that
|1 + g(0)|+ t − |g(0)| = f

(
‖g(0) Id + St‖

)
=
∥∥(1 + g(0)

)
Id + St

∥∥
6 |1 + g(0)|+ ‖St‖ = |1 + g(0)|+ ‖g(0) Id + Tt‖ − |g(0)|,so t 6 ‖g(0) Id + Tt‖ and we are done. �



12 Norm equalities for operators on Bana
h spa
esIn view of the norm equality appearing in the above lemma, two di�erent
ases arise: either |1 + g(0)| 6= |g(0)| or |1 + g(0)| = |g(0)|; equivalently,
Re g(0) 6= −1/2 or Re g(0) = −1/2. In the �rst 
ase, we get the Daugavetproperty.Theorem 4.4. Let X be a 
omplex Bana
h spa
e with dim(X) > 2. Supposethat there exist a non-
onstant entire fun
tion g : C −→ C with Re g(0) 6=
−1

2
and a 
ontinuous fun
tion f :

[
|g(0)|, +∞

[
−→ R

+
0 , su
h that the normequality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X). Then, X has the Daugavetproperty.Proof. Let us �rst suppose that Re g(0) > −1/2 so that
M = |1 + g(0)| − |g(0)| > 0.Then, dividing by M the equation given by Lemma 4.3, we get that the normequality(11) ∥∥∥ 1+g(0)

M
Id + 1

M
T
∥∥∥ = 1 +

∥∥∥g(0)
M

Id + 1
M

T
∥∥∥holds for every rank-one operator T ∈ L(X). Now, we take ω, ξ ∈ T su
h that

ω (1 + g(0)) = |1 + g(0)| and ξ g(0) = |g(0)|,we �x a rank-one operator T ∈ L(X), and we observe that
∥∥∥1+g(0)

M
Id + 1

M
T
∥∥∥ =

∥∥∥ |1+g(0)|
M

Id + ω
M

T
∥∥∥ =

∥∥∥Id + |g(0)|
M

Id + ω
M

T
∥∥∥and ∥∥∥ g(0)

M
Id + 1

M
T
∥∥∥ =

∥∥∥ |g(0)|
M

Id + ξ
M

T
∥∥∥ .Therefore, from (11) we get

∥∥∥Id + |g(0)|
M

Id + ω
M

T
∥∥∥ = 1 +

∥∥∥ |g(0)|
M

Id + ξ
M

T
∥∥∥ .It follows straightforwardly from the arbitrariness of T that the norm equality(12) ∥∥∥Id + |g(0)|

M
Id + T

∥∥∥ = 1 +
∥∥∥ |g(0)|

M
Id + ξ

ω
T
∥∥∥holds for every rank-one operator T ∈ L(X). Now, we 
laim that(13) ∥∥∥ |g(0)|

M
Id + T

∥∥∥ =
∥∥∥ |g(0)|

M
Id + ξ

ω
T
∥∥∥for every rank-one operator T ∈ L(X). Indeed, by the triangle inequality, wededu
e from (12) that

∥∥∥ |g(0)|
M

Id + T
∥∥∥ >

∥∥∥ |g(0)|
M

Id + ξ
ω

T
∥∥∥for every rank-one operator T ∈ L(X) and, for every n ∈ N, applying theabove inequality n times, we get that∥∥∥ |g(0)|

M
Id + T

∥∥∥ >

∥∥∥ |g(0)|
M

Id + ξ
ω

T
∥∥∥ > · · · >

∥∥∥ |g(0)|
M

Id +
(

ξ
ω

)n
T
∥∥∥ ;



V. Kadets, M. Martín, and J. Merí 13the 
laim follows from the easy fa
t that the sequen
e {( ξ
ω

)n}
n∈N

has a sub-sequen
e whi
h 
onverges to 1.Now, given a rank-one operator T ∈ L(X), it follows from (12) and (13)that ∥∥∥Id + |g(0)|
M

Id + T
∥∥∥ = 1 +

∥∥∥ |g(0)|
M

Id + T
∥∥∥holds and, therefore, for every n ∈ N we get

∥∥∥Id + 1
n

(
|g(0)|

M
Id + T

)∥∥∥ = 1 +
∥∥∥ 1

n

(
|g(0)|

M
Id + T

)∥∥∥ .To �nish the proof, we �x a rank-one operator S ∈ L(X) and n ∈ N, and weapply the above equality to T = n S to get that
∥∥∥Id + S + |g(0)|

n M
Id
∥∥∥ = 1 +

∥∥∥ |g(0)|
n M

Id + S
∥∥∥ .We let n → ∞ to dedu
e that

‖Id + S‖ = 1 + ‖S‖,so X has the Daugavet property.In 
ase that Re g(0) < −1
2
, we write

M = −|1 + g(0)| + |g(0)| > 0and we dedu
e from Lemma 4.3 that the norm equality
∥∥∥ g(0)

M
Id + 1

M
T
∥∥∥ = 1 +

∥∥∥ 1+g(0)
M

Id + 1
M

T
∥∥∥holds for every rank-one operator T ∈ L(X). The rest of the proof is 
om-pletely analogous, using the above equality instead of (11). �When Re g(0) = −1

2
, the above proof does not work. A
tually, 
ontrary toall the previous 
ases, another family of properties apart from the Daugavetproperty appears. More 
on
retely, let X be a 
omplex Bana
h spa
e withdimension greater than one, let g : C −→ C be a non-
onstant entire fun
tionwith Re g(0) = −1/2, and let f : [|g(0)|, +∞[−→ R be a 
ontinuous fun
tion,su
h that the norm equality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X). Then, we get from Lemma 4.3that ∥∥(1 + g(0)
)
Id + T

∥∥ = ‖g(0) Id + T‖for every rank-one operator T ∈ L(X). Therefore, being |1 + g(0)| = |g(0)|,we dedu
e that there are ω1, ω2 ∈ C with ω1 6= ω2 and |ω1| = |ω2|, su
h that
‖Id + ω1 T‖ = ‖Id + ω2 T‖for every rank-one operator T ∈ L(X) or, equivalently, that there is ω ∈ T\{1}su
h that
‖Id + ω T‖ = ‖Id + T‖



14 Norm equalities for operators on Bana
h spa
esfor every rank-one operator T ∈ L(X). It is routine to 
he
k that, �xed aBana
h spa
e X, the set of those ω ∈ T whi
h make true the above equalityfor all rank-one operators on X is a multipli
ative 
losed subgroup of T. Re
allthat su
h a subgroup of T is either the whole T or the set of those nth-rootsof unity for an integer n > 2. Let us state the result we have just proved.Theorem 4.5. Let X be a 
omplex Bana
h spa
e with dim(X) > 2. Supposethat there exist a non-
onstant entire fun
tion g : C −→ C with Re g(0) =
−1

2
and a 
ontinuous fun
tion f :

[
|g(0)|, +∞

[
−→ R

+
0 , su
h that the normequality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X). Then, there is ω ∈ T \ {1} su
hthat
‖Id + ωT‖ = ‖Id + T‖for every rank-one operator T ∈ L(X). Moreover, two possibilities may hap-pen:(a) If ωn 6= 1 for every n ∈ N, then
‖Id + ξ T‖ = ‖Id + T‖for every rank-one operator T ∈ L(X) and every ξ ∈ T.(b) Otherwise, if we take the minimum n ∈ N su
h that ωn = 1, then
‖Id + ξ T‖ = ‖Id + T‖for every rank-one operator T ∈ L(X) and every nth-root ξ of unity.Remark 4.6. The above theorem is a
tually a 
hara
terization. Namely, letus �x ω ∈ T \ {1} and let X be a Bana
h spa
e su
h that
‖Id + ω T‖ = ‖Id + T‖for every rank-one operator T ∈ L(X). Then, there are an entire fun
tion gwith Re g(0) = −1

2
, and a 
ontinuous fun
tion f su
h that the norm equality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X). Indeed, if we take α ∈ R su
hthat (
1

2
+ α i

) (
−

1

2
+ α i

)−1

= ωand we 
onsider
f(t) = t (t ∈ R

+
0 ), g(ζ) =

(
−

1

2
+ α i

)
+

(
−

1

2
+ α i

)
ζ (ζ ∈ C),it is routine to 
he
k that the norm equality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X).



V. Kadets, M. Martín, and J. Merí 15The next example shows that all the properties appearing in Theorem 4.5are stri
tly weaker than the Daugavet property.Example 4.7. The real or 
omplex Bana
h spa
e X = C[0, 1]⊕2 C[0, 1] doesnot have the Daugavet property. However, the norm equality
‖Id + ω T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X) and every ω ∈ T.Proof. X does not have the Daugavet property sin
e the ℓ2 sum of two non-zero spa
es never has the Daugavet property [6, Corollary 5.4℄. For the se
ondassertion, we �x ω ∈ T and a rank-one operator T = x∗ ⊗ x on X (we take

x ∈ SX and x∗ ∈ X∗), and it is enough to 
he
k that
‖Id + ω T‖2 > ‖Id + T‖2.To do so, we write x∗ = (x∗

1, x
∗
2) and x = (x1, x2), with x∗

1, x∗
2 ∈ C[0, 1]∗ and

x1, x2 ∈ C[0, 1], and we may and do assume that
x∗

1 = µ1 +

n1∑

j=1

αjδrj
x∗

2 = µ2 +

n2∑

j=1

βjδsj
,where α1,. . . , αn1

, β1,. . . , βn2
∈ C, r1,. . . , rn1

, s1,. . . , sn2
∈ [0, 1], and µ1,

µ2 are non-atomi
 measures on [0, 1] (indeed, ea
h rank-one operator 
an beapproximated by operators satisfying the pre
eding 
ondition).Now, we �x 0 < ε < 1 and we 
onsider y = (y1, y2) ∈ SX su
h that(14) ‖y + Ty‖2 = ‖y1 + x∗(y)x1‖
2 + ‖y2 + x∗(y)x2‖

2 > ‖Id + T‖2 − ε.Sin
e x1, x2, y1, and y2 are 
ontinuous fun
tions and [0, 1] is perfe
t, we 
an�nd open intervals ∆1, ∆2 ⊂ [0, 1] so that(15) |yi(t) + x∗(y)xi(t)| > ‖yi + x∗(y)xi‖ − ε
(
t ∈ ∆i, i = 1, 2

)and(16) ∆1 ∩ {rj : j = 1, . . . , n1} = ∅, ∆2 ∩ {sj : j = 1, . . . , n2} = ∅Furthermore, using that µ1, µ2 are non-atomi
 and redu
ing ∆1, ∆2 if ne
es-sary, we 
an assume that they also satisfy(17) |µ1(f)| < ε ‖f‖, |µ2(g)| < ε ‖g‖for every f, g ∈ C[0, 1] with supp(f) ⊂ ∆1, supp(g) ⊂ ∆2.Now, we �x t1 ∈ ∆1 and t2 ∈ ∆2. For i = 1, 2, we take pie
e-wise linear
ontinuous fun
tions φi : [0, 1] −→ [0, 1] su
h that
φi(ti) = 1 and φi

(
[0, 1] \ ∆i

)
= {0},and we de�ne

ỹi = yi(1 − φi + ωφi).It is easy to 
he
k that
|1 − φi(t) + ωφi(t)| 6 1

(
t ∈ [0, 1]

)
,



16 Norm equalities for operators on Bana
h spa
esso, ‖ỹi‖ 6 ‖yi‖. This implies that ‖ỹ‖ = ‖(ỹ1, ỹ2)‖ 6 1 and, therefore,(18) ‖Id + ωT‖2 > ‖ỹ + ωT (ỹ)‖2 = ‖ỹ1 + ωx∗(ỹ)x1‖
2 + ‖ỹ2 + ωx∗(ỹ)x2‖

2.Sin
e, 
learly,
yi − ỹi = (1 − ω)yiφi, (i = 1, 2)we dedu
e from (16), (17), and the fa
t that supp(φi) ⊂ ∆i, that

|x∗(y − ỹ)| 6 |x∗
1(y1 − ỹ1)| + |x∗

2(y2 − ỹ2)| 6 4 εM,where M = max{‖x∗
1‖, ‖x

∗
2‖}. Using this, (15), and the fa
t that ‖x‖ = 1, weobtain the following for i = 1, 2:

‖ỹi + ω x∗(ỹ)xi‖ > ‖ỹi + ω x∗(y) xi‖ − |x∗(y − ỹ)|

> |ỹi(ti) + ω x∗(y) xi(ti)| − 4 εM

= |ω yi(ti) + ω x∗(y) xi(ti)| − 4 εM

= |yi(ti) + x∗(y) xi(ti)| − 4 εM

> ‖yi + x∗(y) xi‖ − ε − 4 εM.Finally, using this together with (14) and (18), it is not hard to �nd a suitable
onstant K > 0 su
h that
‖Id + ωT‖2 > ‖Id + T‖2 − K ε,whi
h �nishes the proof. �

• Real 
ase:The situation in the real 
ase is far away from being so 
lear. On the onehand, the proof of Lemma 4.3 remains valid if the fun
tion g is surje
tive (thissubstitutes Pi
ard Theorem) and then, the proofs of Theorems 4.4 and 4.5 arevalid. In addition, Example 4.7 was also stated for the real 
ase. The followingresult summarizes all these fa
ts.Theorem 4.8. Let X be a real Bana
h spa
e with dimension greater or equalthan two. Suppose that there exists a surje
tive entire fun
tion g : R −→
R and a 
ontinuous fun
tion f :

[
|g(0)|, +∞

[
−→ R

+
0 , su
h that the normequality

‖Id + g(T )‖ = f(‖g(T )‖)holds for every rank-one operator T ∈ L(X).(a) If g(0) 6= −1/2, then X has the Daugavet property.(b) If g(0) = −1/2, then the norm equality
‖Id − T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X).
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) The real spa
e X = C[0, 1]⊕2 C[0, 1] does not have the Daugavet prop-erty but the norm equality
‖Id − T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X).On the other hand, we do not know if a result similar to the above theoremis true when the fun
tion g is not onto. Let us give some remarks about twoeasy 
ases:

g(t) = t2 (t ∈ R) and g(t) = −t2 (t ∈ R).In the �rst 
ase, it is easy to see that if the norm equality
‖Id + T 2‖ = f(‖T 2‖)holds for every rank-one operator, then f(t) = 1 + t and, therefore, the inter-esting norm equality in this 
ase is(19) ‖Id + T 2‖ = 1 + ‖T 2‖.This equation is satis�ed by every rank-one operator T on a Bana
h spa
e Xwith the Daugavet property. Let us also re
all that the equality
|1 + t2| = 1 + |t2|holds for every t ∈ L(R) ≡ R (Remark 4.2). For the norm equality

‖Id − T 2‖ = f(‖T 2‖),we are not able to get any information about the shape of the fun
tion f .Going to the one-dimensional 
ase, we get that
|1 − t2| = max{1 − |t2|, |t2| − 1}for every t ∈ L(R) ≡ R, but it is not possible that the 
orresponding normequality holds for all rank-one operators on a Bana
h spa
e with dimensiongreater than one (in this 
ase, ‖Id−T 2‖ > 1). On the other hand, if a Bana
hspa
e X has the Daugavet property, then(20) ‖Id − T 2‖ = 1 + ‖T 2‖for every rank-one operator T ∈ L(X). Therefore, an interesting norm equalityof this form 
ould be the above one.Let us 
hara
terize the properties whi
h �ow out from the norm equalities(19) and (20). We need some notation. By a sli
e of a subset A of a normedspa
e X we mean a set of the form

S(A, x∗, α) =
{
x ∈ A : Re x∗(x) > sup Re x∗(A) − α

}where x∗ ∈ X∗ and α ∈ R+. If X is a dual spa
e, by a weak∗-sli
e of a subset
A of X we mean a sli
e of A de�ned by a weak∗-
ontinuous fun
tional or,equivalently, a weak∗-open sli
e of A.Proposition 4.9. Let X be a real Bana
h spa
e.



18 Norm equalities for operators on Bana
h spa
es(a) The following are equivalent:(i) ‖Id + T 2‖ = 1 + ‖T 2‖ for every rank-one operator T .(ii) ‖Id + x∗ ⊗ x‖ = 1 + ‖x∗ ⊗ x‖ for x∗ ∈ X∗, x ∈ X with x∗(x) > 0.(iii) For every x ∈ SX, x∗ ∈ SX∗ with x∗(x) > 0, and every ε > 0,there exists y ∈ SX su
h that
‖x + y‖ > 2 − ε and x∗(y) > 1 − ε.(iv) For every x ∈ SX, x∗ ∈ SX∗ with x∗(x) > 0, and every 0 < ε < 1,there exist δ > 0 and y∗ ∈ SX∗ with y∗(x) > 0 su
h that every

y ∈ S(BX , y∗, δ) satis�es
y ∈ S(BX , x∗, ε) and ‖x + y‖ > 2 − ε.(b) The following are equivalent:(i) ‖Id − T 2‖ = 1 + ‖T 2‖ for every rank-one operator T .(ii) ‖Id + x∗ ⊗ x‖ = 1 + ‖x∗ ⊗ x‖ for x∗ ∈ X∗, x ∈ X with x∗(x) 6 0.(iii) For every x ∈ SX, x∗ ∈ SX∗ with x∗(x) 6 0, and every ε > 0,there exists y ∈ SX su
h that
‖x + y‖ > 2 − ε and x∗(y) > 1 − ε.(iv) For every x ∈ SX, x∗ ∈ SX∗ with x∗(x) < 0, and every 0 < ε < 1,there exist δ > 0 and y∗ ∈ SX∗ with y∗(x) = 0 su
h that every

y ∈ S(BX , y∗, δ) satis�es
y ∈ S(BX , x∗, ε) and ‖x + y‖ > 2 − ε.Proof. We start by proving item (a).

(i) ⇒ (ii). We 
onsider x ∈ X and x∗ ∈ X∗ with x∗(x) > 0, and we write
T = x∗ ⊗ x. Let us observe that the rank-one operator S =

(
x∗(x)

)−1/2
Tsatis�es S 2 = T , so we get

1 + ‖T‖ = 1 + ‖S 2‖ = ‖Id + S 2‖ = ‖Id + T‖.To �nish the argument, it su�
es to observe that any x∗ ⊗ x with x∗(x) = 0
an be approximated in norm by operators of the form y∗ ⊗ y with y∗(y) > 0,and that the set of rank-one operators satisfying (DE) is 
losed.
(ii) ⇒ (i). Just observe that for every rank-one operator T = x∗ ⊗ x, it is
lear that T 2 = x∗(x) T and, therefore, T 2 = y∗ ⊗ x where y∗ = x∗(x) x∗ with

y∗(x) =
(
x∗(x)

)2
> 0.Finally, for the equivalen
e between (ii), (iii), and (iv) just follow the proofof [19, Lemma 2.1℄ or [1, Lemma 11.46℄.For item (b), the proofs of the equivalen
es between (i), (ii) and (iii) areanalogous to those for item (a). Thus, we only prove the equivalen
e between

(ii) and (iv).
(ii) ⇒ (iv). Let us mention that the following argument follows the linesof that in [19, Lemma 2.1℄ or [1, Lemma 11.46℄. Let x ∈ SX , x∗ ∈ SX∗ with
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x∗(x) < 0. Then

‖IdX∗ + x ⊗ x∗‖ = ‖Id + x∗ ⊗ x‖ = 2and, therefore,
‖−x∗(x) IdX∗ + x ⊗ x∗‖ = 1 + |x∗(x)|.Thus, there is a fun
tional y∗

0 ∈ SX∗ su
h that
‖ − x∗(x) y∗

0 + y∗
0(x) x∗‖ > 1 + |x∗(x)| − ε |x∗(x)| and y∗

0(x) > 0.If we write
y∗ =

−x∗(x) y∗
0 + y∗

0(x) x∗

‖ − x∗(x) y∗
0 + y∗

0(x) x∗‖
, δ = 1 −

1 + |x∗(x)| − ε |x∗(x)|

‖ − x∗(x) y∗
0 + y∗

0(x) x∗‖
,it is 
lear that y∗(x) = 0 and, on the other hand, given y ∈ S(BX , y∗, δ), wehave

(
− x∗(x) y∗

0 + y∗
0(x) x∗

)
(y) > (1 − δ)‖ − x∗(x) y∗

0 + y∗
0(x) x∗‖

= 1 + |x∗(x)| − ε |x∗(x)|.Therefore,(21) |x∗(x)| y∗
0(y) + y∗

0(x) x∗(y) > 1 + |x∗(x)| − ε |x∗(x)|,whi
h implies (using the fa
t that y∗
0(x) > 0) that

x∗(y) > 1 − ε |x∗(x)| > 1 − ε.Furthermore, (21) also tells us that
|x∗(x)| y∗

0(y) + y∗
0(x) > 1 + |x∗(x)| − ε |x∗(x)|and, therefore

|x∗(x)|
(
y∗

0(y) + y∗
0(x)

)
> (2 − ε)|x∗(x)|.Finally we obtain that

‖x + y‖ > y∗
0(x) + y∗

0(y) > 2 − ε.

(iv) ⇒ (ii). It is 
lear that (ii) holds for x ∈ X, x∗ ∈ X∗ with x∗(x) < 0.The argument �nishes using that the set of rank-one operators satisfying (DE)is 
losed. �Remark 4.10. We do not know if any of the two properties appearing inProposition 4.9 implies the Daugavet property. However, both imply the so-
alled alternative Daugavet property. Following [21℄, we say that a Bana
hspa
e X has the alternative Daugavet property if for every rank-one operator
T there is ω ∈ T su
h that ω T satis�es (DE). Examples of Bana
h spa
eshaving the alternative Daugavet property and failing the Daugavet propertyare c0, ℓ1 and ℓ∞. It is easy to 
he
k that they also fail the two propertiesappearing in Proposition 4.9.Let us �nish the se
tion with the following open question whi
h was askedto us by Gilles Godefroy when dis
ussing these topi
s.
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h spa
esQuestion 4.11. Is there any real Bana
h spa
e X (di�erent from R) su
hthat the norm equality
‖Id + T 2‖ = 1 + ‖T 2‖holds for every T ∈ L(X)?The following remark shows that the answer is negative for a wide 
lass ofspa
es.Remark 4.12. Suppose that a real Bana
h spa
e X de
omposes in the form

X = Z ⊕E for some 
losed subspa
es Z and E 6= 0, where E is isomorphi
 to
Y ⊕ Y for some Bana
h spa
e Y . If the norm equality

‖Id + T 2‖ = 1 + ‖T 2‖holds for every T ∈ L(X), then the norm of every proje
tion PZ ∈ L(X)from X onto Z is greater or equal than 2. In parti
ular, neither �nite-dimensional spa
es nor spa
es whi
h are isomorphi
 to squares solve positivelyQuestion 4.11.Indeed, let PZ ∈ L(X) be su
h a proje
tion. Then its kernel is isomorphi
 to
E. So we 
an represent X as X = Z⊕Y ⊕Y in su
h a way that ker PZ = Y ⊕Y .Consider the operator T ∈ L(X) given by

T (z, y1, y2) = (0,−y2, y1)
(
(z, y1, y2) ∈ Z ⊕ Y ⊕ Y

)
.Sin
e PZ = Id + T 2, we have

‖PZ‖ = ‖Id + T 2‖ = 1 + ‖T 2‖ > 2.5. Additional propertiesOur aim in this se
tion is to give some remarks 
on
erning the propertiesappearing at Theorems 4.5 and 4.8.b, i.e. we 
onsider a non-trivial multipli
a-tive subgroup A of T and study those Bana
h spa
es for whi
h all rank-oneoperators satisfy the norm equalities
‖Id + ω T‖ = ‖Id + T‖ (ω ∈ A).In the real 
ase, only one property arises; in the 
omplex 
ase, there are in�n-itely many properties and we do not know if all of them are equivalent.Our �rst (easy) observation is that all these properties pass from the dualof a Bana
h spa
e to the spa
e. We will see later that the 
onverse result isnot valid.Remark 5.1. Let X be a Bana
h spa
e and let ω ∈ T. Suppose that thenorm equality

‖Id + ω T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X∗). Then, the same is true forevery rank-one operator on X. Indeed, the result follows routinely by just
onsidering the adjoint operators of the rank-one operators on X.
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h spa
eshaving any of these properties.Proposition 5.2. Let X be a real or 
omplex Bana
h spa
e and let A be anon-trivial 
losed subgroup of T. Suppose that the norm equality
‖Id + ω T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X) and every ω ∈ A. Then, the sli
esof BX and the weak∗-sli
es of BX∗ have diameter greater or equal than

2 − inf
{
|1 + ω| : ω ∈ A

}
.Proof. We give the arguments only for sli
es of BX , being the proof for weak∗-sli
es of BX∗ 
ompletely analogous. We �x x∗ ∈ SX∗ and 0 < α < 2. Given

0 < ε < α, we take x ∈ SX su
h that Re x∗(x) > 1 − ε and so, in parti
ular,
x ∈ S(BX , x∗, α). We de�ne the rank-one operator T = x∗ ⊗ x and observethat

‖Id + T‖ > ‖x + x∗(x) x‖ = ‖x‖ |1 + x∗(x)| > |1 + Re x∗(x)| > 2 − ε.By hypothesis, for every ω ∈ A we may �nd y ∈ SX su
h that
‖y + ω x∗(y) x‖ > 2 − εso, in parti
ular,

|x∗(y)| > 1 − ε.We take ξ ∈ T su
h that ξ x∗(y) = |x∗(y)| and we dedu
e that
ξ y ∈ S(BX , x∗, α).From the inequalities

‖ξy − x‖ =
∥∥ξy + ωx∗(ξy)x− ωx∗(ξy)x− x

∥∥

>
∥∥ξy + ωx∗(ξy)x

∥∥−
∣∣1 + ωx∗(ξy)

∣∣

> 2 − ε −
∣∣1 + ω|x∗(y)|

∣∣and
∣∣1 + ω|x∗(y)|

∣∣ 6
∣∣1 + ω + ω(|x∗(y)| − 1)

∣∣

6 |1 + ω| +
∣∣1 − |x∗(y)|

∣∣ < |1 + ω| + ε,we get
‖ξy − x‖ > 2 − 2 ε − |1 + ω|. �It is well-known that the unit ball of a Bana
h spa
e X with the Radon-Nikodým property has many denting points and the unit ball of the dual of anAsplund spa
e has many weak∗-denting points. Re
all that x0 ∈ BX is saidto be a denting point of BX if it belongs to sli
es of BX with arbitrarily smalldiameter. If X is a dual spa
e and the sli
es 
an be taken to be weak∗-open,then we say that x0 is a weak∗-denting point. We refer to [7, 11℄ for moreinformation on these 
on
epts.
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h spa
esCorollary 5.3. Let X be a real or 
omplex Bana
h spa
e and let ω ∈ T \ {1}.If the norm equality
‖Id + ω T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X), then BX does not have anydenting point and BX∗ does not have any w∗-denting point. In parti
ular, Xis not an Asplund spa
e and it does not have the Radon-Nikodým property.In view of this result, it is easy to show that the 
onverse of Remark 5.1 isnot true.Example 5.4. The real or 
omplex spa
e X = C[0, 1] satis�es that the normequality
‖Id + ω T‖ = ‖Id + T‖holds for every rank-one operator T ∈ L(X) and every ω ∈ T, in spite of thefa
t that for every ω ∈ T \ {1}, there is a rank-one operator S ∈ L(X∗) su
hthat
‖Id + ω S‖ < ‖Id + S‖.Indeed, the �rst assertion follows from the fa
t that X has the Daugavetproperty; the se
ond one follows from Corollary 5.3 sin
e the unit ball of X∗is plenty of denting points.One of the properties we are dealing with is related to a property for one-
odimensional proje
tions.Remark 5.5. Consider a Bana
h spa
e X su
h that the equality
‖Id + T‖ = ‖Id − T‖holds true for every rank-one operator T ∈ L(X). If we apply this equality toan operator P whi
h is a rank-one proje
tion, we get

‖Id − P‖ > 2,i.e. every one-
odimensional proje
tion in L(X) is at least of norm 2. Su
hspa
es were introdu
ed re
ently [13℄ and are 
alled �spa
es with bad proje
-tions�.A
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