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ABSTRACT. Given an infinite-dimensional Banach spaceX, we introduce the dau-
gavetian index ofX, daug(X), as the greatest constantm> 0 such that

‖Id +T‖> 1+m‖T‖
for all T ∈ K(X). We give two characterizations of this index and we estimate it
in some examples. We show that the daugavetian index of ac0-, l1- or l∞-sum of
Banach spaces is the infimum index of the summands. Finally, we calculate the
daugavetian index of some vector-valued function spaces: daug

(
C(K,X)

)
—resp.

daug
(
L1(µ,X)

)
, daug

(
L∞(µ,X)

)
— is the maximum of daug(X) and daug(C(K))

—resp. daug(L1(µ)), daug(L∞(µ))—.

1. INTRODUCTION

Given a Banach spaceX, we writeX∗ for the dual space andL(X) —resp.K(X)—
for the Banach algebra of bounded —resp. compact— linear operator onX. From now
on, we deal with real Banach spaces. Since our results only depend on the underlying
real structure, they trivially extend to complex spaces.

Let X be a Banach space. IfX is infinite-dimensional, the compact operators onX
are not inversible, so‖Id + T‖ > 1 for everyT ∈ K(X). This allow us to define the
daugavetian indexof X as

daug(X) = max
{

m> 0 : ‖Id +T‖> 1+m‖T‖ for all T ∈ K(X)
}
.

It is clear that 06 daug(X) 6 1. The extreme value daug(X) = 1 means thatX has the
so-called Daugavet property. A Banach spaceX has theDaugavet property[7] if

‖Id +T‖= 1+‖T‖
for all rank-one operatorT ∈ L(X). In this case, all weakly compact operators onX
also satisfies the above equation (see [7, Theorem 2.3]). The Daugavet property has
been deeply studied in the last decade. The state of the art on this topic can be found
in [7, 17, 19].

In [13], the following weaker version of the Daugavet property is introduced. A
Banach spaceX has thepseudo-Daugavet propertyif there exists an strictly increasing
functionψ : [0,+∞)−→ [1,+∞) such that

‖Id +T‖> ψ(‖T‖)

2000Mathematics Subject Classification.46B20.
Key words and phrases.Daugavet equation, Daugavet property, compact operators.
Partially supported by Spanish MCYT projects no. BFM2000-1467 and BFM2002-00061.

1



2 MIGUEL MARTÍN

for all T ∈ K(X). In such a case, it is clear thatψ(0) = 1. In [2, 12, 13, 14] some
results on this property are given. See also [15] for some related questions.

It is clear that daug(X) > 0 implies thatX has the pseudo-Daugavet property for the
function t 7−→ daug(X) t. We shall prove a somehow converse: ifX has the pseudo-
Daugavet property for a functionψ which is derivable at 0, then daug(X) > ψ ′(0).

We can give another approach to the daugavetian index of a Banach space which is
related to numerical range of operators. Let us recall the relevant definitions. Given
an operatorT ∈ L(X), thenumerical range, V(T), and thenumerical radius v(T) of T
are defined by

V(T) = {x∗(Tx) : x∈ X, x∗ ∈ X∗, ‖x‖= ‖x∗‖= x∗(x) = 1},
v(T) = sup{|λ| : λ ∈V(T)}.

Thenumerical indexof X is the number

n(X) = inf{v(T) : T ∈ L(X), ‖T‖= 1}

or, equivalently, the greatest constantm> 0 such thatv(T) > m‖T‖ for all T ∈ L(X).
The interested reader can found more information in [3, 4, 9] and the references therein.

If T ∈ L(X), we writeω(T) = supV(T), which is a sublinear functional onL(X). It
is a well-known result by F. Bauer [1] and G. Lumer [8] (see [3,§9]) that

(1) ω(T) = lim
α→0+

‖Id +αT‖−1
α

.

It follows thatω(T) > 0 wheneverT ∈ K(X). We shall prove that

daug(X) = inf {ω(T) : T ∈ K(X), ‖T‖= 1}.

This sort of parallelism between the two indices allows us to translate some ideas from
papers on numerical index to our proofs. This is the case of the results on numerical
index of sums and vector-valued function spaces given in [10].

The outline of the paper is as follows.

We start section 2 by proving two characterizations of the daugavetian index. One
related toω(·) and the other one related to the pseudo-Daugavet property. Next, we
present several examples of Banach spaces whose daugavetian index can be estimated.
Finally, we generalize the fact that spaces with the Daugavet property do not have
unconditional bases, estimating the daugavetian index in terms of the unconditional
basis constant.

In §3 we study the stability of the daugavetian index. First, we prove that the dau-
gavetian index of ac0-, l1-, or l∞-sum of Banach spaces is the infimum of the numerical
indices of the summands. As a consequence of this result we obtain that every Banach
can be equivalently renormed to have daugavetian index 0. Our main result deals with
spaces of vector-valued functions. We prove that the daugavetian index ofC(K,X)
—resp. L1(µ,X), L∞(µ,X)— is the maximum of daug(X) and daug(C(K)) —resp.
daug(L1(µ)), daug(L∞(µ))—.
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2. CHARACTERIZATION AND EXAMPLES

Our first aim is to prove the result cited in the introduction which relates the dau-
gavetian index and the numerical range of operators. We will use it later to get some
stability properties of the daugavetian index.

Proposition 1. Let X be an infinite-dimensional Banach space. Then

daug(X) = inf{ω(T) : T ∈ K(X), ‖T‖= 1}
or, equivalently,daug(X) is the greatest constant m> 0 such thatω(T) > m‖T‖ for
all T ∈ K(X).

Proof. Let m be the greatest nonnegative constant such thatω(T) > m‖T‖ for all T ∈
K(X). ForT ∈ K(X) andx∈ SX, x∗ ∈ SX∗ with x∗(x) = 1, we have

‖Id +T‖> x∗(x+Tx) = 1+x∗(Tx).

Taking the supremum over allx∈ SX, x∗ ∈ SX∗ with x∗(x) = 1, we get

‖Id +T‖> 1+ω(T) > 1+m‖T‖.
This implies that daug(X) > m. To get the reverse inequality, we fixT ∈ K(X) and
observe that

‖Id +αT‖> 1+α daug(X)‖T‖
for everyα > 0. By (1), we getω(T) > daug(X)‖T‖. Therefore, daug(X) 6 m. �

We can use the above result to get another characterization of daug(X). As we have
mention in the introduction, the daugavetian index is related to the pseudo-Daugavet
property. Indeed, daug(X) > 0 clearly implies thatX has the pseudo-Daugavet property
for the functiont 7→ daug(X) t. The following proposition gives us a somehow converse
of this result.

Proposition 2. Let X be an infinite-dimensional Banach space having the pseudo-
Daugavet property for a functionψ : [0,+∞) → [1,+∞). If ψ is differentiable at 0,
thendaug(X) > ψ ′(0). As a consequence,

daug(X) = max{ψ ′(0) : ψ ∈ F},
whereF is the set of all increasing and differentiable at 0 functionsψ : [0,+∞) →
[1,+∞) such that‖Id +T‖> ψ(‖T‖) for all T ∈ K(X).

Proof. Sinceψ is differentiable at 0, for everyρ ∈ (0,1) there existstρ > 0 such that

ψ(t) > 1+ρψ ′(0)t (0 < t < tρ).

For T ∈ K(X) with ‖T‖= 1 and 0< α < tρ, we have

‖Id +αT‖> ψ(α) > 1+ρψ ′(0)α.
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It follows from (1) that

ω(T) = lim
α→0

‖Id +αT‖−1
α

> ρψ ′(0).

Then,ω(T) > ψ ′(0) for everyT ∈ K(X) with ‖T‖= 1. Hence, Proposition 1 gives us
daug(X) > ψ ′(0).

For the second part of the proposition, we first observe thatF is non-empty because
it contains the functionψ(t) = 1 for all t ∈ [0,+∞). Now, letm= max{ψ ′(0) : ψ∈F}.
By the above argument, we havem6 daug(X). The reverse inequality follows from
the fact that the functionψ(t) = 1+daug(X) t for all t ∈ [0,+∞) belongs toF. �

We present now some examples of Banach spaces whose daugavetian index can be
estimated.

Example 3. As we commented in the introduction, Banach spaces with the Daugavet
property have daugavetian index 1. This is the case of the vector-valued function
spacesC(K,X) andL1(µ,X) when the compactK is perfect and the measureµ is atom-
less (see [7]) for any Banach spaceX. If µ is alsoσ-finite, thenL∞(µ,X) also has the
Daugavet property (see [11]). More examples of spaces with the Daugavet property,
and hence with daugavetian index 1, are atomlessC∗-algebras [12], the disk algebra
A(D) and the algebra of bounded analytic functionsH∞ [18].

Example 4. One clearly has daug(X) = 0 wheneverX is an infinite-dimensional Ba-
nach space with a bicontractive projection with finite-rank, that is, a finite-rank pro-
jectionP such that‖P‖ = ‖Id−P‖ = 1. This is the case of the spacesc0, c, lp with
1 6 p 6 ∞, C(K) for non-perfectK, andL1(µ), L∞(µ) whenµ has atoms.

We now intend to quantify the fact given in [6, Corollary 2.3] that spaces with the
Daugavet property do not admit an unconditional basis. Let us recall some notation.
Let X be a Banach space with unconditional basis{(en,e∗n)}. For every finite subsetA
of N, we define a finite-rank operatorPA ∈ L(X) by

PA(x) = ∑
n∈A

e∗n(x)en (x∈ X).

Theunconditional basis constantis the number

K = sup{‖PA‖ : A⊂ N finite }< +∞.

We say thatX admits aK-unconditional basis ifX has an unconditional basis whose
unconditional basis constant is less or equal thanK.

A Banach space admitting an 1-unconditional basis has a lot of bicontractive projec-
tion with finite-rank. Hence, by Example 4, it has daugavetian index 0. This fact can
be quantify in terms of the basis constant.

Proposition 5. Let X be an infinite-dimensional Banach space admitting a K-uncondi-
tional basis. Then

daug(X) 6
K−1

K
.
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Proof. We will follow ideas from the proof of [6, Corollary 2.3]. Givenε > 0, we get
a finite setA0 ⊂ N such that‖PA0‖> K− ε. SincePA0 has finite-rank, we have

‖Id−PA0‖> 1+daug(X)(K− ε).

On the other hand, since the basis is unconditional, we have

‖Id−PA0‖6 sup
{
‖PA‖ : A⊂ N\A0 finite

}
6 K.

Letting ε ↓ 0, we get 1+daug(X)K 6 K. �

Finally, let us show some examples of Banach spaces whose daugavetian index is
greater than 0 and less than 1.

Example 6. Let X a subspace of L(l2) containing K(l2). Then

1/(8
√

2) 6 daug(X) < 1.

For X = L(l2), we actually have

1/(8
√

2) 6 daug
(
L(l2)

)
6 2/

√
5.

Indeed, it is proved in [13] that‖Id+Φ‖> 1+‖Φ‖/(8
√

2) for everyΦ∈K(X), hence
daug(X) > 1/(8

√
2). It is known that, in our assumption,X∗ has strongly exposed

points (see [16, Corollary 1.4]). Then,X does not have the Daugavet property by [7,
Lemma 2.1] and hence, daug(X) < 1. The refinement forL(l2) is also proved in [13].

3. STABILITY PROPERTIES

The aim of this section is to compute the daugavetian index of sums and some vector-
valued function spaces.

We start by working with sums of spaces. Let us recall some definitions. Given an
arbitrary family{Xλ}λ∈Λ of Banach spaces, we denote by[⊕λ∈ΛXλ]c0

—resp.[⊕λ∈ΛXλ]l1,
[⊕λ∈ΛXλ]l∞— the c0-sum —resp.l1-sum, l∞-sum— of the family. The sum of two
spacesX andY is denoted by the simpler notationX⊕∞ Y, X⊕1Y. For infinite count-
able sums of copies of a spaceX we writec0(X), l1(X) or l∞(X).

Proposition 7. Let{Xλ}λ∈Λ be a family of infinite-dimensional Banach spaces and let
Z be the c0-, l1- or l∞-sum of the family. Then

daug(Z) = inf {daug(Xλ) : λ ∈ Λ}.

To prove this proposition, we can adapt the proof of [10, Proposition 1], using the
parallelism between the daugavetian index and the numerical index given in Proposi-
tion 1. It is enough to change the numerical radius by the supremum of the numerical
range,ω(·), and to observe that, when starting with compact operators, all the operator
involved are also compact.

Remark 8. Let {Xλ}λ∈Λ be an arbitrary family of Banach spaces and letZ be thec0-,
or l1-, or l∞-sum of the family. If one of the summands is finite-dimensional, thenZ has
a bicontractive projection with finite-rank. Hence, daug(Z) = 0. Defining daug(X) = 0
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for every finite-dimensional space, Proposition 7 is also true for arbitrary families of
Banach spaces.

As a corollary of the above remark we get the following isomorphic result.

Corollary 9. Let X be an infinite-dimensional Banach space. Then there exists a Ba-
nach space Y isomorphic to X withdaug(Y) = 0.

Proof. Let us writeX = R⊕Z for a suitable subspaceZ. Then,X is isomorphic to
Y = R⊕∞ Z and the above remark gives daug(Y) = 0. �

Another consequence of Proposition 7 is that

daug
(
c0(X)

)
= daug

(
l1(X)

)
= daug

(
l∞(X)

)
= daug(X)

for every Banach spaceX. One may wonder whether this result is also true for arbitrary
vector-valued function spaces, but it is easy to see that this is not the case. Indeed,
daug(l2) = 0 in spite of the fact thatC([0,1], l2), L1([0,1], l2) andL∞([0,1], l2) have
daugavetian index 1 (see Example 3). Let us recall some notation. Given a compact
Hausdorff spaceK and a Banach spaceX, we writeC(K,X) for the Banach space of all
continuous functions fromK into X, endowed with the supremum norm. If(Ω,Σ,µ)
is a positive measure space,L1(µ,X) is the Banach space of all Bochner-integrable
functions f : Ω → X with the usual norm. Ifµ is σ-finite, thenL∞(µ,X) stands for
the space of all essentially bounded Bochner-measurable functionsf from Ω into X,
endowed with the essential supremum norm. We refer to [5] for background.

The following result extends those given in [10, Remarks 6 and 9] and [11, Theo-
rem 5] for the Daugavet property.

Theorem 10. Let X be an infinite-dimensional Banach space. Then:

(i) If K is a compact Hausdorff space, then

daug
(
C(K,X)

)
= max

{
daug

(
C(K)

)
,daug(X)

}
.

(ii) If µ is a positive measure, then

daug
(
L1(µ,X)

)
= max

{
daug

(
L1(µ)

)
,daug(X)

}
.

(iii ) If µ is aσ-finite measure, then

daug
(
L∞(µ,X)

)
= max

{
daug

(
L∞(µ)

)
,daug(X)

}
.

Proof. (i). We start by proving that daug
(
C(K,X)

)
> daug(X). To this end, we fix

T ∈ K(C(K,X)) and prove that

‖Id +T‖> 1+daug(X)‖T‖.

For everyε > 0, we may findf0 ∈C(K,X) with ‖ f0‖= 1 andt0 ∈ K such that

(2)
∥∥[T f0](t0)

∥∥ > ‖T‖− ε.
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We find a continuous functionϕ : K → [0,1] such thatϕ(t0) = 1 and ϕ(t) = 0 if
‖ f0(t)− f0(t0)‖> ε, write f0(t0) = λx1 +(1−λ)x2 with 0 6 λ 6 1, x1,x2 ∈ SX, and
consider the functions

f j = (1−ϕ) f0 +ϕx j ∈C(K,X) ( j = 1,2)

andg= λ f1+(1−λ) f2. Sinceg(t)− f0(t)= ϕ(t)
(

f0(t0)− f0(t)
)
, we have‖g− f0‖< ε

and therefore, by (2), we have

(3) ‖[T f1](t0)‖> ‖T‖−2ε or ‖[T f2](t0)‖> ‖T‖−2ε.

We make the right choice ofx0 = x1 or x0 = x2 to getx0 ∈ SX such that

(4)
∥∥[

T
(
(1−ϕ) f0 +ϕx0

)]
(t0)

∥∥ > ‖T‖−2ε.

Next we fixx∗0 ∈ SX∗ with x∗0(x0) = 1, denote

Φ(x) = x∗0(x)(1−ϕ) f0 +ϕx∈C(K,X) (x∈ X),

and consider the operatorS∈ L(X) given by

Sx= [T(Φ(x))](t0) (x∈ X).

We observe thatS∈ K(X) and, by (4), that

‖S‖> ‖Sx0‖> ‖T‖−2ε.

Then, findx∈ SX such that

‖x+Sx‖> 1+daug(X)
(
‖T‖ −2ε

)
,

defineg∈ SC(K,X) by g = Φ(x) for thisx, note that

‖Id +T‖>
∥∥[

(Id +T)(g)
]
(t0)

∥∥ = ‖x+Sx‖> 1+daug(X)
(
‖T‖ −2ε

)
,

and letε ↓ 0. It should be pointed out that the above argument is based on the one given
in [10, Theorem 5].

Now, if K is perfect, Example 3 gives us that daug
(
C(K,X)

)
= daug

(
C(K)

)
= 1.

Otherwise,K has an isolated point so, on one hand Example 4 gives daug
(
C(K)

)
= 0

and, on the other hand, we can writeC(K,X) = X⊕∞ Z for some Banach spaceZ, so
daug

(
C(K,X)

)
6 daug(X) by Proposition 7.

(ii). If µ is atomless, by Example 3 we have

daug
(
L1(µ,X)

)
= daug

(
L1(µ)

)
= 1.

Otherwise, we may writeL1(µ,X) in the formL1(ν,X)⊕1 [⊕i∈IX]l1 for a non-empty
setI and an atomless measureν. Now, daug

(
L1(ν,X)

)
= 1 so, by Proposition 7, we

have

daug
(
L1(µ,X)

)
= daug

(
[⊕i∈IX]l1

)
= daug(X).

Now, Example 4 shows that daug
(
L1(µ)

)
= 0 and the result follows. The proof of(iii )

is completely analogous. �
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If X is a finite-dimensional space, Theorem 10 is still true if we consider daug(X) =
0. Actually, in this case, daug

(
C(K,X)

)
—resp. daug

(
L1(µ,X)

)
, daug

(
L∞(µ,X)

)
—

is equal to 0 or 1 depending on whether or notK has isolated points —resp.µ has
atoms—.
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