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Abstract

We show that an infinite-dimensional real Banach space with numerical index 1
and satisfying the Radon-Nikodym property contains ¢;. It follows that a reflexive
or quasi-reflexive real Banach space cannot be renormed to have numerical index 1,
unless it is finite-dimensional.

1 Introduction.

A Banach space has numerical index 1 if the norm of every bounded linear operator on
it agrees with the numerical radius. Let us recall the relevant definitions. Given a real or
complex Banach space X, we write Bx for the closed unit ball and Sx for the unit sphere
of X. The dual space will be denoted by X* and L(X) will be the Banach algebra of all
bounded linear operators on X. The numerical range of such an operator T is the subset
V(T) of the scalar field defined by

V(T)={2"(Tz) : x € Sx, " € Sx+, z*(z) = 1}.
The numerical radius of T is then given by
o(T) =sup{|\ : e V(T)}.

It is clear that v is a seminorm on L(X), and v(T) < ||T|| for every T' € L(X). Quite
often, v is actually a norm and it is equivalent to the operator norm || - |. Thus it is
natural to consider the so called numerical index of the space X, namely the constant
n(X) defined by

n(X) =inf{v(T) : T € Spx)}-

Equivalently, n(X) is the greatest constant k& > 0 such that k||T|| < v(T) for every
T € L(X). Note that 0 <n(X) <1, and n(X) > 0 if and only if v and || - || are equivalent
norms.
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A complete survey on numerical ranges and their relations to spectral theory of opera-
tors can be found in the books by F. Bonsall and J. Duncan [1, 2] and we refer the reader
to these books for general information and background. Let us mention here a couple of
facts concerning the numerical index wich are relevant to our discussion. First, one has
v(T*) = v(T) for every T € L(X), where T* is the adjoint operator of T (see [1, §9]) and
it clearly follows that n(X*) < n(X) for every Banach space X. The question if this is
actually an equality seems to be open. Second, real and complex Banach spaces behave
in a very diferent way with regard to the numerical index, as summarized in the following
equalities (see [6]):

{n(X) : X complex Banach space } = [e7!, 1]
{n(X) : X real Banach space } = [0, 1]

For instance, it is easy to show that the real space Xk underlying a complex Banach space
X satisfies n(Xg) = 0 in spite of the fact that n(X) > e™!.

We are interested in the study of Banach spaces with numerical index 1. In the finite-
dimensional context a satisfactory characterization of this kind of spaces was given by
C. McGregor [11]. With regard to the infinite-dimensional case, a large family of classical
spaces with numerical index 1 was exhibited in the already cited paper of J. Duncan,
C. McGregor, J. Pryce, and A. White [6], namely L;(u) spaces and their preduals. The
disk algebra is another interesting example (see [2, Theorem 32.9]).

In this paper we try to investigate the isomorphic properties of Banach spaces with
numerical index 1. To say it in another way, we get necessary conditions for an infinite-
dimensional Banach space to admit an equivalent norm with numerical index 1. As far
as we know, this is an unexplored line. For instance, it is known that a Hilbert space
H (dim(H) > 2) has numerical index 0 or 1/2 depending whether it is real or complex,
but the question if an infinite-dimensional Banach space with numerical index 1 can be
isomorphic to a Hilbert space seems to be open.

To summarize our results, let us fix an infinite-dimensional real Banach space X with
n(X) = 1. We show that if X satisfies the Radon-Nikodym property (RNP for short), then
X contains (a subspace isomorphic to) ¢; while if X is an Asplund space (i.e. X* satisfies
RNP) then X* contains ¢; (note that we do not require n(X*) = 1). It follows that the
quotient space X** /X cannot be separable. Therefore, a reflexive or quasi-reflexive real
Banach space cannot be equivalently renormed to have numerical index 1, unless it is
finite-dimensional. Unfortunately, we could not get analogous results for complex Banach
spaces. For background on RNP and Asplund spaces we refer to [3], [5], or [12].

The arguments we use can be applied to a more restrictive class of real Banach spaces
introduced by J. Lindenstrauss [9], to obtain slightly sharper results. Recall that a real
Banach space is said to satisfy the 3.2 Intersection Property (3.2.1.P.) if each family of
three mutually intersecting closed balls has nonempty intersection. It is not difficult to



check that n(X) = 1 whenever X satisfies the 3.2.1.P., but the converse is not true. We
prove that the dual of an infinite-dimensional real Banach space with the 3.2.1.P. always
contains ¢;. The fact that such an space cannot be reflexive was known to J. Lindenstrauss

and R. Phelps [10].

2 Main result.

Our starting point is McGregor’s characterization of finite-dimensional spaces with nu-
merical index 1 [11, Theorem 3.1]: A finite-dimensional space X satisfies n(X) =1 if and
only if |x*(x)| = 1 for all extreme points v € Bx and x* € Bx+. We will denote by ex(B)
the set of extreme points in the convex set B. For infinite-dimensional X, ex(Bx) may be
empty (e.g. ¢p), so the right statement of McGregor’s condition in this case should read
|z**(z*)| = 1 for every a* € ex(Bx~) and every ™ € ex(Bx+). One can easily show that
this condition is sufficient to ensure n(X) = 1 but we do not know if the condition is also
necessary. Nevertheless, by considering denting points instead of general extreme points
we will get a (weaker) necessary condition. Recall that zo € Bx is said to be a denting
point of By if it belongs to slices of Bx with arbitrarily small diameter. More precisely,
for each € > 0 one can find a functional z* € Sx+ and a positive number « such that the
slice {x € Bx : Rez*(z) > 1 — a} is contained in the closed ball centered at z with
radius €. If X is a dual space and the functionals x* can be taken to be w*-continuous,
then we say that z( is a w*-denting point.

Lemma 1. Let X be a Banach space with numerical index 1. Then:

(i) |**(x*)| =1 for every x** € ex(Bxs) and every w*-denting point x* € Bx~.
(i7) |x*(x)| =1 for every x* € ex(Bx+) and every denting point x € Bx.

Proof. We only give the proof of (i); the other part is analogous.

Let us fix z3* € ex(Bx+), a w*-denting point x§ € Bx~, and 0 < ¢ < 1. Consider
the w*-closed set F' = {&™ € By« : [(x™ —af*)(xf)| > €}, and let K be the w*-closed
convex hull of F'. Note that af* ¢ K, since otherwise z{* would be an extreme point in
K and the “reversed” Krein-Milman Theorem (see [4, Theorem 7.8], for example) would
give zi* € F', a contradiction. We can now use the Hahn-Banach separation theorem to
find y* € Sy~ and o > 0 such that

Re 25" (y*) > 1 — a > Re 2™ (y")

for every x** € F. It follows that |(z*™ — a§*)(xf)| < € whenever x** € By« satisfies
Re z**(y*) > 1 — a. On the other hand, since zf is a w*-denting point, we can find
y € Sx and [ > 0 such that ||z* — || < € whenever z* € By« satisfies Re 2*(y) > 1 — £.



Consider the rank-one operator T" € L(X) defined by Tx = y*(x)y for every = €
X. Since n(X) = 1, we have v(T) = ||T|| = 1 and the definition of the numerical
radius provides us with z € Sx and z* € Sx-, such that 2*(z) = 1 and |2*(Tz)| =
ly*(z)||z*(y)| > 1 — 0, where we take § = min{«, 5}. By choosing suitable modulus one
scalars s and t we have

Re y*(sx) =ly*(z)| >1 -6 >1—«
Re tz*(y) = |[z*(y)| >1 -0 > 1— 0.

It follows that |z§(sz) — z§*(zf)| < € and |[[ta* — x| < €, so
1= Jag" ()] " (sw) — 25" (xp)] <

<
< [ta*(sz) — wp(sw)| + |wg(sz) — xp"(2g)| < 22
and we let € | 0. -

Our next result is a useful sufficient condition for a real Banach space to contain a
subspace isomorphic either to ¢q or to ¢1, which follows easily from Rosenthal’s ¢;-Theorem
[13] and a result by Fonf [7]. The above lemma shows that this sufficient condition will
be fulfilled by a Banach space with numerical index 1 (or by its dual), provided that the
unit ball has infinitely many denting (or w*-denting) points. From now on we only work
in the real case.

Proposition 2. Let X be a real Banach space and assume that there is an infinite set
A C Sx such that |x*(a)| = 1 for every a € A and all 2* € ex(Bx+). Then X contains
(an isomorphic copy of ) either co or ¢;.

Proof. Suppose that X does not contain ¢;. Then, by Rosenthal’s £;-Theorem [13], every
bounded sequence in X has a weakly Cauchy subsequence, so there is a weakly Cauchy
sequence {a,} of distinct members of A. Let Y be the closed subspace generated by
this sequence. The assumption on A clearly gives |la, — a,|| = 2 for n # m, so Y is
infinite-dimensional. The proof will be finished by showing that Y contains ¢y, and this
will follow from Fonf’s Theorem [7] if we are able to prove that ex(By+) is countable.

By a well-known application of the Hahn-Banach and Krein-Milman theorems, every
y* € ex(By~) is the restriction to Y of some extreme point in By, so |y*(a,)| = 1 for
every n. Since {a,} is weakly Cauchy, the sequence {y*(a,)} must be eventually 1 or —1.
This shows that

e}

ex(By-) = | J(Ex U —Ey)

k=1

where Ey = {y* € ex(By+) : y*(a,) =1 for n > k}. Since the sequence {a,} separates
the points of Y*, each set E}, is finite and we are done. O
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A natural (isomorphic) assumption on an infinite-dimensional Banach space providing
a lot of denting points is RNP. Actually the unit ball of a Banach space satisfying RNP
is the closed convex hull of its strongly exposed points, and strongly exposed points are
denting. On the other hand, if X is an Asplund space, then By~ is the w*-closed convex
hull of its w*-strongly exposed (hence w*-denting) points (see [12]). Therefore, we have

Theorem 3. Let X be an infinite-dimensional real Banach space with n(X) = 1. If X
has RNP, then X contains ¢1. If X is an Asplund space, then X* contains ;. O

We do not know if the second part of the above theorem follows directly from the first.
Note that X* satisfies RNP if X is Asplund, but we only require n(X) = 1 and we do not
know if n(X*) = 1.

An Asplund space cannot contain £;, so Theorem 3 has the following consequence.

Corollary 4. Let X be a real Asplund space satisfying RNP. If n(X) = 1, then X is
finite-dimensional. O

As a special case of the above corollary a reflexive real Banach space with numerical
index 1 must be finite-dimensional. In fact, we have:

Corollary 5. Let X be an infinite-dimensional real Banach space with n(X) = 1. Then
X**/X is non-separable.

Proof. 1t is known (see [5, page 219]) that X and X* have RNP if X**/X is separable. [

Remark 6. It is worth mentioning that in the proof of Lemma 1 only rank-one operators
were involved. Thus, the lemma remains true if we only assume that v(7') = ||T']| for every
rank-one operator 7" € L(X). However this observation does not lead to an improvement
of our main results. In fact, a Banach space satisfying RNP or an Asplund space has
numerical index one as soon as rank-one operators on the space have numerical radius
equal to the norm. We show this for an Asplund space, the RNP case being similar.
Take an arbitrary operator T' € L(X), fix ¢ > 0, and use that Byx- is the w*-closed
convex hull of its w*-denting points to get | 7*(z*)|| > ||T%|| — ¢ for some w*-denting
point z*. Now choose x** € ex(Bx=) such that |«**(T*z*)| > ||T*|| — e. With the above
observation in mind, Lemma 1 tells us that, up to rotation, we may arrange z**(z*) = 1,
so v(T™) > ||T*|| —e. Now let € | 0 and use that v(T) = v(T™*) (see [1, §9, Corollary 6]).

As we announced in the introduction, one of the assertions in Theorem 3 can be
improved for spaces with the 3.2.1.P. Indeed, A. Lima proved that the 3.2.1.P. is a self-
dual property [8, Corollary 3.3]. Now, if X is an infinite-dimensional real Banach space
with the 3.2.1.P. we may apply to X* a result by Lindenstrauss [9, Theorem 4.7] to obtain
that [z**(z*)| = 1 for every z** € ex(Bx«) and every x* € ex(Byx+). Since ex(Bxx) is
infinite, Proposition 2 shows that X™ contains either ¢y or ¢;, but a dual space contains
I (hence also ¢1) as soon as it contains ¢y. Therefore, we have shown the following:
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Corollary 7. Let X be an infinite-dimensional real Banach space with the 3.2.1.P. Then
X* contains (. O

The fact that an infinite-dimensional real Banach space with the 3.2.1.P. cannot be
reflexive was proved in [10, Corollary 2.4].

We have seen above that every real Banach space with the 3.2.1.P. satisfies
|z**(z")] = 1 Vo™ € ex(Bx+) Vo™ € ex(Bxs). (%)

Recall that () implies n(X) = 1 and we do not know if the converse is true. On the
other hand, it is known that property (x) does not imply the 3.2.1.P.; even in the finite-
dimensional case (see [9, pp. 47]).
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