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1. Introduction

The numerical index of a Banach space is a constant relating the
norm and the numerical range of operators on the space. The notion
of numerical range was first introduced by O. Toeplitz in 1918 [16] for
matrices, and it was extend in the sixties to operators on an arbitrary
Banach space by F. Bauer [1] and G. Lumer [12]. Let us recall the
relevant definitions. Given a real or complex Banach space X, we
write BX for the closed unit ball and SX for the unit sphere of X.
The dual space will be denoted by X∗, and L(X) will be the Banach
algebra of all bounded linear operators on X. The numerical range of
an operator T in L(X) is the subset V (T ) of the scalar field defined by

V (T ) = {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}.
The numerical radius of T is then given by

v(T ) = sup{|λ| : λ ∈ V (T )}.
It is clear that v is a seminorm on L(X), and v(T ) ≤ ‖T‖ for every
T ∈ L(X). Quite often, v is actually a norm and it is equivalent to the
operator norm. Thus it is natural to consider the so called numerical
index of the space X, namely the constant n(X) defined by

n(X) = inf{v(T ) : T ∈ SL(X)}.
Equivalently, n(X) is the greatest constant k ≥ 0 such that k‖T‖ ≤
v(T ) for every T ∈ L(X). Note that 0 ≤ n(X) ≤ 1, and n(X) > 0 if
and only if v and ‖ · ‖ are equivalent norms (the numerical radius can
be a non-equivalent norm on L(X) –see [14, Example 3.b]–). Clearly,
n(X) = 1 when the operator norm and the numerical radius agree on
L(X). This is the case of some classical spaces like L1(µ) and C(K)
[5]. For general information and background we refer to [3, 4] and to
the survey paper [13]. Recent results can be found in [6, 11, 14, 15]
and the references therein.

The concept of numerical index was first suggested by G. Lumer in
1968. At that time, it was known that a Hilbert space of dimension
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greater than 1 has numerical index 1/2 in the complex case, and 0 in
the real case. Two years later, J. Duncan, C. McGregor, J. Pryce, and
A. White [5] determined the range of values of the numerical index.
More precisely, for a real Banach space X, n(X) can be any number in
the interval [0, 1], while {n(X) : X complex Banach space} = [1/e, 1].
The remarkable result that n(X) ≥ 1/e for every complex Banach
space X goes back to H. Bohnenblust and S. Karlin [2] (see also [7])

Let us mention here some facts concerning the numerical index which
will be relevant to our discussion. For instance, one has v(T ∗) = v(T )
for every T ∈ L(X), where T ∗ is the adjoint operator of T (see [3, §9]),
and it clearly follows that n(X∗) ≤ n(X) for every Banach space X.
The question if this is actually an equality seems to be open. We will
prove a partial answer to this question in section 4.

The outline of the paper is as follows.
In §2 we expose some results of [14, 15] on the “stability” of the

numerical index. We compute the numerical index of c0-, l1- and l∞-
sums of Banach spaces and we also compute the numerical index of
some vector-valued function spaces.

Section 3 is devoted to comment some isomorphic results given in
[6, 11]. First, On one hand, infinite-dimensional real reflexive spaces
cannot be renormed to have numerical index 1. Second, “almost” ev-
ery Banach space can be renormed to have any possible value of the
numerical index but 1.

Finally, we prove in §4 that the dual of a real Banach space having
RNP and numerical index 1, has also numerical index 1.

Acknowledgements: This paper is part of the talk given by the au-
thor on September 27th 2001 at the “Colloquium” of the Mathematical
Analysis Department, Universidad Complutense de Madrid. He would
like to express his gratitude to the Colloquium’s organizer, Dr. Fer-
nando Bombal, and to Dr. José Pedro Moreno for inviting him to give
this talk.

2. “Stability” of the numerical index

The cited result of [5] that

n
(
C(K)

)
= n

(
L1(µ)

)
= 1

for every compact K and every positive measure µ, is generalized in
[14, 15] to c0-, l1- and l∞-sums of Banach spaces and to some spaces of
vector-valued functions. In this section we expose these results.

Given an arbitrary family {Xλ : λ ∈ Λ} of Banach spaces, let us
denote by [⊕λ∈ΛXλ]c0 (resp. [⊕λ∈ΛXλ]l1 , [⊕λ∈ΛXλ]l∞) the c0-sum (resp.
l1-sum, l∞-sum) of the family.
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Proposition 1. ([14, Proposition 1]) Let {Xλ : λ ∈ Λ} be a family of
Banach spaces. Then

n
(
[⊕λ∈ΛXλ]c0

)
= n

(
[⊕λ∈ΛXλ]l1

)
= n

(
[⊕λ∈ΛXλ]l∞

)
= inf

λ
n(Xλ).

As an easy application of this proposition, one can exhibit an exam-
ple of a real Banach space X such that the numerical radius is a norm
on L(X), but it is not equivalent to the operator norm, i.e. n(X) = 0
(see [14, Example 3.b].)

It is also possible to extend this result to spaces of vector-valued
function spaces. Let us give the necessary definitions. Given a real
or complex Banach space X, a compact Hausdorff space K, and a σ-
finite measure µ, let C(K, X) denotes the space of X-valued continuous
functions on K, L1(µ, X) denotes the space of X-valued µ-Bochner-
integrable functions and finally, we write L∞(µ, X) for the space of
X-valued µ-Bochner-measurable and essentially bounded functions.

Theorem 2. ([14, Theorems 5 and 8] and [15, Theorem 3]) Let K be
a compact Hausdorff space, and let µ be a σ-finite measure. Then

n(C(K, X)) = n(L1(µ, X)) = n(L∞(µ, X)) = n(X)

for every Banach space X.

Since C(K, X) = C(K)⊗ε X and L1(µ, X) = L1(µ)⊗π X, one may
wonder if the above result might be a special case of a general result
giving n(X ⊗ε Y ) and n(X ⊗π X) as a function of n(X) and n(Y ). In
[14, Example 10] it is proved that this is not the case. Indeed, using
results by Å. Lima [10] we can prove that

n(l41 ⊗π l41) = n(l4∞ ⊗ε l4∞) = 1

and

n(l41 ⊗ε l41) < 1, n(l4∞ ⊗π l4∞) < 1,

so it cannot exist such a general result for tensor products.

3. Isomorphic results

As the numerical index is strongly isometric, given a Banach space
X, we consider the set of values of the numerical index of X when
equipped with all equivalent norms. That is, we study the set

N (X) = {n(Y ) : Y ' X},
where Y ' X means that X and Y are isomorphic.

In [6] appeared two “positive” results about this set. The first one
applies to every Banach space.

Theorem 3. ([6, Theorem 9]) Let X be a Banach space of dimension
greater than one. Then N (X) is an interval containing [0, 1/3[ in the
real case and [e−1, 1/2[ in the complex case.
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The second result improves the first one, but it applies only to Ba-
nach spaces which admits a long biorthogonal system (v.g. separable
or, more generally, WCG spaces).

Theorem 4. ([6, Theorem 10]) Let X be a Banach space admitting a
long biorthogonal system. Then supN (X) = 1. Therefore, N (X) ⊃
[0, 1[ in the real case and N (X) ⊃ [e−1, 1[ in the complex case.

With this on, the only interesting value of the numerical index (for
an isomorphic point of view) is 1. Actually, it is proved in [11] that
infinite-dimensional reflexive or quasi-reflexive real spaces cannot be
renormed to have numerical index 1. Moreover,

Theorem 5. ([11, Corollary 5]) Let X be an infinite-dimensional real
Banach space with n(X) = 1. Then X∗∗/X is non-separable.

Joining the two above results, we obtain

Corollary 6. ([6, Corollary 11]) Let X be an infinite-dimensional real
Banach space with X∗∗/X separable. Then N (X) = [0, 1[.

4. Passing the numerical index to the dual

It is clear that V (T ) ⊆ V (T ∗) for every bounded linear operator T
on a Banach space X, where T ∗ is the adjoint of T . Moreover, it follows
easily from a result by Lumer [12, Lemma 12] that

coV (T ) = coV (T ∗),

where co denotes closed convex hull, and therefore, v(T ) = v(T ∗). So,
we have:

Proposition 7. [5, Proposition 1.3] If X is a Banach space, then
v(T ∗) = v(T ) for every T ∈ L(X). Therefore, n(X∗) ≤ n(X).

As we have mention in the introduction, the question if the above
inequality is actually an equality is open. The aim of this section is
to give a partial answer to the question. To this end, we require the
notion of semi L-summand introduced by Å. Lima (see [8, §5] and [9,
§3]). A closed subspace J of a Banach space X is a semi L-summand if
for every x ∈ X there exists a unique y ∈ J such that ‖x−y‖ = d(x, J),
and moreover this y satisfies ‖x‖ = ‖y‖+ ‖x− y‖. We will use a result
of [9] which is only valid in the real case.

Proposition 8. ([9, Theorem 3.1]) Let X be a real Banach space and
let x ∈ ex (BX). Then span(x) is a semi L-summand if and only if
|x∗(x)| = 1 for all x∗ ∈ ex (BX∗).

Now, we can state the main result of the section.

Proposition 9. Let X be a real Banach space satisfying the RNP. If
n(X) = 1, then n(X∗) = 1.
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Proof. Fix a denting point x ∈ BX . By [11, Lemma 1], we have that
|x∗(x)| = 1 for every extreme point x∗ of BX∗ . Then, span(x) is a semi
L-summand of X by Proposition 8 and therefore, span(x) is a semi L-
summand of X∗∗ by [8, Theorem 6.14]. Now, we can use Proposition 8
again to get |x∗∗∗(x)| = 1 for every x∗∗∗ ∈ ex (BX∗∗∗). Summarizing,
we have

(*) |x∗∗∗(x)| = 1

for every x∗∗∗ ∈ ex (BX∗∗∗) and every denting point x of BX .
Let T ∈ L(X∗) and let ε > 0. By using that the unit ball of X∗∗ is

the weak∗-closed convex hull of the set of denting points of BX , we can
take such a denting point x so that

‖T ∗x‖ > ‖T‖ − ε.

Then, we can find x∗∗∗ ∈ ex (BX∗∗∗) such that

|x∗∗∗(T ∗x)| = ‖T ∗x‖ > ‖T‖ − ε.

This fact, together with (*), imply that ‖T ∗‖ ≤ v(T ∗). We finally use
Proposition 7 to get ‖T‖ = v(T ) and then, n(X∗) = 1. �
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