
THE DAUGAVET PROPERTY FOR LINDENSTRAUSS
SPACES

Abstract. A Banach space X is said to have the Daugavet property

if every rank-one operator T : X −→ X satisfies ‖Id + T‖ = 1 + ‖T‖.
We give geometric characterizations of this property for Lindenstrauss
spaces.

Julio Becerra Guerrero 1 and Miguel Mart́ın 2

1. Introduction

The study of the Daugavet property was inaugurated in 1961 when I. Dau-
gavet [7] proved that every compact linear operator T on C[0, 1] satisfies the
norm equality

(DE) ‖Id + T‖ = 1 + ‖T‖,
now known as the Daugavet equation. Over the years, the validity of this
equation was proved for compact linear operators on various spaces, including
C(K) and L1(µ) provided that K is perfect and µ does not have any atoms (see
[18] for an elementary approach), and certain function algebras such as the
disk algebra A(D) or the algebra of bounded analytic functions H∞ [19, 21].
In the nineties, new ideas were infused into the field, and the geometry of
Banach spaces having the so-called Daugavet property was initiated. Let us
recall that a Banach space X is said to have the Daugavet property [15] if
every rank-one operator T : X −→ X satisfies (DE), in which case, all weakly
compact operators on X also satisfy (DE) (see [15, Theorem 2.3]). Therefore,
this definition of Daugavet property coincides with those that gave a briefly
appearance in [6, 1]. A good introduction to the the Daugavet equation is
given in the books [2, 3] and the state-of-the-art on the subject can be found in
the papers [15, 20]. For very recent results we refer the reader to [4, 5, 14, 16]
and references therein.

Let us mention here several facts concerning the Daugavet property which
are relevant to our discussion. It is clear that X has the Daugavet property
whenever its topological dual X∗ does, but the converse result is false (for
instance, X = C[0, 1]). It is known that a space with the Daugavet property
cannot have the Radon-Nikodým property [21]; even more, every weakly open
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subset of its unit ball has diameter 2 [17]. A space with the Daugavet property
contains a copy of `1 [15], it does not have an unconditional basis [13] and it
does not even embed into a space with an unconditional basis [15].

The Daugavet property is not always inherited by ultraproducts. Actu-
ally, given a Banach space X, every ultrapower XU , U a free ultrafilter on N,
has the Daugavet property if and only if X has the so-called uniform Dau-
gavet property, a quantitative version of the Daugavet property introduced
in [5], and which is strictly stronger than the usual Daugavet property [16,
Theorem 3.3]. Even though, the basic examples of spaces with the Daugavet
property (C(K) with K perfect and L1[0, 1]) are in fact spaces with the uni-
form Daugavet property [5, Lemmas 6.6 and 6.7]. We refer to [11, 12] for
definitions and basic results about ultraproducts of Banach spaces.

The aim of this note is to give geometric characterizations of the Daugavet
property valid for the so-called Lindenstrauss spaces (i.e. Banach spaces whose
dual is isometric to an L1(µ) space) which remind those given in [4, Corollaries
4.1 and 4.4] for C∗-algebras. We apply them to prove that the Daugavet
property passes to ultraproducts of Lindenstrauss spaces.

Let us fix notation and recall some common definitions.
Let X be a Banach space. The symbols BX and SX denote, respectively,

the closed unit ball and the unit sphere of X, and we write ext(C) to denote
the set of extreme points of the convex set C. Let us fix u in SX . We define
the set D(X, u) of all states of X relative to u by

D(X, u) := {f ∈ BX∗ : f(u) = 1},

which is a non-empty w∗-closed face of BX∗ . The norm of X is smooth at u if
D(X, u) reduces to a singleton, and it is Fréchet-smooth at u ∈ SX whenever
there exists limα→0

‖u+αx‖−1
α uniformly for x ∈ BX . We define the roughness

of X at u by the equality

η(X, u) := lim sup
‖h‖→0

‖u + h‖+ ‖u− h‖ − 2
‖h‖

.

We remark that the absence of roughness of X at u (i.e., η(X, u) = 0) is noth-
ing other than the Fréchet-smoothness of the norm of X at u [8, Lemma I.1.3].
Given δ > 0, the Banach space X is said to be δ-rough if, for every u in SX , we
have η(X, u) > δ. We say that X is extremely rough whenever it is 2-rough.
A slice of BX is a subset of the form

S(BX , f, α) =
{
x ∈ BX : Re f(x) > 1− α

}
,

where f ∈ SX∗ and 0 < α < 1. If X is a dual space and f is actually
taken from the predual, we say that S(BX , f, α) is a w∗-slice. By [8, Proposi-
tion I.1.11], the norm of X is δ-rough if and only if every nonempty w∗-slice
of BX∗ has diameter greater or equal than δ. A point x ∈ SX is said to be an
strongly exposed point if there exists f ∈ D(X, x) such that lim ‖xn − x‖ = 0
for every sequence (xn) of elements of BX such that lim Re f(xn) = 1 or,
equivalently, if there is a point of Fréchet-smoothness in D(X, x) (see [8,
Corollary I.1.5]).
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2. The results

Our aim is to characterize those real or complex Lindenstrauss spaces with
the Daugavet property. Since the Daugavet property passes from the dual of
a Banach space to the space itself, one may wonder if it is enough to char-
acterizes L1(µ) spaces with the Daugavet property and then the mentioned
result applies. Characterizations of the Daugavet property for L1(µ) spaces
can be obtained as a particular case of [4, Corollaries 4.2 and 4.4], where the
work was done for von Neumann preduals. Let us state here this result for
L1(µ) spaces.

Let µ be a positive measure. Then, the following are equivalent:
(i) L1(µ) has the Daugavet property.
(ii) Every weak-open subset of BL1(µ) has diameter 2.
(iii) BL1(µ) has no strongly exposed points.
(iv) BL1(µ) has no extreme points.
(v) The measure µ does not have any atom.

Let us observe that, as an immediate consequence of (iv) above and the
Krein-Milman Theorem, we have that an L1(µ) space which is a dual space
never has the Daugavet property. Therefore, the Daugavet property for a
Lindenstrauss space never comes from its dual space, and we need to look
for other kind of characterizations which depends not only on the measure µ
but also on the particular form in which a given Lindenstrauss space is the
predual of L1(µ). For C(K) spaces (which are very particular examples of
Lindenstrauss spaces) this was done in [4, Corollaries 4.1 and 4.4], where the
Daugavet property was characterized for C∗-algebras. Let us write here the
result for C(K) spaces.

Let K be a Hausdorff compact topological space. Then, the following are
equivalent:

(i) C(K) has the Daugavet property.
(ii) The norm of C(K) is extremely rough.
(iii) The norm of C(K) is not Fréchet-smooth at any point.
(iv) The space K does not have any isolated point.
Just remembering that the space K is isometric to a quotient of the topo-

logical space ext
(
BC(K)∗

)
endowed with the weak∗ topology, one realizes that

the above result characterizes the Daugavet property of C(K) either in terms
of the geometry of the space or in terms of the way in which C(K) is a predual
of C(K)∗.

The aim of this paper is to give characterizations of the Daugavet prop-
erty for Lindenstrauss spaces analogous to the ones given above for C(K)
spaces. Of course, we have to translate the meaning of (iv) to an arbitrary
Lindenstrauss space, and the above paragraph gives us the idea to do so for
an arbitrary Banach space.

Definition 2.1. Given a Banach space X, we define the equivalence relation
f ∼ g if and only if f and g are linearly dependent elements of ext (BX∗), and
we endowed the quotient space ext (BX∗) / ∼ with the quotient topology of
the weak∗ topology.
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In [19, Theorem 3.5], D. Werner proved that a Lindenstrauss space X
for which ext (BX∗) / ∼ does not have any isolated point has the Daugavet
property. We will show that this condition is actually a characterization. To
do so, we need the following geometrical result, which may be of independent
interest.

Proposition 2.2. Let X be a Banach space and let f be an extreme point
of BX∗ such that its equivalence class is an isolated point in ext (BX∗) / ∼.
Then, f is a w∗-strongly exposed point of BX∗ .

Proof. We may find a w∗-neighborhood U of f in BX∗ such that whenever
g ∈ ext (BX∗) belongs to U , then f ∼ g. By Choquet’s Lemma (see [10,
Lemma 3.40], for instance), we may certainly suppose that U is a w∗-open
slice of BX∗ ; i.e., there are x ∈ SX and 0 < α0 < 1 such that

(1) g ∈ ext (BX∗) , g ∈ S(BX∗ , x, α0) =⇒ f ∼ g.

We claim that, for 0 < α 6 α0 and y ∈ SX satisfying ‖y−x‖ < α, there exists
a modulus-one scalar ωy such that D(X, y) reduces to the singleton {ωy f}
and

‖ωy f − ωx f‖ <
√

2 α .

Let us observe that this claim finish the proof, since it implies that every
selector of the duality mapping is norm to norm continuous at x, which gives
that the norm of X is Fréchet-smooth at x (see [9, Theorem II.2.1]) and then,
ωx f (and hence f) is w∗-strongly exposed (see [8, Corollary I.1.5]).

Let us prove the claim. If ‖y − x‖ < α, every g ∈ D(X, y) satisfies

(2) Re g(x) = Re g(y)−
(
Re g(y)− Re g(x)

)
> 1− ‖x− y‖ > 1− α

and so, D(X, y) is contained in S(BX∗ , x, α) ⊂ S(BX∗ , x, α0). Then, every
extreme point of the w∗-closed face D(X, y) (remaining extreme in BX∗) is
a multiple of f by Eq. (1). Since only one multiple of f can be in the face
D(X, y) and, being w∗-compact, D(X, y) is the w∗-closed convex hull of its
extreme points, we get D(X, y) = {ωy f} for a suitable modulus-one scalar
ωy. Finally, on one hand, since |f(x)| = 1, we have that

‖ωx f − ωy f‖ = |ωx − ωy| = |ωx f(x)− ωy f(x)| = |1− ωy f(x)|.
On the other hand, Eq. (2) says that Re ωy f(x) > 1− α and so, an straight-
forward computation gives that

|1− ωy f(x)| <
√

2 α . �

Remarks 2.3.
(a) In the real case, the proof of Proposition 2.2 actually gives a stronger

result. Namely, let X be a real Banach space and let f be a w∗-isolated
point of ext (BX∗). Then, the face of the unit ball

{x ∈ BX : f(x) = 1}
has non-empty interior (relative to SX), which implies that f is w∗-
strongly exposed.
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(b) Let us comment that no proper face of the unit ball of a complex
Banach space has interior points relative to SX , so the above result
does not hold for complex spaces. Anyhow, a sight to the proof of
Proposition 2.2 allows us to state the following improvement. Let X
be a complex Banach space and let f be an extreme point of BX∗

such that its equivalent class is isolated in ext (BX∗) / ∼. Then, there
exists an open subset U of SX such that the norm of X is Fréchet-
smooth at any point of U and each derivative is a multiple of f .

We are now ready to state the main result of the paper.

Theorem 2.4. Let X be a Lindenstrauss space. Then, the following are
equivalent:

(i) X has the Daugavet property.
(ii) The norm of X is extremely rough.
(iii) The norm of X is not Fréchet-smooth at any point.
(iv) ext (BX∗) / ∼ does not have any isolated point.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are clear and valid for general
Banach spaces, and Proposition 2.2 gives (iii) ⇒ (iv). Finally, (iv) ⇒ (i)
follows from [19, Theorem 3.5]. �

Remark 2.5. It is worth mentioning that the above geometric characteriza-
tions are not valid for arbitrary Banach spaces. On one hand, the norm of `1
is extremely rough (and so `1 has no points of Fréchet-smoothness), but `1
does not have the Daugavet property. On the other hand, for X = `2 the
set ext (BX∗) / ∼ does not have any w∗-isolated point, but `2 is reflexive and,
therefore, it does not have the Daugavet property.

The above theorem and the fact that the class of Lindenstrauss spaces is
closed under ultraproducts, gives us the following result.

Corollary 2.6. The ultraproduct of every family of Lindenstrauss spaces with
the Daugavet property also has the Daugavet property. In particular, the Dau-
gavet and the uniform Daugavet properties are equivalent for Lindenstrauss
spaces.

Proof. Since the class of Lindenstrauss spaces is closed under arbitrary ultra-
products [12, Proposition 2.1], the result follows from Theorem 2.4 and the
fact that the roughness of the norm is inherited under arbitrary ultraproducts
[4, Lemma 5.1]. �
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Universidad de Granada, 18071 Granada, SPAIN, mmartins@ugr.es


