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Introduction

Section 1

1 Introduction
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Basic notation

Basic notation
X real or complex Banach space.

SX unit sphere, BX closed unit ball, T modulus-one scalars.
X∗ dual space, L(X) bounded linear operators from X to X.
conv(·) convex hull, conv(·) closed convex hull,
A slice of A ⊂ X is a (nonempty) subset of the form

S(A, x∗, α) := {x ∈ A : Rex∗(x) > sup Rex∗(A)− α} (x∗ ∈ X∗, α > 0)

Re f (x) = α

A
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Two classical concepts: Radon-Nikodým property and Asplund spaces

The Radon-Nikodým property or RNP (1930’s)
X has the RNP iff the Radon-Nikodým theorem is valid for X-valued meassures;
Equivalently [1960’s–1970’s], every bcc subset contains a denting point
(i.e. a point belonging to slices of arbitrarily small diameter).

X Asplund ⇐⇒ X∗ RNP

Reflexive (say) ==-
(

RNP and Asplund
)

(
RNP or Asplund

)
===- ???

Asplund spaces (1960’s)
X is an Asplund space if every continuous convex real-valued function defined on
an open subset of X is Fréchet differentiable on a dense subset;
Equivalently [1970’s], every separable subspace has separable dual.
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The road map of the talk

The property
We introduce an isomorphic property for (separable) Banach spaces, the so-called

slicely countably determination (SCD)

such that
it is satisfied by RNP spaces
(actually, by strongly regular spaces – CPCP in particular–);
it is satisfied by Asplund spaces
(actually, by spaces not containing `1).

We also present examples and stability properties.

The applications
We apply SCD to get results for the Daugavet property, the alternative Daugavet
property and spaces with numerical index 1.
We present SCD operators and applications.
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Slicely Countably Determined sets and spaces

Section 2

2 Slicely Countably Determined sets and spaces
SCD sets
SCD spaces
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SCD sets: Definitions and preliminary remarks

X Banach space, A ⊂ X bounded and convex.

Determining sequence
A sequence {Vn : n ∈ N} of subsets of A is determining for A if one of the following
equivalent conditions holds:

if B ⊆ A satisfies B ∩ Vn 6= ∅ ∀n, then A ⊆ conv(B),
given {xn}n∈N with xn ∈ Vn ∀n ∈ N, A ⊆ conv

(
{xn : n ∈ N}

)
,

every slice of A contains one of the Vn’s,

SCD sets
A is Slicely Countably Determined if A has a determining sequence of slices.

Remarks
A is SCD iff A is SCD.
If A is SCD, then it is separable.
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SCD sets: Elementary positive examples I

Example
A separable and A = conv(dent(A)) =⇒ A is SCD.

Proof.
Take {an : n ∈ N} denting points with A = conv

(
{an : n ∈ N}

)
.

For every n,m ∈ N, take a slice Sn,m containing an and of diameter 1/m.
If B ∩ Sn,m 6= ∅ =⇒ an ∈ B.
Therefore, A = conv

(
{an : n ∈ N}

)
⊆ conv(B) = conv(B).

Example
In particular, A RNP separable =⇒ A SCD.

Corollary
If X is separable LUR =⇒ BX is SCD.
So, every separable space can be renormed such that B(X,|·|) is SCD.
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SCD sets: Elementary positive examples II

Example
If X∗ is separable =⇒ A is SCD.

Proof.
Take {x∗n : n ∈ N} dense in SX∗ .
For every n,m ∈ N, consider Sn,m = S(A, x∗n, 1/m).
It is easy to show that any slice of A contains one of the Sn,m

Example
Actually, it is enough that (X, ρA)∗ is separable, where ρA is the Minkowski functional
associated to A.
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Negative examples

Example
BC[0,1] and BL1[0,1] are not SCD.

More general example
If X has the Daugavet property, then BX is not SCD.

Actually the following anti-SCD phenomenon happens:
For every sequence {Sn} of slices of BX and every x ∈ SX , there is a sequence
{xn} with xn ∈ Sn for n ∈ N such that x /∈ lin{xn : n ∈ N}.

A consequence
A subset of an SCD set is not necessarily SCD:

Renorm C[0, 1] to be LUR and let A be the new ball, which is SCD but contains a
multiple of BC[0,1] which is not.
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SCD sets: Further examples I (extending the RNP case)

Convex combination of slices

W =
m∑
k=1

λk Sk ⊂ A where λk > 0,
∑

λk = 1, Sk slices.

Proposition
In the definition of SCD we can use a sequence {Wn : n ∈ N} of convex combination of
slices.

Small combinations of slices
A has small combinations of slices iff every slice of A contains convex combinations of
slices of A with arbitrary small diameter.

Example
If A has small combinations of slices + separable =⇒ A is SCD.

Particular case
A strongly regular (in particular, CPCP) + separable =⇒ A is SCD.
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SCD sets: Further examples II

Bourgain’s lemma
Every relative weak open subset of A contains a convex combination of slices.

Corollary
In the definition of SCD we can use a sequence of relative weak open subsets:
a set A is SCD iff there is a sequence {Vn : n ∈ N} of relative weak open subsets of A
such that every slice of A contains one of the Vn’s.

π-bases
A π-base of the weak topology of A is a family {Vi : i ∈ I} of weak open sets of A such
that every weak open subset of A contains one of the Vi’s.

Proposition
If (A, σ(X,X∗)) has a countable π-base =⇒ A is SCD.
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SCD sets: Further examples III (extending the Asplund case)

Theorem
A separable without `1-sequences =⇒ (A, σ(X,X∗)) has a countable π-base.

Proof.
We see (A, σ(X,X∗)) ⊂ C(T ) where T = (BX∗ , σ(X∗, X)).
By Rosenthal `1 theorem, (A, σ(X,X∗)) is a relatively compact subset of the space
of first Baire class functions on T .
By a result of Todorčević, (A, σ(X,X∗)) has a σ-disjoint π-base:
{Vi : i ∈ I} is σ-disjoint if I =

⋃
n∈N In and each {Vi : i ∈ In} is pairwise disjoint.

A σ-disjoint family of open subsets in a separable space is countable. X

Main example
A separable without `1-sequences =⇒ A is SCD.
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SCD spaces: definition and examples

SCD space
X is Slicely Countably Determined (SCD) if so are all of its convex bounded subsets.

Examples of SCD spaces
1 X separable strongly regular. In particular, RNP, CPCP spaces.
2 X separable X + `1. In particular, if X∗ is separable.

Examples of NOT SCD spaces
1 C[0, 1], L1[0, 1], X with Daugavet property.
2 Actually, every X containing (an isomorphic copy of) C[0, 1] or L1[0, 1].
3 There is X with Schur property failing to be SCD.

Example (and question), Kadets–M.–Meŕı–Werner, 2013
X Banach space with 1-unconditional basis =⇒ BX is SCD.
We do not know whether X is SCD.
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SCD spaces: stability properties

Remark
Every subspace of a SCD space is SCD.
This is false for quotients.

Theorem
Z ⊂ X. If Z and X/Z are SCD =⇒ X is SCD.

Corollary
X separable NOT SCD =⇒ X ⊃ `1 and

If `1 ' Y ⊂ X =⇒ X/Y contains a copy of `1.
If `1 ' Y1 ⊂ X =⇒ there is `1 ' Y2 ⊂ X with Y1 ∩ Y2 = 0.

Corollary
X1, . . . , Xm SCD =⇒ X1 ⊕ · · · ⊕Xm SCD.
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SCD spaces: stability properties II

Theorem
X1, X2, . . . SCD, E with 1-unconditional basis.

E + c0 =⇒
[⊕

n∈NXn
]
E

SCD.

E + `1 =⇒
[⊕

n∈NXn
]
E

SCD.

More examples
1 c0(`1) and `1(c0) are SCD.
2 c0⊗̂εc0, c0⊗̂πc0, c0⊗̂ε`1, c0⊗̂π`1, `1⊗̂ε`1, and `1⊗̂π`1 are SCD.
3 K(c0) and K(c0, `1) are SCD.
4 `2⊗̂ε`2 ≡ K(`2) and `2 ⊕π `2 ≡ L1(`2) are SCD
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Applications

Section 3

3 Applications
The DPr, the ADP, numerical index 1, and lushness
From ADP to lushness
Daugavet property and projective tensor products
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The DPr, the ADP, and numerical index 1

Definition of the properties
1 Kadets–Shvidkoy–Sirotkin–Werner, 1997:
X has the Daugavet property (DPr) if

‖Id + T‖ = 1 + ‖T‖ (DE)

for every rank-one T ∈ L(X).
Then every T not fixing copies of `1 also satisfies (DE).

2 Lumer, 1968: X has numerical index 1 if

max
θ∈T
‖Id + θ T‖ = 1 + ‖T‖ (aDE)

for every operator on X.
Equivalently,

‖T‖ = sup{|x∗(T x)| : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}

for every T ∈ L(X).
3 M.–Oikhberg, 2004: X has the alternative Daugavet property (ADP) if every

rank-one T ∈ L(X) satisfies (aDE).
Then every weakly compact T also satisfies (aDE).
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Relations between these properties

Daugavet property ====6====-
�===6===== Numerical index 1

ADP

�==================-

Examples
C
(
[0, 1],K(`2)

)
has DPr, but has not numerical index 1

c0 has numerical index 1, but has not DPr
c0 ⊕∞ C

(
[0, 1],K(`2)

)
has ADP, neither DPr nor numerical index 1

Remark

For RNP or Asplund spaces, ADP =⇒ numerical index 1 .
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An example: the three properties for C∗-algebras and preduals. I

Let V∗ be the predual of a von Neumann algebra V .

The Daugavet property of V∗ is equivalent to:
V has no atomic projections, or
the unit ball of V∗ has no extreme points.

V∗ has numerical index 1 iff:
V is commutative, or
|v∗(v)| = 1 for v ∈ ext (BV ) and v∗ ∈ ext (BV ∗ ).

The alternative Daugavet property of V∗ is equivalent to:
the atomic projections of V are central, or
|v(v∗)| = 1 for v ∈ ext (BV ) and v∗ ∈ ext (BV∗ ), or
V = C ⊕∞ N , where C is commutative and N has no atomic projections.
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An example: the three properties for C∗-algebras and preduals. II

Let X be a C∗-algebra.

The Daugavet property of X is equivalent to:
X does not have any atomic projection, or
the unit ball of X∗ does not have any w∗-strongly exposed point.

X has numerical index 1 iff:
X is commutative, or
|x∗∗(x∗)| = 1 for x∗∗ ∈ ext (BX∗∗ ) and x∗ ∈ ext (BX∗ ).

The alternative Daugavet property of X is equivalent to:
the atomic projections of X are central, or
|x∗∗(x∗)| = 1, for x∗∗ ∈ ext (BX∗∗ ), and x∗ ∈ BX∗ w∗-strongly exposed, or
∃ a commutative ideal Y such that X/Y has the Daugavet property.
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Sufficient conditions for numerical index one

Some sufficient conditions
Let X be a Banach space. Consider:
(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family of

three mutually intersecting balls is not empty.
(b) Fullerton, 1961: X is a CL-space if BX is the absolutely convex hull of every

maximal face of SX .
(c) Lima, 1978: X is an almost-CL-space if BX is the closed absolutely convex hull

of every maximal face of SX .

(a) ===-�=6== (b) ===-�=6=== (c) ===-�=6== numerical index 1

Showing that (c) =⇒ numerical index 1, one realizes that (c) is too much.

Lushness (Boyko–Kadets–M.–Werner, 2007)
X is lush if given x, y ∈ SX , ε > 0, there is y∗ ∈ SX∗ such that

x ∈ S = S(BX , y∗, ε) dist (y , conv(TS)) < ε.
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A sufficient condition for numerical index 1: lushness

Lushness (Boyko–Kadets–M.–Werner, 2007)
X is lush if given x, y ∈ SX , ε > 0, there is y∗ ∈ SX∗ such that

x ∈ S = S(BX , y∗, ε) dist (y , conv(TS)) < ε.

Theorem (Boyko–Kadets–M.–Werner, 2007)
If X is lush, then X has numerical index 1.

Example (Kadets–M.–Meŕı–Shepelska, 2009)
There is X with numerical index 1 which is not lush.

Theorem (Kadets–M.–Meŕı–Payá, 2009)
X lush separable. Then, there is G ⊂ ext(BX∗ ) weak-star dense such that

BX = conv
(
T
{
x ∈ BX : x∗(x) = 1

})
(x∗ ∈ G).
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ADP + SCD =⇒ lushness

Characterization of ADP
X Banach space. TFAE:

X has ADP (i.e. maxθ∈T ‖Id + θ T‖ = 1 + ‖T‖ for all T rank-one).
Given x ∈ SX , a slice S of BX and ε > 0, there is y ∈ S with

max
θ∈T
‖x+ θ y‖ > 2− ε.

Given x ∈ SX , a sequence {Sn} of slices of BX , and ε > 0,
there is y∗ ∈ SX∗ such that x ∈ S(BX , y∗, ε) and

conv
(
TS(BX , y∗, ε)

)⋂
Sn 6= ∅ (n ∈ N).

Theorem
X ADP + BX SCD =⇒ given x ∈ SX and ε > 0, there is y∗ ∈ SX∗ such that

x ∈ S(BX , y∗, ε) and BX = conv
(
TS(BX , y∗, ε)

)
.

This clearly implies lushness, and so numerical index 1
(i.e. maxθ∈T ‖Id + θ T‖ = 1 + ‖T‖ for all T ).
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Some consequences

Corollary
ADP +

[
X + `1 OR strongly regular OR 1-unconditional basis

]
=⇒ lushness (so numerical index 1).

Corollary
X real + dim(X) =∞ + ADP =⇒ X∗ ⊇ `1.

In particular,

Corollary
X real + dim(X) =∞ + numerical index 1 =⇒ X∗ ⊇ `1.

Open problem (Godefroy, private communication, 1990’s)
X with numerical index 1, does X contain c0 or X contain `1 ?
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Some consequences II

Proposition (Kadets–M.–Meŕı–Werner, 2010)
X with 1-unconditional basis =⇒ BX is SCD.
Therefore, X with 1-unconditional basis and ADP =⇒ X is lush.

Theorem (Kadets–M.–Meŕı–Werner, 2010)
1 The unique Banach spaces with 1-symmetric basis and the ADP are c0 and `1.
2 The unique r.i. Banach spaces over N with the ADP

are c0, `1 and `∞.
3 The unique separable r.i. Banach space on [0, 1] with the Daugavet property is
L1[0, 1].

4 The unique separable r.i. Banach space on [0, 1] which is lush is L1[0, 1].

Question
Is it possible to prove the above results (3 and 4) for the ADP ?
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Stability of the Daugavet property by projective tensor product

Open problem (Dirk Werner, 2001)
Suppose that X, Y has the Daugavet property, so does X⊗̂πY ?

There are some positive answers (mainly by A. Rueda Zoca and collaborators)
Of course, when X = L1(µ) with µ atomless (and in this case Y does not need to
have the Daugavet property)
When X and Y are L1-predual spaces.
Some more spaces satisfying a property called WODP. . .

Another open problem
Suppose X⊗̂πY has the Daugavet property, so does X OR Y ?

Remark
We cannot expect to get both X AND Y having the Daugavet property:
L1[0, 1]⊗̂π`2 ≡ L1([0, 1], `2) has the Daugavet property.
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Passing the Daugavet property from a projective tensor product to a factor

Open problem
Suppose X⊗̂πY has the Daugavet property, so does X OR Y ?

One positive answer (M.–Meŕı–Quero, 2021)
If X⊗̂πY has the Daugavet property and BY is SCD, then X has the Daugavet
property.

Another (non-SCD related) answer (M.–Meŕı–Quero, 2021)
If X⊗̂πY has the Daugavet property and the norm of Y ∗ is Fréchet smooth at some
non-zero point, then X has the Daugavet property.
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SCD and HSCD-majorized operators

Section 4

4 SCD and HSCD-majorized operators
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SCD operators

SCD operator
T ∈ L(X) is an SCD-operator if T (BX) is an SCD-set.

Examples
T is an SCD-operator when T (BX) is separable and

1 T (BX) is RNP (or has CPCP or is strongly regular),
2 T (BX) has no `1 sequences,
3 T does not fix copies of `1

Theorem
X ADP + T SCD-operator =⇒ max

θ∈T
‖Id + θ T‖ = 1 + ‖T‖.

X DPr + T SCD-operator =⇒ ‖Id + T‖ = 1 + ‖T‖.

Main corollary
X ADP + T does not fix copies of `1 =⇒ max

θ∈T
‖Id + θ T‖ = 1 + ‖T‖.
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HSCD-majorized operators (Kadets-Shepelska, 2010)

HSCD and HSDC-majorized operator
T ∈ L(X,Y ) is an Hereditary-SCD-operator if every convex subset of T (BX) is
an SCD-set.
T ∈ L(X,Y ) is an HSCD-majorized operator if there is S ∈ L(X,Z)
HSCD-operator such that ‖Tx‖ 6 ‖Sx‖ for every x ∈ X.

Theorem (Kadets–Shepelska for DPr, Kadets–M.–Meŕı–Pérez for ADP)
X DPr + T ∈ L(X) HSCD-majorized operator =⇒ ‖Id + T‖ = 1 + ‖T‖.
X ADP + T ∈ L(X) HSCD-majorized operator =⇒ max

θ∈T
‖Id + θ T‖ = 1 + ‖T‖.

Proposition
The class of HSCD-majorized operators is a two-sided operator ideal.

Remark
The class of operators satisfying (DE) or (ADE) is not even a subspace.
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Operations with SCD sets

Section 5
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Operations with SCD sets

Non-convex sets
The definition of SCD set does not need convexity, so the same concept can be
defined for non-convex sets.
On the one hand, A is SCD iff conv(A) is SCD iff conv(A) is SCD.
On the other hand, some of the results for convex SCD sets ARE FALSE in
general:
(Kadets–Pérez–Werner, 2018) There is A non-convex non-SCD set having a
determining sequence of relatively weakly open sets.

Some counterexamples on operations (Kadets–Pérez–Werner, 2018)
There are A, B closed convex SCD sets such that A ∩B is not SCD.
There are A, B closed convex SCD sets such that A+B is not SCD.
There are A, B closed convex SCD sets such that conv(A ∪B) is not SCD.
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Open problems

Section 6

6 Open problems

Miguel Mart́ın | University of Granada (Spain) | Live from Granada to Tartu and the rest of the world, April 22nd 2021 36 / 37



Slicely Countably Determined sets, spaces, and operators | Open problems

Open questions

1 Find more sufficient conditions for a set to be SCD.

2 Is SCD equivalent to the existence of a countable π-base for the weak topology ?

3 E with (1)-unconditional basis. Is E SCD ?

4 E with 1-unconditional basis, {Xn} a family of SCD spaces.
Is [⊕Xn]E SCD ?

5 X, Y SCD. Are X⊗̂εY and X⊗̂πY SCD ?

6 Find a good extension of the SCD property to the nonseparable case.

7 Clarify the relationship between SCD and the Daugavet property:

8 If X fails the SCD, does X contains a subspace isomorphic to a DPr space ?
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