THE DAUGAVETIAN INDEX OF A BANACH SPACE

MIGUEL MARTIN

ABSTRACT. Given an infinite-dimensional Banach spatewe introduce the dau-
gavetian index oK, daudgX), as the greatest constant> 0 such that
1d + T = 14 mi|T]|

for all T € K(X). We give two characterizations of this index and we estimate it
in some examples. We show that the daugavetian indexagf,d1- or lo-sum of
Banach spaces is the infimum index of the summands. Finally, we calculate the
daugavetian index of some vector-valued function spaces: (dz(KgX)) —resp.

daug(L1(p, X)), daug(Le(p,X))— is the maximum of daugx) and dau¢C(K))
—resp. daug1(1)), daudLe(H))—.

1. INTRODUCTION

Given a Banach spacé, we write X* for the dual space and X) —resp.K(X)—
for the Banach algebra of bounded —resp. compact— linear operakr Brom now
on, we deal with real Banach spaces. Since our results only depend on the underlying
real structure, they trivially extend to complex spaces.

Let X be a Banach space. X is infinite-dimensional, the compact operators>on
are not inversible, s¢ld +T|| > 1 for everyT € K(X). This allow us to define the
daugavetian inderf X as

daugX) =max{m=0 : [[Ild+T|| > 14+m|T| for all T € K(X)}.

It is clear that 0O< daugX) < 1. The extreme value da()§) = 1 means thaX has the
so-called Daugavet property. A Banach spAdeas theDaugavet property7] if

d+T][ =1+T||

for all rank-one operatof € L(X). In this case, all weakly compact operatorsXn

also satisfies the above equation (see [7, Theorem 2.3]). The Daugavet property has
been deeply studied in the last decade. The state of the art on this topic can be found
in[7,17, 19].

In [13], the following weaker version of the Daugavet property is introduced. A
Banach spacX has thgpseudo-Daugavet properifythere exists an strictly increasing
functiony : [0,40) — [1, +0) such that

Id -+ = w(TI)
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for all T € K(X). In such a case, it is clear th&i{0) = 1. In [2, 12, 13, 14] some
results on this property are given. See also [15] for some related questions.

It is clear that dau@X) > 0 implies thatX has the pseudo-Daugavet property for the
functiont — daugX)t. We shall prove a somehow converseXihas the pseudo-
Daugavet property for a functiap which is derivable at 0, then da(¢) > ¢’(0).

We can give another approach to the daugavetian index of a Banach space which is
related to numerical range of operators. Let us recall the relevant definitions. Given
an operatofl € L(X), thenumerical rangeV (T ), and thenumerical radius ¢T) of T
are defined by

V(T)={x(Tx) : xe X, x" € X*, ||| =[|X*]| = x"(x) =1},
v(T) =sup{|A| : AeV(T)}.

Thenumerical indeyof X is the number
n(X) =inf{v(T) : T eL(X), |T|| =1}

or, equivalently, the greatest constamt> O such thaw/(T) > m||T|| for all T € L(X).
The interested reader can found more information in [3, 4, 9] and the references therein.

If T € L(X), we writew(T) = supV(T), which is a sublinear functional dr(X). It
is a well-known result by F. Bauer [1] and G. Lumer [8] (see§) that

L) o(T) = lim Hd+aTi=1

a—0t a

It follows thatw(T) > 0 wheneveiT € K(X). We shall prove that
daugX) =inf{w(T) : T € K(X), || T| =1}.

This sort of parallelism between the two indices allows us to translate some ideas from
papers on numerical index to our proofs. This is the case of the results on numerical
index of sums and vector-valued function spaces given in [10].

The outline of the paper is as follows.

We start section 2 by proving two characterizations of the daugavetian index. One
related tow(-) and the other one related to the pseudo-Daugavet property. Next, we
present several examples of Banach spaces whose daugavetian index can be estimated.
Finally, we generalize the fact that spaces with the Daugavet property do not have
unconditional bases, estimating the daugavetian index in terms of the unconditional
basis constant.

In §3 we study the stability of the daugavetian index. First, we prove that the dau-
gavetian index of &p-, |1-, orl-sum of Banach spaces is the infimum of the numerical
indices of the summands. As a consequence of this result we obtain that every Banach
can be equivalently renormed to have daugavetian index 0. Our main result deals with
spaces of vector-valued functions. We prove that the daugavetian inde{<oK)
—resp. L1(K, X), Leo(H,X)— is the maximum of daugK) and daugC(K)) —resp.

daugLs (1)), daugLe (1) —.
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2. CHARACTERIZATION AND EXAMPLES

Ouir first aim is to prove the result cited in the introduction which relates the dau-
gavetian index and the numerical range of operators. We will use it later to get some
stability properties of the daugavetian index.

Proposition 1. Let X be an infinite-dimensional Banach space. Then
daugX) =inf{w(T) : T e K(X), ||T||=1}

or, equivalentlydaud X) is the greatest constant pa 0 such thatw(T) > m||T|| for
all T € K(X).

Proof. Let m be the greatest nonnegative constant suchai@) > m||T|| forall T €
K(X). ForT € K(X) andx € S, X* € Sx+ with x*(x) = 1, we have

INd+T|| =X (x+Tx) =1+ X (TX).
Taking the supremum over &alle S, X* € Sx= with x*(x) = 1, we get
Nd+T|| > 14+0(T) = 1+m|T|.

This implies that dau@) > m. To get the reverse inequality, we fixe K(X) and
observe that
[ld+aT| > 1+a daugX)|T||

for everya > 0. By (1), we geto(T) > daudX)||T||. Therefore, daugX) <m. [

We can use the above result to get another characterization ofXiauds we have
mention in the introduction, the daugavetian index is related to the pseudo-Daugavet
property. Indeed, dau¥ ) > O clearly implies thaX has the pseudo-Daugavet property
for the functiont — daugd X)t. The following proposition gives us a somehow converse
of this result.

Proposition 2. Let X be an infinite-dimensional Banach space having the pseudo-
Daugavet property for a functiow : [0,+) — [1,+0). If Y is differentiable at O,
thendaug X) > @’(0). As a consequence,

daugX) = max{y’(0) : ¢ < F},
whered is the set of all increasing and differentiable at O functiaps [0, +) —
[1,400) such thatl|ld +T|| > @(||T||) forall T € K(X).
Proof. Sincey is differentiable at 0, for everg € (0, 1) there exist$, > 0 such that
P(t) = 1+pyP’(O)t  (O<t<ty).
ForT € K(X) with || T|| =1 and 0< a < t,, we have
l1d+aT|| > (o) > 1+py'(O)a.
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It follows from (1) that

o(T) = lim M > py’(0).
a—0 a

Then,w(T) > Y’(0) for everyT € K(X) with ||T|| = 1. Hence, Proposition 1 gives us
daugX) > w’'(0).

For the second part of the proposition, we first observeXhatnon-empty because
it contains the functio(t) = 1 for allt € [0, +). Now, letm=max{’(0) : ¢ € F}.
By the above argument, we hawe< daugX). The reverse inequality follows from
the fact that the functiog(t) = 1+ daudX)t for all t € [0,+) belongs tdF. O

We present now some examples of Banach spaces whose daugavetian index can be
estimated.

Example 3. As we commented in the introduction, Banach spaces with the Daugavet
property have daugavetian index 1. This is the case of the vector-valued function
space€(K, X) andL1(p, X) when the compad( is perfect and the measuués atom-

less (see [7]) for any Banach spaXelf pis alsoo-finite, thenL. (|, X) also has the
Daugavet property (see [11]). More examples of spaces with the Daugavet property,
and hence with daugavetian index 1, are atomi&salgebras [12], the disk algebra
A(D) and the algebra of bounded analytic functiétf$[18].

Example 4. One clearly has dau) = 0 whenevelX is an infinite-dimensional Ba-
nach space with a bicontractive projection with finite-rank, that is, a finite-rank pro-
jection P such that||P|| = ||Id — P|| = 1. This is the case of the spaa®s c, |, with

1 < p< oo, C(K) for non-perfecK, andL1 (M), Lo (M) Wwhenp has atoms.

We now intend to quantify the fact given in [6, Corollary 2.3] that spaces with the
Daugavet property do not admit an unconditional basis. Let us recall some notation.
Let X be a Banach space with unconditional bdse, €,) }. For every finite subset
of N, we define a finite-rank operatBg € L(X) by

Pa(x) = %e,’;(x)en (x e X).

Theunconditional basis constans the number
K =sup{||Pal| : AC Nfinite } < .

We say thaX admits aK-unconditional basis iK has an unconditional basis whose
unconditional basis constant is less or equal than

A Banach space admitting an 1-unconditional basis has a lot of bicontractive projec-
tion with finite-rank. Hence, by Example 4, it has daugavetian index 0. This fact can
be quantify in terms of the basis constant.

Proposition 5. Let X be an infinite-dimensional Banach space admitting a K-uncondi-

tional basis. Then K1
daugX) < T_
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Proof. We will follow ideas from the proof of [6, Corollary 2.3]. Giveax> 0, we get
a finite setAg C N such that|Pa,|| > K — €. SincePy, has finite-rank, we have

[1d —Pa, || > 1+daug X) (K —¢).
On the other hand, since the basis is unconditional, we have
[1d — Pag || < sup{||Pal| : AC N\ A finite } <K.
Lettinge | 0, we get H-daug X)K < K. O

Finally, let us show some examples of Banach spaces whose daugavetian index is
greater than 0 and less than 1.

Example 6. Let X a subspace of L(l2) containing K(l2). Then
1/(8v2) < daugX) < 1.
For X = L(l2), we actually have

1/(8V'2) < daug(L(l2)) < 2/V5.

Indeed, itis proved in [13] thaid + ®|| > 1+ ||®||/(8v/2) for everyd € K(X), hence
daugX) > 1/(8v2). It is known that, in our assumptioX* has strongly exposed
points (see [16, Corollary 1.4]). TheK, does not have the Daugavet property by [7,
Lemma 2.1] and hence, da@g) < 1. The refinement fol(l,) is also proved in [13].

3. STABILITY PROPERTIES

The aim of this section is to compute the daugavetian index of sums and some vector-
valued function spaces.

We start by working with sums of spaces. Let us recall some definitions. Given an
arbitrary family{X, }»ca of Banach spaces, we denote[ cp Xy |, —T€SP. [Erea Xl
[®reaXn];,— the co-sum —resp.l;-sum, lo-sum— of the family. The sum of two
space andY is denoted by the simpler notatidt¥b. Y, X ®1Y. For infinite count-
able sums of copies of a spaXave write co(X), 11(X) or [ (X).

Proposition 7. Let {X, }»ca be a family of infinite-dimensional Banach spaces and let
Z be the g-, I1- or l»-sum of the family. Then

daudZ) =inf{daudX,) : A € A}.

To prove this proposition, we can adapt the proof of [10, Proposition 1], using the
parallelism between the daugavetian index and the numerical index given in Proposi-
tion 1. Itis enough to change the numerical radius by the supremum of the numerical
rangew(-), and to observe that, when starting with compact operators, all the operator
involved are also compact.

Remark 8. Let {X, }aca be an arbitrary family of Banach spaces anddéte thecy-,
orli-, orle-sum of the family. If one of the summands is finite-dimensional, thbBas
a bicontractive projection with finite-rank. Hence, dézig= 0. Defining daugX) =0
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for every finite-dimensional space, Proposition 7 is also true for arbitrary families of
Banach spaces.

As a corollary of the above remark we get the following isomorphic result.

Corollary 9. Let X be an infinite-dimensional Banach space. Then there exists a Ba-
nach space Y isomorphic to X widlaugY) = 0.

Proof. Let us writeX = R @ Z for a suitable subspacgé Then,X is isomorphic to
Y = R @ Z and the above remark gives da¥g = 0. O

Another consequence of Proposition 7 is that
daug(co(X)) = daug(l1(X)) = daug(le(X)) = daugX)

for every Banach space. One may wonder whether this result is also true for arbitrary
vector-valued function spaces, but it is easy to see that this is not the case. Indeed,
dauglz) = 0 in spite of the fact tha€([0,1],1,), L1([0,1],I2) andL«([0,1],l2) have
daugavetian index 1 (see Example 3). Let us recall some notation. Given a compact
Hausdorff spac& and a Banach spaée we writeC(K, X) for the Banach space of all
continuous functions frorK into X, endowed with the supremum norm. (R, %, )

is a positive measure spade, (|, X) is the Banach space of all Bochner-integrable
functionsf : Q — X with the usual norm. Ijuis o-finite, thenL. (Y, X) stands for

the space of all essentially bounded Bochner-measurable fundtibosn Q into X,
endowed with the essential supremum norm. We refer to [5] for background.

The following result extends those given in [10, Remarks 6 and 9] and [11, Theo-
rem 5] for the Daugavet property.

Theorem 10. Let X be an infinite-dimensional Banach space. Then:
(i) If K is a compact Hausdorff space, then
daug(C(K, X)) = max{ daug(C(K)),daugX)}.
(i) If pis a positive measure, then
daug(L1(p, X)) = max{ daug(L1(n)),daugX)}.
(ii ) If pis ao-finite measure, then
daug(Le (W, X)) = max{ daug(Le(u)),daugX)}.
Proof. (i). We start by proving that day@(K, X)) > daugX). To this end, we fix
T € K(C(K, X)) and prove that
|Id +T|| > 1+daugX) || T|.
For everye > 0, we may findfg € C(K, X) with || fo|| = 1 andtp € K such that
) [T fol (to)|| > T —&.
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We find a continuous functiog : K — [0,1] such thatd(tp) = 1 and¢(t) = O if
|| fo(t) — fo(to)|| = €, write fo(to) = Ax1+ (L —A)x2 with 0 <A < 1, xg,%2 € S, and
consider the functions

andg=Af;+(1—-A)fo. Sinceg(t) — fo(t) = d(t) (fo(to) — fo(t)), we have|g— fo|| <€
and therefore, by (2), we have

©) T f](t)| > [T —=2¢  or [T f|(to)[ > [T —2e.
We make the right choice of = x; or xg = X to getxg € Sx such that
) T (2= 0)fo+dx0)] (to)[| > T —2¢.
Next we fixxj € Sx+ with x;5(Xo) = 1, denote
P(x) =x(X)(1-9)fo+dxe C(K,X)  (x€X),
and consider the operatBre L(X) given by
Sx=[T(®(x))|(t))  (xeX).
We observe thab € K(X) and, by (4), that
IS} = [IS»ll > T[] — 2e.
Then, findx € S¢ such that
X+ SX| > 1+daugdX) (|| T|| —2¢),
defineg € Sk x) by g = @(x) for thisx, note that
Nd+T[| > || [(1d +T)(9)] (to) || = |Ix+ SX| > 1+ daugX)(||T|| — 2e),

and lete | 0. It should be pointed out that the above argument is based on the one given
in [10, Theorem 5].

Now, if K is perfect, Example 3 gives us that dd@fK, X)) = daug(C(K)) = 1.
OtherwiseK has an isolated point so, on one hand Example 4 gives(dz(llfg) =0
and, on the other hand, we can wi@&K, X) = X @, Z for some Banach spac so
daug(C(K, X)) < daugX) by Proposition 7.

(ii). If pis atomless, by Example 3 we have
daug(L1(k X)) = daug(L1(W))

Otherwise, we may write (1, X) in the formL, (v, X) &1 [®ie X];, for a non-empty
setl and an atomless measuwreNow, daug(L1(v,X)) = 1 so, by Proposition 7, we
have

1

daug(L1 (i, X)) = daug([®ici X];,) = daudX).

Now, Example 4 shows that daign (1)) = 0 and the result follows. The proof ¢ifi )
is completely analogous. O



8 MIGUEL MARTIN

If X is a finite-dimensional space, Theorem 10 is still true if we consider(&gug
0. Actually, in this case, day@(K,X)) —resp. daugLi (i, X)), daug(L«(p,X))—
is equal to 0 or 1 depending on whether or Kohas isolated points —respu has
atoms—.
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