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Abstract

We show that an infinite-dimensional real Banach space with numerical index 1
and satisfying the Radon-Nikodỳm property contains `1. It follows that a reflexive
or quasi-reflexive real Banach space cannot be renormed to have numerical index 1,
unless it is finite-dimensional.

1 Introduction.

A Banach space has numerical index 1 if the norm of every bounded linear operator on
it agrees with the numerical radius. Let us recall the relevant definitions. Given a real or
complex Banach space X, we write BX for the closed unit ball and SX for the unit sphere
of X. The dual space will be denoted by X∗ and L(X) will be the Banach algebra of all
bounded linear operators on X. The numerical range of such an operator T is the subset
V (T ) of the scalar field defined by

V (T ) = {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}.

The numerical radius of T is then given by

v(T ) = sup{|λ| : λ ∈ V (T )}.

It is clear that v is a seminorm on L(X), and v(T ) ≤ ‖T‖ for every T ∈ L(X). Quite
often, v is actually a norm and it is equivalent to the operator norm ‖ · ‖. Thus it is
natural to consider the so called numerical index of the space X, namely the constant
n(X) defined by

n(X) = inf{v(T ) : T ∈ SL(X)}.
Equivalently, n(X) is the greatest constant k ≥ 0 such that k‖T‖ ≤ v(T ) for every
T ∈ L(X). Note that 0 ≤ n(X) ≤ 1, and n(X) > 0 if and only if v and ‖ ·‖ are equivalent
norms.
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A complete survey on numerical ranges and their relations to spectral theory of opera-
tors can be found in the books by F. Bonsall and J. Duncan [1, 2] and we refer the reader
to these books for general information and background. Let us mention here a couple of
facts concerning the numerical index wich are relevant to our discussion. First, one has
v(T ∗) = v(T ) for every T ∈ L(X), where T ∗ is the adjoint operator of T (see [1, §9]) and
it clearly follows that n(X∗) ≤ n(X) for every Banach space X. The question if this is
actually an equality seems to be open. Second, real and complex Banach spaces behave
in a very diferent way with regard to the numerical index, as summarized in the following
equalities (see [6]):

{n(X) : X complex Banach space } = [e−1, 1]
{n(X) : X real Banach space } = [0, 1]

For instance, it is easy to show that the real space XR underlying a complex Banach space
X satisfies n(XR) = 0 in spite of the fact that n(X) ≥ e−1.

We are interested in the study of Banach spaces with numerical index 1. In the finite-
dimensional context a satisfactory characterization of this kind of spaces was given by
C. McGregor [11]. With regard to the infinite-dimensional case, a large family of classical
spaces with numerical index 1 was exhibited in the already cited paper of J. Duncan,
C. McGregor, J. Pryce, and A. White [6], namely L1(µ) spaces and their preduals. The
disk algebra is another interesting example (see [2, Theorem 32.9]).

In this paper we try to investigate the isomorphic properties of Banach spaces with
numerical index 1. To say it in another way, we get necessary conditions for an infinite-
dimensional Banach space to admit an equivalent norm with numerical index 1. As far
as we know, this is an unexplored line. For instance, it is known that a Hilbert space
H (dim(H) ≥ 2) has numerical index 0 or 1/2 depending whether it is real or complex,
but the question if an infinite-dimensional Banach space with numerical index 1 can be
isomorphic to a Hilbert space seems to be open.

To summarize our results, let us fix an infinite-dimensional real Banach space X with
n(X) = 1. We show that if X satisfies the Radon-Nikodỳm property (RNP for short), then
X contains (a subspace isomorphic to) `1 while if X is an Asplund space (i.e. X∗ satisfies
RNP) then X∗ contains `1 (note that we do not require n(X∗) = 1). It follows that the
quotient space X∗∗/X cannot be separable. Therefore, a reflexive or quasi-reflexive real
Banach space cannot be equivalently renormed to have numerical index 1, unless it is
finite-dimensional. Unfortunately, we could not get analogous results for complex Banach
spaces. For background on RNP and Asplund spaces we refer to [3], [5], or [12].

The arguments we use can be applied to a more restrictive class of real Banach spaces
introduced by J. Lindenstrauss [9], to obtain slightly sharper results. Recall that a real
Banach space is said to satisfy the 3.2 Intersection Property (3.2.I.P.) if each family of
three mutually intersecting closed balls has nonempty intersection. It is not difficult to
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check that n(X) = 1 whenever X satisfies the 3.2.I.P., but the converse is not true. We
prove that the dual of an infinite-dimensional real Banach space with the 3.2.I.P. always
contains `1. The fact that such an space cannot be reflexive was known to J. Lindenstrauss
and R. Phelps [10].

2 Main result.

Our starting point is McGregor’s characterization of finite-dimensional spaces with nu-
merical index 1 [11, Theorem 3.1]: A finite-dimensional space X satisfies n(X) = 1 if and
only if |x∗(x)| = 1 for all extreme points x ∈ BX and x∗ ∈ BX∗ . We will denote by ex(B)
the set of extreme points in the convex set B. For infinite-dimensional X, ex(BX) may be
empty (e.g. c0), so the right statement of McGregor’s condition in this case should read
|x∗∗(x∗)| = 1 for every x∗ ∈ ex(BX∗) and every x∗∗ ∈ ex(BX∗∗). One can easily show that
this condition is sufficient to ensure n(X) = 1 but we do not know if the condition is also
necessary. Nevertheless, by considering denting points instead of general extreme points
we will get a (weaker) necessary condition. Recall that x0 ∈ BX is said to be a denting
point of BX if it belongs to slices of BX with arbitrarily small diameter. More precisely,
for each ε > 0 one can find a functional x∗ ∈ SX∗ and a positive number α such that the
slice {x ∈ BX : Re x∗(x) > 1 − α} is contained in the closed ball centered at x0 with
radius ε. If X is a dual space and the functionals x∗ can be taken to be w∗-continuous,
then we say that x0 is a w∗-denting point.

Lemma 1. Let X be a Banach space with numerical index 1. Then:

(i) |x∗∗(x∗)| = 1 for every x∗∗ ∈ ex(BX∗∗) and every w∗-denting point x∗ ∈ BX∗.
(ii) |x∗(x)| = 1 for every x∗ ∈ ex(BX∗) and every denting point x ∈ BX .

Proof. We only give the proof of (i); the other part is analogous.

Let us fix x∗∗0 ∈ ex(BX∗∗), a w∗-denting point x∗0 ∈ BX∗ , and 0 < ε < 1. Consider
the w∗-closed set F = {x∗∗ ∈ BX∗∗ : |(x∗∗ − x∗∗0 )(x∗0)| ≥ ε}, and let K be the w∗-closed
convex hull of F . Note that x∗∗0 /∈ K, since otherwise x∗∗0 would be an extreme point in
K and the “reversed” Krein-Milman Theorem (see [4, Theorem 7.8], for example) would
give x∗∗0 ∈ F , a contradiction. We can now use the Hahn-Banach separation theorem to
find y∗ ∈ SX∗ and α > 0 such that

Re x∗∗0 (y∗) > 1− α ≥ Re x∗∗(y∗)

for every x∗∗ ∈ F . It follows that |(x∗∗ − x∗∗0 )(x∗0)| < ε whenever x∗∗ ∈ BX∗∗ satisfies
Re x∗∗(y∗) > 1 − α. On the other hand, since x∗0 is a w∗-denting point, we can find
y ∈ SX and β > 0 such that ‖x∗− x∗0‖ < ε whenever x∗ ∈ BX∗ satisfies Re x∗(y) > 1− β.
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Consider the rank-one operator T ∈ L(X) defined by Tx = y∗(x)y for every x ∈
X. Since n(X) = 1, we have v(T ) = ‖T‖ = 1 and the definition of the numerical
radius provides us with x ∈ SX and x∗ ∈ SX∗ , such that x∗(x) = 1 and |x∗(Tx)| =
|y∗(x)||x∗(y)| > 1 − δ, where we take δ = min{α, β}. By choosing suitable modulus one
scalars s and t we have {

Re y∗(sx) = |y∗(x)| > 1− δ ≥ 1− α
Re tx∗(y) = |x∗(y)| > 1− δ ≥ 1− β.

It follows that |x∗0(sx)− x∗∗0 (x∗0)| < ε and ‖tx∗ − x∗0‖ < ε, so

1− |x∗∗0 (x∗0)| ≤ |tx∗(sx)− x∗∗0 (x∗0)| ≤
≤ |tx∗(sx)− x∗0(sx)|+ |x∗0(sx)− x∗∗0 (x∗0)| < 2ε

and we let ε ↓ 0.

Our next result is a useful sufficient condition for a real Banach space to contain a
subspace isomorphic either to c0 or to `1, which follows easily from Rosenthal’s `1-Theorem
[13] and a result by Fonf [7]. The above lemma shows that this sufficient condition will
be fulfilled by a Banach space with numerical index 1 (or by its dual), provided that the
unit ball has infinitely many denting (or w∗-denting) points. From now on we only work
in the real case.

Proposition 2. Let X be a real Banach space and assume that there is an infinite set
A ⊂ SX such that |x∗(a)| = 1 for every a ∈ A and all x∗ ∈ ex(BX∗). Then X contains
(an isomorphic copy of) either c0 or `1.

Proof. Suppose that X does not contain `1. Then, by Rosenthal’s `1-Theorem [13], every
bounded sequence in X has a weakly Cauchy subsequence, so there is a weakly Cauchy
sequence {an} of distinct members of A. Let Y be the closed subspace generated by
this sequence. The assumption on A clearly gives ‖an − am‖ = 2 for n 6= m, so Y is
infinite-dimensional. The proof will be finished by showing that Y contains c0, and this
will follow from Fonf’s Theorem [7] if we are able to prove that ex(BY ∗) is countable.

By a well-known application of the Hahn-Banach and Krein-Milman theorems, every
y∗ ∈ ex(BY ∗) is the restriction to Y of some extreme point in BX∗ , so |y∗(an)| = 1 for
every n. Since {an} is weakly Cauchy, the sequence {y∗(an)} must be eventually 1 or −1.
This shows that

ex(BY ∗) =
∞⋃

k=1

(Ek ∪ −Ek)

where Ek = {y∗ ∈ ex(BY ∗) : y∗(an) = 1 for n ≥ k}. Since the sequence {an} separates
the points of Y ∗, each set Ek is finite and we are done.
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A natural (isomorphic) assumption on an infinite-dimensional Banach space providing
a lot of denting points is RNP. Actually the unit ball of a Banach space satisfying RNP
is the closed convex hull of its strongly exposed points, and strongly exposed points are
denting. On the other hand, if X is an Asplund space, then BX∗ is the w∗-closed convex
hull of its w∗-strongly exposed (hence w∗-denting) points (see [12]). Therefore, we have

Theorem 3. Let X be an infinite-dimensional real Banach space with n(X) = 1. If X
has RNP, then X contains `1. If X is an Asplund space, then X∗ contains `1. �

We do not know if the second part of the above theorem follows directly from the first.
Note that X∗ satisfies RNP if X is Asplund, but we only require n(X) = 1 and we do not
know if n(X∗) = 1.

An Asplund space cannot contain `1, so Theorem 3 has the following consequence.

Corollary 4. Let X be a real Asplund space satisfying RNP. If n(X) = 1, then X is
finite-dimensional. �

As a special case of the above corollary a reflexive real Banach space with numerical
index 1 must be finite-dimensional. In fact, we have:

Corollary 5. Let X be an infinite-dimensional real Banach space with n(X) = 1. Then
X∗∗/X is non-separable.

Proof. It is known (see [5, page 219]) that X and X∗ have RNP if X∗∗/X is separable.

Remark 6. It is worth mentioning that in the proof of Lemma 1 only rank-one operators
were involved. Thus, the lemma remains true if we only assume that v(T ) = ‖T‖ for every
rank-one operator T ∈ L(X). However this observation does not lead to an improvement
of our main results. In fact, a Banach space satisfying RNP or an Asplund space has
numerical index one as soon as rank-one operators on the space have numerical radius
equal to the norm. We show this for an Asplund space, the RNP case being similar.
Take an arbitrary operator T ∈ L(X), fix ε > 0, and use that BX∗ is the w∗-closed
convex hull of its w∗-denting points to get ‖T ∗(x∗)‖ > ‖T ∗‖ − ε for some w∗-denting
point x∗. Now choose x∗∗ ∈ ex(BX∗∗) such that |x∗∗(T ∗x∗)| > ‖T ∗‖ − ε. With the above
observation in mind, Lemma 1 tells us that, up to rotation, we may arrange x∗∗(x∗) = 1,
so v(T ∗) ≥ ‖T ∗‖ − ε. Now let ε ↓ 0 and use that v(T ) = v(T ∗) (see [1, §9, Corollary 6]).

As we announced in the introduction, one of the assertions in Theorem 3 can be
improved for spaces with the 3.2.I.P. Indeed, A. Lima proved that the 3.2.I.P. is a self-
dual property [8, Corollary 3.3]. Now, if X is an infinite-dimensional real Banach space
with the 3.2.I.P. we may apply to X∗ a result by Lindenstrauss [9, Theorem 4.7] to obtain
that |x∗∗(x∗)| = 1 for every x∗∗ ∈ ex(BX∗∗) and every x∗ ∈ ex(BX∗). Since ex(BX∗) is
infinite, Proposition 2 shows that X∗ contains either c0 or `1, but a dual space contains
l∞ (hence also `1) as soon as it contains c0. Therefore, we have shown the following:
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Corollary 7. Let X be an infinite-dimensional real Banach space with the 3.2.I.P. Then
X∗ contains `1. �

The fact that an infinite-dimensional real Banach space with the 3.2.I.P. cannot be
reflexive was proved in [10, Corollary 2.4].

We have seen above that every real Banach space with the 3.2.I.P. satisfies

|x∗∗(x∗)| = 1 ∀x∗ ∈ ex(BX∗) ∀x∗∗ ∈ ex(BX∗∗). (∗)

Recall that (∗) implies n(X) = 1 and we do not know if the converse is true. On the
other hand, it is known that property (∗) does not imply the 3.2.I.P., even in the finite-
dimensional case (see [9, pp. 47]).
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