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Abstract. We introduce a strictly weaker version of the Daugavet property
as follows: a Banach space X has this alternative Daugavet property (ADP in

short) if the norm identity

(aDE) max
|ω|=1

‖Id + ωT‖ = 1 + ‖T‖

holds for all rank-one operators T : X → X. In such a case, all weakly compact
operators on X also satisfy (aDE). We give some geometric characterizations

of the alternative Daugavet property in terms of the space and its successive

duals. We prove that the ADP is stable for c0-, l1- and l∞-sums and charac-
terize when some vector-valued function spaces have the property. Finally, we

show that a C∗-algebra (or the predual of a von Neumann algebra) has the

ADP if and only if its atomic projection (resp. the atomic projection of the al-
gebra) are central. We also establish some geometric properties of JB∗-triples,

and characterize JB∗-triples possessing the ADP and the Daugavet property.

1. Introduction

Given a real or complex Banach space X, we write X∗ for the dual space and
L(X) for the Banach algebra of bounded linear operator on X.

We say that a Banach space X has the Alternative Daugavet Property (ADP in
short), if the norm identity

(aDE) max
|ω|=1

‖Id + ωT‖ = 1 + ‖T‖

holds for all rank-one operators T ∈ L(X). We will prove later that, in this case,
actually all weakly compact operators on X satisfy (aDE) (see Theorem 2.2). It is
clear that a Banach space X has the ADP whenever X∗ has, but we shall show in
this paper that the reverse result does not hold (see Remark 4.4).

The definition of the ADP is certainly related to the so called Daugavet prop-
erty. A Banach space X has the Daugavet property [24] if every rank-one operator
T : X → X satisfies the norm equality

(DE) ‖Id + T‖ = 1 + ‖T‖,
which has become known as the Daugavet equation. In this case, all weakly compact
operators on X also satisfy (DE) [24, Theorem 2.3]. Therefore, this definition of
Daugavet property coincides with the one that appeared in [3]. It is a remarkable
result due to I. Daugavet [10] that all compact operators on C[0, 1] satisfy (DE).
Over the sixties, seventies and eighties, the validity of the Daugavet equation was
proved for some classes of operators on various spaces by Y. Abramovich [1], C. Foias
and I. Singer [15], J. Holub [19, 20], G. Lozanovskii [33], and others (see [2, 3, 43] for
a detailed account of the subject). Let us state that all weakly compact operators
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on C(K) or L1(µ) satisfy (DE) whenever K is a perfect compact space and µ is
an atomless positive measure. In the nineties, new ideas were infused into the field
by many papers (for instance, [2, 3, 23, 24, 38, 41, 44, 46]). The state-of-the-art
information on the Daugavet Property can be found in the survey paper [45].

Observe that equation (aDE) for an operator T just means that there exists
a modulus-one scalar ω such that ωT satisfies (DE). Therefore, the Daugavet
property implies the ADP.

On the other hand, let us mention that equation (aDE) appears in several of the
above cited papers, as [1, 2, 19, 20, 43]. In these papers it is proved that (aDE) is
satisfied by all T ∈ L(X) whenever X = C(K) or X = L1(µ). Actually, this result
appeared in the 1970 paper [13, pp. 483], where the equation (aDE) is related to a
constant introduced by G. Lumer in 1968, the numerical index of a Banach space.
Let us give the necessary definitions. Given an operator T ∈ L(X), the numerical
range of T is the subset of the scalar field

V (T ) = {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}.

The numerical radius is the seminorm defined on L(X) by

v(T ) = sup{|λ| : λ ∈ V (T )}

for each T ∈ L(X). The numerical index of the space X is defined by

n(X) = inf{v(T ) : T ∈ SL(X)},

or, equivalently, the greatest constant k > 0 such that k‖T‖ 6 v(T ) for all
T ∈ L(X). We can find in the literature many examples of Banach spaces whose
numerical indices have been computed. For instance, if H is a Hilbert space of
dimension greater than 1, n(H) = 0 in the real case and n(H) = 1/2 in the com-
plex case; the numerical index of a C∗-algebra A is equal to 1 or 1/2 depending on
whether or not A is commutative; n(X) = 1 whenever X = L1(µ) or X∗ = L1(µ)
for any positive measure µ. For more information and background, we refer the
interested reader to the monographs by F. Bonsall and J. Duncan [7, 8] and to the
survey paper [35]. Recent results can be found in [14, 26, 32, 36, 37].

In [13], it was shown that, given T ∈ L(X),

max
|ω|=1

‖Id + ωT‖ = 1 + ‖T‖ ⇐⇒ v(T ) = ‖T‖.

In particular, a Banach space X has numerical index 1 if and only if (aDE) is
satisfied by all bounded operators on X. It is also true that

‖Id + T‖ = 1 + ‖T‖ ⇐⇒ supRe V (T ) = ‖T‖.

Therefore, X has the Daugavet property if and only if supRe V (T ) = ‖T‖ for all
rank-one operators T ∈ L(X). We shall prove these facts later in the paper (see
Lemma 2.3).

We have shown that a Banach space X has the ADP if it has the Daugavet
property or n(X) = 1. The reversed results are not true in general. For instance,
X = c0⊕1C([0, 1], l2) has the ADP but it does not have the Daugavet property, nor
does it have numerical index 1 (see Example 3.2 for details). On the other hand, for
spaces having the RNP and for Asplund spaces, the alternative Daugavet property
and the numerical index 1 coincide (see Remark 2.4). No similar result can be
expected for the Daugavet property. Indeed, by Corollary 3.3, every Banach space
with the ADP can be renormed to still have the ADP, but to fail the Daugavet
property.

The outline of the paper is as follows.
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In Section 2 we give some geometric characterizations of the ADP in terms
of the space and its successive duals, analogous to those given in [24, 45] for the
Daugavet property. We use these characterizations to prove that all weakly compact
operators on a space with the ADP satisfy (aDE). We then clarify the relationship
between numerical ranges of operators and the equations (DE) and (aDE), and use
this result to get new geometric characterizations of the ADP and the Daugavet
property. Finally, some isomorphic implications of the ADP are established.

Section 3 is devoted to the study of the stability properties of the ADP. We show
that the c0-, l1- or l∞-sum of a family of Banach spaces has the ADP if and only if
all the summands have. For spaces of vector-valued functions we have the following
results. Let K be a compact Hausdorff space, let µ be a positive measure and let
X be a Banach space. Then, C(K, X) (resp. L1(µ,X)) has the ADP if and only
if X has or K is perfect (resp. µ is atomless). If µ is σ-finite, then L∞(µ,X) has
the ADP if and only if X has or µ is atomless. Also, we present examples showing
that these results cannot be extended to arbitrary injective or projective tensor
products. At the end of the section, we discuss the stability properties of the ADP
for M -ideals.

Finally, Section 4 is devoted to the characterization of the C∗-algebras possessing
the ADP. We will prove that a C∗-algebra has the ADP if and only if its atomic
projections are central. Moreover, the predual of a von Neumann algebra A has the
ADP if and only if A has it; in such a case, A can be written as the l∞-sum of a
non-atomic von Neumann algebra and a commutative von Neumann algebra (i.e.,
the l∞-sum of a Banach space with the Daugavet property and a Banach space
with numerical index 1). We also show that such decomposition is not possible for
arbitrary C∗-algebras. To obtain these results, we actually work with the concept
of a JB∗-triple, an algebraic structure which generalizes C∗-algebras and JB∗-
algebras. The necessary definitions and basic results are presented in Section 4.
We deduce the above results from a characterization of the JB∗-triples possessing
the ADP. We also prove a characterization of the Daugavet property for JB∗-triples.

Throughout the paper, the symbols BX and SX denote, respectively, the closed
unit ball and the unit sphere of a Banach space X. For a subset A of X, we
write co(A) for the convex hull of A and co(A) for the closed convex hull. The
absolutely (resp. absolutely closed) convex hull of A is then co(TA) (resp. co(TA)),
where T denotes the set of modulus-one scalars, that is, T = {−1, 1} for real spaces
and T = {ω ∈ C : |ω| = 1} for complex spaces. We use ex(B) to denote the
set of extreme points of the convex set B. Finally, if x∗ ∈ X∗, x∗∗ ∈ X∗∗, we
write x∗ ⊗ x∗∗ for the element of L(X)∗ given by [x∗ ⊗ x∗∗](T ) = x∗∗(T ∗x∗) for all
T ∈ L(X).

Acknowledgment: Part of this work was done while the first author visited
the University of California at Irvine in November, 2001. He wants to thank the
Department of Mathematics for the hospitality and partial support. Both authors
want to express their gratitude to Remo Hugli, Rafael Payá, Ángel Rodŕıguez-
Palacios, Bernard Russo, and Armando Villena for valuable suggestions.

2. Geometric characterizations and basic properties

Since the ADP is some kind of hybrid between the Daugavet property and the
numerical index 1, it is natural that results on both topics can be carried to the
ADP. This is the case, for instance, for some geometric characterizations of the
Daugavet property given in [24, 45]. Some notation is required. A slice of BX is a
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set of the form
S(x∗, α) = {x ∈ BX : Re x∗(x) > 1− α},

where x∗ ∈ SX∗ and α > 0. If X is a dual space and x∗ is taken from the predual,
then S(x∗, α) is called a w∗-slice. For x ∈ SX , we write

∆ε(x) = {y ∈ BX : ‖x− y‖ > 2− ε}.

Proposition 2.1. Let X be a Banach space. Then, the following are equivalent.

(i) X has the alternative Daugavet property.
(ii) For all x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0, there is some x ∈ SX such that

Re x∗0(x) > 1− ε and max
|ω|=1

‖x + ωx0‖ > 2− ε.

(ii∗) For all x0 ∈ SX , x∗0 ∈ SX∗ and ε > 0, there is some x∗ ∈ SX∗ such that
Re x∗(x0) > 1− ε and max

|ω|=1
‖x∗ + ωx∗0‖ > 2− ε.

(iii) For any slice S = S(x∗0, α0) of BX , x0 ∈ SX and ε > 0, there exists a point
x ∈ S such that max

|ω|=1
‖x + ωx0‖ > 2− ε.

(iii∗) For any w∗-slice S∗ = S(x0, α0) of BX∗ , x∗0 ∈ SX∗ and ε > 0, there is
some x∗ ∈ S∗ such that max

|ω|=1
‖x∗ + ωx∗0‖ > 2− ε.

(iv) For any slice S = S(x∗0, α0) of BX , x0 ∈ SX and ε > 0, there exists a slice
of BX S1 ⊆ S such that max

|ω|=1
‖x + ωx0‖ > 2− ε for all x ∈ S1.

(iv∗) For any w∗-slice S∗ = S(x0, α0) of BX∗ , x∗0 ∈ SX∗ and ε > 0, there exists
a w∗-slice S∗1 of BX∗ contained in S∗ such that max

|ω|=1
‖x∗ + ωx∗0‖ > 2 − ε

for all x∗ ∈ S∗1 .
(v) BX = co

(
T∆ε(x)

)
for every x ∈ SX and every ε > 0.

(v∗) BX∗ = cow∗
(
T∆ε(x∗)

)
for every x∗ ∈ SX∗ and every ε > 0.

The proof is a straightforward adaptation of those given in [24, Lemma 2.1] and
[45, Corollary 2.3], so we omit it. Using this result, we can prove an analogue of
[24, Theorem 2.3].

Theorem 2.2. If a Banach space X has the ADP, then (aDE) holds for all weakly
compact operators.

The proof is based on the one given in [24, Theorem 2.3] for the Daugavet
property. We include it for the sake of completeness. Actually, the proof works
equally well for strong Radon-Nikodým operators, that is, operators T ∈ L(X)
such that T (BX) is a Radon-Nikodým set.

Proof. Let T ∈ L(X) be weakly compact with ‖T‖ = 1. Then, the set K = T (BX)
is weakly compact and, therefore, it coincides with the closed convex hull of its
denting points. Given ε > 0, take a denting point y0 ∈ K with ‖y0‖ > 1− ε. Then,
for some 0 < δ < ε there is a slice S = {y ∈ K : Re y∗0(y) > 1−δ} of K containing
y0 and having diameter less than ε; here y∗0 ∈ X∗ and supy∈K y∗0(y) = 1. If we
write x∗0 = T ∗y∗0 , then ‖x∗0‖ = 1 and

x ∈ BX , Re x∗0(x) > 1− δ =⇒ ‖Tx− y0‖ < ε.

Now, we use (ii) in Proposition 2.1 to get x ∈ SX and ω ∈ T such that

Re x∗0(x) > 1− δ and
∥∥x + ωy0/‖y0‖

∥∥ > 2− ε.

Then ‖Tx− y0‖ < ε and ‖x + ωy0‖ > 1− 2ε, so

‖Id + ωT‖ > ‖x + ωTx‖ > ‖x + ωy0‖ − ‖ωy0 − ωTx‖ > 2− 3ε.

Letting ε ↓ 0, we conclude that T satisfies (aDE). �
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On the other hand, some numerical range techniques can be used to study the
ADP. We need two lemmas. The first one clarifies the relationship between numer-
ical ranges and the equations (DE) and (aDE) cited in the introduction. Although
it is essentially known, we include a proof for the sake of completeness. The second
lemma is a new result on numerical radius of operators, which can be of independent
interest.

Lemma 2.3. Let X be a Banach space and T ∈ L(X). Then:

(a) T satisfies (DE) if and only if supRe V (T ) = ‖T‖.
(b) T satisfies (aDE) if and only if v(T ) = ‖T‖.

Therefore, X has the Daugavet property (resp. the ADP) if and only if all rank-one
operators T ∈ L(X) satisfy supRe V (T ) = ‖T‖ (resp. v(T ) = ‖T‖).

Proof. The result follows easily from the fact given in [6] and [34] (see [7, §9]) that

(1) supRe V (T ) = lim
α→0+

‖Id + αT‖ − 1
α

.

Indeed, if supRe V (T ) = ‖T‖, since the function α 7−→ ‖Id + αT‖ is convex, the
limit in (1) is an infimum, so

‖Id + T‖ − 1 > supRe V (T ) = ‖T‖

and T satisfies (DE). Conversely, if (DE) holds for T , then it also holds for αT for
every α > 0 (see [3, Lemma 2.1]). Then, (1) implies that supRe V (T ) = ‖T‖. This
gives us (a). To prove (b), we just use the facts that v(T ) = v(ωT ) for every ω ∈ T
and that v(T ) = max

|ω|=1
supRe V (ωT ). �

Remark 2.4. By Theorem 2.2 and Lemma 2.3, the statements “X has the ADP”
and “n(X) = 1” are equivalent if X is reflexive. In fact, by [32, Remark 6], these
two statements are equivalent if X satisfies the RNP or if X is an Asplund space.
In general, a space with the ADP need not have numerical index 1. For instance,
X = C([0, 1],H) (H is a Hilbert space of dimension greater than one) satisfies the
Daugavet property (see [24]) and hence the ADP, but n(X) = n(H) < 1 by [36,
Theorem 5].

Lemma 2.5. Let X be a Banach space and let

B = {x∗ ⊗ x∗∗ : x∗ ∈ ex (BX∗) , x∗∗ ∈ ex (BX∗∗) , x∗∗(x∗) = 1}.

Then, for every T ∈ L(X), we have

(a) v(T ) = sup {|x∗∗(T ∗x∗)| : x∗ ⊗ x∗∗ ∈ B},
(b) supRe V (T ) = sup {Re x∗∗(T ∗x∗) : x∗ ⊗ x∗∗ ∈ B}.

Proof. It is well known that

co
(
V (T )) = {ϕ(T ) : ϕ ∈ L(X)∗, ‖ϕ‖ = ϕ(Id) = 1}

(see [7, Theorem 9.4], for example). By [29, Theorem 8], we have

{ϕ ∈ L(X)∗ : ‖ϕ‖ = ϕ(Id) = 1} = cow∗(B),

so the result follows easily. �

The first result on the ADP proved by using numerical range techniques is a new
geometric characterization. We write X ⊕1 Y (resp. X ⊕∞ Y ) for the l1-sum (resp.
l∞-sum) of the spaces X and Y .
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Proposition 2.6. Let X be a Banach space. Then X has the ADP if and only if
BX∗⊕∞X∗∗ = cow∗(Γ), where

Γ =
{
(x∗, x∗∗) : x∗ ∈ ex (BX∗) , x∗∗ ∈ ex (BX∗∗) , |x∗∗(x∗)| = 1

}
.

Proof. Write Y = X⊕1X
∗, so Y ∗ = X∗⊕∞X∗∗. The assumption of the proposition

is clearly equivalent to ‖y0‖ = sup{|y∗(y0)| : y∗ ∈ Γ} for all y0 ∈ Y , that is,

(2) ‖x0‖+ ‖x∗0‖ = sup
{
|x∗(x0) + x∗∗(x∗0)| : (x∗, x∗∗) ∈ Γ

}
for all x0 ∈ X, x∗0 ∈ X∗. Suppose first that X has the ADP. Given x0 ∈ X and
x∗0 ∈ X∗, we consider the rank-one operator T ∈ L(X), Tx = x∗0(x)x0 for all x ∈ X.
By Lemma 2.3, v(T ) = ‖T‖ = ‖x0‖ ‖x∗0‖ so, for every ε > 0, Lemma 2.5.(a) gives
us a pair (x∗, x∗∗) ∈ Γ such that

(1− ε)‖x0‖ ‖x∗0‖ 6 |x∗∗(T ∗x∗)| = |x∗∗(x∗0)| |x∗(x0)|.
By choosing suitable ω1, ω2 ∈ T, we get

Re ω1 x∗(x0) = |x∗(x0)| > (1− ε)‖x0‖
Re ω2 x∗∗(x∗0) = |x∗∗(x∗0)| > (1− ε)‖x∗0‖.

Now, (ω1x
∗, ω2x

∗∗) ∈ Γ and∣∣ω1x
∗(x0) + ω2x

∗∗(x∗0)
∣∣ > (1− ε)

(
‖x0‖+ ‖x∗0‖

)
.

Conversely, take a rank-one operator T ∈ L(X), which has the form

Tx = x∗0(x)x0 (x ∈ X),

where x0 ∈ X and x∗0 ∈ X∗. By using (2), for every ε > 0 we may find (x∗, x∗∗) ∈ Γ
such that

|x∗(x0) + x∗∗(x∗0)| >
(
‖x0‖+ ‖x∗0‖

)
− ε.

Therefore,

|x∗(x0)| > ‖x0‖ − ε and |x∗∗(x∗0)| > ‖x∗0‖ − ε,

and Lemma 2.5.(a) gives us that

v(T ) > |x∗∗(T ∗x∗)| = |x∗∗(x∗0)| |x∗(x0)| > (‖x∗0‖ − ε)(‖x0‖ − ε).

Letting ε ↓ 0, we have v(T ) > ‖x∗0‖ ‖x0‖ = ‖T‖. Thanks to Lemma 2.3, this means
that T satisfies (aDE). �

The above argument can be adapted to get a new geometric characterization of
the Daugavet property.

Proposition 2.7. Let X be a Banach space. Then X has the Daugavet property
if and only if BX∗⊕∞X∗∗ = cow∗(Υ), where

Υ =
{
(x∗, x∗∗) : x∗ ∈ ex (BX∗) , x∗∗ ∈ ex (BX∗∗) , x∗∗(x∗) = 1

}
.

Proof. The result follows by repeating the proof of Proposition 2.6 using part (b)
of Lemma 2.5 and real parts instead of modulus. �

Let us mention that we do not know of any characterization of Banach spaces
with numerical index 1 in terms of the space and its successive duals, without using
operators.

To finish the section, we show that not every Banach space can be renormed to
have the ADP. In [32, Theorem 3], it is proved that if X is an infinite-dimensional
real Banach space with n(X) = 1, then X ⊇ l1 if X has the RNP and X∗ ⊇ l1 if
X is an Asplund space. But spaces with RNP and Asplund spaces have numerical
index 1 when they have the ADP. Inspecting the proofs, one realizes that the
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condition n(X) = 1 was only used to show that ‖T‖ = v(T ) for rank 1 T ∈ L(X),
and the RNP (resp. Asplund assumption) is only needed to get infinitely many
denting (resp. w∗-denting) points. This implies:

Remark 2.8. Let X be an infinite-dimensional real Banach space with the ADP.

(a) If the set of denting points of BX is infinite, then X ⊃ c0 or X ⊃ l1.
(b) If the set of w∗-denting points of BX∗ is infinite, then X∗ ⊃ l1.

Consequently, any real Banach space X for which X∗∗/X is separable fails the ADP
(by [12, page 219], X∗ and X∗∗ have the RNP whenever X∗∗/X is separable).

3. Stability properties

Our first goal in this section is to show that the ADP is stable by c0-, l1-, and
l∞-sums. Given an arbitrary family {Xλ : λ ∈ Λ} of Banach spaces, we denote
by [⊕λ∈ΛXλ]c0

(resp. [⊕λ∈ΛXλ]l1 , [⊕λ∈ΛXλ]l∞) the c0-sum (resp. l1-sum, l∞-sum)
of the family. For infinite countable sums of copies of a space X we write c0(X),
l1(X) or l∞(X).

Proposition 3.1. Let {Xλ : λ ∈ Λ} be a family of Banach spaces and let Z be the
c0-, l1- or l∞-sum of the family. Then Z has the ADP if and only if Xλ has the
ADP for every λ ∈ Λ.

Proof. We start by proving that Xλ has the ADP when Z has, and we first work
with the c0- or l∞-sums. In both cases, we can write Z = Xλ ⊕∞ Y for suitable
Y . Now, we fix a rank-one operator S ∈ L(Xλ) with ‖S‖ = 1 and 0 < ε < 1. Let
T ∈ L(Z) be the operator given by T (x, y) = (Sx, 0) for all (x, y) ∈ Z. Then T is
a rank-one operator with ‖T‖ = 1. The ADP of Z gives us x ∈ BXλ

, y ∈ BY and
ω1 ∈ T such that

max{‖x + ω1 Sx‖, ‖y‖} = ‖(x, y) + ω1 T (x, y)‖ > 2− ε.

But ‖y‖ 6 1 < 2− ε, so

max
|ω|=1

‖Id + ωS‖ > ‖x + ω1 Sx‖ > 2− ε.

Letting ε ↓ 0, we get that S satisfies (aDE) and Xλ has the ADP. The argument
for the l1-sum is the same, using that T ∗ satisfies the (aDE).

The proof for the converse result can be easily adapted from the one given in
[46, Theorem 1]. �

We can now easily obtain examples of Banach spaces with the ADP which do
not have the Daugavet property and whose numerical index is not 1.

Example 3.2. Let X = c0 ⊕1 C([0, 1], l2). Then X has the ADP since n(c0) = 1
and C([0, 1], l2) has the Daugavet property. But, on one hand, n(X) = n(l2) < 1
by [36, Proposition 1 and Theorem 5] and, on the other hand, X does not have the
Daugavet property since c0 does not have it.

Another consequence of Proposition 3.1 is that it is not possible to find an
isomorphic property which ensures that the ADP and the Daugavet property are
equivalent.

Corollary 3.3. Let X be a Banach space with the ADP. Then there exists a Banach
space Y isomorphic to X such that Y has the ADP but not the Daugavet property.
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Proof. If X fails the Daugavet property, we are done. So, suppose that X has the
Daugavet property and take a one-dimensional subspace Z of X. Then X = Z⊕W
for suitable W . Let Y = Z⊕∞W , which is clearly isomorphic to X. Now n(Z) = 1
and W has the Daugavet property by [24, Theorem 2.14], so Y has the ADP by
Proposition 3.1. But, since Y has a finite-dimensional M -summand, Y does not
have the Daugavet property by [24, Proposition 2.10]. �

Proposition 3.1 also implies that the space c0(X) (respectively, l1(X) or l∞(X))
has the ADP if and only if X has the ADP. This result cannot be extended to
arbitrary vector-valued functions spaces. Indeed, `22 does not have the ADP, since
n(`22) < 1. However, C([0, 1], `22), L1([0, 1], `22), and L∞([0, 1], `22) have the Daugavet
property (see [24, 37]) and hence the ADP.

Let us recall some notation. Given a compact Hausdorff space K and a Banach
space X, we write C(K, X) for the Banach space of all continuous functions from
K into X, endowed with the supremum norm. If (Ω,Σ, µ) is a positive measure
space, L1(µ, X) is the Banach space of all Bochner-integrable functions f : Ω → X
with

‖f‖1 =
∫

Ω

‖f(t)‖ dµ(t).

If µ is σ-finite, then L∞(µ,X) stands for the space of all essentially bounded
Bochner-measurable functions f from Ω into X, endowed with its natural norm

‖f‖∞ = inf{λ > 0 : ‖f(t)‖ 6 λ a.e.}.

We refer to [12] for background.

The following result describes vector-valued function spaces with the ADP in a
manner similar to the description of function spaces with the Daugavet property
in [36, Remarks 6 and 9] and [37, Theorem 5]. The proofs are straightforward
adaptations of the ones given there, so we omit them.

Theorem 3.4. Let X be a Banach space, K a compact Hausdorff space and µ a
positive measure. Then:

(a) C(K, X) has the ADP if and only if K is perfect or X has the ADP.
(b) L1(µ,X) has the ADP if and only if µ is atomless or X has the ADP.
(c) If µ is σ-finite, then L∞(µ,X) has the ADP if and only if µ is atomless or

X has the ADP.

Recall that C(K, X) = C(K) ⊗ε X and L1(µ,X) = L1(µ) ⊗π X where ⊗ε and
⊗π denote, respectively, the injective and projective tensor products. So, one may
ask if (i) and (ii) in the above theorem might be special cases of a general result for
tensor products. But [36, Example 10] shows that this is not the case. Indeed, let
X = l41 and Y = l4∞, that is, the real four-dimensional l1 and l∞ spaces respectively.
As n(X ⊗ε X) < 1, n(Y ⊗π Y ) < 1, and X ⊗ε X, Y ⊗π Y are finite-dimensional,
neither X ⊗ε X nor Y ⊗π Y has the ADP, in spite of the fact that X, Y , X ⊗π X,
and Y ⊗ε Y have it.

Let us mention that in [23, §4] there are some negative results on the stability
of the Daugavet property for injective or projective tensor products. The authors
prove that there exists a two-dimensional complex space Y such that LC

1 [0, 1]⊗ε Y
and LC

∞[0, 1]⊗πY ∗ do not satisfy the Daugavet property, in contrast to the fact that
the complex spaces LC

1 [0, 1] and LC
∞[0, 1] have it [23, Theorem 4.2 and Corollary 4.3].

We finish this section by proving some results on the stability of the ADP by
M -ideals. Recall that a closed subspace J of a Banach space X is called an M -ideal
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in X if X∗ = Y ⊕1J⊥ for some Banach space Y (here J⊥ = {x∗ ∈ X∗ : x∗|J = 0}).
In this case, {x∗|J : x∗ ∈ Y } is isometric to J∗, and X∗ = J∗ ⊕1 J⊥ ([18], p. 11).

Proposition 3.5. Suppose J is an M -ideal in a Banach space X.

(a) If both J and X/J have the (alternative) Daugavet property, then X has
the (alternative) Daugavet property.

(b) If X has the (alternative) Daugavet property, then so does J .

Proof. We shall consider only the alternative Daugavet property. The Daugavet
part of the proposition was established in [24], via a different technique. Below, we
shall denote by Γ(Z) the set appearing in Proposition 2.6 for a Banach space Z,
that is, the set of of all pairs (z∗, z∗∗) where z∗ ∈ ex (BZ∗), z∗∗ ∈ ex (BZ∗∗), and
|z∗∗(z∗)| = 1.

(a) We can write X∗ = Y ⊕1 J⊥, with Y isometric to J∗. Then, Γ(X) is the
collection of points of the form

(a∗1 ⊕1 0)⊕∞ (a∗∗1 ⊕∞ a∗∗2 ) and (0⊕1 a∗2)⊕∞ (a∗∗1 ⊕∞ a∗∗2 ),

where a∗1, a∗2, a∗∗1 , and a∗∗2 are extreme points of BY , BJ⊥ , BY ∗ , and BJ⊥∗ respec-
tively, for which |a∗∗1 (a∗1)| = |a∗∗2 (a∗2)| = 1. By Proposition 2.6, it suffices to show
that, for x∗1 ∈ SY , x∗2 ∈ SJ⊥ , x∗∗1 ∈ SY ∗ , and x∗∗2 ∈ SJ⊥∗ , (x∗1⊕1 0)⊕∞ (x∗∗1 ⊕∞ x∗∗2 )
and (0⊕1 x∗2)⊕∞ (x∗∗1 ⊕∞ x∗∗2 ) belong to cow∗(Γ(X)).

Since J has the ADP, Proposition 2.6 says that there exists a net
{
(b∗α, b∗∗α )

}
in the convex hull of Γ(J), converging to (x∗1, x

∗∗
1 ) in the σ(J∗ ⊕∞ J∗∗, J ⊕1 J∗)

topology. In other words, {b∗α} converges to x∗1 in σ(J∗, J), and {b∗∗α } converges to
x∗∗1 in σ(J∗∗, J∗). By [18, Remark I.1.13], BJ is σ(X, J∗) dense in BX , hence the net
{b∗α} converges to x∗1 in σ(X∗, X). Combining this with Krein-Milman Theorem,
we see that (x∗1 ⊕1 0) ⊕∞ (x∗∗1 ⊕∞ x∗∗2 ) belongs to the σ(X∗ ⊕∞ X∗∗, X ⊕1 X∗)
closure of the convex hull of Γ(X).

The case of (0⊕1 x∗2)⊕∞ (x∗∗1 ⊕∞ x∗∗2 ) is dealt with in the same way, except that
here we simply observe that, whenever a net {b∗α} converges to x∗2 in σ(J⊥, X/J),
then it also converges in σ(J⊥, X).

(b) Suppose x∗ ∈ J∗, x∗∗ ∈ J∗∗, and ‖x∗‖ = ‖x∗∗‖ = 1. Another application
of Proposition 2.6 shows that there exists a net

{
x∗α ⊕∞ x∗∗α

}
in the convex hull of

Γ(X), converging to x∗ ⊕∞ x∗∗ in the weak∗ topology. We can write

x∗α ⊕∞ x∗∗α =
M(α)∑
i=1

cαi(y∗αi ⊕1 0)⊕∞ (y∗∗αi1 ⊕∞ y∗∗αi2)+

+
N(α)∑
j=1

dαj(0⊕1 z∗αj)⊕∞ (z∗∗αj1 ⊕∞ z∗∗αj2),

where cαi, dαj > 0,
∑

i cαi +
∑

j dαj = 1, y∗αi ∈ J∗, z∗αj ∈ J⊥, y∗∗αi1, z
∗∗
αj1 ∈ J∗∗,

y∗∗αi2, z
∗∗
αj2 ∈ J⊥∗, and |y∗∗αi1(y

∗
αi)| = |z∗∗αj2(z

∗
αj)| = 1. We identify x∗ ⊕∞ x∗∗ with

(x∗⊕10)⊕∞ (x∗∗⊕∞0). Then, the net
{∑

j dαjz
∗
αj

}
converges to 0 in the σ(J⊥, X)

topology. Since J is a subspace of X, the net {
∑

i cαiy
∗
αi} converges to x∗ in the

σ(J∗, J) topology. Since we assume that ‖x∗‖ = 1, limα

∑
i cαi = 1, and therefore,

limα

∑
j dαj = 0. Thus, limα ‖

∑
j dαjz

∗∗
αj1‖ = 0, and the net

∑
i cαiy

∗∗
αi1 converges

to x∗∗ in the σ(X∗∗, X∗) topology, hence also in the σ(J∗∗, J∗) topology. By the
above, the net

∑M(α)
i=1 cαiy

∗
αi⊕∞y∗∗αi1 converges in the σ(J∗⊕∞J∗∗, J⊕1J

∗) topology
to x∗ ⊕ x∗∗. �
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Remark 3.6. A quotient of a space with the ADP by an M -ideal need not have
the ADP. Indeed, consider the C∗-algebra X = C([0, 1],M2) (here M2 = L(l22) is
the space of 2× 2 matrices). By Theorem 3.4, X has the ADP (in fact, X has the
Daugavet property). J = {f ∈ X : f(1/2) = 0} is a closed two-sided ideal in X,
hence, by [18, Theorem V.4.4], it is an M -ideal in X. However, M2 = X/J fails the
ADP. Indeed, M2 is finite-dimensional so it has the ADP if and only if n(M2) = 1,
but this is not the case because it is a noncommutative C∗-algebra (see [26]).

4. C∗-algebras and JB∗-triples

The main goal of this section is to prove the following two results. A definition
is needed: if A is a C∗-algebra, a non-zero projection p ∈ A is called atomic (or
minimal) if pAp = p C.

Theorem 4.1. A C∗-algebra has the alternative Daugavet property if and only if
all of its atomic projections are central.

Theorem 4.2. The predual A∗ of a von Neumann algebra A has the ADP if and
only if the algebra A has.

From these theorems, we are able to get two nice consequences.

Corollary 4.3. Let A be a von Neumann algebra having the ADP. Then, there
exists a commutative von Neumann algebra C and a non-atomic von Neumann
algebra N such that A = C ⊕∞ N . Moreover, n(C) = 1 and N has the Daugavet
property.

Proof. It is known (see e.g. Chapter 6 of [25]) that a von Neumann algebra A can be
written as A = B⊕∞N , where N is a non-atomic von Neumann algebra and B is the
weak∗-closure of its atomic projections. By [38, Theorem 2.1], N has the Daugavet
property, so it has the ADP. Therefore, by Proposition 3.1, A has the ADP if and
only if B has. But, thanks to Theorem 4.1 and B being the weak∗-closure of its
atomic projections, B has the ADP if and only if it is commutative. �

We will prove later (Remark 4.9) that no such decomposition is possible for
general C∗-algebras.

The second consequence is an example showing that the ADP does not pass from
the space to the dual. The existence of such an example is known for the Daugavet
property (C[0, 1], see [24]) and it is an open problem for the numerical index (see
[35]).

Example 4.4. Consider the (non-commutative) CAR C∗-algebra U (see e.g. Chap-
ter III of [11] for the definition). Since U has no atomic projections, it has the
Daugavet property (and hence the ADP) by [38, Theorem 2.1]. On the other hand,
U∗∗ is a non-commutative von Neumann algebra. By Theorems I.9.6 and I.9.8 of
[11], U has a non-commutative faithful representation. Therefore, by Proposition
III.6.36 of [42], U∗∗ contains as an M -summand a non-commutative von Neumann
algebra which is the weak∗ closed span of its atomic projections (see [16] for a gen-
eralization of this result). Thus, U∗ and U∗∗ fail the ADP by Proposition 3.1 and
Theorems 4.1 and 4.2.

We will deduce the proofs of Theorems 4.1 and 4.2 from the corresponding ones
for JB∗-triples. The so-called JB∗-triples are certain normed Jordan triple systems
which have been studied because of their connection to bounded symmetric domains
in Banach spaces and to C∗-algebras. JB∗-triples generalize Jordan C∗-algebras
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and, therefore, also C∗-algebras. A brief introduction into JB∗-triples is given
below. Interested readers are referred to [30, 31, 39, 40] for further information
about this class of objects. Additional references will be given in the text.

A JB∗-triple is a complex Banach space U equipped with a triple product
(a, b, c) 7−→ {abc} mapping U × U × U into U and satisfying the five conditions
below.

(1) The triple product (a, b, c) 7−→ {abc} is linear in a and c, and conjugate
linear in b.

(2) The triple product is symmetric – that is, {abc} = {cba}.
(3) For any x ∈ U , the operator Dx : U −→ U , defined by Dxu = {xxu},

is Hermitian (that is, exp(itDx) is an isometry for any t ∈ R) with non-
negative spectrum.

(4) The “main identity” is satisfied:

Dx{abc} = {Dxa, b, c} − {a,Dxb, c}+ {a, b, Dxc}

for any x, a, b, c ∈ U .
(5) For any x ∈ U , ‖x‖2 = ‖Dx‖ = sup{λ : λ ∈ σ(Dx)}. By [27], this condition

is equivalent to
(5′) For any x ∈ U , ‖{xxx}‖ = ‖x‖3.

It follows from [17] that ‖{abc}‖ 6 ‖a‖ ‖b‖ ‖c‖ for any a, b, c ∈ U .

We say that a map φ between JB∗-triples U1 and U2 is a triple isomorphism if
φ({abc}) = {φ(a), φ(b), φ(c)}. By [22] and [27], φ is a surjective isometry iff it is a
surjective triple isomorphism with trivial kernel. A (triple) ideal of a JB∗-triple U
is a closed subspace V of U such that {V UU} ⊂ V and {UV U} ⊂ V .

As we have already mentioned, C∗ algebras are JB∗-triples. More generally, a
closed subspace of a C∗-algebra A is called a JC∗-triple if it is closed under the
triple product

{abc} = (ab∗c + cb∗a)/2.

It is easy to verify conditions (1) – (5). Also, JB∗-algebras become JB∗-triples
with the product

{abc} = (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗.

Numerous examples of JB∗-triples can be found in [40].

Suppose x is an element of a JB∗-triple U . In addition to the operator Dx, we
define Qx : u 7−→ {xux}. An element e ∈ U is called a tripotent if {eee} = e. For
any tripotent e, we define Peirce projections:

P2(e) = Q2
e, P1(e) = 2(De −Q2

e), P0(e) = Id− 2De + Q2
e.

The range of Pj(e) is denoted by Uj(e) (j = 0, 1, 2). By definition,
∑

j Pj(e) = Id,
hence

U = span[U2(e), U1(e), U0(e)] (Peirce decomposition).

A tripotent e is called minimal if U2(e) = Ce. e is called diagonalizing if U1(e) = 0.

To clarify the above concepts, let us give an example. If U is a JC∗-triple,
then e ∈ U is a tripotent iff it is a partial isometry. In this case, let d = e∗e
and r = ee∗ be the domain and range projections of e. Then P2(e)x = rxd,
P1(e)x = rx(1 − d) + (1 − r)xd, P0(e)x = (1 − r)x(1 − d) (see [40, §3.2]). If,
more concretely, U is a C∗-algebra, then the tripotent e is minimal iff its range
projection (or, equivalently, domain projection) is atomic. Indeed, suppose d is
atomic. Then dexd = λd (with λ ∈ C depending on x ∈ U), and therefore,
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rxd = edexd = λed = λe. On the other hand, if e is a minimal tripotent, then
rxd = λe (λ ∈ C) for any x ∈ U , hence dexd = e∗rxd = λe∗e = λd.

We show that a JB∗-triple has the ADP iff every minimal tripotent in it is
diagonalizing. Observe that, then, Theorem 4.1 follows as a corollary.

Theorem 4.5. A JB∗-triple has the alternative Daugavet property if and only if
all of its minimal tripotents are diagonalizing.

If a JB∗-triple can be thought of as an analogue of a C∗-algebra, then a JBW ∗-
triple corresponds to a von Neumann algebra: it is a JB∗-triple which is a dual
Banach space. As in the von Neumann algebra case, the predual of a JBW ∗-triple
is unique (see [5]). The following result implies Theorem 4.2 as a corollary.

Theorem 4.6. The predual of a JBW ∗-triple has the alternative Daugavet property
if and only if the JBW ∗-triple has.

Results similar to Theorems 4.5 and 4.6 can also be proved about the Daugavet
property. The C∗-versions are contained in [38, Theorem 2.1 and Corollary 2.3].

Theorem 4.7. (a) A JB∗-triple has the Daugavet property if and only if it
has no minimal tripotents.

(b) The predual to a JBW ∗-triple U has the Daugavet property if and only if
U has no minimal tripotents.

The decomposition of a JBW ∗-triple into a direct sum of its “atomic” and “non-
atomic” parts is similar to the corresponding decomposition of a von Neumann
algebra. Let U be a JBW ∗-triple. By [17], U is triple isomorphic to a direct sum
of a JBW ∗-triple N , having no minimal tripotents, and a JBW ∗-triple A which is
the weak∗-closed linear span of its minimal tripotents (A is atomic). Equivalently,
U = A⊕∞ N . Moreover, A is isometric (hence triple isomorphic) to

[⊕
i∈I Ci

]
l∞

,
where Ci are Cartan factors (see [17] and [21]). By the above theorem, N has the
Daugavet property, so it has the ADP. Therefore, Proposition 3.1 says that U has
the ADP if and only if all the Cartan factors Ci have. Suppose now that U has the
ADP. For each i ∈ I, take a minimal tripotent e in Ci (Cartan factors always have
minimal tripotents, see e.g. [17]). Then, by Theorem 4.5 e is diagonalizing, that is,
Ci = U2(e)⊕U0(e) (the l∞-sum of ideals). By definition of a factor, U0(e) = 0 (see
[22]), thus each Ci is 1-dimensional. This yields:

Corollary 4.8. Let U be a JBW ∗-triple with the alternative Daugavet property.
Then, U is triple isomorphic to a direct sum of a JBW ∗-triple N with no minimal
tripotents, and a commutative von Neumann algebra C (viewed as a JC∗-triple).
Equivalently, U = C ⊕∞ N , where n(C) = 1 and N has the Daugavet property.

Remark 4.9. No such decomposition exists for JB∗-triples which are not duals
of Banach spaces. Even more, the decomposition is not possible even for general
C∗-algebras. Indeed, consider the C∗-algebra A = c0 ⊕∞ L∞([0, 1],K) and its
unitization A1 (here K is the space of compact operators on l2). c0 is commutative,
and L∞([0, 1],K) has the Daugavet property; so, by Proposition 3.1, A has the
ADP. By [18, Theorem V.4.4], A is an M -ideal in A1, hence, by Proposition 3.5,
A1 has the ADP (observe that dim(A1/A) = 1, so n(A1/A) = 1).

Suppose, for the sake of contrdiction, that A1 is triple isomorphic to a direct sum
of triple ideals B1 and B2, where B1 is a commutative C∗-algebra and B2 has no
minimal tripotents (i.e., it is “non-atomic”). Then B1 and B2 are complementary
M -summands in A1 (that is, A1 = B1 ⊕∞ B2). Indeed, if bi ∈ Bi (i = 1, 2), then
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{b1b2A1} = 0, and therefore, (b1 + b2)3
n

= b3n

1 + b3n

2 . This, in turn, implies that

‖b1 + b2‖ 6 lim
n→∞

(
‖b1‖3

n

+ ‖b2‖3
n)1/3n

= max{‖b1‖, ‖b2‖}.

To prove the inequality in the other direction, suppose ‖b1‖ > ‖b2‖. By the above,
‖b1 + b2‖, ‖b1− b2‖ 6 ‖b1‖, and b1 = ((b1 + b2)+ (b1− b2))/2, hence the inequalities
above are in fact equalities.

By [18, Propositions I.1.11 and I.1.17], A ∩ B1 and A ∩ B2 are also M -ideals
(hence, by [5], triple ideals) in both A1 and A. Since A ∩ B1 and A ∩ B2 are a
commutative C∗-algebra and a non-atomic JB∗-triple, respectively, we see that
A ∩ B1 = c0 and A ∩ B2 = L∞([0, 1],K). Moreover, A∗

1 = A⊥ ⊕1 B = B⊥
1 ⊕1 B⊥

2 .
Applying [18, Theorem I.1.10], we obtain that the one-dimensional space A⊥ is a
subspace of either B⊥

1 or B⊥
2 . If A⊥ ⊂ B⊥

1 , then B1 ⊂ A, hence B1 = c0, and
therefore, 1 ∈ B2 (here 1 stands for the identity in A1). However, then B2 is not
an ideal, which yields a contradiction. The possibility of A⊥ ⊂ B2 is ruled out in
the same way.

Remark 4.10. From the arguments preceding Corollary 4.8, we deduce that the
unique Cartan factor which satisfies the ADP is C.

It remains to prove Theorems 4.5, 4.6, and 4.7. In order to do that, we begin by
recalling some facts about JB∗-triples, and proving a few lemmas. Suppose U is a
JB∗-triple. If e ∈ U is a tripotent, it is known that Pk(e)Pj(e) = 0 if k 6= j (see
e.g. Formulas JP3, JP23, and JP25 in [31]). By [39],

x ∈ Uj(e) ⇐⇒ Dex = (j/2)x.

In [31] and [39], we find multiplication rules (also called Peirce calculus):

• {Ui(e)Uj(e)Uk(e)} ⊂ Ui−j+k(e) if i− j + k ∈ {0, 1, 2},
{Ui(e)Uj(e)Uk(e)} = 0 otherwise.

• Hence, Uj(e) (j = 0, 1, 2) are JB∗-triples.
• {U2(e)U0(e)U} = {U0(e)U2(e)U} = 0.

Elements a, b ∈ U are called orthogonal if {abU} = 0. By [31, Lemma 3.9] or [39],
for tripotents e and f the following four statements are equivalent:

(1) {efU} = 0 ⇔ (2) {feU} = 0 ⇔ (3) {eef} = 0 ⇔ (4) {eff} = 0.

For λ ∈ C, define the operator Sλ(e) =
∑2

j=0 λjPj(e). It was shown in [16], that
Sλ(e) is an isometry whenever |λ| = 1. As a consequence, we formulate a folklore
lemma:

Lemma 4.11. Suppose e is a tripotent in a JB∗-triple U .

(a) The Peirce projections P0(e), P1(e), and P2(e) are contractive. Moreover,
the projection P0(e) +P2(e) is contractive.

(b) ‖P0(e) + λP1(e)‖, ‖P2(e) + λP1(e)‖ 6 1 whenever |λ| 6 1/
√

2.

Proof. Part (a) follows directly from the fact that Sλ(e) is an isometry. To prove
(b), note that ∥∥∥∥P0(e) +

1 + i

2
P1(e)

∥∥∥∥ =
1
2
‖Id + Si(e)‖ 6 1.

But (
P0(e) +

1 + i

2
P1(e)

)
Sω(e) = P0(e) +

(1 + i)ω
2

P1(e).

Since ‖Sω(e)‖ = 1 if |ω| = 1, P0(e) + λP1(e) is contractive whenever |λ| = 1/
√

2.
A simple convexity argument completes the proof of the lemma. �
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Lemma 4.12. Suppose e is a minimal tripotent in a JB∗-triple U , and x ∈ U1(e).
Then ‖e + x‖ > 1 + ‖x‖2/4 whenever ‖x‖ 6 1.

Proof. By [5], U∗∗ is again a JB∗-triple (in fact, a JBW ∗-triple), and the triple
product is weak∗ continuous in each variable. Thus, Uj(e)∗∗ can be identified with
U∗∗

j (e) = Pj(e)U∗∗ (the “multiplication” operators De and Qe, defined on U∗∗,
coincide with D∗∗

e and Q∗∗
e ). In particular, if e is a minimal tripotent in U , it is

also minimal in U∗∗.

By the above, we can assume that U is a JBW ∗-triple, and x 6= 0. By [4],
x =

∑
j∈J cjfj (weak∗ convergence), where supj |cj | = 1 and the tripotents (fj) are

mutually orthogonal. By [9], the cardinality of J does not exceed 2. Moreover, one
of the two cases takes place:

(1) x = cf , where c ∈ C and f is a minimal tripotent in U1(e), but not in U ,
and e ∈ U2(f).

(2) x = c1f1 + c2f2, where |c2| 6 |c1| = ‖x‖, the mutually orthogonal tripotents
f1 and f2 are minimal in U (and therefore, minimal in U1(e)), and f2 may be equal
to 0 (if f2 = 0, let c2 = 0).

In the first case, by [9], U is (triple) isomorphic (and therefore, linearly isometric)
to J(e) ⊕∞ U ′. Here J(e) is the ideal in U generated by e, and U ′ is also an
ideal. Moreover, J(e) is triple isomorphic to the JC∗-algebra S(H) – the space of
symmetric matrices on a Hilbert space H, equipped with the triple product {abc} =
(ab∗c + cb∗a)/2. Let d = e∗e and r = ee∗ be the domain and range projections of
e. Since {eex} = x/2, x ∈ J(v). Write x = x1 + x2, where x1 = dx(1 − r) and
x2 = (1 − d)xr. Then ‖x‖ = max{‖x1‖, ‖x2‖}, and the desired estimate follows
from simple matrix computations.

Now consider the second case. By [9], e ∈ U1(fi) (i = 1, 2, fi 6= 0). Since U1(fi)
is the 1/2-eigenspace of the operator Dfi , e = 2{efifi}. By the multiplication rules,

P2(e)
(
(e + x)3

)
= e + 2{exx} =

(
1 +

2∑
i=1

|ci|2
)

e,

and therefore, ‖e + x‖3 >
∥∥P2(e)

(
(e + x)3

)∥∥ > 1 + ‖x‖2. �

Lemma 4.13. Suppose e is a minimal tripotent in a JB∗-triple U , and x ∈ U1(e)
with ‖x‖ = 1. Then ‖λe + x + x0‖ > 1 + |λ|2/8 whenever x0 ∈ U0(e) and |λ| 6 1.

Proof. As in the previous lemma, we can assume that U is a JBW ∗ triple, and
consider two cases. In the first case, U = J(v)⊕U ′, where J(v) is triple isomorphic
to S(H). In this situation, simple matrix computations yield the result.

We concentrate on the second case – namely, x = f1 + c2f2, where f1 and f2 are
mutually orthogonal minimal tripotents in U (f2 may be zero), and |c2| 6 1. By
[9], e ∈ U1(fi) (i = 1, 2). Consider x′ = −S−i(e)x = λe + ix− x0. Pj(f) = Pj(λf)
whenever |λ| = 1 and f is a tripotent, hence, by Lemma 4.11,

‖x‖ = ‖x′‖ >
1
2

(∥∥∥∥f1 +
1√
2
P1(f1)(λe + x0)

∥∥∥∥+
∥∥∥∥f1 +

1√
2
P1(f1)(λe− x0)

∥∥∥∥)
>

∥∥∥∥f1 +
λ√
2
P1(f1) e

∥∥∥∥ =
∥∥∥∥f1 +

λ√
2

e

∥∥∥∥ .

Using Lemma 4.12, we conclude that ‖f1 + (λ/
√

2)e‖ > 1 + |λ|2/8. �
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To proceed, we need to introduce the simultaneous Peirce decomposition of a
JB∗-triple U . Suppose e1, e2, . . . , en are mutually orthogonal tripotents in U . For
1 6 i 6 n, let Uii = U2(ei). If 1 6 i, j 6 n and i 6= j, let Uij = U1(ei) ∩ U1(ej)
(then Uij = Uji). We set

Ui0 = U0i = U1(ei) ∩ (∩j 6=iU0(ej)) and U00 = ∩jU0(ej).

Then U = span[Uij : 0 6 i, j 6 n]. As with the “standard” Peirce decomposition,
we have multiplication rules: {UijUjkUk`} ⊂ Ui`, and the triple product is zero
otherwise (taking permutations of indices into account). For more information on
the simultaneous Peirce decomposition, the reader is referred to Chapter 5 of [30],
Chapter 3 of [31], or [39].

Proposition 4.14. In the above notation, suppose xj ∈ U1j for j = 0, 2, 3, . . . , n.

Then
∥∥∥∑j xj

∥∥∥2

6 2
∑

j ‖xj‖2.

Proof. Let y0 =
∑

j xj , and yn+1 = y3
n. We shall show that, for n ∈ N, yn =∑

j 6=1 ynj , where ynj ∈ U1j , and

(3) ‖ynj‖ 6
(
2
∑
` 6=1

‖x`‖2
)(3n−1)/2

‖xj‖.

Once the equation above is proved, we are done. Indeed, then

‖y1‖ = ‖yn‖1/3n

6 (
∑

j

‖ynj‖)1/3n

6
(
2
∑
` 6=1

‖x`‖2
)1/2(

∑
j

‖xj‖)1/3n

.

Passing to the limit as n →∞ completes the proof.

For n = 0, the equation (3) is obviously true. Suppose it holds for n, and prove
it for n + 1. Note that yn+1 =

∑
j,k,`{ynjynkyn`}. By the multiplication rules, the

triple product above is non-zero only in the following two situations: (1) j = k,
{ynjynkyn`} ∈ U1`; (2) k = `, {ynjynkyn`} ∈ U1j . Thus,

yn+1,j = 2
∑

k

{ynjynkynk} = 2
∑

k

Dynk
ynj ,

and, by the induction hypothesis,

‖yn+1,j‖ 6 2
∑
k 6=1

‖ynk‖2‖ynj‖

6 2
∑
k 6=1

((
2
∑
` 6=1

‖x`‖2
)(3n−1)/2

‖xk‖
)2

·
(
2
∑
` 6=1

‖x`‖2
)(3n−1)/2

‖xj‖

=
(
2
∑
` 6=1

‖x`‖2
)(3n+1−1)/2

‖xj‖.

This establishes (3). �

The next corollary follows from the proposition above by a simple duality argu-
ment (we keep the notation of the previous lemma).

Corollary 4.15. Suppose x∗ ∈ U∗ with ‖x∗‖ 6 1, and ε > 0. Then ‖x∗|Uij‖ 6 ε

for j ∈ {1, . . . , n}\J , where the set J has a cardinality not exceeding 1 + 2/ε2.

Lemma 4.16. For every ε ∈ (0, 1) there exists N(ε) ∈ N with the following prop-
erty: if N > N(ε) and e1, e2, . . . , eN are mutually orthogonal tripotents in a JB∗-
triple U and x∗ is a norm one functional on U , then there exists i ∈ {1, 2, . . . , N}
such that ‖x∗|Vi

‖ 6 ε, where Vi = span[Uij : 0 6 j 6 N ] = U2(ei) + U1(ei).
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Proof. Suppose M = d2/εe+ 1 and N > 16M222M/ε2. For the sake of contradic-
tion, suppose that for any i there exists xi ∈ Vi s.t. ‖xi‖ = 1 and Re x∗(xi) > ε.
We shall arrive at a contradiction. Write xi =

∑N
j=0 xij , with xij ∈ Uij . Denote

by Pij the “coordinate” projection onto Uij . Let δ = ε/4 and x∗ij = x∗|Uij
. Fix

i1 ∈ {1, . . . , N}, and let y1
1 = xi1 . Let J11 = {j : ‖x∗ij‖ > δ} (by the previous

corollary, |J11| 6 4/δ2). Fix i2 ∈ {1, . . . , N}\J11, and let y2
2 = xi2 − Pi2i1xi2 ,

y2
1 = y1

1 − Pi2i1y
1
1 . Since, by [39], ‖Pij‖ 6 1 for any (i, j), and since ‖x∗i1i2

‖ < ε,
Re x∗(y2

2),Re x∗(y2
1) > ε−δ. Moreover, y2

1 ∈ U0(ei2) and Pi2i1y
1
1 = xi1i2 ∈ U1(ei2).

Thus, y2
1 = P0(ei2)y

1
1 , and ‖y2

1‖ 6 1. Similarly, ‖y2
2‖ 6 1.

Now let’s fix n 6 M , and suppose we have already selected:

(1) a sequence i1, . . . , in, sets Jki = {j : ‖x∗ikj‖ > δ/2k−1} (1 6 k 6 n − 1,
1 6 i 6 k, |Jki| 6 22k/δ2), s.t. ik+1 /∈ ∪16i6j6kJji;

(2) yn
1 , . . . , yn

n s.t. Re x∗(yn
j ) > ε −

∑n
k=1 δ/2k−1, ‖yn

j ‖ 6 1 for 1 6 j 6 n, and
Pikij y

n
j = 0 whenever j 6= k.

We make the (n + 1)-st step. Let Jni = {j : ‖x∗iij
‖ > δ/2n} (1 6 i 6 n). We

know that |Jni| 6 22n/δ2. Thus, if N > n222n/δ2, we can find

in+1 ∈ {1, . . . , N}\
(
∪16i6k6n Jki

)
.

For 1 6 j 6 n, let yn+1
j = yn

j − P1(ein+1)y
n
j = P0(ein+1)y

n
i . By [39], P1(ein+1) acts

on Vij
as the “coordinate” projection onto Vijin+1 This implies that Pikij

yn+1
j = 0

for k ∈ {1, 2, . . . , n+1}\{j}. Since P0(ein+1) is contractive, ‖yn+1
j ‖ 6 1. Moreover,

|x∗(P1(ein+1)y
n
i )| 6 δ/2n, hence Re x∗(yn+1

i ) > ε−
∑n+1

k=1 δ/2k−1.

yn+1
n+1 is defined as xin+1 −

∑n
j=1 xin+1ij (hence Pijin+1y

n+1
n+1 = 0 for j 6 n). Thus,

Re x∗(xin+1) > ε − nδ/2n > ε −
∑n+1

k=1 δ/2k−1. Using [39], one can show that
yn+1

n+1 = P0(e)xin+1 , where e =
∑n

j=1 eij
. Hence

∥∥yn+1
n+1

∥∥ 6 1.

Therefore, the conditions (1) and (2) above are satisfied with n + 1 instead of
n. Continuing in this fashion, we construct a sequence yM

1 , . . . , yM
M , satisfying (1)

and (2) (with n = M). Let z1 =
∑

yM
j . By definition of M , Re x∗(z) > 1. To

achieve a contradiction, we shall define zn+1 = {znznzn} (n ∈ N), and show that
‖zn+1‖ = ‖z‖3n

6 M .

For 1 6 j 6 M let

Wj =
∑

k∈{0,1,...,N}\{i1,...,iM}∪{ij}

Ujk.

We claim that zn =
∑M

j=1 znj , with znj ∈ Wj and ‖znj‖ 6 1. Indeed, by the
multiplication rules of [39], {Wj1Wj2Wj3} ⊂ Wj1 if j1 = j2 = j3, and 0 otherwise.
To illustrate this, consider {Ui1j1Ui2j2Ui3j3}, where jm 6= in if m 6= n. If the
triple product is non-zero, then j1 = j2. In this case, either i3 or j3 must be
equal to i1, which is only possible if j3 = i1. Then the only non-zero products are
{Ui1j1Uj1i1Ui1j3} ⊂ Ui1j3 and {Uj1i1Ui1j2Uj2i1} ⊂ Ui1j2 .

Note that z1 =
∑M

j=1 z1j with z1j = yM
j . Suppose zn =

∑M
j=1 znj for some n ∈ N,

with znj ∈ Wj and ‖znj‖ 6 1. By the reasoning above, {znjznkzn`} = 0 unless
j = k = `. Therefore, zn+1 =

∑M
j=1 zn+1,j , with zn+1,j = z3

nj ∈ Wj . Furthermore
‖zn+1,j‖ = ‖znj‖3 6 1.

Therefore, ‖zn‖ 6
∑M

j=1 ‖znj‖ 6 M , and ‖z‖ 6 limn M1/3n

= 1. This yields a
contradiction. �
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We can now proceed with the proofs of the main theorems of the section.

Proof of Theorem 4.5. Suppose first that a JB∗-triple U has a minimal non-diago-
nalizing tripotent e. Find x∗ ∈ U∗ s.t. ‖x∗‖ = 1 and P1(e)∗x∗ = x∗. Consider an
operator T ∈ L(U), defined by Tx = x∗(x)e. We shall show that

(4) ‖Id + T‖ < 2.

Since the same inequality holds for ωT instead of T (that is, for ωx∗ instead of x∗)
whenever |ω| = 1, equation (4) proves one direction of the theorem.

Suppose, for the sake of contradiction, that ‖Id + T‖ = 2. Then for any δ ∈
(0, 1/2) there exists x ∈ U such that ‖x‖ = 1 and ‖x + x∗(x)e‖ > 2 − δ. We can
write x = λe + x1 + x0, with x1 and x0 in U1(e) and U0(e), respectively. Note that
‖x1‖ > |x∗(x)| > 1− δ. By Lemma 4.13,

1 +
|λ|2

8‖x1‖2
6
∥∥∥ λ

‖x1‖
e +

x1

‖x1‖
+

x0

‖x1‖

∥∥∥ 6
1

‖x1‖
.

Thus, |λ|2 6 8‖x1‖(1− ‖x1‖) < 8δ, and ‖(x1 + x0) + x∗(x1 + x0)‖ > 2− 3
√

δ − δ.

Therefore, for any ε > 0 there exists x = x1 + x0 (xj ∈ Uj(e) for j = 0, 1) s.t.
‖x‖ 6 1 and ‖x + x∗(x)e‖ > 2 − ε. By a simple extreme point argument, there
exists ω with |ω| = 1 s.t. ‖x + ωe‖ > 2− ε. Since ωe is a tripotent with the same
Peirce projections as e, we can assume without loss of generality that ω = 1.

By the triangle inequality,

‖e + tx‖ > ‖e + x‖ − (1− t)‖x‖ > (2− ε)− (1− t) = 1 + t− ε

for any t ∈ (0, 1). On the other hand, e + tx =
(
(1 − t)e + tx1

)
+ t(e + x0). By

Lemma 4.11, e + x0 6 1. By [16], ‖e + y‖ 6 1 + ‖y‖/2 whenever y ∈ U1(e) and
‖y‖ 6 c (c is a universal constant). Thus,

‖(1− t)e + tx1‖ =
∥∥∥∥(1− t)

(
e +

t

1− t
x1

)∥∥∥∥ 6 (1− t)
(

1 +
t

2(1− t)

)
6 1− t

2

if t < c. Putting it all together: 1 + t− ε < ‖e + tx‖ 6 1− t/2 whenever ε > 0 and
t ∈ (0, c). This is the contradiction proving equation (4).

To prove the opposite implication of the theorem, we need to use the “odd
functional calculus” developed in [4] and [28]. Suppose x is an element of a JB∗-
triple U . We define odd powers of x: x1 = x, x2n+1 = {xx2n−1x}. By standard
triple identities, x`+m+n = {x`xmxn} if `, m, and n are odd. Define the spectrum
of x:

Sp(x) = {λ ∈ C : x /∈ (Qx − λ2)U}.
If x 6= 0, then Sp(x) is a non-empty compact subset of R, for which−Sp(x) = Sp(x).
Moreover, there exists a unique surjective triple isomorphism between C−(Sp(x))
(the space of continuous odd functions on Sp(x)) and the smallest closed subtriple
of U containing x (we denote it by Ux). This isomorphism extends naturally to a
triple isomorphism from the set of all odd Borel functions on Sp(x) to U∗∗

x ⊂ U∗∗.

Let Λ(x) = Sp(x) ∩ (0,∞). Then there exists an orthogonal family (eλ)λ∈Λ(x)

of tripotents in U∗∗ s.t. x =
∑

λ λeλ (the sum converges in the weak∗ topology).
This implies that ‖x‖ = max{t : t ∈ Λ(x)}. If λ is an isolated point of Λ(x), then
eλ ∈ U .

We also need to mention the following classical result: if a tripotent e in U is
not minimal, then there exist non-trivial orthogonal tripotents e1, e2 ∈ U∗∗ s.t.
e = e1 + e2. For the convenience of a reader, we outline the proof below.
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Consider (following [39]) a real space Z = {x ∈ U2(e) |Qex = x}. Q2
e = Id

on U2(e), hence U2(e) = Z ⊕ iZ. If U2(e) 6= Ce, then there exists z ∈ Z\Re.
Then p(z) ∈ Z for any odd polynomial p. Moreover, by the weak∗ continuity of
Qe and by [28], {ef(z)e} = f(z) for any odd Borel function f . Thus we produce
orthogonal tripotents u, v ∈ U∗∗

2 (e)\Ce s.t. {eue} = u and {eve} = v. By (6.18) of
[39], e1 = {ueu} and e2 = e − e1 are orthogonal tripotents. By the identity (J) of
[39], {eve1} = 0 and {uee1} = u, hence e1 /∈ Ce.

To complete the proof of Theorem 4.5, it suffices to show that, for any JB∗-triple
U without minimal non-diagonalizing tripotents,

sup
|ω|=1

‖Id + ωT‖ = 1 + ‖T‖

for any T ∈ L(U) of rank 1 and norm 1 (see [3, Lemma 2.1]). Such an operator T
is given by Tx = x∗(x)a, with ‖x∗‖ = ‖a‖ = 1, a ∈ U , and x∗ ∈ X∗.

Suppose first that 1 is an isolated point of Λ(a), and U2(e) is finite dimensional (e
is the tripotent corresponding to the point 1). Then e = e1+e2, where the tripotents
e1 and e2 are orthogonal, and e1 is minimal in U2(e). Then e1 is also minimal in U .
This follows, for instance, from the theory of joint Peirce decompositions, sketched
above and described in greater detail in [39].

Since e1 is diagonalizing, every x ∈ U can be written as x = λe1 + x0, with
λ ∈ C and x0 ∈ U0(e1). By an extreme point argument, for every ε > 0 there exists
x = λe1 + x0 with |λ| = ‖x0‖ = 1 s.t. Re x∗(x) > 1− ε. Then∥∥λId + T

∥∥ >
∥∥λx + x∗(x)a

∥∥ >
∥∥P2(e1)

(
λx + x∗(x)a

)∥∥ .

By definition, P2(e1)x = λe1. Moreover, a = e1 + e2 + (a− e), and e2 + (a− e) ⊂
U0(e1). Therefore, P2(e1)a = e1. This implies that ‖P2(e1)(λx + x∗(x)a)‖ > 2− ε.

Now suppose that the above condition (1 is an isolated point of Λ(a), and U2(e)
is finite dimensional) is not satisfied. Fix ε > 0 and N = N(ε) ∈ N (in the
notation of Lemma 4.16). If 1 is an isolated point of Λ(a), then there exist N
mutually orthogonal tripotents e1, e2, . . . , eN ∈ U∗∗ s.t. e =

∑
i ei. If 1 is not an

isolated point of Λ(a), find a sequence 1 − ε < λ1 < λ2 < . . . < λN < 1, and let
ei = eλi

∈ U∗∗ (these tripotents are mutually orthogonal). In either case, one easily
sees that {eiaei} = ciei for 1 6 i 6 N , with ci ∈ (1− ε, 1).

By Lemma 4.16, there exists i for which ‖x∗|(U1(ei)+U2(ei))‖ < ε. Fix x∗∗ ∈ U∗∗

s.t. ‖x∗∗‖ = x∗∗(x∗) = 1. Let x̃∗∗ = P0(ei)x∗∗ + ei. Then |(x∗∗ − x̃∗∗)x∗| < 2ε and
‖x̃∗∗‖ = 1. Note that Qeia = ciei and Qei x̃

∗∗ = ei. Since Qei is a contraction,

sup
|ω|=1

‖IdU∗∗ + ωT ∗∗‖ > sup
|ω|=1

‖Qei(x̃
∗∗ + ωx∗(x̃∗∗)a)‖

= sup
|ω|=1

|1 + ωx∗(x̃∗∗)ci| > 2− 3ε.

Since ε is arbitrarily small and ‖IdU∗∗ + ωT ∗∗‖ = ‖IdU + ωT‖, we are done. �

Proof of Theorem 4.6. If all minimal tripotents in a JBW ∗-triple are diagonalizing,
then the triple has the ADP, and so does its predual.

Conversely, suppose a JBW ∗-triple U has a minimal tripotent e, and U1(e) 6= 0.
By [5], triple product in a JBW ∗-triple is separately weak∗ to weak∗ continu-
ous. Thus, Peirce projections Pj(e) are weak∗ to weak∗ continuous, and Uj(e) are
JBW ∗-triples (j = 0, 1, 2). We can find a norm 1 weak∗ continuous functional
x∗ ∈ U∗ s.t. x∗ = P1(e)∗x∗. Define a linear operator T : x 7−→ x(x∗)e. In the proof
of Theorem 4.5, we showed that sup|ω|=1 ‖Id+ωT‖ < 2. Since T is weak∗ to weak∗

continuous, we are done. �
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Sketch of the proof of Theorem 4.7. (b) follows from (a) in the same manner as
Theorem 4.6 follows from Theorem 4.5.

To prove that a JB∗-triple without minimal tripotents has the Daugavet prop-
erty, we use essentially the same technique as in the proof of Theorem 4.5 (cf. [38]):
suppose T ∈ L(U) is an operator given by Tx = ax∗(x), with ‖a‖ = ‖x∗‖ = 1. Fix
ε > 0 and find mutually orthogonal tripotents e1, . . . , eN ∈ U∗∗ s.t. Qeia = ciei

with ci ∈ (1 − ε, 1). Find x∗∗ ∈ U∗∗ s.t. ‖x∗∗‖ = x∗∗(x∗) = 1. Let x̃∗∗ =
P0(ei)x∗∗ + ei, for a suitable i. Then ‖x̃∗∗‖ = 1 and Re x̃∗∗(x∗) > 1 − 2ε. There-
fore,

‖IdU + T‖ > ‖(IdU∗∗ + T ∗∗)x̃∗∗‖ > ‖Qei
(x̃∗∗ + x̃∗∗(x∗)ei)‖ > 2− 3ε.

Now suppose e is a minimal tripotent in a JB∗-triple U . Define T ∈ L(U)
by setting Tx = −P2(e)x (if U is a JBW ∗-triple, then, by [5], T is weak∗ to
weak∗ continuous). We shall show that ‖Id + T‖ < 2. Indeed, suppose, for the
sake of contradiction, that for every ε > 0 there exists x ∈ U with ‖x‖ = 1 and
‖x − P2(e)x‖ > 2 − ε. Write x = λe + x1 + x0, with xj ∈ Uj(e) (j = 0, 1) and
λ ∈ (1− ε, 1). Then ‖x1 + x0‖ > 2− ε. On the other hand, ‖x0‖, ‖x1‖ 6 ‖x‖ = 1.
By the triangle inequality,

‖x0 + tx1‖ > ‖x0 + x1‖ − (1− t)‖x1‖ > 1− ε + t

for any t ∈ (0, 1). On the other hand, by [16], ‖x0 + tx1‖ < 1 + t/2 whenever
t ∈ (0, c) (c is an absolute constant). This yields a contradiction. �
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[26] A. Kaidi, A. Morales, and A. Rodŕıguez-Palacios, Geometrical properties of the product of a

C∗-algebra, Rocky Mountain J. Math. 31 (2001), 197–213.
[27] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach

spaces, Math. Z. 183 (1983), 503–529.

[28] W. Kaup, On spectral and singular values in JB∗-triples, Proc. Roy. Irish Acad. Sect. A 96
(1996), 95–103.
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[32] G. López, M. Mart́ın, and R. Payá, Real Banach spaces with numerical index 1, Bull. London
Math. Soc. 31 (1999), 207–212.

[33] G. Y. Lozanovskii, On almost integral operators in KB-spaces, Vestnik Leningrad Univ. Mat.

Mekh. Astr. 7 (1966), 31–44.
[34] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 109 (1961), 29–43.

[35] M. Mart́ın, A survey on the numerical index of a Banach space, Extracta Math. 15 (2000),

265–276.
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