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Abstract

We present an example of a Banach space whose numerical index is strictly greater
than the numerical index of its dual, giving a negative answer to a question which has
been latent since the beginning of the seventies. We also show a particular case in which
the numerical index of the space and the one of its dual coincide.

1. Introduction

The concept of numerical index of a Banach space was first suggested by G. Lumer in
1968 (see [6]); it is a parameter relating the norm and the numerical range of operators
on the space. The notion of numerical range was first introduced by O. Toeplitz in 1918
[36] for matrices, and it was extended in the sixties to bounded linear operators on an
arbitrary Banach space by F. Bauer [1] and G. Lumer [21]. Classical references here are
the monographs by F. Bonsall and J. Duncan [3, 4]. For recent results we refer the reader
to [8, 9, 10, 18, 23, 25, 26, 30, 33], and to the expository paper [22] and references
therein.

Here and subsequently, for a real or complex Banach space X, we write BX for the
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closed unit ball and SX for the unit sphere of X. The dual space is denoted by X∗, and
the Banach algebra of all bounded linear operators on X by L(X). The numerical range
of such an operator T is the subset V (T ) of the scalar field defined by

V (T ) := {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}.

The numerical radius of T is the seminorm defined on L(X) by

v(T ) := sup{|λ| : λ ∈ V (T )}

for each T ∈ L(X). The numerical index of the space X, is the constant n(X) defined
by

n(X) := inf{v(T ) : T ∈ L(X), ‖T‖ = 1}

or, equivalently, the greatest constant k > 0 such that k‖T‖ 6 v(T ) for every T ∈ L(X).
Note that 0 6 n(X) 6 1, and n(X) > 0 if and only if v and ‖ · ‖ are equivalent
norms on L(X) (the numerical radius can be a non-equivalent norm on L(X); see [28,
Example 3.b]). In the complex case, it is a celebrated result due to H. Bohnenblust
and S. Karlin [2] (see also [12]) that n(X) > 1/e, so the numerical radius is always an
equivalent norm. Actually, the set of values of the numerical index was established by
J. Duncan, C. McGregor, J. Pryce, and A. White [6], who proved that

{n(X) : X complex Banach space } = [e−1, 1],

{n(X) : X real Banach space } = [0, 1].

Even before the name of numerical index was introduced, it was known that a Hilbert
space of dimension greater than one has numerical index 1/2 in the complex case, and 0
in the real case (see [14, §17]). L- and M -spaces have numerical index 1 [6], a property
shared by the disk algebra [5, Theorem 3.3], and by every Banach space nicely embed-
ded into any Cb(Ω)-space [37, Corollary 2.2] (even by every space that is semi-nicely
embedded into any Cb(Ω)-space [23, Corollary 2]). Very recently, approximations to the
computation of the numerical index of the Lp(µ)-spaces have been made [8, 9], and the
exact computation of the numerical indices of the two-dimensional spaces whose unit
balls are regular polygons appears in [25].

Let us mention here a couple of facts concerning the numerical index which will be
relevant to our discussion. Let us fix a bounded linear operator T on a Banach space X.
It is a well-known result of the theory of numerical ranges (see [3, §9]) that

supRe V (T ) = lim
α↓0

‖Id + α T‖ − 1
α

and so,

v(T ) = max
ω∈T

lim
α↓0

‖Id + α ω T‖ − 1
α

,

where T stands for the unit sphere of the base field K (= R or C). On the one hand, we
can deduce from the above formula that

v(T ) = ‖T‖ ⇐⇒ max
ω∈T

‖Id + ω T‖ = 1 + ‖T‖

(see [27, Lemma 2.3]). On the other hand, it also implies that v(T ) = v(T ∗), where T ∗

is the adjoint operator of T , and it clearly follows that

n(X∗) 6 n(X) (∗)
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for every Banach space X (see [4, §32]). The question if this is actually an equality, which
is certainly true for reflexive spaces, has been around from the beginning of the subject.

The main aim of this paper is to give a negative answer to the above question, i.e., we
will show that the numerical index of the dual of a Banach space can be strictly smaller
than the numerical index of the space.

The outline of the paper is as follows. In Section 2 we introduce a massiveness property
for a Banach space called “lushness” which implies numerical index 1, and we prove that
C-rich subspaces of C(K)-spaces satisfy it. Next, we use the above results in Section 3
to present examples of Banach spaces whose numerical index is strictly bigger than
the numerical index of their duals, and other related counterexamples. Finally, we devote
Section 4 to show a positive result: the dual of a Banach space having the Radon-Nikodým
property and numerical index 1 also has numerical index 1.

We finish this introduction by recalling some definitions and fixing notation.
Let X be Banach space. Recall that x0 ∈ BX is said to be a denting point of BX if

it belongs to slices of BX with arbitrarily small diameter. More precisely, for each ε > 0
one can find a functional x∗ ∈ SX∗ and a positive number α such that the slice

S(BX , x∗, α) := {x ∈ BX : Re x∗(x) > 1− α}

contains x0 and is contained in turn in the closed ball centered at x0 with radius ε. If
X is a dual space and the functionals x∗ can be taken to be w∗-continuous, then we
say that x0 is a w∗-denting point. If B is a subset of X, we write co(B) and co(B) to
denote, respectively, the convex and closed convex hull of B. Then, co(T B) will be the
absolutely convex hull of B. Finally, we denote by ext(A) the set of extreme points of
the convex subset A ⊆ X.

2. Lush spaces and C-rich subspaces of C(K)

A Banach space X is an almost-CL-space if BX is the closed absolutely convex hull
of every maximal convex subset of SX . This notion was introduced by Å. Lima [19],
generalizing the concept of CL-space (the same definition without closure) given by
R. Fullerton [11] in 1960. We refer to [29, 34] and references therein for recent results.
Real and complex almost-CL-spaces have numerical index 1 (see [22, §4]). Actually,
the basic examples of Banach spaces with numerical index 1 are known to be almost-
CL-spaces (see [29] and [4, Theorem 32.9]). The next definition is a weakening of the
concept of almost-CL-space which still implies numerical index 1. We will show later
(Example 3·4) that this weakening is strict, giving in particular an example of a Banach
space with numerical index 1 which is not an almost-CL-space.

Definition 2·1. We say that a Banach space X is lush if for every x, y ∈ SX and every
ε > 0, there exists y∗ ∈ SY ∗ such that y ∈ S(BX , y∗, ε) and

dist
(
x, co

(
T S(BX , y∗, ε)

))
< ε.

The (immediate) proof of the fact that almost-CL-spaces have numerical index 1 can
be straightforwardly extended to lush spaces.

Proposition 2·2. Let X be a lush Banach space. Then n(X) = 1.

Proof. For T ∈ L(X) with ‖T‖ = 1, and 0 < ε < 1/2 fixed, we take x0 ∈ SX such

that ‖Tx0‖ > 1− ε, and we apply the definition of lushness to x0 and y0 =
Tx0

‖Tx0‖
to get
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y∗ ∈ SY ∗ with y0 ∈ S(BX , y∗, ε) and x1, . . . , xn ∈ S(BX , y∗, ε), θ1, . . . , θn ∈ T such that
a convex combination v =

∑
λkθkxk of elements θ1x1, . . . , θnxn approximates x0 up to

ε. Then

|y∗(Tv)| =
∣∣∣∣y∗(y0)− y∗

(
T

(
x0

‖Tx0‖
− v

))∣∣∣∣ > 1− 4ε,

but on the other hand y∗(Tv) is a convex combination of y∗(θ1Tx1), . . . , y∗(θnTxn). So
there is an index j such that

|y∗(Txj)| = |y∗(θjTxj)| > 1− 4ε.

Now, we have

max
ω∈T

‖Id + ω T‖ > max
ω∈T

∣∣y∗([Id + ω T ](xj)
)∣∣ > max

ω∈T
|y∗(xj) + ωy∗(Txj)|

= |y∗(xj)|+ |y∗(Txj)| > 2− 5ε.

Letting ε ↓ 0 we deduce that max
ω∈T

‖Id + ω T‖ = 1 + ‖T‖ and therefore, v(T ) = ‖T‖.

Real or complex C(K)-spaces are almost-CL-spaces (actually, they are CL-spaces, see
[29]) and therefore, lush. We now present a wide class of subspaces of C(K) which are
lush, but, as we will show in Example 3·4, they are not almost-CL-spaces in general.

Definition 2·3. Let K be a compact Hausdorff space. A closed subspace X of C(K) is
said to be C-rich if for every nonempty open subset U of K and every ε > 0, there is a
positive function h of norm 1 with support inside U such that the distance from h to X

is less than ε.

Theorem 2·4. Let K be a compact Hausdorff space and let X be a C-rich subspace
of C(K). Then X is lush and, therefore, n(X) = 1.

Proof. We fix x, y ∈ SX and ε > 0. We take t0 ∈ K such that |y(t0)| = 1 and we write
a = x(t0), b = y(t0). Find an open subset U of K with t0 ∈ U and such that

|x(t)− a| < ε/4 and |y(t)− b| < ε/4 (2·1)

for every t ∈ U . Finally, the C-richness of X gives us a norm-one function h : K −→ [0, 1]
with support inside U and distance to X less than ε/4. Let h̃ ∈ SX be a function with

‖h̃− h‖ < ε/4. (2·2)

Since ‖h‖ = 1, there is t1 ∈ U such that h(t1) = 1 and, by Eq. (2·1), we have

Re b y(t1) > Re b b− |y(t1)− b| > 1− ε/4. (2·3)

We claim that for every γ ∈ SK(−a/b, 1), we have

|a + γ b| =
∣∣∣γ − (

−a

b

)∣∣∣ = 1 (2·4)

and

‖x + γ b h‖ 6 1 + ε/4. (2·5)

Indeed, the first condition is clear. Let us prove the second one. If t /∈ U , then

|x(t) + γ b h(t)| = |x(t)| 6 1.
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If t ∈ U , then

|x(t) + γ b h(t)| 6 |x(t)− a|+ |a + γ b h(t)|
6 ε/4 + |a + γ b h(t)|.

Since h(t) ∈ [0, 1], the number a+γ y(t0) h(t) is a convex combination of a and a+γ y(t0),
so |a + γ y(t0) h(t)| 6 1 by Eq. (2·4).

Now, since 0 ∈ co (SK(−a/b, 1)), we may find γ1, γ2 ∈ SK(−a/b, 1) and λ ∈ [0, 1] such
that 0 = λ γ1 + (1− λ) γ2. We consider

y∗ =
b δt1 |X
‖δt1 |X‖

∈ SX∗ and xi =
x + γi b h̃

1 + ε
∈ X (i = 1, 2),

and we observe that Equations (2·2) and (2·5) give that x1, x2 ∈ BX .
Finally, y ∈ S(BX , y∗, 2ε) by Eq. (2·3),

‖x− (λ x1 + (1− λ) x2)‖ =
ε

1 + ε
< ε,

and, for i = 1, 2,

(1 + ε)|y∗(xi)| >
∣∣∣x(t1) + γi b h̃(t1)

∣∣∣ > |x(t1) + γi b| − 2‖h− h̃‖

> |a + γi b| − |x(t1)− a| − 2‖h− h̃‖ > 1− ε/4− ε/2 > 1− ε,

where we have used Eq. (2·1), (2·2), and (2·4). Therefore, x1, x2 ∈ T S(BX , y∗, 2ε).

When K is perfect, our definition of C-richness coincides with the definition of richness
given in [17] and thus every finite-codimensional subspace of C(K) is C-rich (see [17,
Proposition 1.2]). This is not always the case when K has isolated points. Actually, the
following result characterizes C-rich finite-codimensional subspaces of C(K). We recall
that the support of an element f ∈ C(K)∗ (represented by the regular measure µf ) is

supp(f) =
⋂
{C ⊂ K : C closed, |µf |(K \ C) = 0} .

Proposition 2·5. Let K be a compact Hausdorff space and let f1, . . . , fn ∈ C(K)∗.
The subspace

Y =
n⋂

i=1

ker fi

is C-rich if and only if
⋃n

i=1 supp(fi) does not intersect the set of isolated points of K.

Proof. Suppose first that
⋃n

i=1 supp(fi) does not contain any isolated point of K. We
fix a nonempty open subset U of K and ε > 0, and we may consider two cases. Case 1:
U contains an isolated point of K (say, τ). Then h = χ{τ} ∈ SC(K) is a positive U -
supported function which lies in Y , so dist (h, Y ) = 0 < ε. Case 2: U does not contain
isolated points of K. In this case one can find a sequence of disjoint open subsets Un ⊂ U

and a sequence of positive hn ∈ SC(K) with supp(hn) ⊂ Un. Denote by q : X → X/Y

the natural quotient map. Since (hn) tends weakly to 0 as n →∞, (q(hn)) tends weakly
to 0. But X/Y is finite-dimensional, so ‖q(hn)‖ = dist (hn, Y ) → 0 as well, and we can
select n ∈ N with dist (hn, Y ) < ε and supp(hn) ⊆ Un ⊂ U . So in both cases Y is C-rich.

Conversely, suppose, for the sake of simplicity, that supp(f1) contains an isolated point
t0 ∈ K. Then, µf1({t0}) 6= 0 (if not, t0 /∈ supp(f1)), and for every positive norm-one
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function h with support inside U = {t0}, one has dist (h, ker f1) > |µf1({t0})| > 0. Hence
ker f1 is not a C-rich subspace, and neither is Y .

3. The counterexamples

Let us recall that c denotes the Banach space of all convergent scalar sequences
equipped with the sup-norm. Evidently, c is isometric to C(K) where K = N ∪ {∞}
is the one-point compactification of N. We are now ready for the main result of the
paper.

Example 3·1. There exists a Banach space X such that n(X) = 1 and n(X∗) < 1.

Indeed, we consider

X = {(x, y, z) ∈ c⊕∞ c⊕∞ c : lim x + lim y + lim z = 0} ,

which is a C-rich subspace of c⊕∞ c⊕∞ c by Proposition 2·5 and, therefore, Theorem 2·4
gives us that n(X) = 1. Let us prove that n(X∗) < 1. We consider the closed subspace
of X given by

Y = {(x, y, z) ∈ c⊕∞ c⊕∞ c : lim x = lim y = lim z = 0} .

Since Y is an M -ideal in c ⊕∞ c ⊕∞ c (see [15, Example I.1.4(a)]), it is a fortiori an
M -ideal in X by [15, Proposition I.1.17], meaning that Y ⊥ ≡ (X/Y )∗ is an L-summand
of X∗. Therefore, n(X∗) 6 n(Y ⊥) by [28, Proposition 1]. But X/Y identifies with the
two-dimensional space {

(a, b, c) ∈ `(3)∞ : a + b + c = 0
}

which does not have numerical index 1 (in the real case, Remark 3.6 of [32] gives directly
the result, since the unit ball of this space is a hexagon; the complex case follows routinely
from Theorem 3.1 of the same paper).

Remark 3·2. In [31, Lemma 4.8] the reader may find a result which could be considered
as contradictory with the above example. Let us recall that there is a concept of numerical
range for elements of unital Banach algebras (see [3, Chapter 1], for instance). Given a
Banach algebra A with unit u, we define the algebra numerical range of an element a ∈ A

by

V (A, a) = {ϕ(a) : ϕ ∈ A∗, ‖ϕ‖ = ϕ(u) = 1}.

We have then a corresponding algebra numerical radius v(A, a) and the corresponding
algebra numerical index na(A) of A. Given a Banach space X, if we consider the unital
Banach algebra A = L(X), it is well-known that

V (L(X), T ) = co V (T )

for every T ∈ L(X) [3, Theorem 9.4] and thus, n(X) = na(L(X)). It follows from [31,
Lemma 4.8] that

na(L(X)) = na(L(X)∗∗)

but, in general, L(X∗∗) does not coincide with L(X)∗∗.

With just a little bit of work, Example 3·1 can be pushed to produce even better
counterexamples.
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Examples 3·3.
(a) There exists a real Banach space X such that n(X) = 1 and n(X∗) = 0. Indeed,

for every integer n > 2, we denote by Zn the 2-dimensional real normed space
whose unit ball is the convex hull of the (2n)th roots of unity (i.e., its unit ball is
a regular 2n-polygon such that one of its vertices is (1, 0)). We observe that Zn is
(isometric to) a subspace of `

(n)
∞ , and it is straightforward, following the lines of

Example 3·1, to construct a C-rich subspace Xn of c ⊕∞ c ⊕∞ · · · ⊕∞ c, and an
M -ideal Yn of Xn such that Xn/Yn is isometric to Zn. It follows that n(Xn) = 1
and n(X∗

n) 6 n(Zn). Finally, we consider

X :=
[⊕

n>2

Xn

]
c0

,

and we observe that n(X) = 1 and n(X∗) 6 n(X∗
n) for every n > 2. But this

implies n(X∗) = 0 since n(Zn) −→ 0 by [25, Theorem 5].
(b) There exists a complex Banach space X such that n(X) = 1 and n(X∗) = 1/e. Let

Z be a two-dimensional complex normed space with numerical index 1/e (see [4,
Lemma 32.2]). Then, we may find a family {Zn} of two-dimensional subspaces of
`
(n)
∞ such that the distance form Zn to Z goes to 0. Now, we follow the lines of the

above example to get a Banach space X such that n(X) = 1 and n(X∗) 6 n(Zn)
for every n ∈ N. But the numerical index is continuous with respect to the distance
between Banach spaces [10, Proposition 2], and so n(X∗) 6 1/e.

As we have already mentioned at the beginning of Section 2, the main examples of
Banach spaces with numerical index 1 are known to be almost-CL-spaces. Actually, it is
proved in [23] that every Banach space with numerical index 1 and the Radon-Nikodým
property is an almost-CL-space and it satisfies that

|x∗∗(x∗)| = 1
(
x∗∗ ∈ ext(BX∗∗), x∗ ∈ ext(BX∗)

)
.

The Example 3·1 shows that these implications are not true in general, even for Asplund
spaces, as the following result details. Recall that a boundary of BX∗ is a subset C of
BX∗ such that

‖x‖ = max{Re f(x) : f ∈ C}

for every x ∈ X. The classical boundary of BX∗ is the set ext(BX∗) (consequence of the
Hahn-Banach and Krein-Milman Theorems).

Example 3·4. Let us consider the Banach space given in Example 3·1, i.e.,

X = {(x, y, z) ∈ c⊕∞ c⊕∞ c : lim x + lim y + lim z = 0} .

Then X is an Asplund space, it is lush (and so n(X) = 1), but the following properties

hold.

(a) For every boundary C ⊂ SX∗ of BX∗ , there exists x∗ ∈ C and x∗∗ ∈ ext(BX∗∗)
such that |x∗∗(x∗)| < 1. Suppose that, on the contrary, C is a boundary of BX∗

such that |x∗∗(x∗)| = 1 for every x∗ ∈ C and every x∗∗ ∈ ext(BX∗∗). Since X

does not contain `1, BX∗ is the norm-closed convex hull of C [13, Theorem III.1].
Therefore, given T ∈ L(X∗) and ε > 0, we may find x∗ ∈ C and x∗∗ ∈ ext(BX∗∗)
such that

|x∗∗(Tx∗)| = ‖Tx∗‖ > ‖T‖ − ε.
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This result together with the fact that |x∗∗(x∗)| = 1 gives that v(T ) > ‖T‖ − ε;
thus n(X∗) = 1, a contradiction.

(b) In particular, there are x∗ ∈ ext(BX∗) and x∗∗ ∈ ext(BX∗∗) with |x∗∗(x∗)| < 1.

(c) X is not an almost-CL-space. This follows from (a) and [29, Lemma 3].

Remark 3·5. Let us observe that every Asplund space with numerical index 1 (in par-
ticular the above example) satisfies the following property: there is a subset A of SX∗

such that BX∗ = cow∗
(A) and

|x∗∗(x∗)| = 1
(
x∗∗ ∈ ext(BX∗∗), x∗ ∈ A

)
.

This is a consequence of [20, Lemma 1], where A is the set of all w∗-denting points
of BX∗ . The above property is clearly sufficient for an arbitrary Banach space to have
numerical index 1 (see [24, § 1], for instance), but we do not know if it is also necessary
without the Asplundness assumption.

Once we know that the numerical index of a Banach space and the one of its dual
do not coincide, another natural question could be if two isometric preduals of a given
Banach space should have the same numerical index. The answer is again negative as the
following result shows.

Example 3·6. There is a Banach space Z with two isometric preduals X1 and X2 such

that n(X1) and n(X2) are not equal. Indeed, let

X1 = {(x, y, z) ∈ c⊕∞ c⊕∞ c : lim x + lim y + lim z = 0}

and

X2 = {(x, y, z) ∈ c⊕∞ c⊕∞ c : x(1) + y(1) + z(1) = 0} .

By Example 3·1, n(X1) = 1. Since the two dimensional space{
(a, b, c) ∈ `(3)∞ : a + b + c = 0

}
is isometric to an M -summand of X2, it follows that n(X2) < 1 (see [28, Proposition 1]
and [32, Theorem 3.1]). Finally, the fact that X∗

1 and X∗
2 are isometric is straightforward.

4. A positive result

As a straightforward application of the inequality (∗), i.e., n(X∗) 6 n(X), it is clear
that n(X) = n(X∗) for every reflexive space X. This equality also holds when X is a
Banach space such that n(X∗) = 1, in particular when X is an L- or an M -space. Besides
these elementary results, it is also true that n(X) = n(X∗) when X is a C∗-algebra or a
von Neumann predual (see [16] and [18, pp. 202]).

We finish the paper by showing another particular case where inequality (∗) becomes
an equality.

Proposition 4·1. Let X be a Banach space with the Radon-Nikodým property. If
n(X) = 1, then n(X∗) = 1.

Proof. By [20, Lemma 1], we have that |x∗(x)| = 1 for every extreme point x∗ of BX∗

and every denting point x ∈ BX . Therefore, [7, Proposition 2.1] (or [35, Proposition 3.5])
gives us that

|x∗∗∗(x)| = 1 (4·1)
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for every x∗∗∗ ∈ ext(BX∗∗∗) and every denting point x ∈ BX . Now, we fix T ∈ L(X∗)
and ε > 0. Since X has the Radon-Nikodým property, BX∗∗ is the weak∗-closed convex
hull of the set of denting points of BX , and we may find a denting point x such that

‖T ∗x‖ > ‖T‖ − ε.

Then, we may find x∗∗∗ ∈ ext(BX∗∗∗) such that

|x∗∗∗(T ∗x)| = ‖T ∗x‖ > ‖T‖ − ε.

This fact, together with Eq. (4·1), implies that ‖T ∗‖ − ε 6 v(T ∗). By letting ε ↓ 0, we
have

‖T‖ = ‖T ∗‖ = v(T ∗) = v(T ). �

We do not know if n(X) = n(X∗) for every Banach space with the Radon-Nikodým
property.
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[25] M. Mart́ın and J. Meŕı, Numerical index of some polyhedral norms on the plane, preprint.
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