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MIGUEL MARTÍN AND RAFAEL PAYÁ

Abstract. We find some necessary conditions for a real Banach space to be
an almost-CL-space. We also discuss the stability of CL-spaces and almost-
CL-spaces by c0- and l1-sums. Finally, we address the question if a space of
vector-valued continuous functions can be a CL-space or an almost-CL-space.

1. Introduction

A real or complex Banach space is said to be a CL-space if its unit ball is the
absolutely convex hull of every maximal convex subset of the unit sphere. If the
unit ball is the closed absolutely convex hull of every maximal convex subset of
the unit sphere, we say that the space is an almost-CL-space.

The concept of CL-space was introduced by R. Fullerton in 1960 [6]. Later
on, Å. Lima [12] introduced the almost-CL-spaces, though the property speci-
fying them had been previously used by J. Lindenstrauss [14]. Both definitions
appeared only for real spaces, but they extend easily to the complex case. For
general information on CL-spaces and almost-CL-spaces, including the connec-
tion with intersection properties of balls, we refer to [8, 9, 11, 13] and the already
cited [6, 12, 14]. More recent results can be found in [19].

Examples of real CL-spaces are L1(µ) for an arbitrary measure µ, and its
isometric preduals, in particular C(K), where K is a compact Hausdorff space
(see [11, §3]). We do not know of any example of a real almost-CL-space which
is not a CL-space.

For complex Banach spaces, the situation is different. CL-spaces and almost-
CL-spaces have not received much attention in the complex case. The only result
we are able to find in the literature is the characterization of finite-dimensional
(real or complex) CL-spaces given by Å. Lima in [12, Corollary 3.7].

In section 2 we fix our notation and give some examples, mainly in the complex
case. We show that the complex spaces C(K) are always CL-spaces, whereas
complex L1(µ) are just almost-CL-spaces. Actually, l1 and L1[0, 1] are not CL-
spaces.
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Section 3 contains some isomorphic results. We show that the dual of an
infinite-dimensional real almost-CL-space always contains (an isomorphic copy
of) l1. If, in addition, the dual is separable, then the space contains c0.

In section 4 we discuss the stability of the classes of CL-spaces and almost-CL-
spaces by c0- and l1-sums. Our results are as expected, the sum is in one of the
classes if and only if all the summands are, with one remarkable exception: an
infinite l1-sum of nonzero complex Banach spaces is never a CL-space.

Finally, in section 5 we deal with the space C(K,X) of continuous functions
from a compact Hausdorff spaceK into a Banach spaceX. We show that C(K,X)
is an almost-CL-space if and only if X is. The analog for CL-spaces remains open.

2. Notation and examples

Throughout the paper, X denotes a real or complex Banach space, BX is its
closed unit ball, SX its unit sphere, and X∗ the dual space. We will denote by
T the unit sphere of the scalar field. Thus, T = {−1, 1} when dealing with real
spaces, while T = {λ ∈ C : |λ| = 1} in the complex case. Given a subset A ⊂ X,
we write ex(A) for the set of extreme points in A and co(A) for the convex hull
of A. Note that co(TA) is the absolutely convex hull of A. The closed convex

hull of A is denoted by co(A). Finally, for a set B ⊂ X∗, we denote by B
w∗

and
cow∗(B) the w∗-closure and the w∗-closed convex hull of B.

It is worth pointing out basic facts on the definitions of CL-spaces and almost-
CL-spaces. By using the Hahn-Banach and Krein-Milman theorems, one can
easily prove that every maximal convex subset F of SX has the form

F = {x ∈ BX : x∗(x) = 1}
for some x∗ ∈ ex (BX∗). We denote by mex (BX∗) the set of those x∗ ∈ ex (BX∗)
with the property that the set {x ∈ BX : x∗(x) = 1} is a maximal convex subset
of SX . It is easy to see that mex (BX∗) is a boundary for X, that is, for every
x ∈ X, there is x∗ ∈ mex (BX∗) such that x∗(x) = ‖x‖. It follows that

BX∗ = cow∗
(
mex (BX∗)

)
.

With the above facts in mind, X is a CL-space (resp. an almost-CL-space) if and
only if, for every x∗ ∈ mex (BX∗), BX is the convex hull (resp. closed convex hull)
of the set {x ∈ BX : |x∗(x)| = 1}. Let us also mention that maximal convex
subsets of SX are nothing but maximal faces of BX . This accounts for the relation
of CL-spaces and almost-CL-spaces to facial structure of balls. More information
on this topic may be found in [1, 11].

We shall now comment on some examples of CL-spaces and almost-CL-spaces.
Real CL-spaces are related to an intersection property of balls, namely the 3.2-
Intersection property (3.2.I.P.). A Banach space is said to have this property if
every set of three mutually intersecting balls has non-empty intersection. The
3.2.I.P. was first investigated by O. Hanner [8] and systematically studied by
J. Lindenstrauss [14] and Å. Lima [11]. More references on the 3.2.I.P. are [9,
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12, 13]. In 1977, Å. Lima showed that every real Banach space with the 3.2.I.P.
is a CL-space [11, Corollary 3.6], but the converse is false even in the finite-
dimensional case (see [8, Remark 3.6] or [19, §3]). The real space L1(µ) and its
isometric preduals satisfy the 3.2.I.P. Therefore, they are CL-spaces.

To end up with the real examples, let us pose an open question. We do not
know if there exists a real almost-CL-space which is not a CL-space.

The situation in the complex case is quite different. Not much attention has
been paid to complex CL-spaces and almost-CL-spaces in the literature, so we
provide the basic examples. As a matter of fact, there are complex almost-CL-
spaces which are not CL-spaces.

Proposition 1. (i) For every compact Hausdorff space K, the complex space
C(K) is a CL-space.

(ii) For every finite measure µ, the complex space L1(µ) is an almost-CL-
space.

(iii) The complex spaces l1 and L1[0, 1] are not CL-spaces.

We need a lemma on the field C whose proof is straightforward. We write
D = {λ ∈ C : |λ| 6 1}.

Lemma 2. For every z0 ∈ D, there exist two continuous functions ϕ, ψ : D −→ D
satisfying |ϕ(z0)| = |ψ(z0)| = 1 and z =

1

2

(
ϕ(z) + ψ(z)

)
for every z ∈ D.

Proof of Proposition 1. (i). By the well-known characterization of extreme points
in BC(K)∗ , it suffices to show, for each t0 ∈ K, that BC(K) is the convex hull of
the set {f ∈ BC(K) : |f(t0)| = 1}. Indeed, given t0 ∈ K and f ∈ BC(K), we take

z0 = f(t0) and find functions ϕ, ψ as in the above lemma. Then f =
1

2
(f1 + f2)

where f1 = ϕ ◦ f and f2 = ψ ◦ f satisfy that |f1(t0)| = |f2(t0)| = 1.

(ii). Let F be a maximal convex subset of SL1(µ). Up to an isometric isomor-
phism, we can suppose that

F = {f ∈ L1(µ) : ‖f‖ = 1, f > 0 a.e.}.

But the absolutely convex hull of F contains a dense subset of the unit ball,
namely the set of simple functions, so BL1(µ) = co(TF ) as desired.

(iii). It is clear that ex
(
BL1[0,1]∗

)
= mex

(
BL1[0,1]∗

)
, so the set

F = {f ∈ L1[0, 1] : ‖f‖ = 1, f > 0 a.e.}

is a maximal convex subset of SL1[0,1]. Then, it suffices to find a function f ∈
BL1[0,1] which cannot be obtained as an absolutely convex combination of elements
in F . Indeed, let f(t) = e2πit for every t ∈ [0, 1], and suppose that we could write
f =

∑n
j=1 ajλjfj a.e. in [0, 1], where aj > 0, |λj| = 1, fj ∈ F for j = 1, 2, . . . , n,
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and
∑n

j=1 aj = 1. Then, from

1 =

∫ 1

0

f(t)e−2πit dt =
n∑

j=1

aj

∫ 1

0

λj e
−2πitfj(t) dt

6
n∑

j=1

aj

∫ 1

0

fj(t) dt =
n∑

j=1

aj = 1,

we would get λ1e
−2πitf1(t) = f1(t) for almost every t ∈ [0, 1], which is clearly

impossible. The case of l1 can be treated similarly and it will become a particular
case of Corollary 10. �

3. Some isomorphic results

Our aim here is to obtain some isomorphic properties of real almost-CL-spaces.
We start with an easy but useful lemma.

Lemma 3. Let X be an almost-CL-space. Then |x∗∗(x∗)| = 1 for every x∗∗ ∈
ex (BX∗∗) and every x∗ ∈ mex (BX∗).

Proof. If x∗ ∈ mex (BX∗), we have BX = co
(
{x ∈ BX : |x∗(x)| = 1}

)
and

Goldstine’s Theorem gives

BX∗∗ = cow∗
(
{x ∈ BX : |x∗(x)| = 1}

)
.

Now, by the ‘reversed’ Krein-Milman Theorem we get

ex (BX∗∗) ⊆ {x ∈ BX : |x∗(x)| = 1}
w∗

,

which clearly implies |x∗∗(x∗)| = 1 for every x∗∗ ∈ ex (BX∗∗). �

Remark 4. In the real case, the converse of the above lemma holds. This follows
from [12, Theorems 3.1 and 3.4].

A useful sufficient condition for a real Banach space X to contain (a subspace
isomorphic to) c0 or l1 was found in [16], namely the existence of an infinite set
A ⊂ SX where all extreme points in BX∗ can only take the values ±1. This fact
combined with Lemma 3 yields the main result in this section.

Theorem 5. Let X be an infinite-dimensional real almost-CL-space. Then X∗

contains l1. If in addition X∗ is separable, then X contains c0.

Proof. Being a boundary for the infinite-dimensional space X, the set mex (BX∗)
must be infinite. Then, we may apply Lemma 3 and [16, Proposition 2] to get
that X∗ contains either c0 or l1. But a dual space contains l∞ (hence l1) as soon
as it contains c0 (see [15, Proposition 2.e.8], for example).

To prove the second part of the proposition, observe that Lemma 3 implies
that ‖x∗ − y∗‖ = 2 for distinct x∗, y∗ ∈ mex (BX∗). Therefore, if X∗ is sep-
arable, mex (BX∗) has to be countable. But a real infinite-dimensional space
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which admits a countable boundary contains c0 by a result due to V. Fonf [5,
Remark 2]. �

Remark 6. The above result improves those given in [16] for real Banach spaces
with numerical index 1. A Banach space has numerical index 1 if every bounded
linear operator T : X −→ X satisfies

‖T‖ = sup{|x∗(Tx)| : x ∈ SX , x
∗ ∈ SX∗ , x

∗(x) = 1}.

For more references and background we refer the reader to [2, 3, 4, 17, 18]. Almost-
CL-spaces have numerical index 1 [17, §4], and it is proved in [16] that the dual
of an infinite-dimensional real Asplund space with numerical index 1 contains l1.

The behaviour of CL-spaces or almost-CL-spaces under duality is unclear to
us. It was shown by Å. Lima [12, Corollary 3.6] that a real Banach space X is
an almost-CL-space provided that X∗ is a CL-space. We are not aware of any
relevant result in the opposite direction. Next we get such a result, under an
additional assumption.

Proposition 7. Let X be a Banach space not containing l1. If X is an almost-
CL-space, then X∗ is an almost-CL-space.

Proof. For x∗∗ ∈ mex (BX∗∗), we are to show that BX∗ = co(H), where H =
{x∗ ∈ BX∗ : |x∗∗(x∗)| = 1}. We have mex (BX∗) ⊆ H by Lemma 3. Moreover,
since mex (BX∗) is a boundary for a space X not containing l1, we can use [7,
Theorem III.1] to get that BX∗ = co

(
mex (BX∗)

)
, and we are done. �

4. Sums of CL-spaces and almost-CL-spaces

This section is devoted to study the stability of the classes of CL-spaces and
almost-CL-spaces by c0- and l1-sums. Given an arbitrary family {Xλ : λ ∈ Λ}
of Banach spaces, we denote by [⊕λ∈ΛXλ]c0 (resp. [⊕λ∈ΛXλ]l1) the c0-sum (resp.
l1-sum) of the family. In case Λ has just two elements, we use the simpler notation
X ⊕∞ Y or X ⊕1 Y .

With respect to c0-sums, we have the following.

Proposition 8. Let {Xλ : λ ∈ Λ} be a family of Banach spaces and let X =
[⊕λ∈ΛXλ]c0. Then, X is a CL-space (resp. an almost-CL-space) if and only if Xλ

is a CL-space (resp. an almost-CL-space) for every λ ∈ Λ.

Proof. For each λ ∈ Λ, we write Iλ for the injection of Xλ into X, and Pλ will be
the projection of X onto Xλ. Under the natural identification X∗ = [⊕λ∈ΛX

∗
λ]l1 ,

P ∗λ becomes the injection of X∗
λ into X∗. Using the well-known fact that

ex (BX∗) =
⋃
λ∈Λ

P ∗λ
(
ex

(
BX∗λ

) )
,



6 M. MARTÍN AND R. PAYÁ

one can easily check that a convex subset F of SX is maximal if and only if there
exist λ ∈ Λ and a maximal convex subset Fλ of SXλ

such that

(1) Fλ = Pλ(F ) and F = P−1
λ (Fλ) ∩BX .

Suppose first that every Xλ is an almost-CL-space, and fix a maximal convex
subset F of SX . Then, we can find λ ∈ Λ and a maximal convex subset Fλ

of SXλ
satisfying (1), so BXλ

= co(TFλ). Now, given x ∈ BX and ε > 0, take
yλ ∈ co(TFλ) such that ‖yλ−Pλ(x)‖ < ε, and consider y = x−Iλ(Pλ(x))+Iλ(yλ).
It is clear that y ∈ BX and Pλ(y) = yλ, so y ∈ co(TF ). Moreover, ‖y − x‖ < ε,
so we have shown that BX = co(TF ) and X is an almost-CL-space. If every Xλ

is a CL-space, then we can repeat the above argument with ε = 0 to get that X
is a CL-space.

Conversely, suppose that X is an almost-CL-space. Fix λ ∈ Λ and let Fλ be a
maximal convex subset of SXλ

. Then, the set F given by (1) is a maximal convex
subset of SX , so BX = co(TF ). Now, given xλ ∈ BXλ

and ε > 0, there exists
y ∈ co(TF ) such that ‖y − Iλ(xλ)‖ < ε. Then

Pλ(y) ∈ co(TFλ) and ‖Pλ(y)− xλ‖ < ε,

so BXλ
= co(TFλ) and Xλ is an almost-CL-space. The same argument with ε = 0

gives that Xλ is a CL-space if X is. �

The examples in Proposition 1 tell us that the situation for l1-sums cannot be
so tidy. Actually, we have:

Proposition 9. Let {Xλ : λ ∈ Λ} be a family of nonzero Banach spaces and let
X = [⊕λ∈ΛXλ]l1. Then:

(i) X is an almost-CL-space if and only if every Xλ is.
(ii) In the real case, X is a CL-space if and only if every Xλ is.

(iii) In the complex case, X is a CL-space if and only if every Xλ is, and the
set Λ is finite.

Proof. Once again we write Iλ and Pλ for the natural injections and projections.
Now, X∗ = [⊕λ∈ΛX

∗
λ]l∞ , I∗λ is the natural projection of X∗ onto X∗

λ, and the
relationship between extreme points in BX∗ and BX∗λ

is the following:

x∗ ∈ ex (BX∗) ⇐⇒ I∗λ(x∗) ∈ ex
(
BX∗λ

)
∀λ ∈ Λ.

With this in mind, it is easy to check that maximal convex subsets of SX are
exactly the sets of the form

(2) F = {x ∈ SX : Pλ(x) ∈ ‖Pλ(x)‖Fλ ∀λ ∈ Λ},

where Fλ is a maximal convex subset of SXλ
for all λ ∈ Λ.

(i). Suppose first that X is an almost-CL-space and, for fixed µ ∈ Λ, let Fµ

be a maximal convex subset of SXµ . For every λ 6= µ we choose an arbitrary
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maximal convex subset Fλ of SXλ
and consider the maximal convex subset F of

SX given by (2). Note that

Pµ(x) ∈ ‖Pµ(x)‖Fµ ⊂ co(TFµ)

for all x ∈ F , so
Pµ

(
co(TF )

)
⊆ co(TFµ).

Now, using that BX = co(TF ), we have

BXµ = Pµ(BX) = Pµ

(
co(TF )

)
⊆ Pµ(co(TF )) ⊆ co(TFµ),

and we have shown that Xµ is an almost-CL-space. Note that if X is a CL-space,
then

BXµ = Pµ

(
co(TF )

)
⊆ co(TFµ)

and Xµ is a CL-space.

Conversely, suppose that every Xλ is an almost-CL-space, and let F be a
maximal convex subset of SX . Then F has the form given in (2) where Fλ is
a maximal convex subset of SXλ

for each λ ∈ Λ. Since BXλ
= co(TFλ) and

Iλ(Fλ) ⊆ F for every λ ∈ Λ, we have⋃
λ∈Λ

Iλ
(
BXλ

)
⊆

⋃
λ∈Λ

co
(
TIλ(Fλ)

)
⊆ co(TF ).

Now, just recall that BX is the closed convex hull of
⋃

λ∈Λ Iλ(BXλ
), so BX ⊆

co(TF ) and X is an almost-CL-space. Observe that, if Λ is finite, then BX =
co

(⋃
λ∈Λ Iλ(BXλ

)
)

and the above argument allows to obtain BX = co(TF ) from
BXλ

= co(TFλ) for all λ. Therefore, finite l1-sums of CL-spaces are CL-spaces.

(ii). One implication has already been proved. For the converse, suppose that
each Xλ is a real CL-space, let F be a maximal convex subset of SX and write F
as in (2). Fix x ∈ SX and use that BXλ

= co(Fλ ∪ −Fλ) to write

Pλ(x) = ‖Pλ(x)‖
(
tλyλ − (1− tλ)zλ

)
(λ ∈ Λ)

where yλ, zλ ∈ Fλ and 0 6 tλ 6 1 for all λ. It follows that

x =
∑
λ∈Λ

Iλ(Pλ(x)) = y − z

where

y =
∑
λ∈Λ

‖Pλ(x)‖tλIλ(yλ) and z =
∑
λ∈Λ

‖Pλ(x)‖(1− tλ)Iλ(zλ)

satisfy that

‖y‖+ ‖z‖ =
∑
λ∈Λ

‖Pλ(x)‖ = 1.

For each λ we have Pλ(y) = ‖Pλ(y)‖yλ ∈ ‖Pλ(y)‖Fλ and it clearly follows that
we may write y = ‖y‖y0 with y0 ∈ F . Similarly, z = ‖z‖z0 with z0 ∈ F , and we
get

x = ‖y‖y0 − ‖z‖z0 ∈ co(F ∪ −F ).

We have shown that SX ⊂ co(F∪−F ), so BX = co(F∪−F ) and X is a CL-space.
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(iii). We have already seen that every Xλ is a CL-space if X is, and that the
converse holds for finite Λ. Thus, it only remains to show that X cannot be a CL-
space if Λ is infinite. Without loss of generality we just consider the case Λ = N.
Indeed, choose an infinite countable subset Λ0 of Λ and write X = Y ⊕1 Z with
Y = [⊕λ∈Λ0Xλ]l1 and suitable Z. Were X a CL-space, our above results show
that Y would be a CL-space as well. Thus, suppose that X = [⊕k∈NXk]l1 is a
CL-space to get a contradiction.

For each k ∈ N, we fix e∗k ∈ mex
(
BX∗k

)
and build up the set

F = {x ∈ SX : e∗k(Pk(x)) = ‖Pk(x)‖ ∀k ∈ N},
a maximal convex subset of SX . Now, let

x =
∞∑

k=1

αk

2k
Ik(ek),

where (αk) is a sequence of distinct elements in T, ek ∈ SXk
and e∗k(ek) = 1 for

every k ∈ N. Since BX = co(TF ), we can write x in the form

x =
m∑

j=1

βjx
(j) where


β1, β2, . . . , βm ∈ C,∑m

j=1 |βj| = 1, and

x(1), x(2), . . . , x(m) ∈ F.
We deduce that, for every k ∈ N,

αk

2k
= e∗k

(
Pk(x)

)
=

m∑
j=1

βje
∗
k

(
Pk(x

(j))
)

=
m∑

j=1

βj‖Pk(x
(j))‖,

so

1 =
∞∑

k=1

1

2k
=

m∑
j=1

∞∑
k=1

αk βj‖Pk(x
(j)‖

6
m∑

j=1

∞∑
k=1

|βj| ‖Pk(x
(j))‖

=
m∑

j=1

|βj| ‖x(j)‖ = 1.

It follows that

(3) αk βj‖Pk(x
(j))‖ = |βj| ‖Pk(x

(j))‖
for every j ∈ {1, 2, . . . ,m} and every k ∈ N. Since

0 6= Pk(x) =
m∑

j=1

βjPk(x
(j)),

for each k ∈ N, there must exist some j ∈ {1, 2, . . . ,m} such that βjPk(x
(j)) 6= 0,

and (3) gives αk =
βj

|βj|
. This contradicts the choice of the sequence (αk). �
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Let us point out the following consequence.

Corollary 10. Let µ be a measure. The complex space L1(µ) is a CL-space if
and only dim(L1(µ)) <∞.

Proof. By [10, pp. 136], we have

L1(µ) ≡ l1(Γ)⊕1

[⊕
α∈A

L1

(
[0, 1]mα

)]
l1

for some index set Γ and some set A of cardinal numbers mα > ℵ0. If L1(µ) is
a CL-space, Proposition 9 gives us that Γ and A are finite and L1 ([0, 1]mα) is a
CL-space for every α ∈ A. Now, since Theorem 14.10 of [10] gives

L1 ([0, 1]mα) ≡

[
∞⊕

k=1

L1

(
[0, 1]mk

)]
l1

where mk = mα for every k ∈ N, another application of Proposition 9 tell us that
L1 ([0, 1]mα) is not a CL-space. Therefore, A = ∅, L1(µ) ≡ l1(Γ) for suitable finite
set Γ, and dim(L1(µ)) <∞. The converse result is clear. �

5. The space C(K,X)

Given a compact Hausdorff space K and a Banach space X, we consider the
Banach space C(K,X) of all continuous functions from K into X, endowed with
its natural supremum norm.

Proposition 11. Let K be a compact Hausdorff space and let X be a Banach
space. Then:

(i) C(K,X) is an almost-CL-space if and only if X is.
(ii) If C(K,X) is a CL-space, then X is also a CL-space.

Proof. Let us write Y = C(K,X) and recall that the extreme points in BY ∗ are
functionals of the form f 7−→ x∗(f(t)) where x∗ ∈ ex (BX∗) and t ∈ K (see [20,
Theorem 1.1]). With this in mind, it is easy to check that the maximal convex
subsets of SY are just the sets of the form

(4) F = {f ∈ SY : f(t) ∈ F},
where t ∈ K and F is a maximal convex subset of SX .

Suppose first that X is an almost-CL-space. Fix a maximal convex subset F
of SY and let t and F be as in (4). Since BX = co(TF ), given f ∈ SY and ε > 0
we may find x ∈ co(TF ) such that

‖x− f(t)‖ < ε

and build a continuous function ϕ : K −→ [0, 1] such that

ϕ(t) = 1 and ϕ(s) = 0 if ‖x− f(s)‖ > ε.
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If we define g ∈ SY by

g(s) = ϕ(s)x+ (1− ϕ(s))f(s) (s ∈ K),

it is easy to see that g ∈ co(TF) and ‖f − g‖ 6 ε. Therefore, BY = co(TF) and
Y is an almost-CL-space.

Now, suppose that Y is an almost-CL-space. Fix a maximal convex subset
F of SX , and consider the maximal convex subset F of SY given by (4) for an
arbitrary t ∈ K. Now, fix x ∈ BX and ε > 0, consider f = xχK ∈ BY and use
that BY = co(TF) to find g ∈ co(TF) such that ‖f−g‖ < ε. Then g(t) ∈ co(TF )
and ‖g(t)− x‖ < ε, so BX = co(TF ) and X is an almost-CL-space.

In the case when Y is a CL-space, we can repeat the above argument with
ε = 0 to prove that X is also a CL-space. �

To finish the paper, let us mention that we do not know whether C(K,X) is a
CL-space whenever X is.

Acknowledgement. The authors wish to express their gratitude to the referee
for pointing out Corollary 10.
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