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Some notation

X, Y real or complex Banach spaces
K scalar field R or C

T modulus one scalars

BX closed unit ball

SX unit sphere

X∗ topological dual

L(X, Y ) bounded linear operators from X to Y

conv(·) convex hull

conv(·) closed convex hull

ext(C) extreme points of a (closed convex bounded) set
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Introduction. Spear operators
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Spear vectors

Spear vector (Ardalani, 2014)
X Banach space, u ∈ SX . We say that u is a spear vector if

max
θ∈T

∥u + θx∥ = 1 + ∥x∥ for every x ∈ X.

Examples of spear vectors:
• Spear(K) = T
• Spear(ℓ1) = T{en : n ∈ N}
• Spear(ℓ∞) = TN

• Spear(L∞(µ)) = {f ∈ L∞(µ) : |f(t)| = 1 µ-a.e.}

Figure: Spear vectors in the real spaces ℓ3
1, ℓ3

∞ and ℓ2
2 ⊕1 R, respectively.
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Spear vectors. II

Spear vector (Ardalani, 2014)
X Banach space, u ∈ SX . We say that u is a spear vector if

max
θ∈T

∥u + θx∥ = 1 + ∥x∥ for every x ∈ X.

Some properties of spear vectors:

• z ∈ Spear(X) iff |x∗(z)| = 1 for every x∗ ∈ ext(BX∗ )

• Spear(X) ⊆ ext(BX) (actually, they are strongly extreme)

• JX(Spear(X)) ⊆ Spear(X∗∗)

• z∗ ∈ Spear(X∗) then z∗ is norm attaining. Actually,

BX = conv
{

x ∈ BX : |z∗(x)| = 1
}

• X real, # Spear(X) = ∞, then X ⊃ c0 or X ⊃ ℓ1

• X strictly convex, dim(X) ⩾ 2, then Spear(X) = ∅ = Spear(X∗)
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Spear operators

Spear operator (Ardalani, 2014)
X, Y Banach spaces, G ∈ L(X, Y ) with ∥G∥ = 1.

G spear operator def⇐⇒ max
θ∈T

∥G + θT ∥ = 1 + ∥T ∥ for every T ∈ L(X, Y )

Examples of spear operators (Kadets–M.–Merí–Pérez, 2018)

• The identity operator on C(K), L1(µ), c0, ℓ1, ℓ∞...

• The inclusion A(D) ↪→ C(T).

• The Fourier transforms
(for instance, F : L1(R) −→ C0(R) or F : L1(T) −→ c0(Z)).

• G = x∗
0 ⊗ y0 spear ⇐⇒ x∗

0 ∈ Spear(X∗) and y0 ∈ Spear(Y ).

6 / 24



Spear operators. II

Some properties (Kadets–M.–Merí–Pérez, 2018)

• G : ℓ1 −→ Y spear ⇐⇒ G(en) ∈ Spear(Y ) ∀n ∈ N
• G : X −→ c0 spear ⇐⇒ G∗(en) ∈ Spear(X∗) ∀n ∈ N
• If dim(X) < ∞, G : X −→ Y spear ⇐⇒ G(x) ∈ Spear(Y ) ∀x ∈ ext(BX)
• If dim(Y ) < ∞, G : X −→ Y spear ⇐⇒ G∗(y∗) ∈ Spear(X∗) ∀y∗ ∈ ext(BY ∗ )

Isomorphic and isometric consequences (Kadets–M.–Merí–Pérez, 2018)
X, Y Banach spaces, G ∈ L(X, Y ) spear operator.

• If X is real and dim G(X) = ∞, then X∗ ⊃ ℓ1.
• If X∗ is strictly convex or smooth, then X = K.
• If Y ∗ is strictly convex, then Y = K.
• If X contains strongly exposed points, Y smooth, then Y = K.

(M.-Merí-Quero-Sain-Roy, 2023)
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Spear operators. III

Numerical radius with respect to G

X, Y Banach spaces, G ∈ L(X, Y ) with ∥G∥ = 1, T ∈ L(X, Y )

vG(T ) := inf
δ>0

sup
{

|y∗(T x)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1 − δ
}

.

• vG(·) is a seminorm on L(X, Y ).
• vG(T ) ⩽ ∥T ∥ for every T ∈ L(X, Y ).

G spear operator ⇐⇒ vG(T ) = ∥T ∥ for every T ∈ L(X, Y ).
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Leading idea of the manuscript (and the talk)

Introduce a new seminorm on L(X, Y ) between vG(·) and the usual operator
norm to get a weaker property than being spear:

vG(T ) = inf
δ>0

sup{|y∗(T x)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1 − δ}.

∥T ∥ = inf
δ>0

sup{|y∗(T x)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1 − δ}.

∥T ∥G := inf
δ>0

sup{|y∗(T x)| : y∗ ∈ SY ∗ , x ∈ SX , ∥Gx∥ > 1 − δ}

= inf
δ>0

sup{∥T x∥ : y∗ ∈ SY ∗ , x ∈ SX , ∥Gx∥ > 1 − δ}.
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Generating operators
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Norm relative to an operator

X, Y Banach spaces, G ∈ L(X, Y ) with ∥G∥ = 1, T ∈ L(X, Y ).

∥T ∥G := inf
δ>0

sup{∥T x∥ : x ∈ SX , ∥Gx∥ > 1 − δ}.

Relative norm (Kadets–M.–Merí–Quero, 2023)
X, Y , Z Banach spaces and G ∈ L(X, Y ) with ∥G∥ = 1. The (semi-)norm of
T ∈ L(X, Z) relative to G is

∥T ∥G := inf
δ>0

sup {∥T x∥ : x ∈ att(G, δ)} ,

where, for each δ > 0, att(G, δ) := {x ∈ SX : ∥Gx∥ > 1 − δ}.

• ∥ · ∥G is a seminorm on L(X, Z).
• If Z = Y , then for every T ∈ L(X, Y ),

vG(T ) ⩽ ∥T ∥G ⩽ ∥T ∥.
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Generating operators

Generating operator (Kadets–M.–Merí–Quero, 2023)
Let X, Y be Banach spaces and let G ∈ L(X, Y ) be a norm-one operator.
We say that G is generating if ∥T ∥G = ∥T ∥ for every T ∈ L(X, Y ).

Proposition
X, Y Banach spaces and G ∈ L(X, Y ) with ∥G∥ = 1. Then, TFAE:

1 G is generating.

2 ∥T ∥G = ∥T ∥ for every T ∈ L(X, Z) and every Banach space Z.

3 There is a (non null) Banach space Z such that ∥T ∥G = ∥T ∥ for every rank-one
operator T ∈ L(X, Z).

4 BX = conv(att(G, δ)) for every δ > 0.

If dim(X) < ∞, G generating ⇐⇒ BX = conv({x ∈ SX : ∥Gx∥ = 1}).

12 / 24



Examples of generating operators

Examples:

• The identity operator on every Banach space and every isometric embedding.

• Spear operators.

• The natural inclusion G : ℓ1 ↪→ c0 is generating since

T{en : n ∈ N} ⊂ att(G, δ) ∀δ > 0 =⇒ Bℓ1 = conv(att(G, δ)) ∀δ > 0.

• The natural inclusion G : L∞[0, 1] ↪→ L1[0, 1] is generating since

{f ∈ L∞[0, 1] : |f(t)| = 1 a.e.} ⊂ att(G, δ) ∀δ > 0
=⇒ BL∞[0,1] = conv(att(G, δ)) ∀δ > 0.
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Generating operators. Characterizations

Lemma
X, Y Banach spaces and G ∈ L(X, Y ) with ∥G∥ = 1. If G is generating, then
∥Gx∥ = 1 for every denting point x of BX .

Proposition
X, Y Banach spaces and G ∈ L(X, Y ) with ∥G∥ = 1. Suppose that X has the
RNP. Then, G is generating if and only if ∥Gx∥ = 1 for every denting point x of BX .

Particular cases: X, Y Banach spaces
• G : ℓ1 −→ Y generating ⇐⇒ ∥Gen∥ = 1 for every n ∈ N.

• If dim(X) < ∞, G : X −→ Y generating ⇐⇒ ∥Gx∥ = 1 for every x ∈ ext(BX).
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Generating operators. Characterizations

Spear sets (Kadets–M.–Merí–Pérez, 2018)
Let X be a Banach space. We say that F ⊂ BX is a spear set if

max
θ∈T

sup
z∈F

∥z + θx∥ = 1 + ∥x∥ for every x ∈ X.

• F = BX and F = SX are spear sets
• F = {z} is a spear set ⇐⇒ z is a spear vector
• F ⊂ BL∞[0,1] spear set ⇐⇒ ∀A ⊂ [0, 1] with |A| > 0 and ∀ε > 0 ∃B ⊂ A with

|B| > 0 and f ∈ F such that |f(t)| > 1 − ε ∀t ∈ B.
• F ⊂ BX∗ spear set iff ∀ε > 0,

BX = conv
{

x ∈ BX : sup
x∗∈F

Re x∗(x) > 1 − ε

}
.

Theorem
X, Y Banach spaces and G ∈ L(X, Y ) with ∥G∥ = 1.
Then, G is generating if and only if G∗(BY ∗ ) is a spear set of X∗.
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Generating operators. Characterizations

Spear sets (Kadets–M.–Merí–Pérez, 2018)
Let X be a Banach space. We say that F ⊂ BX is a spear set if

max
θ∈T

sup
z∈F

∥z + θx∥ = 1 + ∥x∥ for every x ∈ X.

Theorem
X, Y Banach spaces and G ∈ L(X, Y ) with ∥G∥ = 1.
Then, G is generating if and only if G∗(BY ∗ ) is a spear set of X∗.

Corollary
X, Y Banach spaces, x∗

0 ∈ SX∗ , and y0 ∈ SY .
G = x∗

0 ⊗ y0 is generating if and only if x∗
0 is a spear vector of X∗.
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Generating operators and norm-attainment

• X has denting points, G ∈ L(X, Y ) generating =⇒ G attains its norm.
• Every spear x∗ ∈ X∗ attains its norm

=⇒ G rank-one and generating attains its norm.

Question: Does every generating operator attain its norm?
No, there are counterexamples even of rank two.
Example: Consider g : [0, 1] −→ ℓ2

2 given by g(t) = (cos t, sin t) and G : L1[0, 1] −→ ℓ2
2

defined by:

G(x) =
∫ 1

0
x(t)g(t) dt (x ∈ L1[0, 1]).

Then, G is generating but does not attain its norm.

• G generating ⇐⇒ {y∗ ◦ g : y∗ ∈ BY ∗ } is a spear set of BL∞[0,1]

⇐⇒ ∥g(t)∥ = 1 a.e. ✓

• Suppose that there is a non-zero x ∈ L1[0, 1] such that ∥Gx∥ = ∥x∥.∣∣∣∣∫ 1

0
x(t)g(t)dt

∣∣∣∣ =
∥∥∥∥∫ 1

0
x(t)g(t)dt

∥∥∥∥ =
∫ 1

0
|x(t)|dt =

∫ 1

0
|x(t)g(t)|dt.

=⇒ ∃λ ∈ T such that xg = λ|xg| = λ|x| a.e. which is a contradiction
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Generating operators and norm attainment. II

Theorem
Let X be a Banach space. Then, TFAE:

1 There exists a Banach space Y and a norm-one operator G ∈ L(X, Y ) such
that G is generating but does not attain its norm.

2 There exists a spear set B ⊂ BX∗ such that sup
x∗∈B

|x∗(x)| < 1 for every x ∈ SX .

Recall:
F ⊂ BX∗ spear set iff ∀ε > 0,

BX = conv
{

x ∈ BX : sup
x∗∈F

Re x∗(x) > 1 − ε

}
.

(1)⇒(2) Take B = G∗(BY ∗ ) spear set of BX∗ and

sup
x∗∈B

|x∗(x)| = sup
y∗∈BY ∗

|[G∗y∗](x)| = sup
y∗∈BY ∗

|y∗(Gx)| = ∥Gx∥ < 1 ∀x ∈ SX .

(2)⇒(1) Define G : X −→ ℓ∞(B) by

[Gx](x∗) = x∗(x) (x∗ ∈ B, x ∈ X).

• ∥G∥ = 1 but ∥Gx∥ = sup
x∗∈B

|[Gx](x∗)| = sup
x∗∈B

|x∗(x)| < 1 for every x ∈ SX .

• B ⊂ G∗(Bℓ1(B)) ⊂ G∗(Bℓ∞(B)∗ ) =⇒ G∗(Bℓ∞(B)∗ ) is a spear set.
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The set of all generating operators

X, Y Banach spaces

Gen(X, Y ) := {G ∈ L(X, Y ) : ∥G∥ = 1, G is generating}.

Questions:
• Are there Banach spaces Y such that Gen(X, Y ) ̸= ∅ for every Banach space X?
• Are there Banach spaces X such that Gen(X, Y ) ̸= ∅ for every Banach space Y ?

Range spaces:

Proposition
For every Banach space Y there is a Banach space X such that Gen(X, Y ) = ∅.

Proposition
For every separable X, Gen(X, C[0, 1]) ̸= ∅.
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The set of all generating operators. II

X, Y Banach spaces

Gen(X, Y ) := {G ∈ L(X, Y ) : ∥G∥ = 1, G is generating}.

Questions:
• Are there Banach spaces Y such that Gen(X, Y ) ̸= ∅ for every Banach space X?
• Are there Banach spaces X such that Gen(X, Y ) ̸= ∅ for every Banach space Y ?

Domain space:

Proposition
X Banach space. Then,

Gen(X, Y ) ̸= ∅ for every Banach space Y ⇐⇒ Spear(X∗) ̸= ∅.

20 / 24



The set of all generating operators. III

Questions: X Banach space
• When Gen(X, Y ) = SL(X,Y ) for all Banach spaces Y ?

Proposition
X Banach space. Then,

∃ Y Banach space such that Gen(X, Y ) = SL(X,Y ) =⇒ X = K.

In this case, Gen(K, Y ) = SL(K,Y ) for every Banach space Y .

• When BL(X,Y ) = conv(Gen(X, Y )) for all Banach spaces Y ?

Theorem
(Ω, Σ, µ) finite measure space, Y Banach space. Then,

{T ∈ L(L1(µ), Y ) : ∥T ∥ ⩽ 1, T is representable} ⊂ conv (Gen(L1(µ), Y )) .

As a consequence, if Y has the RNP with respect to µ, then

BL(L1(µ),Y ) = conv (Gen(L1(µ), Y )) .
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The set of all generating operators. IV

Corollary
• BL(ℓ1,Y ) = conv (Gen(ℓ1, Y )) for every Banach space Y .
• BL(ℓn

1 ,Y ) = conv (Gen(ℓn
1 , Y )) for every Banach space Y and every n ∈ N.

Theorem
X real Banach space, dim(X) = n.

BL(X,Y ) = conv(Gen(X, Y )) for every Banach space Y =⇒ X = ℓn
1 .
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The set of all generating operators. V

Theorem
X real Banach space, dim(X) = n.

BL(X,Y ) = conv(Gen(X, Y )) for every Banach space Y =⇒ X = ℓn
1 .

Sketch of the proof.
• BL(X,K) = conv(Gen(X,K)) =⇒ X∗ is almost CL-space and so n(X) = 1.
• [McGregor, 1971]: X real finite-dimensional, n(X) = 1 =⇒ ext(BX) is finite.
• The set ext(BX) has exactly 2n elements and so X = ℓn

1 . Indeed,
if ext(BX) has more than 2n elements, we can take {e1, . . . , en} ⊂ ext(BX)
linearly independent and en+1 ∈ ext(BX) \ {±ej : j = 1, . . . , n}.
Consider Y Banach space with

BY = conv
(

ext(BX) ∪ {±(1 + ε)en+1}
)

so that e1, . . . , en ext(BY ).
The natural identity G : X −→ Y is not generating as ∥Gen+1∥Y < 1 and
G /∈ conv(Gen(X, Y )).
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