On quasi norm attaining operators between Banach spaces

Miguel Martín

UNIVERSIDAD DE GRANADA

(joint work with G. Choi, Y. S. Choi, and M. Jung)

Banach Spaces Webinars

The talk is based on the paper...

G. Choi, Y. S. Choi, M. Jung, and M. Martín On quasi norm attaining operators between Banach spaces *Preprint* (2020)

Roadmap of the talk

- 1 Preliminaries and the new definition
- 2 First results on quasi norm attaining operators
- 3 The Radon–Nikodým property
- 4 Further results
- 5 Remarks and open questions

Preliminaries and the new definition

Section 1

1 Preliminaries and the new definition

- 2 First results on quasi norm attaining operators
- 3 The Radon–Nikodým property
- 4 Further results
- 5 Remarks and open questions

Basic notation

X, Y Banach spaces

- T modulus one scalars
- B_X closed unit ball
- S_X unit sphere
- X^* topological dual
- $\mathcal{L}(X,Y)$ bounded linear operators from X to Y
- $\mathcal{K}(X,Y)$ compact linear operators from X to Y
- $\mathcal{W}(X,Y)$ weakly compact linear operators from X to Y

Norm attaining functionals

Norm attaining functionals

X Banach space,
$$NA(X, \mathbb{K}) := \left\{ f \in X^* \colon \|f\| = \max_{x \in S_X} |f(x)| \right\}.$$

Some well-known results

- $NA(X, \mathbb{K})$ weak-star dense (Hanh–Banach theorem),
- X reflexive \implies NA(X, \mathbb{K}) = X^{*} (Hanh–Banach theorem),
- X reflexive \iff NA $(X, \mathbb{K}) = X^*$ (James' theorem),

Bishop-Phelps theorem

 $NA(X, \mathbb{K})$ is dense in X^* for every Banach space X.

- The study of norm attaining functionals has many applications,
- and there are many problems being studied nowadays,
- for instance, some results related to lineability properties inside $NA(X, \mathbb{K})$.

Norm attaining operators

Norm attaining operators

X, Y Banach spaces,
$$NA(X,Y) := \left\{ T \in \mathcal{L}(X,Y) \colon \|T\| = \max_{x \in S_X} \|Tx\| \right\}$$

• $T \in \operatorname{NA}(X, Y) \iff T(B_X) \cap ||T|| S_Y \neq \emptyset.$

A few results

- Lindenstrauss, 1963: NA(X, Y) is not always dense,
- it is dense when X is reflexive or $c_0 \subset Y \subset \ell_\infty$ or Y polyhedral finite dimensional.
- **Bourgain**, 1977: if X has the RNP \implies NA(X, Y) dense for every Y,
- Huff, 1981: if X fails the RNP \implies exists X_1 , X_2 isomorphic to X such that $NA(X_1, X_2)$ is not dense.
- Therefore, X has the RNP $\iff \overline{NA(X_1,Y)} = \mathcal{L}(X_1,Y) \ \forall X_1 \simeq X, \ \forall Y.$
- If $\overline{\operatorname{NA}(X,Y_1)} = \mathcal{L}(X,Y_1) \ \forall X \ \forall Y_1 \simeq Y \implies Y \ \mathsf{RNP}, \Longleftarrow$
- Gowers, 1990: there is G such that $NA(G, \ell_p)$ not dense for 1 .
- Acosta, 1999: ℓ_p above can be substituted by any infinite-dimensional strictly convex space and by ℓ_1 (using different domain spaces).

Norm attaining operators II

- **Zizler**, 1973: $\{T \in \mathcal{L}(X, Y) : T^* \in NA(Y^*, X^*)\}$ is always dense in $\mathcal{L}(X, Y)$.
- Johnson–Wolfe, 1979: for most "classical" Banach spaces as domain, compact operators can be approximated by norm attaining operators.
 - They use a strong form of the approximation property of X^* .
- Johnson–Wolfe, 1979: for isometric preduals of $L_1(\mu)$ as range or for $L_1(\mu)$ as range (real case), compact operators can be approximated by norm attaining operators.
 - They use Lazar–Lindenstrauss kind of results for *Y*.
- Diestel, Johnson–Wolfe, 1970's: is $\mathcal{K}(X,Y)$ always contained in $\overline{NA(X,Y)}$?
- M., 2014: there exist compact operators which cannot be approximated by norm attaining operators.

The main problem which remain open

Are finite rank operators aproximable by norm attaining operators?

Lipschitz maps

Notation

 $\operatorname{Lip}_0(X, Y)$ space of Lipschitz maps from X to Y (which are 0 at 0), endowed with the Lipschitz constant as norm.

Strongly norm attaining Lipschitz maps

 $F \in \operatorname{Lip}_0(X, Y)$ strongly attains its (Lipschitz) norm if there exist $(x, y) \in X \times X$, $x \neq y$ such that $\frac{\|F(x) - F(y)\|}{\|x - y\|} = \|F\|_L$.

Kadets-M.-Soloviova, 2016

Even for $X = Y = \mathbb{R}$, there are Lipschitz functions which cannot be approximated by strongly norm attaining Lipschitz functions.

Two options:

- Study the problem for general metric spaces as X (for other day...).
- Study weaker forms in which a Lipschitz maps may attains its norm.

Godefroy's weaker definition for Lipschitz maps

Norm attaining Lipschitz maps towards vectors (Godefroy, 2015) $F \in \operatorname{Lip}_0(X, Y)$ attains its norm towards $u \in Y$ if $||u|| = ||F||_L$ and there exist $(x_n, y_n) \in X \times X$, $x_n \neq y_n$ such that $\frac{F(x_n) - F(y_n)}{||x_n - y_n||} \longrightarrow u$.

Example (Godefroy, 2015)

If Y is a renorming of c_0 with the Kadets–Klee property, then no Lipschitz isomorphism from c_0 onto Y can be approximated by Lipschitz maps which attain their norm towards directions of Y.

- This extends a result by Lindenstrauss of 1963 for bounded linear operators,
- the proof is not easy,
- in the words of Gilles, the example shows that even the greater flexibility allowed by non linearity does not always provide norm attaining objects.
- In particular, the set of Lipschitz maps which attain their norm towards directions of Y is not dense in $\operatorname{Lip}_0(c_0, Y)$.
- On the other hand, density holds if $\dim(Y) < \infty$, for instance.

The new concept for bounded linear operators

Quasi norm attaining bounded linear operator

 $T \in \mathcal{L}(X, Y)$ quasi attains its norm $(T \in QNA(X, Y))$ if there exists $(x_n) \subset B_X$ such that $Tx_n \longrightarrow y \in ||T||S_Y$.

- We say T quasi attains its norm towards y.
- Equivalently, $\overline{T(B_X)} \cap ||T|| S_Y \neq \emptyset$ $(T \in NA(X, Y) \iff T(B_X) \cap ||T|| S_Y \neq \emptyset)$
- Viewing *T* as Lipschitz map, it is Godefroy's definition.

First remarks

■
$$NA(X, Y) \subset QNA(X, Y),$$

• $\mathcal{K}(X,Y) \subset \text{QNA}(X,Y).$

Positive examples

The remarks give a lot of positive examples, some of which we will present next.

Negative example (a consequence of Godefroy's example)

Y renorming of c_0 with the Kadets–Klee property $\implies \overline{\text{QNA}(c_0, Y)} \neq \mathcal{L}(c_0, Y).$

First results on quasi norm attaining operators

Section 2

- 1 Preliminaries and the new definition
- 2 First results on quasi norm attaining operators
- 3 The Radon–Nikodým property
- 4 Further results
- 5 Remarks and open questions

First positive results I

Remark

■
$$NA(X, Y) \subset QNA(X, Y).$$

Examples

NA(X,Y) (and so QNA(X,Y)) is dense in $\mathcal{L}(X,Y)$ when...

- X has RNP,
- $c_0 \leqslant Y \leqslant \ell_\infty$,
- $X = L_1(\mu)$ and $Y = L_1(\nu)$,
- $X = L_1(\mu)$ and $Y = L_{\infty}(\nu)$,
- X Asplund and Y = C(K),
- $X = C(K_1)$ and $Y = C(K_2)$,
- X = C(K) and Y does not contain c_0 .

First positive results II

Remark

• $\mathcal{K}(X,Y) \subset \text{QNA}(X,Y).$

Examples

$$\mathcal{K}(X,Y) = \mathcal{L}(X,Y)$$
 and so $\mathrm{QNA}(X,Y) = \mathcal{L}(X,Y)$ when...

• (Pitt)
$$X \leq \ell_p$$
 and $Y \leq \ell_r$ with $1 \leq r ,$

- (Rosenthal) $X \leq c_0$ and Y does not contain c_0 ,
- (Rosenthal) $X \leqslant L_p(\mu)$, $Y \leqslant L_r(\nu)$, $1 \leqslant r and$

•
$$X = L_1(\mu)$$
 and $Y = L_\infty(\nu)$,

- $\blacksquare \ 1 \leqslant r < 2$ and ν is atomic,
- or p > 2 and μ is atomic.

Negative results I

Lemma (R. Payá, in a discussion on this topic) $T \in QNA(X, Y), T$ monomorphism $\implies T \in NA(X, Y).$

- Let $(x_n) \subset B_X$ and $u \in ||T|| S_Y$ such that $Tx_n \longrightarrow u$.
- Consider T^{-1} : $T(X) \longrightarrow X$ bounded linear.
- As T(X) is closed, $u \in T(X)$ and we may consider $x_0 = T^{-1}(u) \in X$.
- Observe that $x_n = T^{-1}(Tx_n) \longrightarrow T^{-1}u = x_0$, hence $||x_0|| = 1$.
- Besides, $Tx_0 = T(T^{-1}(u)) = u$, so $||Tx_0|| = ||u|| = ||T||$ and $T \in NA(X, Y)$.

Main consequence

If there is $T \in \mathcal{L}(X, Y)$ monomorphism, $T \notin \overline{NA(X, Y)} \implies \overline{QNA(X, Y)} \neq \mathcal{L}(X, Y)$.

Negative results II

We use

If there is $T \in \mathcal{L}(X, Y)$ monomorphism, $T \notin \overline{NA(X, Y)} \implies \overline{QNA(X, Y)} \neq \mathcal{L}(X, Y)$.

Example 1 (extending Godefroy's first negative result)

X infinite dimensional subspace of c_0 , Y strictly convex renorming of $c_0 \implies QNA(X, Y)$ is not dense in $\mathcal{L}(X, Y)$.

- $\blacksquare T: X \longrightarrow Y \text{ norm attaining at } x_0 \in S_X,$
- As $X \leq c_0$, the linear span of $A = \{z \in X : ||x_0 \pm z|| \leq 1\}$ is of finite-codimension.
- As Y is strictly convex, $T(A) = \{0\}$, so T has finite-rank.
- Now, the formal inclusion of X into Y does not belong to $\overline{NA(X,Y)}$ and, therefore, it does not belong to $\overline{QNA(X,Y)}$.

Negative results III

We use

If there is $T \in \mathcal{L}(X, Y)$ monomorphism, $T \notin \overline{NA(X, Y)} \implies \overline{QNA(X, Y)} \neq \mathcal{L}(X, Y)$.

Example 2 (improving a result by Johnson–Wolfe)

There exists S such that $QNA(L_1[0, 1], C(S))$ is not dense in $\mathcal{L}(L_1[0, 1], C(S))$.

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 86, Number 4, December 1982

NORM ATTAINING OPERATORS AND SIMULTANEOUSLY CONTINUOUS RETRACTIONS

JERRY JOHNSON AND JOHN WOLFE¹

ABSTRACT. A compact metric space S is constructed and it is shown that there is a bounded linear operator $T: L^1[0,1] \to C(S)$ which cannot be approximated by a norm attaining operator. Also it is established that there

+ showing that T is a monomorphism!

Negative results. IV

We use

If there is $T \in \mathcal{L}(X, Y)$ monomorphism, $T \notin \overline{NA(X, Y)} \implies \overline{QNA(X, Y)} \neq \mathcal{L}(X, Y)$.

Example 3 (improving a result by Bourgain–Huff) X without the RNP \implies there exist X_1 , X_2 isomorphic to X such that $QNA(X_1, X_2)$ is not dense in $\mathcal{L}(X_1, X_2)$.

MR0577031 (81i:47046) Reviewed Huff, R. On nondensity of norm-attaining operators. Rev. Roumaine Math. Pures Appl. 25 (1980), no. 2, 239–241. 47D15 (46B22) Review PDF | Clipboard | Journal | Article | Make Link

```
Citations
From References: 1
From Reviews: 0
```

For two Banach spaces X and Y let L(X, Y) denote the space of bounded linear operators from X into Y. If X does not have the Radon-Nikodým property, then there exist renormings X_1 and X_2 of X such that the identity operator on X cannot be approximated by members of $L(X_1, X_2)$ attaining their norms.

Reviewed by J. Bourgain

The Radon–Nikodým property

Section 3

- 1 Preliminaries and the new definition
- 2 First results on quasi norm attaining operators
- 3 The Radon–Nikodým property
- 4 Further results
- 5 Remarks and open questions

A new positive result

Theorem

$T \in \mathcal{L}(X,Y) \text{ strong RNP operator, } \varepsilon > 0. \text{ There exists } S \in \text{QNA}(X,Y) \text{ such that:}$ $\|T - S\| < \varepsilon,$

• moreover, there is $z_0 \in \overline{S(B_X)} \cap ||S|| S_Y$ such that whenever $(x_n) \subseteq B_X$ satisfies that $||Sx_n|| \longrightarrow ||S||$, we may find a sequence $(\theta_n) \subseteq \mathbb{T}$ such that $S(\theta_n x_n) \longrightarrow z_0$; in particular, there is $\theta_0 \in \mathbb{T}$ and a subsequence $(x_{\sigma(n)})$ of (x_n) such that $Sx_{\sigma(n)} \longrightarrow \theta_0 z_0$.

Tool: Bourgain-Stegall non-linear optimization principle

Suppose D is a bounded RNP set of a Banach space Y and $\phi: D \longrightarrow \mathbb{R}$ is upper semicontinuous and bounded above. Then, the set

 $\{y^* \in Y^* : \phi + \operatorname{Re} y^* \text{ strongly exposes } D\}$

is a dense G_{δ} subset of Y^* .

A new positive result: Proof

- Apply Bourgain–Stegall to $D := \overline{T(B_X)}$ and $\phi(y) = \|y\|$,
- We get $y_0 \in D$ and $y_0^* \in Y^*$ with $||y_0^*|| < \varepsilon/||T||$ such that $\phi + \operatorname{Re} y_0^*$ strongly exposed D so, by rotating,

(1)
$$||y|| + |y_0^*(y)| \le ||y_0|| + \operatorname{Re} y_0^*(y_0) \ \forall y \in D;$$

(2) if $(x_n) \subset B_X$ satisfies $||Tx_n|| + |y_0^*(Tx_n)| \longrightarrow ||y_0|| + y_0^*(y_0)$, then exists $(\theta_n) \subset \mathbb{T}$ such that $T(\theta_n x_n) \longrightarrow y_0$.

•
$$Sx := Tx + y_0^*(Tx) \frac{y_0}{\|y_0\|}$$
, so $\|S - T\| < \varepsilon$ and $\|Sx\| \leqslant \|y_0\| + y_0^*(y_0)$.

- Write $z_0 = \left(1 + \frac{y_0^*(y_0)}{\|y_0\|}\right) y_0$ and observe that $\|z_0\| = \|y_0\| + y_0^*(y_0)$.
- Moreover, if $(x_n) \subset B_X$ satisfies that $\|Sx_n\| \longrightarrow \|S\|$, we have

$$||y_0|| + y_0^*(y_0) = ||S|| = \lim_n \left| |Tx_n + y_0^*(Tx_n) \frac{y_0}{||y_0||} \right||$$

$$\leq \lim_n (||Tx_n|| + |y_0^*(Tx_n)|) \leq ||y_0|| + y_0^*(y_0).$$

By (2), we can find $(\theta_n) \subseteq \mathbb{T}$ such that $T(\theta_n x_n) \longrightarrow y_0$, and hence

$$S(\theta_n x_n) = T(\theta_n x_n) + y_0^* \left(T(\theta_n x_n) \right) \frac{y_0}{\|y_0\|} \longrightarrow \left(1 + \frac{y_0^*(y_0)}{\|y_0\|} \right) y_0 = z_0. \checkmark$$

A new positive result. III

Remark

Let X and Y be Banach spaces and let $T \in \mathcal{L}(X, Y)$ be a strong RNP operator. Consider for $\varepsilon > 0$ the point $y_0 \in \overline{T(B_X)} \subset Y$ and the operator $S \in \text{QNA}(X, Y)$ given in the proof of the Theorem. Then,

(a) T - S is a rank-one operator.

(b)
$$S(B_X) \subseteq T(B_X) + \{\lambda y_0 : \lambda \in \mathbb{K}, |\lambda| \leq \rho\}$$
 for some $\rho > 0$.

(c)
$$\overline{S(X)} = \overline{T(X)}$$
.

- (d) S quasi attains its norm toward a point of the form $z_0 = \lambda y_0$ for some $\lambda > 0$.
- (e) S^* attains its norm at some $z^* \in S_{Y^*}$ which strongly exposes $\overline{S(B_X)}$ at z_0 .

Consequences I

Corollary

If X or Y has the RNP, then QNA(X, Y) is dense in $\mathcal{L}(X, Y)$.

- The case of X having RNP needs Bourgain's result.
- The case of Y having RNP is the new one and it is false for NA.

Corollary

 $QNA(X, Y) \cap W(X, Y)$ is always dense in W(X, Y).

Examples

There are many examples of pair of spaces (X, Y) for which QNA(X, Y) is dense while NA(X, Y) not. For instance:

- For 1 , there exists <math>W such that $NA(W, \ell_p)$ is not dense, while $QNA(X, \ell_p)$ is dense for every X.
- In the complex case, $w \in \ell_2 \setminus \ell_1$ decreasing, $NA(d_*(w, 1), d(w, 1))$ is not dense in $\mathcal{L}(d_*(w, 1), d(w, 1))$, while QNA(X, d(w, 1)) is dense for every X.

Consequences II. Characterizing the RNP

Corollary

Z Banach space. TFAE:

- (a) Z has the RNP.
- (b) QNA(Z', Y) is dense in $\mathcal{L}(Z', Y)$ for every Banach space Y and every equivalent renorming Z' of Z.
- (c) QNA(X, Z') is dense in $\mathcal{L}(X, Z')$ for every Banach space X and every equivalent renorming Z' of Z.

Remarks

- (a) \iff (b) is true for NA,
- (c) \Longrightarrow (a) is true for NA,
- but (a) \implies (c) is FALSE for NA, as shown by Gowers.

A stronger property and its consequences

UQNA

 $T \in \mathcal{L}(X, Y)$ uniquely quasi attains its norm towards $u \in Y$ iff whenever $(x_n) \subset B_X$ satisfies $||Tx_n|| \longrightarrow ||T||$ there is $(x_{\sigma(n)})$ and $\theta \in \mathbb{T}$ such that $Tx_{\sigma(n)} \longrightarrow \theta u$.

Corollary

```
If X or Y has the RNP, then UQNA(X, Y) is dense in \mathcal{L}(X, Y).
```

Corollary

- $\mathcal{K}(X,Y) \cap \mathrm{UQNA}(X,Y)$ is dense in $\mathcal{K}(X,Y)$,
- $\mathcal{W}(X, Y) \cap UQNA(X, Y)$ is dense in $\mathcal{W}(X, Y)$.

Consequence

UQNA
$$(X, Y)$$
 dense in $\mathcal{L}(X, Y)$, $\mathcal{A} \subset B_X$ with $\overline{\text{conv}}(\mathcal{A}) = B_X$

$$\implies \left\{ T \in \mathcal{L}(X,Y) \colon \exists (x_n) \subset \mathcal{A}, \, \exists y \in \|T\| S_Y \text{ with } (Tx_n) \longrightarrow y \right\}$$

```
is dense in \mathcal{L}(X, Y).
```

An application: a consequence on Lipschitz maps

Norm attaining Lipschitz maps towards vectors (Godefroy, 2015) $F \in \operatorname{Lip}_0(X, Y)$ attains its norm towards $u \in Y$ if ||u|| = ||F|| and there exist $(x_n, y_n) \in X \times X$, $x_n \neq y_n$ such that $\frac{F(x_n) - F(y_n)}{||x_n - y_n||} \longrightarrow u$.

Consequence of our results

If Y has RNP, then Lipschitz maps which attains their norms towards vectors are dense in ${\rm Lip}_0(X,Y)$ for every X.

- The proof uses Lipschitz-free spaces and linearization of Lipschitz maps,
- and the last result of the previous page.

Further results

Section 4

- 1 Preliminaries and the new definition
- 2 First results on quasi norm attaining operators
- 3 The Radon–Nikodým property
- 4 Further results
- 5 Remarks and open questions

Characterizing properties using $\ensuremath{\mathrm{QNA}}$

The idea is to discuss when each of the inclusions in the chain

```
NA(X,Y) \subseteq QNA(X,Y) \subseteq \mathcal{L}(X,Y)
```

is an equality.

NA(X, Y) = QNA(X, Y)

For a Banach space X, TFAE:

X is reflexive,

•
$$NA(X, Y) = QNA(X, Y)$$
 for every Y ,

• exists $Y \neq \{0\}$ such that NA(X, Y) = QNA(X, Y).

$$QNA(X, Y) = \mathcal{L}(X, Y)$$

$$\operatorname{dim}(X) = \infty \implies \mathcal{L}(X, c_0) \setminus QNA(X, c_0) \neq \emptyset.$$

$$\operatorname{dim}(Y) = \infty \implies \mathcal{L}(\ell_1, Y) \setminus QNA(\ell_1, Y) \neq \emptyset.$$

Relationship with adjoint operators

Proposition

 $T \in \text{QNA}(X, Y) \implies T^* \in \text{NA}(Y^*, X^*).$

Counterexample

The identity from c_0 to c_0 endowed with Day's norm does not belong to QNA, but its adjoint belongs to NA.

Proposition

```
T \in \mathcal{W}(X, Y), TFAE:
```

•
$$T \in \text{QNA}(X, Y)$$
,

$$\bullet T^* \in \mathrm{NA}(Y^*, X^*).$$

Consequence (new proof using Zizler's result) $QNA(X,Y) \cap W(X,Y)$ is dense in W(X,Y).

Extending Payá's result and limitations

Lemma (R. Payá) $T \in QNA(X, Y), T$ monomorphism $\implies T \in NA(X, Y).$

Two extensions

- $T \in QNA(X, Y)$, T(X) closed, and ker T proximinal $\implies T \in NA(X, Y)$.
- $T \in \text{QNA}(X, Y)$, $[\ker T]^{\perp} \subset \text{NA}(X, \mathbb{K}) \implies T \in \text{NA}(X, Y)$.

Example

The formal identity map T from Gowers' space G to ℓ_2 belongs to QNA, ker $T = \{0\}$, but $T \notin \overline{NA(G, \ell_2)}$.

Example

If X is reflexive with $\dim(X) = \infty$, $[\ker T]^{\perp} \subset \operatorname{NA}(X, \mathbb{K})$ for every $T \in \mathcal{L}(X, Y)$, but $\mathcal{L}(X, c_0) \setminus \operatorname{NA}(X, c_0) \neq \emptyset$.

Remarks and open questions

Section 5

- 1 Preliminaries and the new definition
- 2 First results on quasi norm attaining operators
- 3 The Radon–Nikodým property
- 4 Further results
- 5 Remarks and open questions

The analogue to Lindenstrauss properties

Properties quasi A and quasi B

- X has property quasi A if $\overline{\text{QNA}(X,Z)} = \mathcal{L}(X,Z)$ for every Z.
- Y has property quasi B if $\overline{\text{QNA}(W,Y)} = \mathcal{L}(W,Y)$ for every W.
- \blacksquare The corresponding properties for $\rm NA$ are called Lindenstrauss properties A and B.

Isomorphic results

- X has property quasi A in every equivalent norm \iff X has RNP,
- Separable spaces (actually WCG) can be renormed to have property (quasi) A.
- Y has property quasi B in every equivalent norm \iff Y has RNP,
- Every Banach space can be renormed to have property (quasi) B.
- We know that property quasi B is different from Lindenstrauss property B, but...

Question

Does property quasi A implies Lindenstrauss property A?

Uniquely quasi norm attaining operators

UQNA

 $T \in \mathcal{L}(X, Y)$ uniquely quasi attains its norm towards $u \in Y$ iff whenever $(x_n) \subset B_X$ satisfies $||Tx_n|| \longrightarrow ||T||$ there is $(x_{\sigma(n)})$ and $\theta \in \mathbb{T}$ such that $Tx_{\sigma(n)} \longrightarrow \theta u$.

Example

 $Id \in \mathcal{L}(c_0, c_0)$ does not belong to the closure of $UQNA(c_0, c_0)$. Recall that $NA(c_0, c_0)$ (and so $QNA(c_0, c_0)$) is dense in $\mathcal{L}(c_0, c_0)$.

Proposition

```
If Y is LUR, then QNA(X, Y) \subseteq \overline{UQNA(X, Y)} for every X.
```

Question

Find other sufficient conditions on X or Y to get $QNA(X,Y) \subseteq \overline{UQNA(X,Y)}$.

On a problem by M. Ostroskii

Open problem (Ostrovskii, 2005)

Does there exist X infinite-dimensional with $NA(X, X) = \mathcal{L}(X, X)$?

• The only possible candidates for X are separable reflexive spaces without one-complemented subspaces with the AP.

Question

Does there exist X infinite-dimensional with $QNA(X, X) = \mathcal{L}(X, X)$?

Some remarks

- If X is reflexive, the two problems are the same.
- As $\mathcal{K}(X, X) \subseteq \text{QNA}(X, X)$, one may think in testing spaces with "very few operators" (i.e. $\mathcal{L}(X, X) = \{\lambda \text{Id} + S \colon \lambda \in \mathbb{K}, S \in \mathcal{K}(X, X)\}$).
- $T = \lambda Id + S$ with $\lambda \neq 0$ and $S \in \mathcal{K}(X, X)$, if T belongs to QNA(X, X), then $T \in NA(X, X)$.

Applications?

Applications of $\operatorname{N\!A}$

- There are many applications of the study of NA(X, Y),
- for instance to differential equations,
- mainly using "variational principles", some of them consequences of the Bourgain–Stegall variational principle.

Main open problem

Find possible applications of QNA, maybe of the theorem on the RNP and UQNA.