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1. Introduction

A Banach space X is said to have the Daugavet property [28] if every rank-one
operator T : X −→ X satisfies the norm identity

(DE) ‖Id + T‖ = 1 + ‖T‖,

known as Daugavet equation. In such a case, all weakly compact operators on X
also satisfy (DE) (see [28, Theorem 2.3]). Therefore, this definition of Daugavet
property coincides with those that appeared in [10] and [1].

The study of the Daugavet equation was inaugurated by I. Daugavet [11] in 1961
by proving that every compact operator on C[0, 1] satisfies (DE). Over the years,
the validity of the Daugavet equation was proved for compact operators on various
spaces, including C(K) and L1(µ) provided that K is perfect and µ does not have
any atoms (see [39] for an elementary approach), and certain function algebras such
as the disk algebra A(D) or the algebra of bounded analytic functions H∞ [40, 42].
In the nineties, new ideas were infused into the field and the geometry of Banach
spaces having Daugavet property was studied. The state-of-the-art on the subject
can be found in [28, 41]. For very recent results we refer the reader to [8, 27, 29]
and references therein.

Let us mention here several facts concerning the Daugavet property which are
relevant to our discussion. It is clear that X has the Daugavet property whenever
its topological dual X∗ does, but the converse result is false (X = C[0, 1], for
instance). It is known that a space with the Daugavet property cannot have the
Radon-Nikodým property (RNP in short) [42]; even more, every weakly open subset
of its unit ball has diameter 2 [38]. A space with the Daugavet property contains
a copy of `1 [28], it does not have an unconditional basis [26] and it does not even
embed into a space with an unconditional basis [28].

In 2002, T. Oikhberg [36] carried the classical results on the Daugavet property
for C(K) and L1(µ) to the non-commutative case, characterizing when (complex)
C∗-algebras and preduals of von Neumann algebras have the Daugavet property.
A C∗-algebra has the Daugavet property if and only if it does not have atomic
projections; if the algebra is a von Neumann algebra (i.e., it is a dual space), its
(unique) isometric predual has the Daugavet property if and only if the algebra
does. In 2004, T. Oikhberg and the second named author [35], translated these
results to the non-associative case, characterizing (complex) JB∗-triples and pred-
ual of (complex) JBW ∗-triples having the Daugavet property in an analogous way,
replacing atomic projections by minimal tripotents. The necessary definitions and
basic results on JB∗-triples are presented in section 3.

In the present paper we give geometric characterizations of the Daugavet prop-
erty in the setting of real and complex JB∗-triples and their isometric preduals. In
particular, our results contain the already mentioned ones of [35, 36] for complex
C∗-algebras and complex JB∗-triples, but our proofs are independent.

To state the main results of the paper we need to fix notation and recall some
definitions.

Let X be a Banach space. The symbols BX and SX denote, respectively, the
closed unit ball and the unit sphere of X. Let us fix u in SX . We define the set
D(X, u) of all states of X relative to u by

D(X, u) := {f ∈ BX∗ : f(u) = 1},

which is a non-empty w∗-closed face of BX∗ . The norm of X is said to be smooth at
u if D(X, u) reduces to a singleton, and it is said to be Fréchet-smooth or Fréchet



J. Becerra and M. Mart́ın 3

differentiable at u ∈ SX whenever there exists lim
α→0

‖u + αx‖ − 1
α

uniformly for
x ∈ BX . We define the roughness of X at u by the equality

η(X, u) := lim sup
‖h‖→0

‖u + h‖+ ‖u− h‖ − 2
‖h‖

.

We remark that the absence of roughness of X at u (i.e., η(X, u) = 0) is nothing
other than the Fréchet-smoothness of the norm of X at u [12, Lemma I.1.3]. Given
δ > 0, the Banach space X is said to be δ-rough if, for every u in SX , we have
η(X, u) > δ. We say that X is rough whenever it is δ-rough for some δ > 0, and
extremely rough whenever it is 2-rough. Roughly speaking, the space X is rough if
its norm is “uniformly” non-differentiable at any point. A slice of BX is a subset
of the form

S(BX , f, α) =
{
x ∈ BX : Re f(x) > 1− α

}
,

where f ∈ SX∗ and 0 < α < 1. If X is a dual space and f is actually taken from
the predual, we say that S(BX , f, α) is a w∗-slice. By [12, Proposition I.1.11], the
norm of X is δ-rough if and only if every nonempty w∗-slice of BX∗ has diameter
greater or equal than δ.

Finally, a point x ∈ SX is said to be an strongly exposed point if there exists
f ∈ D(X, x) such that lim ‖xn − x‖ = 0 for every sequence (xn) of elements of
BX such that lim Re f(xn) = 1 (equivalently, there are slices defined by f with
arbitrary small diameter). It is known that x is strongly exposed if and only if
there is a point of Fréchet-smoothness in D(X, x) (see [12, Corollary I.1.5]).

The main results of the paper are the characterizations of the Daugavet prop-
erty for JB∗-triples and preduals of JBW ∗-triples given in Theorems 3.10 and 3.2
respectively. For a real or complex JB∗-triple X, the following are equivalent:

(i) X has the Daugavet property,
(ii) the norm of X is extremely rough,

(iii) the norm of X is not Fréchet-smooth at any point.

For the predual X∗ of a real or complex JBW ∗-triple X, the following are equiva-
lent:

(i) X has the Daugavet property,
(ii) X∗ has the Daugavet property,

(iii) every relative weak-open subset of BX∗ has diameter 2,
(iv) BX∗ has no strongly exposed points,
(v) BX∗ has no extreme points.

This characterizations allow us to prove that, for JB∗-triples and for preduals of
JBW ∗-triples, the Daugavet property passes to ultrapowers. As a consequence,
a stronger version of the Daugavet property introduced in [8], called the uniform
Daugavet property, is equivalent to the usual Daugavet property in the setting of
JB∗-triples and their isometric preduals.

The outline of the paper is as follows. In section 2 we give sufficient conditions
for a Banach space to have the Daugavet property, which will be the keys to state
the rest of the paper.

Section 3 is devoted to the above cited characterizations of the Daugavet prop-
erty for real or complex JB∗-triples and their isometric preduals, and we dedicate
section 4 to particularize these result to the setting of real or complex C∗-algebras
and von Neumann preduals.
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Finally, in section 5 we study the behaviour of the Daugavet property for ul-
traproducts of JB∗-triples and of preduals of JBW ∗-triples. As a consequence,
we show that the already mentioned uniform Daugavet property and the Daugavet
property coincide in real or complex JB∗-triples and their isometric preduals.

Throughout the paper, for a subset A of a Banach space, we write co (A) for
the closed convex hull of A, we use ex(B) to denote the set of extreme points of
the convex set B and, finally, if X and Y are Banach spaces, we write X ⊕1 Y and
X ⊕∞ Y to denote, respectively, the `1-sum and the `∞-sum of X and Y .

2. Sufficient conditions for the Daugavet property

For a better comprehension of the geometry underlying the Daugavet property,
we present the following characterization from [28, Lemma 2.1] and [41, Corol-
lary 2.3]. We shall have occasion to use it throughout the paper.

Lemma 2.1. The following assertions are equivalent:

(i) X has the Daugavet property.
(ii) For all x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists some y ∈ SX such that

Re x∗(y) > 1− ε and ‖x + y‖ > 2− ε.
(iii) For all x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists some y∗ ∈ SX such that

Re y∗(x) > 1− ε and ‖x∗ + y∗‖ > 2− ε.
(iv) For all x ∈ SX and ε > 0,

BX ⊂ co
(
{y ∈ X : ‖y‖ 6 1 + ε, ‖x + y‖ > 2− ε}

)
.

Observe that condition (ii) in the above lemma implies that every weak slice
of the unit ball of a Banach space X with the Daugavet property has diameter 2.
Also, condition (iii) implies that every w∗-slice of the unit ball of X∗ has diameter
2, thus the norm of the space is extremely rough.

The next result is a sufficient condition for a Banach space to have the Daugavet
property which will be crucial in the rest of the paper. Recall that a closed subspace
Z of the dual of a Banach space X is called norming whenever

‖x‖ = sup{|z∗(x)| : z∗ ∈ Z, ‖z∗‖ = 1}

for every x ∈ X. This condition is clearly equivalent to BZ be w∗-dense in BX∗ .

Theorem 2.2. Let X be a Banach space such that there are two norming subspaces
Y and Z of X∗ such that X∗ = Y ⊕1 Z. Then, X has the Daugavet property.

Proof. We fix x0 ∈ SX , f0 ∈ SX∗ and ε > 0. We write f0 = y0 + z0 such that
y0 ∈ Y , z0 ∈ Z, ‖f0‖ = ‖y0‖+ ‖z0‖, and

U = {x∗ ∈ BX∗ : Re x∗(x0) > 1− ε},

a w∗-open slice of BX∗ . Since BZ is w∗-dense in BX∗ , we may find z ∈ Z ∩ U .
Observe that, trivially, ‖z‖ > 1 − ε. Now, since BY is w∗-dense in BX∗ , we may
find a net (yλ) in BY which is w∗-convergent to z. Since z ∈ U , we may suppose
that yλ ∈ U for every λ. On the other hand, since (yλ + y0) −→ z + y0 and the
norm is w∗-lower semi-continuous, we have

lim inf ‖yλ + y0‖ > ‖z + y0‖ = ‖z‖+ ‖y0‖ > 1 + ‖y0‖ − ε,

and we may find µ such that

‖yµ + y0‖ > 1 + ‖y0‖ − ε/2.
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To finish the proof, we just observe that

‖f0 + yµ‖ = ‖(y0 + yµ) + z0‖
= ‖y0 + yµ‖+ ‖z0‖ > 1 + ‖y0‖ − ε + ‖z0‖ = 2− ε,

and that Re yµ(x0) > 1− ε since yµ ∈ U , and we use Lemma 2.1.iii. �

Just remembering Goldstine and Krein-Milman Theorems, we obtain the follow-
ing useful particular case. Recall that a Banach space X is said to be L-embedded
if X∗∗ = X ⊕1 Z for some closed subspace Z of X∗∗.

Corollary 2.3. Let X be a non-null L-embedded Banach space without extreme
points. Then, X∗ (and hence X) has the Daugavet property.

Proof. We have X∗∗ = X⊕1Z for some subspace Z. On one hand, since BX has no
extreme points and ex (BX∗∗) = ex (BX)

⋃
ex (BZ), we have ex (BX∗∗) = ex (BZ)

and the Krein-Milman Theorem gives us that BZ is w∗-dense in BX∗∗ . On the
other hand, Goldstine Theorem gives us that BX is w∗-dense in BX∗∗ . �

It is worth mentioning that it is proved in [33] that a Banach space X such that
X∗∗ = X ⊕1 Z with BZ w∗-dense in BX∗∗ satisfies that every weak open subset of
BX has diameter two. Actually, the proof or Theorem 2.2 has been inspired by the
one given there.

Let us finish the section by showing some immediate consequences of the above
result.

Corollary 2.4. If X is an L-embedded space with ex (BX) = ∅ and Y ( X is also
an L-embedded space, then (X/Y )∗ (and hence X/Y ) has the Daugavet property.

Proof. On one hand, X/Y is a non-null L-embedded space by [20, Corollary IV.1.3].
On the other hand, [20, Propositions IV.1.12 and IV.1.14] gives us that ex

(
BX/Y

)
=

∅. Therefore, Corollary 2.3 applies. �

As a particular case of the above corollary we have the following result.

Corollary 2.5. If Y is an L-embedded space which is a subspace of L1 ≡ L1[0, 1],
then (L1/Y )∗ has the Daugavet property. In particular, (L1/Y )∗ has the Daugavet
property for every reflexive subspace Y of L1 and so do H∞ and its predual L1/H1

0 .

Proof. The space L1 is an L-embedded space with ex (BL1) = ∅ and the space
H1

0 ⊂ L1 is also an L-embedded space (see [20, Example IV.1.1] for instance).
Then, the result follows immediately from Corollary 2.4. �

It is shown in [20, Proposition IV.2.11] that X/Y fails the RNP when X is an
L-embedded space with ex (BX) = ∅ and Y ( X is also an L-embedded space. On
the other hand, it is proved in [28, Proposition 3.2] that L1/X has the Daugavet
property whenever X is a reflexive subspace of L1. The result for H∞ appeared in
[40] and [42].

3. JB∗-triples and preduals of JBW ∗-triples

We recall that a complex JB∗-triple is a complex Banach space X with a con-
tinuous triple product {· · · } : X ×X ×X −→ X which is linear and symmetric in
the outer variables, and conjugate-linear in the middle variable, and satisfies:



6 The Daugavet property of C∗-algebras and JB∗-triples

(1) For all x in X, the mapping y 7−→ {xxy} from X to X is a hermitian
operator on X and has nonnegative spectrum.

(2) The main identity

{ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}}

holds for all a, b, x, y, z in X.
(3) ‖{xxx}‖ = ‖x‖3 for every x in X.

Concerning Condition (1) above, we also recall that a bounded linear operator T
on a complex Banach space X is said to be hermitian if ‖ exp(irT )‖ = 1 for every r
in R. By a complex JBW ∗-triple we mean a complex JB∗-triple whose underlying
Banach space is a dual space in metric sense. It is known (see [3]) that every
complex JBW ∗-triple has a unique predual up to isometric linear isomorphisms
and its triple product is separately w∗-continuous in each variable.

Following [23], we define real JB∗-triples as norm-closed real subtriples of com-
plex JB∗-triples. Here, by a subtriple we mean a subspace which is closed under
triple products of its elements. In particular, complex JB∗-triples are real JB∗-
triples. A triple ideal of a real or complex JB∗-triple X is a subspace M of X such
that {XXM}+{XMX} ⊆ M ; if merely {MXM} ⊆ M , then M is called an inner
ideal.

Real JBW ∗-triples where first introduced as those real JB∗-triples which are
dual Banach spaces in such a way that the triple product becomes separately w∗-
continuous (see [23, Definition 4.1 and Theorem 4.4]). Later, it has been shown in
[34] that the requirement of separate w∗-continuity of the triple product is super-
abundant. We will apply without notice that the bidual of every real or complex
JB∗-triple X is a JBW ∗-triple under a suitable triple product which extends the
one of X ([13] for the complex case and [23] for the real case).

Examples of real JB∗-triples are the spaces L(H,K), for arbitrary real, complex,
or quaternionic Hilbert spaces H and K, under the triple product

{xyz} :=
1
2
(xy∗z + zy∗x).

The above examples become particular cases of those arising by considering either
the so-called complex Cartan factors (regarded as real JB∗-triples) or real forms of
complex Cartan factors [32]. We recall that real forms of a complex Banach space X
are defined as the real closed subspaces of X of the form Xτ := {x ∈ X : τ(x) = x},
for some conjugation (i.e., conjugate-linear isometry of period two) on X. We
note that, if X is a complex JB∗-triple, then every real form of X is a real JB∗-
triple (since conjugations on X preserve triple products [30]). Conversely, if X is
a real JB∗-triple, there exists [23, Proposition 2.8] a unique complex JB∗-triple
structure on the algebraic complexification X⊕ iX (denoted X̂) and a conjugation
τ on X ⊕ iX such that X = X̂τ , i.e., every real JB∗-triple is a real form of its
complexification, which is a complex JB∗-triple.

Let X be a real or complex JB∗-triple. An element u ∈ X is said to be a
tripotent if {uuu} = u, and it said to be a minimal tripotent if u 6= 0 and{

x ∈ X : {uxu} = x
}

= Ru.

In the complex setting, this is equivalent to u 6= 0 and {uXu} = Cu.

If x is a norm-one element of a real or complex JB∗-triple X, then the set
D(X, x) = D(X∗∗, x) ∩ X∗ is a proper closed face of BX∗ , and therefore, by [15,
Lemma 2.1 and Theorem 3.7], there is a unique tripotent u in X∗∗ such that
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D(X∗∗, x)∩X∗ = D(X∗∗, u)∩X∗. Such a tripotent u is called the support of x in
X∗∗, and will be denoted by u(X∗∗, x).

The complex case of the following result is stated in [7, Corollary 2.11]; the real
case follows from results on [6] in an analogous way than the complex version. We
include the proof for the sake of completeness.

Lemma 3.1. Let X be a real or complex JB∗-triple and let x be in SX . Then,
X is Fréchet-smooth at x if and only if u(X∗∗, x) lies in X and it is a minimal
tripotent of X.

Proof. Recall that the norm of a Banach space is Fréchet-smooth at x if and only
if it is smooth and strongly subdifferentiable at the point (see [17]). Now, the
proof follows from the following facts: the norm of X is strongly subdifferentiable
at x if and only if u(X∗∗, x) belongs to X [6, Corollary 2.5]; X is smooth at x if
and only if D(X∗∗, x) ∩X∗ = {x∗} for some extreme point x∗ of SX∗ , and this is
equivalent to the fact that u(X∗∗, x) is a minimal tripotent of X∗∗ [37, Lemma 2.7
and Corollary 2.1]; and, finally, a tripotent u ∈ X is a minimal tripotent of X (if
and) only if it is a minimal tripotent of X∗∗ (by the w∗-density of X in X∗∗ and
the separate w∗-continuity of the triple product of X∗∗). �

It is known [4] that the predual of every real or complex JBW ∗-triple is L-
embedded. Therefore, Corollary 2.3 gives us that such a space has the Daugavet
property whenever its unit ball does not have any extreme point. Actually, more
can be proved:

Theorem 3.2. Let X be a real or complex JBW ∗-triple and let X∗ be its predual.
Then, the following are equivalent:

(i) X has the Daugavet property.
(ii) X∗ has the Daugavet property.
(iii) Every relative weak-open subset of BX∗ has diameter 2.
(iv) BX∗ has no strongly exposed points.
(v) BX∗ has no extreme points.

Proof. (i) ⇒ (ii) is clear. (ii) ⇒ (iii) is consequence of [38, Lemma 3]. (iii) ⇒ (iv)
is clear.

(iv) ⇒ (v). Of course, it is enough to show that every extreme point of BX∗ is
actually an strongly exposed point. Indeed, given f ∈ ex (BX∗), [37, Corollary 2.1]
assures the existence of a minimal tripotent u of X such that u(f) = 1, and u is
a point of Fréchet-smoothness of the norm of X by Lemma 3.1. Therefore, there
is a point of Fréchet-smoothness, u, in D(X∗, f) and, as we commented in the
introduction, this implies that f is strongly exposed by u (see [12, Corollary I.1.5],
for instance).

(v) ⇒ (i). X∗ is an L-embedded by [4, Proposition 2.2] and BX∗ has no extreme
points, so Corollary 2.3 applies. �

As an straightforward consequence of the above theorem we obtain the following
result, which states the “extreme” behaviour of the diameters of the weak-open
subset of the unit ball of the predual of a JBW ∗-triple.

Corollary 3.3. Let Y be the predual of some real or complex JBW ∗-triple. Then,
either every weak-open subset of BY has diameter 2 or BY has slices of arbitrary
small diameter.
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By Corollary 2.1 of [37], a real or complex JBW ∗-triple has minimal tripotents if
and only if the unit ball of its predual has extreme points. Therefore, the following
result follows immediately from Theorem 3.2.

Corollary 3.4. Let X be a real or complex JBW ∗-triple. Then, X has the Dau-
gavet property if and only if it does not have any minimal tripotents.

The complex case of the above corollary and the equivalence (i) ⇔ (ii) of The-
orem 3.2 appear in [35, Theorem 4.7].

As a consequence of Theorem 3.2 we obtain:

Corollary 3.5. Neither the dual of a real or complex JB∗-triple nor a real or
complex JB∗-triple which is the bidual of some space, has the Daugavet property.

Proof. On one hand, the dual X∗ of a JB∗-triple X is also the predual of the
JBW ∗-triple X∗∗ and, as every dual space, BX∗ has extreme points. On the other
hand, if Y = Z∗∗ is a JB∗-triple, then it is actually a JBW ∗-triple whose predual
Y∗ = Z∗ has extreme points in its unit ball. �

Remark 3.6. It is worth mentioning that, for an arbitrary Banach space Z, the
absence of extreme points in BZ or the fact that all weak-open subsets of BZ have
diameter two, does not necessarily imply that Z has the Daugavet property. For
instance, c0 satisfies both assumptions (see [5, Lemma 2.2] for instance), but it does
not have the Daugavet property.

On the other hand, the assertions (iii), (iv), and (v) of Theorem 3.2 are not
equivalent for general Banach spaces. On one hand, there exists a Banach space
Z whose unit ball has slices of arbitrary small diameter, but it does not have any
extreme point (so, it does not have any strongly exposed point) [14, Proposition 1].
On the other hand, every slice of the unit ball of `∞ has diameter 2 (and so, it
does not have any strongly exposed point), but it is plenty of extreme points (it is
a dual space).

If X is a real or complex JBW ∗-triple, it is well known that X∗ = A ⊕1 N ,
where A is the closed linear span of the extreme points of BX∗ , and the unit ball
of N has no extreme points (see [18] for the complex case and [37] for the real
case). Therefore, X = A ⊕∞ N , where A = N⊥ ≡ A∗ is an atomic JBW ∗-triple
(i.e. it is the weak*-closed span of its minimal tripotents) and N = A⊥ ≡ N∗ is a
JBW ∗-triple without minimal tripotents. With this in mind, the following result
is a consequence of Theorem 3.2 and a characterization of the RNP in preduals of
JBW ∗-triples given in [2].

Corollary 3.7. Let X be a real or complex JBW ∗-triple. Then, in the natural
decomposition X∗ = A ⊕1 N , A has the RNP and N has the Daugavet property.
Therefore, in the decomposition X = A⊕∞ N , A is a w∗-Asplund space (i.e., the
dual of a space having the RNP) and N has the Daugavet property.

Proof. In the complex case, since A is the predual of the atomic JBW ∗-triple A, it
has the RNP by [2, Theorem 1] and, therefore, A is a w∗-Asplund space. In the real
case, we consider Â, the complexification of A. On one hand, Â is a w∗-Asplund
space by the above. On the other hand, A ≡ A∗ is a (real) subspace of

(
Â

)
∗, and

the RNP passes to subspaces.

Since N∗ = N is a JBW ∗-triple without minimal tripotents, Corollary 3.4 gives
us that N , and hence its predual N , have the Daugavet property. �
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Our next aim is to prove a characterization of the Daugavet property for general
JB∗-triples. We first prove that the algebraic characterization given in Corollary 3.4
for JBW ∗-triples is also valid in the general case, and then we will deduce more
characterizations in terms of the geometry of the norm of the triple.

We need a result about real or complex JB∗-triples which can be of independent
interest. Previously, we have to recall some known facts about JB∗-triples.

If X is a real or complex JB∗-triple, X∗∗ is a JBW ∗-triple. Therefore, we
can decompose X∗ = (X∗∗)∗ into its atomic and not atomic parts, as we have
commented above, i.e., X∗ = A⊕1N where A is the closed linear span of the extreme
points of BX∗ , and the unit ball of N has no extreme points. Then, X∗∗ = A⊕∞N ,
where A = N⊥ ≡ A∗ is an atomic JBW ∗-triple, and N = A⊥ ≡ N∗ is a JBW ∗-
triple without minimal tripotents. Let us call πA (resp. πN ) the projection from
X∗∗ to A with kernel N (resp. to N with kernel A), and let JX : X −→ X∗∗ be
the natural inclusion. It is well known that πA ◦ JX : X −→ A is an isometric
embedding (Gelfand-Naimark Theorem [19]). The next result gives the same for
πN ◦ JX , provided X has no minimal tripotents.

Theorem 3.8. Let X be a real or complex JB∗-triple without minimal tripotents.
Then, the mapping πN ◦ JX : X −→ N is an isometric embedding. Therefore, N
is a norming subspace of X∗.

Proof. We start by proving the result in the complex case. Let X be a complex
JB∗-triple and let us consider Y = X ∩A, which is clearly a closed ideal of X. On
one hand, Y has no minimal tripotents (indeed, if 0 6= u ∈ Y is a minimal tripotent
of Y , then {uY u} = Cu; since Y is a triple ideal (and hence an inner ideal), we have
{uXu} ⊂ Y , so we obtain {uXu} = Cu and u is a minimal tripotent of X, which is
impossible). On the other hand, by [9, Proposition 3.7] Y ∗ has the RNP (i.e. Y is
an Asplund space) and, if Y 6= 0, the norm of Y has points of Fréchet-smoothness.
But the existence of points of Fréchet-smoothness in Y implies the existence of
minimal tripotents in Y (Lemma 3.1), a contradiction. We deduce that Y is null
and, therefore, πN ◦ JX is injective. Being a triple-homomorphism, it is routine
(using axiom (3)) to show that it is an isometric embedding as desired (actually, in
the complex case, the converse result is also true, see [30]). Since N = A⊥ ≡ N∗,
it is clear that N is norming.

The proof for the real case is very similar. If X is a real JB∗-triple, we will show
that Y = X∩A has no minimal tripotents and that it is an Asplund space, and then
the rest of the above proof works. First, if 0 6= u ∈ Y is a minimal tripotent, then
{y ∈ Y : {uyu} = y} = Ru; since Y is a inner ideal, {uXu} ⊆ Y , so if x ∈ X is such
that {uxu} = x, we obtain that x ∈ Y , which implies x ∈ Ru, i.e., u is a minimal
tripotent of X, a contradiction. Second, we consider the complexification Ŷ of Y ,
and we observe that Ŷ = Â ∩ X̂ , where X̂∗∗ = Â ⊕∞ N̂ is the decomposition
into the atomic and non-atomic part [37, Theorem 3.6]. Therefore, Ŷ is an Asplund
space [9, Proposition 3.7] and so does its real subspace Y . �

As a consequence of the above result and Theorem 2.2, we obtain that JB∗-
triples without minimal tripotents have the Daugavet property. The complex case
of this result appear in [35, Theorem 4.7] with a different proof.

Proposition 3.9. Let X be a real or complex JB∗-triple. Then, X has the Dau-
gavet property if and only if it has no minimal tripotents.

Proof. Suppose X has no minimal tripotents and write X∗ = A⊕1N . On one hand,
since ex (BX∗) ⊆ BA, the Krein-Milman Theorem gives us that A is a norming
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subspace of X∗. On the other hand, if X has no minimal tripotents, Theorem 3.8
gives us that N is also norming. Now, Theorem 2.2 gives us that X has the
Daugavet property. Conversely, if X has a minimal tripotents, then it has a point
of Fréchet-smoothness by Lemma 3.1; but the norm of a Banach space with the
Daugavet property is extremely rough (use Lemma 2.1.iii), a contradiction. �

Actually, we can state a characterization of the Daugavet property for JB∗-
triples in terms of the geometry of the norm of the triple.

Theorem 3.10. Let X be a real or complex JB∗-triple. Then, the following are
equivalent:

(i) X has the Daugavet property.
(ii) The norm of X is extremely rough.
(iii) The norm of X is not Fréchet-smooth at any point.

Proof. (i) ⇒ (ii). As we commented in the introduction, the norm of X is extremely
rough if and only if every w∗-slice of BX∗ has diameter 2, and the latest fact is
consequence of Lemma 2.1.iii.

(ii) ⇒ (iii) is clear.

(iii) ⇒ (i). By Lemma 3.1, the norm of X is Fréchet-smooth at the minimal
tripotents, so we deduce that X has no minimal tripotents and Proposition 3.9
applies. �

Remark 3.11. It is worth mentioning that the above geometric characterizations
are not valid for arbitrary Banach spaces. For instance, the norm of `1 is extremely
rough (and so `1 has no points of Fréchet-smoothness) but `1 does not have the
Daugavet property.

Also, the implication (iii) ⇒ (ii) of the above theorem is not valid in general.
Indeed, there exists a Banach space whose norm does not have any point of Fréchet
differentiability but it is not rough (see [25, Remark 4, pp. 341]).

To finish the section, let us comment some results from [4] which are related to
our development.

Remark 3.12. Let us consider the following conditions for a Banach space X:

(a) every relative weak-open subset of BX has diameter 2,
(b) the norm of X is extremely rough.

It is proved in [4, Theorem 2.3] that condition (a) is satisfied when X is a non-
reflexive real or complex JB∗-triple, while our Theorem 3.2 says that condition
(a) characterizes the Daugavet property in the class of preduals of real or complex
JBW ∗-triples.

With respect to condition (b), it is shown in [4, Corollary 2.5] that the pred-
ual of every non-reflexive real or complex JBW ∗-triple satisfies it, while condition
(b) characterizes the Daugavet property for real or complex JB∗-triples (Theo-
rem 3.10).

Since a reflexive Banach space never satisfies neither (a) nor (b), the above para-
graphs contains the answer to every question about this conditions in the setting
of real or complex JB∗-triples and their isometric preduals.
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4. C∗-algebras and von Neumann preduals

Despite real C∗-algebras can be defined by different systems of intrinsic axioms
(see [24] for a summary), we prefer to introduce them as the norm-closed self-adjoint
real subalgebras of complex C∗-algebras. Since complex C∗-algebras are complex
JB∗-triples under the triple product

{xyz} :=
1
2
(xy∗z + zy∗x),

certainly real C∗-algebras are real JB∗-triples. The concept of a real W ∗-algebra
(real von Neumann algebra) was first defined as a real C∗-algebra A having a
complete predual A∗ such that the product of A is separately w∗-continuous, but
the latest condition was shown to be redundant in [24]. Real W ∗-algebras are real
JBW ∗-triples.

Therefore, the geometric characterizations given in Theorems 3.2 and 3.10 can
be stated for real or complex C∗-algebras and preduals of W ∗-algebras. The next
results summarize those theorems and also Corollaries 3.3 and 3.5 in terms of C∗-
algebras.

Corollary 4.1. Let X be a real or complex C∗-algebra. Then, the following are
equivalent:

(i) X has the Daugavet property.
(ii) The norm of X is extremely rough.
(iii) The norm of X is not Fréchet-smooth at any point.

Corollary 4.2. Let X be a real or complex W ∗-algebra and let X∗ be its predual.
Then, the following are equivalent:

(i) X has the Daugavet property.
(ii) X∗ has the Daugavet property.
(iii) Every weak-open subset of BX∗ has diameter 2.
(iv) BX∗ has no strongly exposed points.
(v) BX∗ has no extreme points.

Corollary 4.3.

(a) Let X be the predual of some real or complex W ∗-algebra. Then, either
every weak-open subset of BX has diameter 2 or BX has slices of arbitrary
small diameter.

(b) Neither the dual of a real or complex C∗-algebra nor a real or complex
C∗-algebra which is the bidual of some space, has the Daugavet property.

The algebraic characterization of the Daugavet property for JB∗-triples (Propo-
sition 3.9) is of course valid for C∗-algebras, but it could be more convenient to
write it in terms of atomic projections. Let us give the definitions and results.

If X is a real or complex C∗-algebra, then u ∈ X is a tripotent if and only if
it is a partial isometry, i.e., u satisfies that uu∗u = u. Recall that a projection
in a C∗-algebra is an element p ∈ X such that p∗ = p and p2 = p. It is clear
that projections are partial isometries (and so tripotents), but there are partial
isometries which are not projections. A projection p in X is said to be atomic if
p 6= 0 and

{x ∈ X : px∗p = x} = Rp,

i.e., p is minimal seen as a tripotent. Therefore, in the complex case this is equiva-
lent to p 6= 0 and pXp = Cp. The C∗-algebra X is said to be non-atomic if it does
not have any atomic projection.
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If X has atomic projections, then it clearly has minimal tripotents. Conversely,
if X has a minimal tripotent, say u, then the projection d = u∗u (called the domain
projection associated to u) is atomic. Indeed, we take x ∈ X such that dx∗d = x.
Then,

u(ux)∗u = (uu∗u)x∗u∗u = u(u∗ux∗u∗u) = u(dx∗d) = ux

so, since u is minimal, ux = λu for some λ ∈ R. Then,

λd = u∗(λu) = u∗(ux) = u∗(u(dx∗d)) =

= u∗
(
(uu∗u)x∗u∗u

)
= u∗ux∗u∗u = dx∗d = x.

We have shown that a real or complex C∗-algebra has no minimal tripotents if and
only if it is non-atomic. So, for C∗-algebras, Proposition 3.9 can be written in
terms of atomic projections.

Corollary 4.4.

(a) A real or complex C∗-algebra has the Daugavet property if and only if it is
non-atomic.

(b) The predual of a real or complex W ∗-algebra has the Daugavet property if
and only if the algebra is non-atomic.

The complex case of the above result appears in [36, Theorem 2.1].

As a JBW ∗-triple, every real or complex W ∗-algebra X admits a natural decom-
position into the atomic and non-atomic parts which is originated by the natural
decomposition of the predual X∗. I.e., X∗ = A⊕1 N , where the unit ball of N does
not have any extreme point, and BA is the closed convex hull of the extreme points
of BX∗ . Thus, X = A⊕∞N , where the subtriple A = N⊥ ≡ A∗ is norm-generated
by the minimal tripotents of X, and the subtriple N = A⊥ ≡ N∗ has no minimal
tripotents. Moreover, A and N are w∗-closed subalgebras of X, the first one is
generated by its atomic projections and the second one has no atomic projections.

The next results put Corollary 3.7 and Theorem 3.8 in terms of C∗-algebras.

Corollary 4.5. Let X be a real or complex W ∗-algebra. Then, in the natural
decomposition X∗ = A ⊕1 N , A has the RNP and N has the Daugavet property.
Therefore, in the decomposition X = A⊕∞ N , A is a w∗-Asplund space (i.e., the
dual of a space having the RNP) and N has the Daugavet property.

Corollary 4.6. Let X be a real or complex C∗-algebra without atomic projections,
and let X∗∗ = A ⊕∞ N the natural decomposition of its bidual into atomic and
non-atomic parts. Then, the decomposition of every x ∈ X as x = a∗∗ + n∗∗, with
a∗∗ ∈ A, n∗∗ ∈ N satisfies ‖x‖ = ‖a∗∗‖ = ‖n∗∗‖.

5. The uniform Daugavet property

Following [8], a Banach space X is said to have the uniform Daugavet property
if

DX(ε) := inf{n ∈ N : convn(l+(x, ε)) ⊃ SX ∀x ∈ SX}
is finite for every ε > 0, where

l+(x, ε) :=
{
y ∈ X : ‖y‖ 6 1 + ε, ‖x + y‖ > 2− ε

}
and convn(A) is the set of all convex combination of all n-point collections of
elements of A. By [8, Remark 6.3], X has the uniform Daugavet property if and
only if

lim
n→∞

Daugn(X, ε) = 0
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for every ε > 0, where

Daugn(X, ε) := sup
x,y∈SX

dist
(
y, convn(l+(x, ε))

)
.

Since (Lemma 2.1) X has the Daugavet property if and only if

BX ⊂ co
(
{y ∈ X : ‖y‖ 6 1 + ε, ‖x + y‖ > 2− ε}

)
for every x ∈ SX and every ε > 0, the uniform Daugavet property implies the
Daugavet property, and it can be view as a quantitative approach to it.

Examples of spaces satisfying the uniform Daugavet property are L1[0, 1] and
C(K) for every perfect compact space K [8, §6]. On the other hand, in [29] it is
shown an example of a Banach space with the Daugavet property which does not
satisfy the uniform Daugavet property.

The uniform Daugavet property was introduced in [8] to study when the Dau-
gavet property passes from a Banach space to its so-called ultrapowers.

Let us recall here the notion of (Banach) ultraproducts [21]. Let U be a free
ultrafilter on a nonempty set I, and let {Xi}i∈I be a family of Banach spaces.
We can consider the `∞-sum of the family, [⊕i∈IXi]`∞ , together with its closed
subspace

NU :=
{
{xi}i∈I ∈ [⊕i∈IXi]`∞ : lim

U
‖xi‖ = 0

}
.

The quotient space [⊕i∈IXi]`∞ /NU is called the ultraproduct of the family {Xi}i∈I

relative to the ultrafilter U , and is denoted by (Xi)U . Let (xi) stand for the el-
ement of (Xi)U containing a given family {xi} ∈ [⊕i∈IXi]`∞ . It is easy to check
that ‖(xi)‖ = limU ‖xi‖. Moreover, the ultraproduct (X∗

i )U can be seen as a sub-
space of

[
(Xi)U

]∗ by identifying each element (fi) ∈ (X∗
i )U with the (well-defined)

functional on (Xi)U given by

(xi) 7−→ lim
U

(fi(xi))
(
(xi) ∈ (Xi)U

)
.

If {Yi}i∈I is another family of Banach spaces and for each i ∈ I we take an operator
Ti ∈ L(Xi, Yi) with supi∈I ‖Ti‖ < ∞, we can define the utraproduct of the family
of operators {Ti}i∈I with respect to the ultrafilter U , denoted (Ti), as

(xi) 7−→ (Tixi)
(
(xi) ∈ (Xi)U

)
.

This is a well defined operator from (Xi)U to (Yi)U with

‖(Ti)‖ = lim
U
‖Ti‖.

If all the Xi are equal to some Banach space X, the ultraproduct of the family is
called the U-ultrapower of X and it is usually denoted by XU . For T ∈ L(X), by
(T ) we denote the ultraproduct of the family {Ti}i∈I where Ti = T for every i ∈ I.

In [8, Corollary 6.5], it is proved that a Banach space X has the uniform Dau-
gavet property if and only if every ultrapower XU , U a free ultrafilter on N, has the
Daugavet property, in which case XU even has the uniform Daugavet property. Let
us comment that it is routine to prove that a Banach X has the (usual) Daugavet
property whenever XU does, U a free ultrafilter on an arbitrary set I (we can use
Lemma 2.1.ii or, alternatively, we can prove directly that every rank-one operator
T ∈ L(X) satisfies (DE) since its ultrapower (T ) ∈ L(XU ), which is also a rank-one
operator on XU , does). On the other hand, as we have said before, there is a Ba-
nach space with the Daugavet property which does not have the uniform Daugavet
property [29], thus the Daugavet property does not always pass to ultrapowers.

Our aim in this section is to prove that the Daugavet property and its uniform
version are equivalent for real or complex JB∗-triples and their isometric preduals.
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As we said before, this is true for C(K) spaces and for L1[0, 1]. These facts were
proved in [8, §6], where explicit estimations for DC(K)(ε) and DL1[0,1](ε) were done.
Our approach is different: we will use Theorems 3.2 and 3.10 to show that, for JB∗-
triples and their isometric preduals, the Daugavet property passes to arbitrary
ultrapowers.

Since an ultrapower of a JB∗-triple is again a JB∗-triple (see [13]), the result for
this class follows immediately from Theorem 3.10 and the following lemma, which
can be of independent interest.

Lemma 5.1. Let {Xi}i∈I be a family of Banach spaces, U a free ultrafilter of a set
I, and δ > 0. If the norm of each Xi is δ-rough, then so does the norm of (Xi)U .

Proof. Given a norm-one element x = (xi) ∈ (Xi)U and a positive number α < 1,
we have to show that the slice S

(
B[(Xi)U ]∗ , (xi), α

)
of the unit ball of

[
(Xi)U

]∗ has
diameter greater than δ. Indeed, we can suppose that ‖xi‖ = 1 for every i ∈ I and,
since the norm of each Xi is δ-rough, given a family {εi} of positive number with
limU εi = 0, we can find fi, gi ∈ SX∗

i
such that

‖fi − gi‖ > δ − εi and Re fi(xi) > 1− α, Re gi(xi) > 1− α.

Now, we consider the elements f = (fi) and g = (gi) of the unit ball of (X∗
i )U ⊆[

(Xi)U
]∗, and we observe that, on one hand,∥∥(fi)− (gi)

∥∥ = lim
U
‖fi − gi‖ > δ

and, on the other hand,

Re f(x) = lim
U

fi(xi) > 1− α, Re g(x) = lim
U

gi(xi) > 1− α. �

By using the above lemma and Theorem 3.10, we have that XU has the Daugavet
property whenever the JB∗-triple X does. But, as we already mentioned, the
converse result is true in general.

Theorem 5.2. Let X be a real or complex JB∗-triple and let U be a free ultrafilter
on a set I. Then, X has the Daugavet property if and only if XU does. Therefore,
the Daugavet property and the uniform Daugavet property are equivalent for JB∗-
triples.

As a consequence of the above theorem and Proposition 3.9, we obtain the fol-
lowing result about JB∗-triples.

Corollary 5.3. Let X be a real or complex JB∗-triple and U a free ultrafilter on
a set I. Then, XU has a minimal tripotent if and only if X does.

Remark 5.4. It is also true that every ultraproduct of JB∗-triples is a JB∗-triple
(see [13]). Then, by using Theorem 3.10 and Lemma 5.1, we also obtain that the
ultraproduct of a family of JB∗-triples with the Daugavet property also has the
Daugavet property. In other words (Proposition 3.9), the ultraproduct of a family
of JB∗-triples without minimal tripotents also has no minimal tripotent.

The second part of the present section is devoted to preduals of JBW ∗-triples.

Even though the ultrapower of the dual of a Banach space is not, in general,
the dual of the ultrapower of the space (see [21, §7]), it can be proved that the
ultrapower of a predual of a JBW ∗-triple is again the predual of some JBW ∗-
triple. In the complex case, the proof is easy to state: the dual of the ultrapower
XU of a Banach space X is 1-complemented in another ultrapower (X∗)M of X∗

[21], and the contractive projection Theorem applies.
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Since we have not find any reference to the above result in the literature, we give
a detailed proof. Actually, a more general result can be state.

Proposition 5.5. Let {Xi}i∈I be a family of Banach spaces such that each X∗
i is

a (real or complex) JBW ∗-triple, and let U be a free ultrafilter on I. Then, (Xi)U
is the predual of some (real or complex) JBW ∗-triple.

Proof. We start with the complex case. By [21, Corollary 7.6], there is another free
ultrafilter B on an index set I ′, such that

[
(Xi)U

]∗ is isometric to a 1-complemented
subspace of ((X∗

i )U )B, which is a JB∗-triple. But 1-complemented subspaces of
complex JB∗-triples are JB∗-triples (see [31]).

If each X∗
i is a real JBW ∗-triple, then there is a conjugation τi on each Xi such

that
(
X̂i

)∗ is a complex JBW ∗-triple and Xi = X̂i

τi

[23]. On one hand,
[(

X̂i

)
U

]∗
is a JBW ∗-triple by the complex case. On the other hand, we consider τ = (τi),
the ultraproduct of the family of the conjugations τi, and we observe that τ is a
conjugation (routine) and that

[
(X̂i)U

]τ ≡ (Xi)U . Indeed, (x̂i) ∈
[
(X̂i)U

]τ if and
only if limU ‖τi(x̂i) − x̂i‖ = 0. Thus, the image of the natural inclusion of (Xi)U
into (X̂i)U falls into

[
(X̂i)U

]τ , and it is onto since, for every (x̂i) ∈
[
(X̂i)U

]τ , we
have (x̂i) =

(
τi(x̂i)

)
∈

(
X̂i

τi)
U ≡ (Xi)U . Now, the dual of (Xi)U ≡

[
(X̂i)U

]τ is a
real form (using τ∗, which is also a conjugation) of

[
(X̂i)U

]∗, and hence it is a real
JBW ∗-triple. �

With this in mind, the equivalence of the Daugavet property and its uniform
version for preduals of JBW ∗-triples is a consequence of Theorem 3.2.

Theorem 5.6. Let X be a real or complex JBW ∗-triple and let U be a free ultra-
filter on a set I. Then, X∗ has the Daugavet property if and only if (X∗)U does.
Therefore, the Daugavet property and the uniform Daugavet property are equivalent
for preduals of JBW ∗-triples.

In the proof we will use the following easy fact: if Y is a Banach space and
Z ⊆ Y ∗ is a norming subspace, then for every strongly exposed point y ∈ SY , the
exposing functional belong to Z. Observe that this is the case of the ultraproduct
of the duals of a family of Banach space seen as a norm-closed subspace of the dual
of the ultraproduct of the spaces.

Proof. We only have to show that (X∗)U has the Daugavet property whenever X∗
does. Since (X∗)U is the predual of some JBW ∗-triple, it suffices to show that its
unit ball has no strongly exposed points (Theorem 3.2). Therefore, we suppose, for
the sake of contradiction, that the unit ball of (X∗)U has a strongly exposed point,
say (xi). By the preceding remark, there exists (φi) in the unit sphere of (X)U
(which we can suppose to satisfy ‖φi‖ = 1 for every i) which strongly expose (xi).
Let us fix 0 < ε0 < 1. Now, for every α > 0, since X∗ has the Daugavet property,
we can apply Lemma 2.1.ii to get, for every i ∈ I, a point yi ∈ SX∗ such that

‖xi − yi‖ > 2− ε0 and Re φi(yi) > 1− α/2.

Now, (yi) belong to the unit ball of (X∗)U ,

‖(xi)− (yi)‖ = lim
U
‖xi − yi‖ > 2− ε0,

and
Re (φi)[(yi)] = lim

U
φi(yi) > 1− α.
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Since α is arbitrary, we conclude that every slice of the unit ball of (X∗)U defined
by (φi) has diameter greater or equal than 2 − ε0 (recall that Re (φi)[(xi)] = 1).
Hence, (φi) does not strongly expose (xi), a contradiction. �

As a consequence of the above theorem and Theorem 3.2, we obtain the following.

Corollary 5.7. Let X be a real or complex JBW ∗-triple and let U be a free ul-
trafilter on a set I. Then, the unit ball of (X∗)U have extreme points if and only if
BX∗ does.

As a consequence of Theorems 3.2, 5.2 and 5.6, we obtain

Corollary 5.8. Let X∗ be the predual of a real or complex JBW ∗-triple X. Then,
X∗ has the uniform Daugavet property if and only if X does.

It is worth mentioning that it is not known whether the uniform Daugavet prop-
erty passes from the dual of a Banach space to the space.

Remark 5.9. The proof of Theorem 5.6 can be straightforwardly adapted to show
that the ultraproduct of a family of preduals of JBW ∗-triples with the Daugavet
property also has the Daugavet property. Therefore, Corollary 5.7 can be also
adapted to show that the unit ball of the ultraproduct of a family of preduals of
JBW ∗-triples has no extreme points, provided that the unit ball of each factor does
not have any extreme point.

It is worth mentioning that Corollary 5.7 can not be stated for general Banach
spaces, as the following example shows.

Example 5.10. There exists a Banach space X whose unit ball does not have any
extreme point and a free ultrafilter U on N such that the unit ball of XU has an
extreme point [22, Example 2.14].

Let us comment a particular case in which the conclusion of Corollary 5.7 can
be easily stated.

Remark 5.11. Let X be a Banach space. Suppose that there exists δ > 0 such
that for every x ∈ SX , there is y ∈ X with ‖y‖ > δ such that ‖x ± y‖ 6 1 (in
particular, BX has no extreme points). Then, for every free ultrafilter U on a set
I, the unit ball of XU does not have any extreme point. Indeed, let (xi) be a
norm-one element of XU , which we can suppose to satisfy ‖xi‖ = 1 for every i.
Then, for every i ∈ I, take yi ∈ X with ‖yi‖ > δ and ‖xi ± yi‖ 6 1. If we consider
(yi) ∈ XU , then

‖(yi)‖ > δ and ‖(xi)± (yi)‖ 6 1.

Therefore, (xi) is not an extreme point of the unit ball of XU .

It is easy to show that the above situation is fulfilled by L1[0, 1] with δ = 1.

Example 5.12. For every f ∈ L1[0, 1] with ‖f‖1 = 1, there is g ∈ L1[0, 1] with
‖g‖1 = 1 and such that ‖f ± g‖1 = 1. Indeed, up to an isometric isomorphism, we
can suppose f(t) > 0 for every t ∈ [0, 1] and, by continuity, we can find t0 ∈]0, 1[
such that ∫ t0

0

f(t) dt =
∫ 1

t0

f(t) dt =
1
2
.
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Then, if we consider g = f (χ[0,t0]−χ[t0,1]) ∈ L1[0, 1], we clearly have ‖g‖1 = 1 and

‖f ± g‖1 =
∫ t0

0

(
f(t)± f(t)

)
dt +

∫ 1

t0

(
f(t)∓ f(t)

)
dt

=
(

1
2
± 1

2

)
+

(
1
2
∓ 1

2

)
= 1

Actually, a very similar result (with δ arbitrarily closed to 1) can be stated for
every L1(µ) if µ does not have any atom.

For the sake of completeness, we finish the paper by summarizing the results of
the present section in terms of C∗-algebras and preduals of W ∗-algebras.

Corollary 5.13.

(a) The ultraproduct of every family of real or complex C∗-algebras with the
Daugavet property also has the Daugavet property. In particular, the Dau-
gavet and the uniform Daugavet property are equivalent for real or complex
C∗-algebras.

(b) The ultrapower of a real or complex C∗-algebra has atomic projections if
and only if the algebra does.

(c) The ultraproduct of every family of preduals of real or complex W ∗-algebras
with the Daugavet property also has the Daugavet property. In particular,
the Daugavet and the uniform Daugavet property are equivalent for preduals
of real or complex W ∗-algebras.

(d) Let X∗ be the predual of a real or complex W ∗-algebra X. Then, X∗ has
the uniform Daugavet property if and only if X does.

(e) Let Y be the predual of a real or complex W ∗-algebra. Then, BY has an
extreme point if and only if the unit ball of every ultrapower of Y does.
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