A survey on the numerical index of a Banach space
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1 Introduction

The numerical index of a Banach space is a constant relating the norm and the numerical
range of operators on the space. The notion of numerical range was first introduced by
O. Toeplitz in 1918 [32] for matrices, but his definition applies equally well to operators
on infinite-dimensional Hilbert spaces. Ldtdenote a Hilbert space with inner product
(-]-), and letSy denote the unit sphere &f. The numerical rangeof a bounded linear
operatorT onH is the subselV(T) of the scalar field defined by

W(T)={(Txx) : xe Sy}.

Some properties of the Hilbert space numerical range are discussed in the classical book of
P. Halmos [17§17]. Further developments can be found in a recent book of K. Gustafson
and D. Rao [16].

The concept of numerical range for operators on general Banach spaces had to wait
until the sixties, when distinct (but somehow equivalent) definitions were independently
introduced by G. Lumer [25] and F. Bauer [4]. Although Lumer’s paper has been the most
important in the development of the subject, Bauer gave the most convenient definition,
which we will use here. Given a real or complex Banach spgcee write Bx for the
closed unit ball andsy for the unit sphere oK. The dual space will be denoted by
andL(X) will be the Banach algebra of all bounded linear operatorX ohhenumerical
rangeof an operatofl in L(X) is the subse¥ (T) of the scalar field defined by

V(T) ={X*(Tx) : xe€ S, X" € Sx=, X"(X) = 1}.
Thenumerical radiusof T is then given by
V(T) =sup{|]A| : AeV(T)}.
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Itis clear thatv is a seminorm oi(X), andv(T) < ||T|| for everyT € L(X). Quite often,
vis actually a norm and it is equivalent to the operator norm. Thus it is natural to consider
the so callechumerical indexof the spaceX, namely the constam(X) defined by

n(X) =inf{v(T) : T € x)}-

Equivalently,n(X) is the greatest constakt> 0 such thak||T| < v(T) for everyT €
L(X). Note that 0< n(X) < 1, andn(X) > 0 if and only ifvand|| - || are equivalent
norms.

A complete survey on numerical ranges and their relations to spectral theory of opera-
tors can be found in the books by F. Bonsall and J. Duncan [7, 8] and we refer the reader
to these books for general information and background. These books contain some ba-
sic information on the numerical index. After their publication many interesting results
have been found and some intriguing questions remain open. Our plan here is to make an
account of these new developments.

The outline of this paper is as follows. §#2 we summarize some known properties
of the numerical index, and compute it for some concrete spaces. We discuss the results
of [9, 12, 15, 26] on the range of variation of the numerical index, and the differences
between the real and complex cases. Also, we show some “stability properties” of the
numerical index for operations likey-, 11-, andl,-sums, and compute the numerical
index of some vector-valued function spaces. These results appear in [83]tha facts
known about spaces with numerical index 1 are exposed, specially those given in [28] and
[24]. In §4 we discuss some geometrical properties of Banach spaces implying numerical
index 1, and the relation between them. Finallygthwe list some remarks and open
problems.

Acknowledgements: The author would like to express his gratitude to his supervisor,
Dr. Rafael Pag, and to Dr. Gigs Lopez for their day-to-day help and valuable sugges-
tions. Also, it is his pleasure to thank the organizers of Jarandilla’s meeting on Banach
spaces for inviting him to write this survey.

2 The numerical index of a Banach space

The concept of numerical index was first suggested by G. Lumer in a lecture to the North
British Functional Analysis Seminar in 1968. At that time, it was known thét i6 a
complex Hilbert space of dimension greater than 1, théh) = 1/2 (see [17, Page 114]

for example.)

The real case is different. In a real Hilbert sp&teavith dimension greater than 1 itis
easy to build a norm-one operafbrsuch thafl xis orthogonal toc for everyx € Sy, so
W(T) = {0} andn(H) = 0.
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One of the most striking results on the numerical index is the fact that no complex
Banach space may have numerical index 0. Lumer [25] proved|that< 4v(T) for
every bounded linear operatdron a complex Banach spa&e son(X) > 1/4. In 1970
B. Glickfeld [15] improved this estimate by just writing in terms of the numerical radius
an inequality due to F. Bohnenblust and S. Karlin [5].

Theorem 1. [15, Theorem 1.4Let X be a complex Banach space. Then
T <evT)
forall T € L(X). Equivalently, iX) > e L.

Glickfeld also proves in [15] thag ! is the best possible constant in a strong sense:
there is a complex Banach spa¥eand an operatol € L(X) such that/|T|| =1 and
V(T) = e L. Thereforen(X) = e ! and the infimum defining(X) is attained. Finally,
J. Duncan, C. McGregor, J. Pryce, and A. White [12] determined (also in 1970) the range
of variation of the numerical index.

Theorem 2. [12, Theorems 3.5 and 3.6pr every te [0,1] (resp. te [, 1]), there is a
real (resp. complex) Banach space X such tHat)n=t. Actually, X can be taken to be
two-dimensional.

The somehow surprising appearance of the nureliethis world was due to the use
of holomorphic techniques in the proof of the inequality by Bohnenblust and Karlin (see
[5] for details).

Let us make one more remark on the difference between the real and complex cases.
It is easy to show that the real spa¥g underlying a complex Banach spaXesatisfies
n(Xg) = 0. Actually,x — ix has numerical radius 0 when viewed as an operatofzon

In 1972, G. Lumer [26] obtained a “universal” upper-bound for the norm of an opera-
tor in terms of the numerical radius of its powers. The result is interesting only in the real
case.

Theorem 3. [26, Theorem 1]There are constants;cc, such that for any Banach space
X, one has

ITI < cav(T) +c2 (WT2)? VT € L(X).

It follows from [9, Example 2.3] that one can takge= ¢, = 4.

What about the numerical index of classical Banach spaces? Well, computing the
numerical index of concrete spaces may be hard. For instance, the numerical imglex of
(p # 1,2, ) is yet unknown. However, there are some classical spaces whose numerical
indexes have been calculated in the literature. In [12], the authors gave the first example



The numerical index of a Banach space 4

of a Banach space such that the norm and the numerical radius coincide for all operators
on it, that is, a space with numerical index €(K), the Banach space of continuous
scalar-valued functions on a compact Hausdorff sgafE2, Theorem 2.1]. To find new
examples, we can look at the relation between the numerical indexes of a Banach space
and its dual.

It is clear thatv(T) C V(T*) for every bounded linear operatdron a Banach space
X, whereT* is the adjoint ofT. Moreover, it follows easily from a result by Lumer [25,
Lemma 12] that
coV(T) =cov(T7),
whereto denotes closed convex hull, and therefetd,) = v(T*). Later on, by using a
refinement of the Bishop-Phelps Theorem, B. BAisl6] proved that

V(T*) CV(T).

We can now state:

Proposition 4. [12, Proposition 1.3|f X is a Banach space, then
n(X*) < n(X).

The question if the above inequality is actually an equality seems to be open.

Back to the examples, [12, Theorem 2.2] gives us two families of Banach spaces
with numerical index 11 -spaces andil-spaces. Indeed, the dual of brspace and the
bidual of anM-space are isometric to a space of continuous functions on some compact
Hausdorff space, and the above proposition applies.

It is natural to ask for the behaviour of the numerical index under some operations. It
is shown in [27] that the numerical index otg, |1-, orl.-sum of Banach spaces can be
computed in the expected way. Given an arbitrary fafily : A € A} of Banach spaces,
let us denote by®xcaXylg, (resp. [BacaXili,s [BaeaXni,) the co-sum (resp.l1-sum,
l,-sum) of the family.

Proposition 5. [27, Proposition 1] .et{X, : A € A} be a family of Banach spaces. Then
n([@)\el\x)\]co> = n([@AeAX)\]I1> = n([@)\e/\x)\]lm> = infn(X).

As an easy application of this proposition, one can exhibit an example of a real Banach
spaceX such that the numerical radius is a normlgiX), but it is not equivalent to the
operator norm, i.en(X) = 0 (see [27, Example 2.b].)

The numerical index of some vector-valued function spaces was also computed in
[27]. Given a real or complex Banach spa¥ea compact Hausdorff spa¢é and a
positive measurg, letC(K, X) (resp.L1(p, X)) denote the space of-valued continuous
functions ornK (resp.X-valuedp-Bochner-integrable functions).
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Theorem 6. [27, Theorems 5 and &)et K be a compact Hausdorff space, and let p be a
positive measure. Then

n(C(K,X)) = n(l—l(uax)) = n(X)
for every Banach space X.

Let us finally mention one further example of a Banach space with numerical index 1,
namely the disk algebra (see [9, Theorem 3.3]). It actually follows from a recent result of
D. Werner [33] that all function algebras have numerical index 1.

3 Banach spaces with numerical index

A Banach spac& has numerical index 1 if and only if for evellye L(X) the norm ofT
can be evaluated by

|IT|I=sup{|xX(TX)| : x&€ S, X" € S+, X"(X) =1}.

What are the consequences of this property on the geometry (or the topology) of a
Banach space? For instance, is it possible to find an infinite-dimensional reflexive Banach
space having numerical index 1? or, which infinite-dimensional Banach spaces have (or
can be re-normed to have) the property? We will try to partially answer these questions
here.

In the finite-dimensional context, a satisfactory characterization of spaces with nu-
merical index 1 was given by C. McGregor in 1971. Denote biBegxhe set of extreme
points in the convex s&.

Theorem 7. [28, Theorem 3.1 finite-dimensional space X satisfiee<n = 1 if and
only if |x*(x)| = 1 for every xe ex(Bx) and X € ex(Bx-).

It is not clear how to carry this property to the infinite-dimensional context, because
for infinite-dimensionalX, ex(Bx) may be empty (e.gcp). One could reformulate Mc-
Gregor’s condition in a natural wayx™(x*)| = 1 for everyx" € ex(Bx-) and every
X** € ex(Bx+). It is easy to show that this condition is sufficient to ensu¥) = 1,
but we do not know if it is also necessary.

In a recent paper [24], McGregor’s result has been extended to the infinite-dimen-
sional context by considering denting points instead of general extreme points. Recall
thatxp € By is said to be @enting pointof By if it belongs to slices oBx with arbitrarily
small diameter. IfX is a dual space and the slices can be taken to be defined-by
continuous functionals, then we say tlais aw*-denting point
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Lemma 8. [24, Lemma 1]Let X be a Banach space with numerical indexX hen:

(i) [x™*(x*)| = 1for every X* € ex(Bx++) and every W-denting point X € Bx:.
(i) |x*(x)| =1for every X € ex(Bx-) and every denting point& By.

The above lemma can be combined with a useful sufficient conditionréad 8anach
space to contain a subspace isomorphic eitheptor to I1, which follows easily from
Rosenthal'd;-Theorem [31] and Fonf’s Theorem on containment©ff13].

Proposition 9. [24, Proposition 2].et X be a real Banach space and assume that there
is an infinite set AC Sx such thatx*(a)| = 1 for every ac A and all X € ex(Bx+). Then
X contains (an isomorphic copy of) eitheyar I;.

The way to use Proposition 9 and Lemma 8 should be clear: take a real Banach space
with numerical index 1 and infinitely many denting points (@r-denting points in its
dual), and you obtain that the Banach space (or the dual) cortaord;. A natural (iso-
morphic) assumption on an infinite-dimensional Banach space providing a lot of denting
points is the Radon-Nikgan property (RNP for short). Actually the unit ball of a Ba-
nach space satisfying the RNP is the closed convex hull of its strongly exposed points,
and strongly exposed points are denting. On the other handjsfan Asplund space
(equivalentlyX* has the RNP), theBx- is thew*-closed convex hull of itsv*-strongly
exposed (hence*-denting) points (see [29]). Therefore, we get:

Theorem 10. [24, Theorem 3L et X be an infinite-dimensional real Banach space with
n(X) = 1. If X has the RNP, then X contains If X is an Asplund space, therf Xontains

l1.

Note that the second part of the above theorem does not follow directly from the first
one, because we require omgX) = 1 and it is not known if this impliea(X*) = 1.

Some interesting consequences of the above theorem are obtained by using the re-
lationship between the RNP, containmentcgfor |1, reflexivity, etc. For instance, an
Asplund space cannot contdij so if X is a real Asplund space satisfying the RNP, and
n(X) = 1, thenX is finite-dimensional. As a special case, a reflexive or quasi-reflexive
real Banach space with numerical index 1 must be finite-dimensional. Actually, if the
quotientX** /X is separable, it is known (see [11, page 219]) ¥atas the RNP and
is an Asplund space. ThereforeXfis an infinite-dimensional real Banach space with
n(X) =1, thenX** /X is non-separable. All these results can be understood as necessary
conditions for a Banach space to be re-normable with numerical index 1. We emphasize
the following.

Corollary 11. An infinite-dimensional real Asplund space with the RNP cannot be re-
normed to have numerical indéx
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Unfortunately, we do not know how to extend the above results to the complex case.
There, our knowledge of Banach spaces with numerical index 1 is too poor. As far as we
know, an infinite-dimensional reflexive complex space might have numerical index 1.

4 CL-spaces and almost-CL-spaces

By using Theorem 7 and a result By Lima [21, Corollary 3.7] we get that a finite-
dimensional Banach space has numerical index 1 if and only if it is a CL-space. General
CL-spaces were introduced by R. Fullerton in 1960 [14]. A Banach spac€lisspace

if its unit ball is the absolutely convex hull of every maximal proper face. If the unit
ball is the closed absolutely convex hull of every maximal proper face, we say, following
A. Lima [21], that the space is aamost-CL-spaceC(K) is a CL-space in the complex

as well as in the real cask; (Y) is a CL-space in the real case but complefu)-spaces

are only almost-CL-spaces. Actually, the complex sdage an example of an almost-
CL-space which is not a CL-space.

For the infinite-dimensional case, in 1990 M. D. Acosta proved that real CL-spaces
have numerical index 1 (see [1] and [2, Teorema 5.5]). For the sake of completeness we
include a simpler proof. Actually, we deal with real or complex almost-CL-spaces.

Proposition 12. Let X be an almost-CL-space, thefXn = 1.

Proof. Every maximal proper facé of By is of the form
F={xeBx : X(x) =1}

for suitablex® € S¢+. If A C S+ is the set of thosg* generating maximal proper faces in
the above sense, it is easy to see Bjatis thew*-closed convex hull oA.

Now, givenT € L(X) ande > 0, letx* € A be such thaf T*x*|| > ||T*|| — ¢, and find
X** € ex(Bx++) satisfying

(T =T > [T —e.

We are left with only showing thak™ (x*)| = 1, for this will imply v(T*) > ||T*|| —«.
SinceX is an almost-CL-spacdy is the closed absolutely convex hull of the maximal
proper face- defined byx*, and it follows from Goldstine Theorem thB-«- is thew*-
closed absolutely convex hull ¢f. By the reversed Krein-Milman Theorem (see [10,
Theorem 7.8], for example) every extreme poinBig- belongs to thev*-closure ofF
up to rotation, sox*™* (x*)| = 1 as required. O

CL-spaces are related to an intersection property of balls introduced by J. Linden-
strauss in 1964 for real spaces [22], namely 812 intersection property (3.2.1.P.)
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A real Banach space has this property if every collection of three mutually intersect-
ing closed balls has nonempty intersectiof. Lima showed in 1977 [20] that every

real Banach space with the 3.2.1.P. is a CL-space, but the converse is false even in the
finite-dimensional case (see [18, Remark 3.6] and [22, Page 47]). It follows from Propo-
sition 12 that every real Banach space with the 3.2.1.P. has numerical index 1. Moreover,
the second assertion in Theorem 10 can be established for this kind of space without the
Asplund assumption. Indeed,X is an infinite-dimensional real Banach space with the
3.2.I.P., therX* satisfies the 3.2.1.P. as well [20, Corollary 3.3], and we can apply a result
by J. Lindenstrauss [22, Theorem 4.7] to get th&t(x*)| = 1 for everyx* € ex(Bx-)

and every™ € ex(Bx=). Since exBx-) is infinite, Proposition 9 shows tht" contains
eitherco or |1, but a dual space contaihs(hence alsd;) as soon as it contairtg. So we

have proved

Proposition 13. [24, Corollary 7]Let X be an infinite-dimensional real Banach space
with the 3.2.1.P. Then Xcontains .

The fact that an infinite-dimensional real Banach space with the 3.2.1.P. cannot be
reflexive was known to J. Lindenstrauss and R. Phelps in 1968 [23, Corollary 2.4].

To finish this section, we cite a result obtained by S. Reisner in 1991 [30], which
emphasizes the difference between spaces with the 3.2.1.P. and CL-spaces. In 1981,
A. B. Hannsen and\. Lima had given a structure theorem for real finite-dimensional
spaces with the 3.2.1.P. [19]: any such space is obtained from the real line by repeated
l1- andl,-sums. That is, it can be constructed in a finite sequence of steps, using only
one type of “brick”, which is the real line, and two “construction tools*,andl.-sums.

In [30], Reisner proved that nothing similar can be expected for CL-spaces. He showed
that it does not exist a finite set of “bricks” which is sufficient to construct all finite-
dimensional real CL-spaces byandl, sums (see [30, Section 3] for details).

For more information and background on CL-spaces and 3.2.1.P. we refer the inter-
ested reader to [3], and to the already mentioned [14], [19], [20], [21], [22], and [30].

5 Remarks and problems

(a) Power inequality and numerical indeXVe say that the power inequality holds for
a Banach spack if
v(T™) < v(T)"

for everyT € L(X). This obviously happens if the numerical index of a Banach
space is 1, and it is known (see [17] and [7]) that it also happens for every complex
Hilbert space (in the real case, there exists an opefatso thatv(T) = 0 and
v(T?) > 0 —se€§2-). Is it then the case that the power inequality holds for spaces
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whose numerical index is sufficiently close to 1? In [9, Section 3], this question was
answered in the negative by proving that for evarg [e1, 1] there is a complex
Banach spac¥y with n(Xy) = a failing the power inequality. We do not know of

any spaces satisfying the power inequality, other than complex Hilbert spaces and
spaces with numerical index 1.

(b) It would be of interest to compute the numerical index for various classical Banach
spaces such dg (or in generalp(S 2, ) for 1 < p < o (p # 2), and the Hardy
spaces. In a next step, it would also be desirable to compute the numerical index of
| p-sums of Banach spaces and spagg$t, X).

(c) Itis provedin [7, Theorem 2.6 and Theorem 10.1] that for a complex Banach space
X,

p(T) <v(M)(<TIH (T eL(X)),

wherep(T) is the spectral radius of. In §3, we study one of the extreme case
of this inequality,v(T) = ||T|| for all operatorT, and it might seem of interesting
to study the other extreme case, that is, what's the matffif = v(T) for every
bounded linear operatdr of L(X). But this is only possible in a trivial case. If

a complex Banach spacésatisfies that the spectral and the numerical radius co-
incide, then the spectral radius is an equivalent norm(¥), and it is a classical
result in the theory of Banach algebras that in such a t&§¢is commutative, so

X =C. See [733 and§4] for a more detailed account.

(d) In the infinite-dimensional context the relation between CL-spaces, almost-CL-
spaces, and spaces with numerical index 1 is not clear enough. We already men-
tioned that1(C) is an almost-CL-space which is not a CL-space. We do not know
what'’s the matter in the real case, and also, we do not know if every real or complex
Banach space with numerical index 1 is an almost-CL-space.

(e) We conjecture that a Banach space with numerical index 1 must contain@ither
or |1, but we do not know yet how to attack this conjecture. In the complex case we
even do not know if the results in [24] are valid.
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