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Abstract. We study the numerical index of a Banach space from the

isomorphic point of view, that is, we investigate the values of the nu-

merical index which can be obtained by renorming the space. The set of

these values is always an interval which contains [0, 1/3[ in the real case

and [e−1, 1/2[ in the complex case. Moreover, for �most� Banach spaces

the least upper bound of this interval is as large as possible, namely 1.

1. Introduction

The numerical index of a Banach space is a constant relating the norm

and the numerical radius of operators on the space. For a Banach space

X, we write X∗ for the dual space, and L(X) for the Banach algebra of all

bounded linear operators on X. The numerical radius of such an operator

T is given by

v(T ) = sup{|x∗(Tx)| : x∗ ∈ X∗, x ∈ X, x∗(x) = ‖x∗‖ = ‖x‖ = 1}.

It is clear that v is a seminorm on L(X), and v(T ) ≤ ‖T‖ for every T ∈
L(X). The numerical index of the space X is the constant n(X) de�ned by

n(X) = inf {v(T ) : T ∈ L(X), ‖T‖ = 1}

or, equivalently, n(X) is the greatest constant k ≥ 0 such that k‖T‖ ≤ v(T )

for every T ∈ L(X). Note that 0 ≤ n(X) ≤ 1, and n(X) > 0 if and only if v

and ‖ ·‖ are equivalent norms (the numerical radius can be a non-equivalent

norm on L(X) �see [13]�). Clearly, n(X) = 1 when the operator norm and

the numerical radius agree on L(X). This is the case of some classical spaces

like L1(µ) and C(K). For general information and background we refer to
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the books by F. Bonsall and J. Duncan [3, 4]. More recent results can be

found in [11, 12, 13] and the references therein.

Let us mention here some facts concerning the numerical index which

will be relevant to our discussion. For instance, one has v(T ∗) = v(T ) for

every T ∈ L(X), where T ∗ is the adjoint operator of T (see [3, �9]), and it

clearly follows that n(X∗) ≤ n(X) for every Banach space X. The question

if this is actually an equality seems to be open. The range of values of the

numerical index was described in [6]; for real Banach spaces the numerical

index can be any number in the interval [0, 1], while for complex spaces the

numerical index covers the interval [e−1, 1]. The fact that n(X) ≥ e−1 for

complex X goes back to H. F. Bohnenblust and S. Karlin [2] (see also [8]).

In [11] the authors studied isomorphic properties of real Banach spaces

with numerical index 1. They proved that not every Banach space admits

an equivalent norm with numerical index 1. For example, this happens with

in�nite dimensional re�exive or quasi-re�exive real Banach spaces. Our aim

is to show that, in this context, 1 is a very particular value for the numerical

index. To explain our results, let us �x some notations. Given two Banach

spaces X and Y , we write X ' Y when the spaces are (topologically)

isomorphic. The set of values of the numerical index that a Banach space

X can have up to renorming is then given by

N (X) = {n(Y ) : Y ' X}.

Of course, the one-dimensional space has numerical index 1. In the sequel,

we will deal only with Banach spaces of dimension greater than one.

In [19], T. Tillekeratne proved that e−1 ∈ N (X) for every complex Banach

space X, and asked for what he called the �upper topological numerical

index� of X, namely supN (X). We �rst observe that N (X) is always an

interval, a fact which is essentially contained in [4]. In our main results

we use two geometrical properties, the so called properties (α) and (β)

introduced in the study of norm attaining operators (see [10, 17, 18]). We

get an estimate of the numerical index of a Banach space with any of these

properties in terms of the constant involved in the de�nitions. Following

the proof of Partington's renorming theorem [17] we then get that N (X)

contains [0, 1/3[ in the real case and [e−1, 1/2[ in the complex case. On the

other hand, renorming theorems on property (α) [9, 18] give us that for a
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Banach space X with a �long biorthogonal system� N (X) contains [0, 1[ in

the real case and [e−1, 1[ in the complex case. Examples of such Banach

spaces are weakly compactly generated spaces. So, for this class of Banach

spaces, Tillekeratne's upper topological numerical index is always 1.

2. The results

We �rst point out that every Banach space can be renormed to achieve

the minimum possible value of the numerical index. In the complex case

this was shown in [19, Theorem 3.1] and the proof can be easily adapted to

the real case. For the sake of completeness, we give a short proof.

Proposition 1. Let X be a Banach space of dimension greater than one.

Then 0 ∈ N (X) in the real case, and e−1 ∈ N (X) in the complex case.

Proof. Take a two-dimensional subspace Y of X, and write X = Y ⊕ Z for

suitable Z. Now, let W be a two-dimensional space with n(W ) = 0 (resp.

n(W ) = e−1) in the real (resp. complex) case (see [6, Theorems 3.5 and

3.6]). Then, we have X ' W ⊕1 Z, and [13, Proposition 1] tells us that

n(W ⊕1 Z) = min{n(W ), n(Z)} = n(W ).

�

Our next aim is to prove that N (X) is an interval for every Banach space

X. To get it, we will prove the continuity of the mapping carrying every

equivalent norm on X to its numerical index with respect to a metric which

we explain below. The following de�nitions are taken from [4, �18]. We

denote by E(X) the set of all equivalent norms on the Banach space X.

This is an arcwise connected metric space when provided with the distance

given by

d(p, q) = log (min{k ≥ 1 : p ≤ kq, q ≤ kp}) (p, q ∈ E(X)).

If p ∈ E(X) and T ∈ L(X), we write vp(T ) for the numerical radius of T in

the space (X, p), that is,

vp(T ) = sup{|x∗(Tx)| : x ∈ X, x∗ ∈ X∗, p(x) = p(x∗) = x∗(x) = 1},

and n(X, p) will be the numerical index of the Banach space (X, p). Observe

that N (X) = {n(X, p) : p ∈ E(X)}.
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Proposition 2. Given a Banach space X, the mapping p 7−→ n(X, p) from

E(X) to R is continuous. Hence, N (X) is an interval.

Proof. Following the argument in the proof of [4, Theorem 32.4] one can

easily show our result, in case X is �nite-dimensional. This proof involves

a compactness argument which is not available in general, but the ideas to

overcome this di�culty can also be found in [4, �18]. More concretely, an

easy re�nement in the proof of [4, Corollary 18.4] shows that the mapping

(p, T ) 7→ vp(T ) (p ∈ E(X), T ∈ L(X))

is uniformly continuous on bounded sets. Now �x p0 ∈ E(X), let B be an

open ball centered at p0 and S = {T ∈ L(X) : p0(T ) = 1}, where we use

the same symbol for a norm on X and the associated operator norm. It

follows easily from the previous comment and from

inf {p(T ) : p ∈ B, T ∈ S} > 0,

that the mapping Ψ : B × S → R given by

Ψ(p, T ) =
vp(T )

p(T )
(p ∈ B, T ∈ S)

is uniformly continuous. This implies that the mapping

p 7→ inf {Ψ(p, T ) : T ∈ S} = n(X, p)

is continuous on B. �

Now we can improve the result in [13] that

N (c0) = N (l1) = N (l∞) =

[0, 1] in the real case

[e−1, 1] in the complex case.

It follows clearly from Propositions 1 and 2 that the same is true for every

Banach space which can be renormed to have numerical index 1.

Corollary 3. If 1 ∈ N (X) for a Banach space X of dimension greater than

one, then N (X) = [0, 1] in the real case and N (X) = [e−1, 1] in the complex

case.

Corollary 4. [19, Theorem 3.2] Let m be an integer larger than 1. Then

N (Rm) = [0, 1] and N (Cm) = [e−1, 1].
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In [11], the authors showed that an in�nite-dimensional re�exive or quasi-

re�exive real Banach space cannot be renormed to have numerical index 1.

We will show that this value 1 is very particular. Indeed, �most� Banach

spaces can be renormed to have any possible value for the numerical index

except eventually 1. To this end, we set up a relationship between the

numerical index and two geometrical properties used in the study of norm

attaining operators [10, 17, 18]. Let us recall that a Banach space X has

property (α) with constant ρ (0 ≤ ρ < 1) if there is a family

{(xi, x
∗
i ) : i ∈ I} ⊂ X ×X∗

satisfying

(i) ‖xi‖ = ‖x∗i ‖ = x∗i (xi) = 1 for i ∈ I,

(ii) |x∗i (xj)| ≤ ρ for i, j ∈ I, i 6= j,

(iii)α ‖x∗‖ = sup{|x∗(xi)| : i ∈ I} for x∗ ∈ X∗.

If the family satis�es (i), (ii), and

(iii)β ‖x‖ = sup{|x∗i (x)| : i ∈ I} for x ∈ X,

we say that the Banach space X has property (β) with constant ρ. More

information about properties (α) and (β) can be found in [7, 9, 14, 15].

Our next results show that a Banach space has a �large� numerical index

whenever it has one of the properties (α) or (β) with �small� constant.

Proposition 5. If a Banach space X has property (β) with constant ρ, then

n(X) ≥ 1− ρ

1 + ρ
.

Proof. Let {(xi, x
∗
i ) : i ∈ I} be the family appearing in the de�nition of

property (β). We will prove that v(T ) ≥ 1− ρ

1 + ρ
‖T‖ for every T ∈ L(X).

Given ε > 0, take x ∈ X with ‖x‖ = 1, such that ‖Tx‖ > ‖T‖ − ε. Now,

use condition (iii)β to �nd j ∈ I such that

(1)
∣∣x∗j(Tx)

∣∣ > ‖T‖ − ε.

Let us write λ =
1− ρ

1 + ρ
∈]0, 1], t =

1 + λx∗j(x)

2
∈ [0, 1], and

z = λx + (1− λx∗j(x))xj w = λx− (1 + λx∗j(x))xj.
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We clearly have x∗j(z) = 1, x∗j(w) = −1, and |x∗i (z)| ≤ 1, |x∗i (w)| ≤ 1 for

i 6= j, so ‖z‖ = ‖w‖ = 1. Since λx = tz + (1− t)w, (1) implies

|x∗j(Tz)| > λ[‖T‖ − ε] or |x∗j(Tw)| > λ[‖T‖ − ε].

It follows that v(T ) ≥ λ‖T‖, as required. �

In the complex case this proposition can be improved as follows.

Proposition 6. If a complex Banach space X has property (β) with constant

ρ, then n(X) ≥ 1− ρ.

Proof. The proof is very close to that given for Proposition 5, so we only

mention the changes. We will prove that v(T ) ≥ (1− ρ)‖T‖ for every T ∈
L(X). Given ε > 0, take x ∈ X with ‖x‖ = 1, such that ‖Tx‖ > ‖T‖ − ε,

and then use property (β) to �nd j ∈ I such that, after a suitable rotation,

Re
(
x∗j(Tx)

)
=

∣∣x∗j(Tx)
∣∣ > ‖T‖ − ε.

Now, put λ = 1− ρ ∈]0, 1], and

µ = λx∗j(x) + ai ν = λx∗j(x)− ai,

where a ∈ [0, 1] is chosen in such a way that |µ| = |ν| = 1. Then de�ne

z, w ∈ X by

z = λx + aixj w = λx− aixj,

and continue like in Proposition 5. �

As the dual of a Banach space with property (α) has property (β) with

same constant, we get:

Corollary 7. Let X be a Banach space satisfying property (α) with constant

ρ. Then n(X∗) ≥ 1− ρ

1 + ρ
in the real case and n(X∗) ≥ 1− ρ in the complex

case.

Remark 8. As an easy consequence of the above results, we get that a

Banach space satisfying properties (α) or (β) with constant ρ = 0 has

numerical index 1, but actually, these results are not new. On one hand, if a

Banach space satis�es property (α) with constant 0, then it is (isometrically

isomorphic to) a l1(Γ) space [14, Proposition 2.3]. On the other hand, if it

satis�es property (β) with constant 0, then it is (isometrically isomorphic

to) a subspace of a l∞(Γ) space containing c0(Γ), and in such a case, the

space has numerical index 1 by [1, Teorema 5.9].
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Using well-known theorems on renorming Banach spaces with these prop-

erties, we get the following results.

Theorem 9. Let X be a Banach space of dimension greater than one. Then

N (X) ⊃ [0, 1/3[ in the real case and N (X) ⊃ [e−1, 1/2[ in the complex case.

Proof. J. Partington [17] proved that every real Banach space can be renormed

to have property (β), but his proof actually works in the complex case as

well. Moreover, by carefully reading the proof, one observes that for every

ε > 0, the space can be renormed to satisfy property (β) with constant less

than 1/2 + ε. Now, the result follows from Propositions 1, 2, 5 and 6. �

Our next results use property (α). Unlike (β), property (α) is not isomor-

phically trivial. Indeed, under the continuum hypothesis there are Banach

spaces which cannot be renormed with property (α) [9, 16]. Nevertheless,

many Banach spaces can be renormed to satisfy this property, even with ar-

bitrarily small constant ρ > 0. Therefore, we will improve Theorem 9 for a

wide class of Banach spaces. Recall that a system {(xλ, x
∗
λ)}λ∈Λ ⊂ X ×X∗

is said to be biorthogonal if x∗λ(xµ) = δλ,µ for λ, µ ∈ Λ, and long if the

cardinality of Λ coincides with the density character of X.

Theorem 10. Let X be a Banach space admitting a long biorthogonal sys-

tem. Then supN (X) = 1. Therefore, N (X) ⊃ [0, 1[ in the real case and

N (X) ⊃ [e−1, 1[ in the complex case.

Proof. The proof is completely analogous to that given for Theorem 9, us-

ing the fact that X admits equivalent norms satisfying property (α) with

arbitrarily small constant ρ > 0 [9, Theorem 1]. �

Typical examples of Banach spaces admitting a long biorthogonal system

are WCG spaces (see [5]).

In�nite-dimensional re�exive or quasi-re�exive real Banach spaces cannot

be renormed to have numerical index 1 [11], but they admit long biorthogo-

nal systems. So, for these spaces the inclusion in Theorem 10 is an equality.

Actually, if X∗∗/X is separable, then X is WCG (see, for example, [20,

Theorem 3]) and, in the real case, X cannot be renormed to have numerical

index 1 [11, Corollary 5]. Therefore, we have
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Corollary 11. Let X be an in�nite-dimensional real Banach space with

X∗∗/X separable. Then N (X) = [0, 1[.

An example of a Banach space which cannot be renormed to have property

(α) is a C(K) space, where K is the compact space constructed by K. Kunen

(see [16]). Since n(C(K)) = 1, Corollary 3 implies that this space can be

renormed with any possible value of the numerical index. We do not know

an example of a Banach space X such that supN (X) < 1.
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