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Abstract. We prove that the space L∞(µ,X) has the same nu-
merical index as the Banach space X for every σ-finite measure
µ. We also show that L∞(µ, X) has the Daugavet property if and
only if X has or µ is atomless.

1. Introduction

The concept of numerical index was first suggested by G. Lumer in
1968. Since then a lot of attention has been paid to this quantitative
characteristic of a Banach space. Classical references here are [2, 3].
For recent results we refer the reader to [7, 8, 9].

Here and subsequently, for a real or complex Banach space X, we
write BX for the closed unit ball and SX for the unit sphere of X. The
dual space is denoted by X∗ and the Banach algebra of all continuous
linear operators on X is denoted by L(X). The numerical range of
T ∈ L(X) is

V (T ) = sup{x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}.

The numerical radius is the seminorm defined on L(X) by

v(T ) = sup{|λ| : λ ∈ V (T )}

for each T ∈ L(X). The numerical index of the space X is defined by

n(X) = inf{v(T ) : T ∈ SL(X)}.

In this paper we prove that the numerical index of L∞(µ, X) coin-
cides with the numerical index of X whenever µ is a σ-finite measure
and X is an arbitrary Banach space. It should be pointed out that this
result is the analogous to those given in [9] for C(K, X), L1(µ, X), and
l∞(X).
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The numerical index is quite related to the so-called Daugavet prop-
erty (see [9]). The remarkable fact that every compact operator T on
C[0, 1] satisfies

(DE) ‖Id + T‖ = 1 + ‖T‖

goes back to I. Daugavet [4] and this identity has currently become
known as the Daugavet equation. We follow [6] in saying that a Ba-
nach space X has the Daugavet property if every rank-one operator
T ∈ L(X) satisfies (DE). In such a case, it is known that every weakly
compact operator on X also satisfies the Daugavet equation. Conse-
quently, this definition is equivalent to that given in [1]. For recent
results we refer the reader to [6, 11, 12] and the references therein.

It is known that C(K), L1(µ), and L∞(µ) have the Daugavet prop-
erty provided the compact K is perfect and the measure µ is atomless
(see [12] for a detailed account of these facts). The noncommutative
versions have been recently obtained in [10]. It is also known that, for
every Banach space X, C(K, X) (resp. L1(µ, X)) has the Daugavet
property if and only if X has or K is perfect (resp. µ is atomless) (see
[9]).

In this paper, we show that L∞(µ, X) has the Daugavet property if
and only if X has or the σ-finite measure µ is atomless. This extend
an analogous result for l∞(X) given in [13].

Throughout the paper, (Ω, Σ, µ) stands for a σ-finite measure space
and X stands for an arbitrary Banach space. We write L∞(µ, X) for the
Banach space of all equivalence classes of essentially bounded (Bochner)
measurable functions from Ω into X, endowed with its natural norm

‖f‖ = inf{λ > 0 : ‖f(t)‖ 6 λ a.e.}

for each f ∈ L∞(µ, X). To shorten the notation, we use the same
letter to denote both a measurable function and its equivalence class.
We refer to [5] for background on this topic.

2. The results

To generalize the fact given in [9] that n(l∞(X)) = n(X), we require
two preliminary results. The first one is well-known for scalar-valued
functions.

Lemma 1. Let f ∈ L∞(µ, X) with ‖f(t)‖ > λ a.e. Then there exists
B ∈ Σ with 0 < µ(B) < ∞ such that∥∥∥∥ 1

µ(B)

∫
B

f(t) dµ(t)

∥∥∥∥ > λ.
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Proof. Since f(Ω) is essentially separable, we can certainly assume that
X is separable. Hence we can write X \λBX =

⋃
n∈N Bn, where Bn are

closed balls. Therefore, there exists n ∈ N such that A = f−1(Bn) has
positive measure. Let B ∈ Σ such that B ⊆ A and 0 < µ(B) < ∞. By

convexity (see [5, Corollary II.2.8]),
1

µ(B)

∫
B

f(t) dµ(t) is contained in

Bn, and the result follows. �

Again according to the fact that every function in L∞(µ, X) is es-
sentially separably valued, it follows immediately the following result
that we shall use throughout the proof of Theorem 3.

Lemma 2. Let f ∈ L∞(µ, X), C ∈ Σ with positive measure, and
ε > 0. Then there exist x ∈ X and A ⊆ C with 0 < µ(A) < ∞ such
that ‖x‖ = ‖f χC‖ and ‖(f − x)χA‖ < ε. Accordingly, the set

{x χA + f χΩ\A : x ∈ SX , f ∈ BL∞(µ,X), A ∈ Σ with 0 < µ(A) < ∞}

is dense in SL∞(µ,X).

Now we can state our main result.

Theorem 3. Let (Ω, Σ, µ) be a σ-finite measure space and let X be a
Banach space. Then

n (L∞(µ, X)) = n(X).

Proof. In order to show that n(L∞(µ, X)) > n(X), we fix T ∈ L(L∞(µ, X))
with ‖T‖ = 1. The procedure is to prove that v(T ) > n(X). Given
ε > 0, we may find f ∈ SL∞(µ,X), x0 ∈ SX , and A, B ∈ Σ with
0 < µ(B) < ∞, such that

(1) B ⊆ A and

∥∥∥∥ 1

µ(B)

∫
B

T
(
x0 χA + f χΩ\A

)
dµ

∥∥∥∥ > 1− ε.

Indeed, take f ∈ SL∞(µ,X) and C ⊆ Ω with µ(C) > 0 such that

(2) ‖[Tf ](t)‖ > 1− ε/2 (t ∈ C).

On account of Lemma 2, there exist y0 ∈ BX and A ⊆ C with µ(A) > 0
such that ‖(f − y0)χA‖ < ε/2. Now, write y0 = λx1 + (1 − λ)x2 with
0 6 λ 6 1, x1, x2 ∈ SX , and consider the functions

fj = xj χA + f χΩ\A ∈ L∞(µ, X) (j = 1, 2),

which clearly satisfy ‖f − (λf1 + (1 − λ)f2)‖ < ε/2. Since A ⊆ C, by
using (2), we have

‖[Tf1](t)‖ > 1− ε or ‖[Tf2](t)‖ > 1− ε
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for every t ∈ A. Now, we choose i ∈ {1, 2} such that

Ai = {t ∈ A : ‖[Tfi](t)‖ > 1− ε}
has positive measure, we write x0 = xi, and we finally use Lemma 1 to
get B ⊆ Ai ⊆ A satisfying our requirements.

Next we fix x∗0 ∈ SX∗ with x∗0(x0) = 1, we write

Φ(x) = x χA + x∗0(x)f χΩ\A ∈ L∞(µ, X) (x ∈ X),

and we consider the operator S ∈ L(X) given by

Sx =
1

µ(B)

∫
B

T (Φ(x)) dµ (x ∈ X).

According to (1), we have ‖S‖ > ‖Sx0‖ > 1 − ε. So we may find
x ∈ SX and x∗ ∈ SX∗ such that

x∗(x) = 1 and |x∗(Sx)| > n(X)[1− ε].

Set g = Φ(x) ∈ SL∞(µ,X) and define the functional g∗ ∈ SL∞(µ,X)∗ by

g∗(h) = x∗
(

1

µ(B)

∫
B

h dµ

)
(h ∈ L∞(µ, X)).

Since B ⊆ A, we have g∗(g) = 1 and

|g∗(Tg)| = |x∗(Sx)| > n(X)[1− ε].

Hence v(T ) > n(X), as required.
For the reverse inequality, we fix S ∈ L(X) with ‖S‖ = 1 and define

T ∈ L(L∞(µ, X)) by

[T (f)](t) = S(f(t)) (t ∈ Ω, f ∈ L∞(µ, X)).

Then ‖T‖ = 1 and so v(T ) > n(L∞(µ, X)). According to Lemma 2
together with [2, Theorem 9.3], given ε > 0 there exist x ∈ SX , f ∈
BL∞(µ,X), A ∈ Σ with 0 < µ(A) < ∞, and x∗ ∈ SX∗ with x∗(x) = 1
such that

v(T )− ε <

∣∣∣∣x∗ (
1

µ(A)

∫
A

T (x χA + f χΩ\A) dµ

)∣∣∣∣ .

On the other hand,

1

µ(A)

∫
A

T (x χA+f χΩ\A) dµ = S

(
1

µ(A)

∫
A

(x χA + f χΩ\A) dµ

)
= Sx.

Therefore,

n(L∞(µ, X))− ε 6 v(T )− ε < |x∗(Sx)| 6 v(S)

and so n(X) > n(L∞(µ, X)). �
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The last part of the paper is dedicated to study the Daugavet prop-
erty for L∞(µ, X). To this end, we need a characterization of this
property given in [12, Corollary 2.3].

Lemma 4. X has the Daugavet property if and only if for every x ∈ SX

and every ε > 0,

BX = co {y ∈ BX : ‖x− y‖ > 2− ε}.

Since the proof of the non-easy part of the following result is analo-
gous to that given in [12] for C(K, X), it should be known to experts.
Although, we did not find it in the journal literature.

Theorem 5. Let (Ω, Σ, µ) be a σ-finite measure space and let X be a
Banach space. Then L∞(µ, X) has the Daugavet property if and only
if X has or µ is atomless.

Proof. Let us first suppose that µ is atomless. Set f ∈ SL∞(µ,X), ε > 0,
and B ∈ Σ with

µ(B) > 0 and ‖f(t)‖ > 1− ε/2 (t ∈ B).

Given h ∈ SL∞(µ,X) and n ∈ N, we take B1, . . . , Bn pairwise disjoint
subsets of B with positive measure and we consider the function

gj = hχΩ\Bj
− f χBj

∈ BL∞(µ,X)

for each j ∈ {1, . . . , n}. For every t ∈ Bj we have∥∥∥∥∥h(t)− 1

n

n∑
i=1

gi(t)

∥∥∥∥∥ =
1

n
‖h(t) + f(t)‖ 6

2

n
,

and for t /∈
⋃n

j=1 Bj we have h(t) = 1
n

∑n
i=1 gi(t). Since ‖f−gj‖ > 2−ε,

the above lemma shows that L∞(µ, X) has the Daugavet property.
To finish the proof, we write L∞(µ, X) in the form L∞(ν, X) ⊕∞

[
⊕

i∈I X]l∞ for a suitable set I ⊆ N and an atomless measure ν. Now,
it should be noted that an l∞-sum of Banach spaces has the Daugavet
property if an only if every summand has [13]. �
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