NUMERICAL INDEX AND DAUGAVET PROPERTY FOR $L_{\infty}(\mu, X)$

MIGUEL MARTÍN AND ARMANDO R. VILLENA

ABSTRACT. We prove that the space $L_{\infty}(\mu, X)$ has the same numerical index as the Banach space X for every σ -finite measure μ . We also show that $L_{\infty}(\mu, X)$ has the Daugavet property if and only if X has or μ is atomless.

1. INTRODUCTION

The concept of numerical index was first suggested by G. Lumer in 1968. Since then a lot of attention has been paid to this quantitative characteristic of a Banach space. Classical references here are [2, 3]. For recent results we refer the reader to [7, 8, 9].

Here and subsequently, for a real or complex Banach space X, we write B_X for the closed unit ball and S_X for the unit sphere of X. The dual space is denoted by X^* and the Banach algebra of all continuous linear operators on X is denoted by L(X). The numerical range of $T \in L(X)$ is

$$V(T) = \sup\{x^*(Tx) : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}.$$

The numerical radius is the seminorm defined on L(X) by

$$v(T) = \sup\{|\lambda| : \lambda \in V(T)\}$$

for each $T \in L(X)$. The numerical index of the space X is defined by

$$n(X) = \inf\{v(T) : T \in S_{L(X)}\}.$$

In this paper we prove that the numerical index of $L_{\infty}(\mu, X)$ coincides with the numerical index of X whenever μ is a σ -finite measure and X is an arbitrary Banach space. It should be pointed out that this result is the analogous to those given in [9] for C(K, X), $L_1(\mu, X)$, and $l_{\infty}(X)$.

²⁰⁰⁰ Mathematics Subject Classification. 46B20,47A12.

Research partially supported by Spanish MCYT project no. BFM2000-1467 and by Spanish DGICYT grant no. PB98-1358.

The numerical index is quite related to the so-called Daugavet property (see [9]). The remarkable fact that every compact operator T on C[0, 1] satisfies

(DE)
$$||Id + T|| = 1 + ||T||$$

goes back to I. Daugavet [4] and this identity has currently become known as the *Daugavet equation*. We follow [6] in saying that a Banach space X has the *Daugavet property* if every rank-one operator $T \in L(X)$ satisfies (DE). In such a case, it is known that every weakly compact operator on X also satisfies the Daugavet equation. Consequently, this definition is equivalent to that given in [1]. For recent results we refer the reader to [6, 11, 12] and the references therein.

It is known that C(K), $L_1(\mu)$, and $L_{\infty}(\mu)$ have the Daugavet property provided the compact K is perfect and the measure μ is atomless (see [12] for a detailed account of these facts). The noncommutative versions have been recently obtained in [10]. It is also known that, for every Banach space X, C(K, X) (resp. $L_1(\mu, X)$) has the Daugavet property if and only if X has or K is perfect (resp. μ is atomless) (see [9]).

In this paper, we show that $L_{\infty}(\mu, X)$ has the Daugavet property if and only if X has or the σ -finite measure μ is atomless. This extend an analogous result for $l_{\infty}(X)$ given in [13].

Throughout the paper, (Ω, Σ, μ) stands for a σ -finite measure space and X stands for an arbitrary Banach space. We write $L_{\infty}(\mu, X)$ for the Banach space of all equivalence classes of essentially bounded (Bochner) measurable functions from Ω into X, endowed with its natural norm

$$||f|| = \inf\{\lambda \ge 0 : ||f(t)|| \le \lambda \text{ a.e.}\}$$

for each $f \in L_{\infty}(\mu, X)$. To shorten the notation, we use the same letter to denote both a measurable function and its equivalence class. We refer to [5] for background on this topic.

2. The results

To generalize the fact given in [9] that $n(l_{\infty}(X)) = n(X)$, we require two preliminary results. The first one is well-known for scalar-valued functions.

Lemma 1. Let $f \in L_{\infty}(\mu, X)$ with $||f(t)|| > \lambda$ a.e. Then there exists $B \in \Sigma$ with $0 < \mu(B) < \infty$ such that

$$\left\|\frac{1}{\mu(B)}\int_B f(t)\,d\mu(t)\right\| > \lambda.$$

3

Proof. Since $f(\Omega)$ is essentially separable, we can certainly assume that X is separable. Hence we can write $X \setminus \lambda B_X = \bigcup_{n \in \mathbb{N}} B_n$, where B_n are closed balls. Therefore, there exists $n \in \mathbb{N}$ such that $A = f^{-1}(B_n)$ has positive measure. Let $B \in \Sigma$ such that $B \subseteq A$ and $0 < \mu(B) < \infty$. By convexity (see [5, Corollary II.2.8]), $\frac{1}{\mu(B)} \int_B f(t) d\mu(t)$ is contained in B_n , and the result follows.

Again according to the fact that every function in $L_{\infty}(\mu, X)$ is essentially separably valued, it follows immediately the following result that we shall use throughout the proof of Theorem 3.

Lemma 2. Let $f \in L_{\infty}(\mu, X)$, $C \in \Sigma$ with positive measure, and $\varepsilon > 0$. Then there exist $x \in X$ and $A \subseteq C$ with $0 < \mu(A) < \infty$ such that $||x|| = ||f \chi_C||$ and $||(f - x)\chi_A|| < \varepsilon$. Accordingly, the set

$$\{x\,\chi_A + f\,\chi_{\Omega\setminus A} : x \in S_X, f \in B_{L_{\infty}(\mu,X)}, A \in \Sigma \text{ with } 0 < \mu(A) < \infty\}$$

is dense in $S_{L_{\infty}(\mu,X)}$.

Now we can state our main result.

Theorem 3. Let (Ω, Σ, μ) be a σ -finite measure space and let X be a Banach space. Then

$$n\left(L_{\infty}(\mu, X)\right) = n(X).$$

Proof. In order to show that $n(L_{\infty}(\mu, X)) \ge n(X)$, we fix $T \in L(L_{\infty}(\mu, X))$ with ||T|| = 1. The procedure is to prove that $v(T) \ge n(X)$. Given $\varepsilon > 0$, we may find $f \in S_{L_{\infty}(\mu,X)}$, $x_0 \in S_X$, and $A, B \in \Sigma$ with $0 < \mu(B) < \infty$, such that

(1)
$$B \subseteq A$$
 and $\left\| \frac{1}{\mu(B)} \int_B T\left(x_0 \chi_A + f \chi_{\Omega \setminus A} \right) d\mu \right\| > 1 - \varepsilon.$

Indeed, take $f \in S_{L_{\infty}(\mu,X)}$ and $C \subseteq \Omega$ with $\mu(C) > 0$ such that

(2)
$$||[Tf](t)|| > 1 - \varepsilon/2 \qquad (t \in C).$$

On account of Lemma 2, there exist $y_0 \in B_X$ and $A \subseteq C$ with $\mu(A) > 0$ such that $\|(f - y_0)\chi_A\| < \varepsilon/2$. Now, write $y_0 = \lambda x_1 + (1 - \lambda)x_2$ with $0 \leq \lambda \leq 1, x_1, x_2 \in S_X$, and consider the functions

$$f_j = x_j \,\chi_A + f \,\chi_{\Omega \setminus A} \in L_\infty(\mu, X) \qquad (j = 1, 2),$$

which clearly satisfy $||f - (\lambda f_1 + (1 - \lambda)f_2)|| < \varepsilon/2$. Since $A \subseteq C$, by using (2), we have

$$||[Tf_1](t)|| > 1 - \varepsilon$$
 or $||[Tf_2](t)|| > 1 - \varepsilon$

for every $t \in A$. Now, we choose $i \in \{1, 2\}$ such that

$$A_i = \{t \in A : ||[Tf_i](t)|| > 1 - \varepsilon\}$$

has positive measure, we write $x_0 = x_i$, and we finally use Lemma 1 to get $B \subseteq A_i \subseteq A$ satisfying our requirements.

Next we fix $x_0^* \in S_{X^*}$ with $x_0^*(x_0) = 1$, we write

$$\Phi(x) = x \,\chi_A + x_0^*(x) f \,\chi_{\Omega \setminus A} \in L_\infty(\mu, X) \qquad (x \in X),$$

and we consider the operator $S \in L(X)$ given by

$$Sx = \frac{1}{\mu(B)} \int_B T(\Phi(x)) \ d\mu \qquad (x \in X).$$

According to (1), we have $||S|| \ge ||Sx_0|| > 1 - \varepsilon$. So we may find $x \in S_X$ and $x^* \in S_{X^*}$ such that

$$x^*(x) = 1$$
 and $|x^*(Sx)| \ge n(X)[1-\varepsilon].$

Set $g = \Phi(x) \in S_{L_{\infty}(\mu,X)}$ and define the functional $g^* \in S_{L_{\infty}(\mu,X)^*}$ by

$$g^*(h) = x^* \left(\frac{1}{\mu(B)} \int_B h \, d\mu\right) \qquad (h \in L_\infty(\mu, X))$$

Since $B \subseteq A$, we have $g^*(g) = 1$ and

$$|g^*(Tg)| = |x^*(Sx)| \ge n(X)[1-\varepsilon].$$

Hence $v(T) \ge n(X)$, as required.

For the reverse inequality, we fix $S \in L(X)$ with ||S|| = 1 and define $T \in L(L_{\infty}(\mu, X))$ by

$$[T(f)](t) = S(f(t)) \qquad (t \in \Omega, \ f \in L_{\infty}(\mu, X)).$$

Then ||T|| = 1 and so $v(T) \ge n(L_{\infty}(\mu, X))$. According to Lemma 2 together with [2, Theorem 9.3], given $\varepsilon > 0$ there exist $x \in S_X$, $f \in$ $B_{L_{\infty}(\mu,X)}, A \in \Sigma$ with $0 < \mu(A) < \infty$, and $x^* \in S_{X^*}$ with $x^*(x) = 1$ such that

$$v(T) - \varepsilon < \left| x^* \left(\frac{1}{\mu(A)} \int_A T(x \, \chi_A + f \, \chi_{\Omega \setminus A}) \, d\mu \right) \right|.$$

On the other hand,

$$\frac{1}{\mu(A)} \int_{A} T(x \,\chi_A + f \,\chi_{\Omega \setminus A}) \,d\mu = S\left(\frac{1}{\mu(A)} \int_{A} (x \,\chi_A + f \,\chi_{\Omega \setminus A}) \,d\mu\right) = Sx.$$

Therefore,

$$n(L_{\infty}(\mu, X)) - \varepsilon \leq v(T) - \varepsilon < |x^*(Sx)| \leq v(S)$$

and so $n(X) \ge n(L_{\infty}(\mu, X))$.

The last part of the paper is dedicated to study the Daugavet property for $L_{\infty}(\mu, X)$. To this end, we need a characterization of this property given in [12, Corollary 2.3].

Lemma 4. X has the Daugavet property if and only if for every $x \in S_X$ and every $\varepsilon > 0$,

$$B_X = \overline{co} \{ y \in B_X : \|x - y\| \ge 2 - \varepsilon \}.$$

Since the proof of the non-easy part of the following result is analogous to that given in [12] for C(K, X), it should be known to experts. Although, we did not find it in the journal literature.

Theorem 5. Let (Ω, Σ, μ) be a σ -finite measure space and let X be a Banach space. Then $L_{\infty}(\mu, X)$ has the Daugavet property if and only if X has or μ is atomless.

Proof. Let us first suppose that μ is atomless. Set $f \in S_{L_{\infty}(\mu,X)}$, $\varepsilon > 0$, and $B \in \Sigma$ with

$$\mu(B) > 0$$
 and $||f(t)|| > 1 - \varepsilon/2$ $(t \in B)$.

Given $h \in S_{L_{\infty}(\mu,X)}$ and $n \in \mathbb{N}$, we take B_1, \ldots, B_n pairwise disjoint subsets of B with positive measure and we consider the function

$$g_j = h \, \chi_{\Omega \setminus B_j} - f \, \chi_{B_j} \in B_{L_\infty(\mu, X)}$$

for each $j \in \{1, \ldots, n\}$. For every $t \in B_j$ we have

$$\left\| h(t) - \frac{1}{n} \sum_{i=1}^{n} g_i(t) \right\| = \frac{1}{n} \| h(t) + f(t) \| \leq \frac{2}{n},$$

and for $t \notin \bigcup_{j=1}^{n} B_j$ we have $h(t) = \frac{1}{n} \sum_{i=1}^{n} g_i(t)$. Since $||f - g_j|| > 2 - \varepsilon$, the above lemma shows that $L_{\infty}(\mu, X)$ has the Daugavet property.

To finish the proof, we write $L_{\infty}(\mu, X)$ in the form $L_{\infty}(\nu, X) \oplus_{\infty} [\bigoplus_{i \in I} X]_{l_{\infty}}$ for a suitable set $I \subseteq \mathbb{N}$ and an atomless measure ν . Now, it should be noted that an l_{∞} -sum of Banach spaces has the Daugavet property if an only if every summand has [13].

References

- Y. A. Abramovich, C. D. Aliprantis and O. Burkinshaw, The Daugavet equation in uniformly convex Banach spaces, J. Funct. Analysis 97 (1991), 215–230.
- [2] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Series 2, Cambridge 1971.
- [3] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Series 10, Cambridge 1973.
- [4] I. K. Daugavet, On a property of completely continuous operators in the space C, Uspekhi Mat. Nauk 18 (1963), 157–158 (Russian).

- [5] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, AMS, Providence 1977.
- [6] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin and D. Werner, Banach spaces with the Daugavet property, Trans. Amer. Math. Soc. 352 (2000), 855–873.
- [7] G. López, M. Martín and R. Payá, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), 207–212.
- [8] M. Martín, A survey on the numerical index of a Banach space, Extracta Math. 15 (2000), 265–276.
- [9] M. Martín and R. Payá, Numerical index of vector-valued function spaces, Studia Math. 142 (2000), 269–280.
- [10] T. Oikhberg, The Daugavet property of C^* -algebras and non-commutative L_p -spaces, to appear in Positivity.
- [11] R. V. Shvidkoy, Geometric aspects of the Daugavet property, J. Funct. Anal 176 (2000), 198–212.
- [12] D. Werner, Recent progress on the Daugavet property, Irish Math. Soc. Bulletin 46 (2001), 77-97.
- [13] P. Wojtaszczyk, Some remark on the Daugavet equation, Proc. Amer. Math. Soc. 115 (1992), 1047–1052.

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE CIENCIAS, UNI-VERSIDAD DE GRANADA, 18071-GRANADA (SPAIN), *E-mail*: mmartins@ugr.es, avillena@ugr.es