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Basic notation I

K base field (R or C):
T modulus-one scalars,
Re z real part of z (Re z = z if K = R).

X, Y Banach spaces:
SX unit sphere, BX unit ball,
X∗ dual space,
L(X, Y ) bounded linear operators,
L(X) := L(X, X),
Iso(X) surjective linear isometries.

T ∈ L(X, Y ):
T ∗ ∈ L(Y ∗, X∗) adjoint operator of T .
X = Y , Sp(T ) spectrum of T .
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Basic notation II
X Banach space, B ⊂ X:

∥B∥ = sup{∥b∥ : b ∈ B},

B is rounded if TB = B,
conv(B) convex hull of B, conv(B) closed convex hull of B,
aconv(B) = conv(TB) absolutely convex hull of B, aconv(B) = conv(TB),

Slice(B, x∗, α) :=
{

x ∈ B : Re x∗(x) > sup Re x∗(B) − α
}

,
where x∗ ∈ X∗ and α > 0,
Face(B, x∗) :=

{
x ∈ B : Re x∗(x) = sup Re x∗(B)

}
,

where x∗ ∈ X∗ attains its supremum on B.

ext(B) extreme points of B,
dent(B) denting points of B (i.e. those belonging to arbitrarily small slices).

S

F

a

b
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Numerical range: Hilbert spaces

Hilbert space numerical range (Toeplitz, 1918)
A n × n real or complex matrix

W (A) =
{

(Ax | x) : x ∈ Kn, (x | x) = 1
}

.

H real or complex Hilbert space, T ∈ L(H),

W (T ) =
{

(T x | x) : x ∈ H, ∥x∥ = 1
}

.

Remark
⋆ Given T ∈ L(H) we associate

a sesquilinear form φT (x, y) = (T x | y) (x, y ∈ H),
a quadratic form φ̂T (x) = φT (x, x) = (T x | x) (x ∈ H).

⋆ Then, W (T ) = φ̂T (SH).
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Numerical range: Hilbert spaces. Properties.

Some properties
H Hilbert space, T ∈ L(H):

(Toeplitz-Hausdorff) W (T ) is convex.
T, S ∈ L(H), α, β ∈ K:

W (αT + βS) ⊆ αW (T ) + βW (S);
W (αId + S) = α + W (S).

W (U∗T U) = W (T ) for every T ∈ L(H) and every U unitary.

Sp(T ) ⊆ W (T ).

If T is normal, then W (T ) = conv Sp(T ).
In the real case (dim(H) > 1), there is T ∈ L(H), T ̸= 0 with W (T ) = {0}.
In the complex case,

sup{|(T x | x)| : x ∈ SH} ⩾
1
2

∥T ∥.

If T is actually self-adjoint, then
sup{|(T x | x)| : x ∈ SH} = ∥T ∥.
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Numerical range: Hilbert spaces. Motivation.

Some reasons to study numerical ranges
It gives a “picture” of the matrix/operator which allows to “see” many properties
(algebraic or geometrical) of the matrix/operator.
It is a comfortable way to study the spectrum.
It is useful to estimate spectral radii of small perturbations of matrices.
It is useful to work with some concepts like hermitian operator, skew-hermitian operator,
dissipative operator. . .

Example

Consider A =
(

0 M
0 0

)
and B =

(
0 0
ε 0

)
.

Sp(A) = {0}, Sp(B) = {0}.
Sp(A + B) = {±

√
Mε} ⊆ W (A + B) ⊆ W (A) + W (B),

so the spectral radius of A + B is bounded above by 1
2 (|M | + |ε|).

Using norms, we only get | Sp(A + B)| ⩽ |M | + |ε|

Miguel Martin (Granada, Spain) | December 2020 8 / 78



Numerical index theory | Preliminaries | Numerical range of operators | Definitions and first properties

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)
X Banach space, T ∈ L(X),

V (T ) =
{

x∗(T x) : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1
}

Some properties
X Banach space, T ∈ L(X).

V (T ) is connected but not necessarily convex.
T, S ∈ L(X), α, β ∈ K:

V (αT + βS) ⊆ αV (T ) + βV (S);
V (αId + S) = α + V (S).

Sp(T ) ⊆ V (T ).

(Zenger–Crabb) Actually, conv
(

Sp(T )
)

⊆ V (T ).

conv Sp(T ) =
⋂

{Vp(T ) : p equivalent norm}
where Vp(T ) is the numerical range of T in the Banach space (X, p).
V (U−1T U) = V (T ) for every T ∈ L(X) and every U ∈ Iso(X).

V (T ) ⊆ V (T ∗) ⊆ V (T ).
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Numerical range: Banach spaces (II)

Observation
The numerical range depends on the base field:

X complex Banach space =⇒ XR real space underlying X.
T ∈ L(X) =⇒ TR ∈ L(XR) is T view as a real operator.
Then V (TR) = Re V (T ).

Consequence:
X complex, then there is S ∈ L(XR) with ∥S∥ = 1 and V (S) = {0}.

Some motivation for the numerical range
It allows to carry to the general case the concepts of hermitian operator, skew-hermitian
operator, dissipative operators. . .
It gives a description of the Lie algebra corresponding to the Lie group of all onto
isometries on the space.
It gives an easy and quantitative proof of the fact that Id is an strongly extreme point of
BL(X) (MLUR point).
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Numerical radius: definition and properties

Numerical radius
X real or complex Banach space, T ∈ L(X),

v(T ) = sup
{

|λ| : λ ∈ V (T )
}

= sup
{

|x∗(T x)| : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1
}

Elementary properties
X Banach space, T ∈ L(X)

v(·) is a seminorm, i.e.
v(T + S) ⩽ v(T ) + v(S) for every T, S ∈ L(X).
v(λ T ) = |λ| v(T ) for every λ ∈ K, T ∈ L(X).

sup | Sp(T )| ⩽ v(T ).
v(U−1T U) = v(T ) for every U ∈ Iso(X).

Important property
v(T ∗) = v(T ).
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Numerical radius: examples

Some examples
1 H real Hilbert space dim(H) > 1

=⇒ exist T ∈ L(X) with v(T ) = 0 and ∥T ∥ = 1.
2 H complex Hilbert space dim(H) > 1

v(T ) ⩾ 1
2 ∥T ∥,

the constant
1
2

is optimal.

3 X = L1(µ) =⇒ v(T ) = ∥T ∥ for every T ∈ L(X).
4 X∗ ≡ L1(µ) =⇒ v(T ) = ∥T ∥ for every T ∈ L(X).
5 In particular, this is the case for X = C(K).
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Numerical radius: the base field matters

Example
X complex Banach space, define T ∈ L(XR) by

T (x) = i x (x ∈ X).

∥T ∥ = 1 and v(T ) = 0 if viewed in XR.

∥T ∥ = 1 and V (T ) = {i}, so v(T ) = 1 if viewed in (complex) X.

Theorem (Bohnenblust-Karlin; Glickfeld)
X complex Banach space, T ∈ L(X):

v(T ) ⩾
1
e

∥T ∥.

The constant
1
e

is optimal:

∃ X two-dimensional complex, ∃ T ∈ L(X) with ∥T ∥ = e and v(T ) = 1.
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Relationship with surjective isometries

The exponential function
X Banach space, T ∈ L(X):

exp(T ) =
∞∑

n=0

1
n!

T n

where T 0 = Id and T n = T ◦
n)
· · · ◦ T .

First properties
X Banach space, T, S ∈ L(X).

T S = ST =⇒ exp(T + S) = exp(T ) exp(S).
exp(T ) exp(−T ) = exp(0) = Id =⇒ exp(T ) surjective isomorphism.{

exp(ρ T ) : ρ ∈ R+
0

}
exponential one-parameter semigroup generated by T .

An important property
X Banach space, T, S ∈ L(X).

∥exp(λ T )∥ ⩽ e|λ| v(T ) (λ ∈ K).
v(T ) is the best possible constant.
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Semigroups of isometries: motivating example

A motivating example
A real or complex n × n matrix. TFAE:

A is skew-adjoint (i.e. A∗ = −A).
Re(Ax | x) = 0 for every x ∈ H.
B = exp(ρA) is unitary for every ρ ∈ R (i.e. B∗B = BB∗ = Id).

In term of Hilbert spaces
H (n-dimensional) Hilbert space, T ∈ L(H). TFAE:

Re W (T ) = {0}.
exp(ρT ) ∈ Iso(H) for every ρ ∈ R.

For general Banach spaces
X Banach space, T ∈ L(X). TFAE:

Re V (T ) = {0}.
exp(ρT ) ∈ Iso(X) for every ρ ∈ R.
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Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970’s; Rosenthal, 1984)
X real or complex Banach space, T ∈ L(X). TFAE:

Re V (T ) = {0} (T is skew-hermitian, we write T ∈ Z(X)).
∥ exp(ρT )∥ ⩽ 1 for every ρ ∈ R.{

exp(ρT ) : ρ ∈ R+
0

}
⊂ Iso(X).

T belongs to the tangent space to Iso(X) at Id.

lim
ρ→0

∥Id + ρ T ∥ − 1
ρ

= 0.

Main consequence
If X is a real Banach space such that

V (T ) = {0} =⇒ T = 0,

then Iso(X) is “small”:
it does not contain any exponential one-parameter semigroup,
the tangent space of Iso(X) at Id is zero.
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Semigroups of surjective isometries and duality

Remark
X Banach space.

T ∈ Iso(X) =⇒ T ∗ ∈ Iso(X∗).
Iso(X∗) can be bigger than Iso(X).

A problem
How much bigger can be Iso(X∗) than Iso(X)?

Is it possible that Z
(

Iso(X∗)
)

is big while Z
(

Iso(X)
)

is trivial?

Example (proved used numerical ranges)
There exists a Banach space X such that:

Iso
(

X
)

has no exponential one-parameter semigroups.

Iso
(

X ∗
)

contains Iso(ℓ2) (and so it contains infinitely many one-parameter semigroups).
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Semigroups of surjective isometries and duality. II

In terms of linear dynamical systems
In X there is no A ∈ L(X ) such that the solution to the linear dynamical system

x′ = A x
(

x : R+
0 −→ X

)
(which is x(t) = exp(t A)(x(0))) is given by a semigroup of isometries.
There are infinitely many such A’s in X ∗, in X ∗∗. . .

Further results (Koszmider–M.–Meŕı., 2009)
There are unbounded A’s on X such that the solution to the linear dynamical system

x′(t) = A x(t)

is a one-parameter C0 semigroup of isometries.

However, there is Y such that Iso(Y) = {−Id, Id} and Iso(Y∗) contains Iso(ℓ2).
Therefore, there is no semigroups in Iso(X), but there are infinitely many exponential
one-parameter semigroups in Iso(X∗).
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Numerical index of Banach spaces

Section 2

2 Numerical index of Banach spaces
Basic definitions and examples
Stability properties
Duality
The isomorphic point of view
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Numerical index of Banach spaces: definitions

Numerical radius
X Banach space, T ∈ L(X). The numerical radius of T is

v(T ) = sup
{

|x∗(T x)| : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1
}

Remark
The numerical radius is a continuous seminorm in L(X). Actually, v(·) ⩽ ∥ · ∥

Numerical index (Lumer, 1968)
X Banach space, the numerical index of X is

n(X) = inf
{

v(T ) : T ∈ L(X), ∥T ∥ = 1
}

= max
{

k ⩾ 0: k ∥T ∥ ⩽ v(T ) ∀ T ∈ L(X)
}

= inf
{

M ⩾ 0: ∥ exp(ρT )∥ ⩽ eρM ∀ρ ∈ R, ∀T ∈ L(X) ∥T ∥ = 1
}
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Numerical index of Banach spaces: basic properties

Recalling some basic properties
n(X) = 1 iff v and ∥ · ∥ coincide.
n(X) = 0 iff v is not an equivalent norm in L(X)

X complex =⇒ n(X) ⩾ 1/e.
(Bohnenblust–Karlin, 1955; Glickfeld, 1970)

Actually,

{n(X) : X complex, dim(X) = 2} = [e−1, 1]
{n(X) : X real, dim(X) = 2} = [0, 1]

(Duncan–McGregor–Pryce–White, 1970)
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Numerical index of Banach spaces: examples (I)

Some examples
1 H Hilbert space, dim(H) > 1,

n(H) = 0 if H is real
n(H) = 1/2 if H is complex

2 n
(

L1(µ)
)

= 1 µ positive measure
n
(

C(K)
)

= 1 K compact Hausdorff space

(Duncan et al., 1970)

3 If A is a C∗-algebra =⇒
{

n(A) = 1 A commutative
n(A) = 1/2 A not commutative

(Huruya, 1977; Kaidi–Morales–Rodŕıguez, 2000)
4 If A is a function algebra =⇒ n(A) = 1

(Werner, 1997)
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Numerical index of Banach spaces: some examples (II)

More examples
5 For n ⩾ 2, the unit ball of Xn is a 2n regular polygon:

n(Xn) =


tan

(
π

2n

)
if n is even,

sin
(

π

2n

)
if n is odd.

(M.–Meŕı, 2007)
6 Every finite-codimensional subspace of C[0, 1] has numerical index 1

(Boyko–Kadets–M.–Werner, 2007)
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Numerical index of Banach spaces: some examples (III)

Even more examples
7 Numerical index of Lp-spaces, 1 < p < ∞:

n
(

Lp[0, 1]
)

= n(ℓp) = lim
m→∞

n
(

ℓ
(m)
p

)
.

(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)
n
(

ℓ
(2)
p

)
?

Very recent:
n
(

ℓ
(2)
p

)
= Mp (3/2 ⩽ p ⩽ 3)

and Mp = v

(
0 1

−1 0

)
= max

t∈[0,1]

|tp−1 − t|
1 + tp

(Meŕı–Quero, 2020)

In the real case, n
(

Lp(µ)
)
⩾

Mp

8e
.

In particular, n
(

Lp(µ)
)

> 0 for p ̸= 2.

(M.–Meŕı–Popov, 2009)
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Numerical index: open problems on computing

Some open problems
1 Compute n

(
Lp[0, 1]

)
for 1 < p < ∞, p ̸= 2.

2 Is n
(

ℓ
(2)
p

)
= Mp (real case) for all p’s ?

3 Is n
(

ℓ
(2)
p

)
=

(
p

1
p q

1
q

)−1
(complex case) ?

4 Compute the numerical index of real C∗-algebras.
5 Compute the numerical index of more classical Banach spaces:

Cm[0, 1], Lip0(K), Lorentz spaces, Orlicz spaces. . .
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Stability properties

Direct sums of Banach spaces (M.–Payá, 2000)

n

(
[⊕λ∈ΛXλ]c0

)
= n

(
[⊕λ∈ΛXλ]ℓ1

)
= n

(
[⊕λ∈ΛXλ]ℓ∞

)
= inf

λ
n(Xλ)

Consequences
There is a real Banach space X such that

v(T ) > 0 when T ̸= 0,

but n(X) = 0
(i.e. v(·) is a norm on L(X) which is not equivalent to the operator norm).
For every t ∈ [0, 1], there exist a real Xt isomorphic to c0 (or ℓ1 or ℓ∞) with n(Xt) = t.
For every t ∈ [e−1, 1], there exist a complex Yt isomorphic to c0 (or ℓ1 or ℓ∞) with
n(Yt) = t.
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Stability properties (II)

Vector-valued function spaces (López-M.-Meŕı-Payá-Villena, 2000’s)
E Banach space, µ positive σ-finite measure, K compact space. Then

n
(

C(K, E)
)

= n
(

Cw(K, E)
)

= n
(

L1(µ, E)
)

= n
(

L∞(µ, E)
)

= n(E),

and n
(

Cw∗ (K, E∗)
)
⩽ n(E) (this inequality may be strict).

Lp-spaces (Askoy–Ed-Dari–Khamsi, 2007)
n
(

Lp([0, 1], E)
)

= n
(

ℓp(E)
)

= lim
m→∞

n
(

E ⊕p
m
· · · ⊕p E

)
.
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Stability properties (III)

Tensor products (Lima, 1980)
There is no general formula for n

(
X⊗̃εY

)
nor for n

(
X⊗̃πY

)
:

n
(

ℓ
(4)
1 ⊗̃π ℓ

(4)
1

)
= n

(
ℓ

(4)
∞ ⊗̃ε ℓ

(4)
∞

)
= 1.

n
(

ℓ
(4)
1 ⊗̃ε ℓ

(4)
1

)
= n

(
ℓ

(4)
∞ ⊗̃π ℓ

(4)
∞

)
< 1.

Inequalities for tensor products and ideals of operators (M.-Meŕı-Quero, 2020)
X, Y Banach spaces:

n
(

X⊗̃πY
)
⩽ min{n(X), n(Y )},

n
(

X⊗̃εY
)
⩽ min{n(X), n(Y )}.

Z ideal of L(X, Y ) =⇒ n(Z) ⩽ min{n(X), n(Y )},

in particular, n
(

L(X, Y )
)
⩽ min{n(X), n(Y )}.

n
(

K(X, Y )
)
⩽ min{n(X∗), n(Y )},

n
(

W (X, Y )
)
⩽ min{n(X∗), n(Y )}.
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Numerical index and duality

Proposition
X Banach space, T ∈ L(X). Then

sup Re V (T ) = lim
α→0+

∥Id + α T ∥ − 1
α

.

Then, v(T ∗) = v(T ) for every T ∈ L(X).
Therefore, n(X∗) ⩽ n(X).

(Duncan–McGregor–Pryce–White, 1970)

Question (From the 1970’s)
Is n(X) = n(X∗) ?

Negative answer (Boyko–Kadets–M.–Werner, 2007)
Consider the space

X =
{

(x, y, z) ∈ c ⊕∞ c ⊕∞ c : lim x + lim y + lim z = 0
}

.

Then, n(X) = 1 but n(X∗) < 1.
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The isomorphic point of view

Renorming and numerical index (Finet–M.–Payá, 2003)
(X, ∥ · ∥) (separable or reflexive) Banach space, dim(X) > 1. Then

Real case:
[0, 1[⊆ {n(X, | · |) : | · | ≃ ∥ · ∥}

Complex case:
[e−1, 1[⊆ {n(X, | · |) : | · | ≃ ∥ · ∥}

Open question
The result is known to be true when X has a long biorthogonal system.
Is it true in general ?

Remark
In some sense, any other value of n(X) but 1 is isomorphically trivial.
⋆ What about the value 1 ?
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Banach spaces with numerical index one

Section 3

3 Banach spaces with numerical index one
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Banach spaces with numerical index one

Numerical index one
Recall that X has numerical index one (n(X) = 1) iff

∥T ∥ = sup
{

|x∗(T x)| : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1
}

(i.e. v(T ) = ∥T ∥) for every T ∈ L(X).
Equivalently, Id is a “spear operator” (we will see this concept later on).

Examples
C(K), L1(µ), A(D), H∞, finite-codimensional subspaces of C[0, 1]. . .

This is a property of X which is very complicated to work with as one has to deal
with all the operators on the space.

Leading open questions
X Banach space with numerical index one =⇒ X ⊃ c0 or X ⊃ ℓ1 ? X∗ ⊃ ℓ1 ?
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How to deal with numerical index one property?

One the one hand: weaker properties
In a general Banach space, we only can construct compact (aproximable) operators.
Actually, we only may easily calculate the norm of rank-one operators.
Most of the results we know for Banach spaces with numerical index one are actually true
for Banach spaces with the alternative Daugavet property (ADP), that is, those Banach
spaces satisfying:

v(T ) = ∥T ∥ for every rank-one T ,
equivalently, max

θ∈T
∥Id + θT ∥ = 1 + ∥T ∥ for every T rank-one.

One the other hand: stronger properties
We do not know any operator-free characterization of
Banach spaces with numerical index one.
When we know that a Banach space has numerical index one (or that it can be renormed
with numerical index one), we actually prove more.
There are some sufficient geometrical conditions.
The weakest of such properties is called lushness.
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How to deal with numerical index one property?

Relationship between the properties
One of the key ideas to get interesting results for Banach spaces with numerical index one
is to study when the three properties below are equivalent.
A very interesting property appears: the slicely countably determination,
it will be studied in the next chapter.

lushness ===-�≠== Numerical index one ===-�≠== ADP

�===================
with SCD property

(RNP, Asplund...)
===================
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The numerical index one has isomorphic consequences

Question
Does every Banach space admit an equivalent norm with numerical index one ?

Negative answer (López–M.–Payá, 1999)
Not every Banach space can be renormed to have numerical index one.
Concretely:

If X is real, RNP, dim(X) = ∞, and n(X) = 1, then X ⊃ ℓ1.
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On the proof of the 1999 results

Lemma
X Banach space, n(X) = 1
=⇒ |x∗

0(x0)| = 1 for every x∗
0 ∈ ext (BX∗ ) and every x0 ∈ dent(BX).

Proposition
X real, A ⊂ SX infinite with |x∗(a)| = 1 ∀x∗ ∈ ext (BX∗ ), ∀a ∈ A.
=⇒ X ⊇ c0 or X ⊇ ℓ1.

Main consequence
X real, RNP, dim(X) = ∞, and n(X) = 1 =⇒ X ⊇ ℓ1.
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Sufficient conditions for numerical index one

Some sufficient conditions
Let X be a Banach space. Consider:
(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family of three

mutually intersecting balls is not empty.
(b) Fullerton, 1961: X is a CL-space if BX is the absolutely convex hull of every maximal

face of SX .
(c) Lima, 1978: X is an almost-CL-space if BX is the closed absolutely convex hull of every

maximal face of SX .

(a) ===-�≠== (b) ===-�≠== (c) ===-�≠== n(X) = 1

Showing that (c) =⇒ n(X) = 1, one realizes that (c) is too much.

Lushness (Boyko–Kadets–M.–Werner, 2007)
X is lush if given x, y ∈ SX , ε > 0, there is x∗ ∈ SX∗ such that

x ∈ Slice(BX , x∗, ε) and dist
(

y, aconv
(

Slice(BX , x∗, ε)
))

< ε.
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Definition and first property

Lushness (Boyko–Kadets–M.–Werner, 2007)
X is lush if given x, y ∈ SX , ε > 0, there is x∗ ∈ SX∗ such that

x ∈ Slice(BX , x∗, ε) and dist
(

y, aconv
(

Slice(BX , x∗, ε)
))

< ε.

Theorem (Boyko–Kadets–M.–Werner, 2007)
X lush =⇒ n(X) = 1.
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Reformulations of lushness and applications

Proposition (Boyko–Kadets–M.–Meŕı, 2009)
X Banach space. TFAE:

X is lush,
Every separable E ⊂ X is contained in a separable lush Y with E ⊂ Y ⊂ X.

Separable lush spaces (Kadets–M.–Meri–Payá, 2009; Lee–M., 2012)
X separable. TFAE:

X is lush.
There is G ⊆ SX∗ norming for X such that

BX = aconv (Face(BX , x∗)) (x∗ ∈ G).

Therefore, |x∗∗(x∗)| = 1 ∀x∗∗ ∈ ext (BX∗∗ ) ∀x∗ ∈ G.
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An important consequence

Showed in the previous slide. . .
X lush separable, dim(X) = ∞ =⇒ there is G ∈ SX∗ infinite such that

|x∗∗(x∗)| = 1
(

x∗∗ ∈ ext (BX∗∗ ) , x∗ ∈ G
)

.

Proposition (López–M.–Payá, 1999)
X real, A ⊂ SX infinite with |x∗(a)| = 1 ∀x∗ ∈ ext (BX∗ ), ∀a ∈ A.
=⇒ X ⊇ c0 or X ⊇ ℓ1.

Main consequence
X real lush, dim(X) = ∞ =⇒ X∗ ⊇ ℓ1.

Proof.
There is E ⊆ X infinite-dimensional, separable, and lush.
Then E∗ ⊇ c0 or E∗ ⊇ ℓ1 =⇒ E∗ ⊇ ℓ1.
By the “lifting” property of ℓ1 =⇒ X∗ ⊇ ℓ1. ✓
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Lushness is not equivalent to numerical index one

Example (Kadets–M.–Meŕı–Shepelska, 2009)
There is a separable Banach space X such that

X ∗ is lush but X is not lush.
Since n(X ∗) = 1, also n(X ) = 1.
But the set {

x∗ ∈ SX ∗ : |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext (BX ∗∗ )
}

is empty.

Remark
We cannot expect to show that X∗ ⊇ ℓ1 when n(X) = 1 using only the ideas developed for
lush spaces, something more is needed.
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Slicely countably determined Banach spaces

Section 4

4 Slicely countably determined Banach spaces
Motivation
SCD sets and spaces
SCD is a link between ADP and lushness
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Two classical concepts: Radon-Nikodým property and Asplund spaces

The Radon-Nikodým property or RNP (1930’s)
X has the RNP iff the Radon-Nikodým theorem is valid for X-valued meassures;
Equivalently [1960’s], every bcc subset contains a denting point.

X Asplund ⇐⇒ X∗ RNP

Reflexive (say) ==-
(

RNP and Asplund
)

(
RNP or Asplund

)
==- ???

Asplund spaces (1960’s)
X is an Asplund space if every continuous convex real-valued function defined on an open
subset of X is Frechet-differentiable on a dense subset;
Equivalently [1970’s], every separable subspace has separable dual.
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SCD sets and spaces: Definitions and examples

SCD sets
A ⊂ X bounded convex is slicely countably determined (SCD) if there is a sequence {Sn : n ∈ N}
of slices of A satisfying one of the following equivalent conditions:

every slice of A contains one of the Sn’s,
A ⊆ conv(B) if B ⊆ A satisfies B ∩ Sn ̸= ∅ ∀n,

given {xn}n∈N with xn ∈ Sn ∀n ∈ N, A ⊆ conv
(

{xn : n ∈ N}
)

.

SCD spaces
X is Slicely Countably Determined (SCD) if so are all its bounded convex subsets.

Avilés–Kadets–M.–Meŕı–Shepelska, 2010

Remarks
A is SCD iff A is SCD.
If A is SCD, then it is separable.
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Examples of SCD sets and spaces

Examples of sets
A ⊂ X separable bounded and convex.

1 (Easy): A RNP =⇒ A is SCD,
2 (Easy): A Asplund =⇒ A is SCD,
3 (Main): A ⊉ ℓ1 =⇒ A is SCD,
4 BC[0,1] and BL1[0,1] are not SCD.

Examples of spaces
X separable Banach space.

1 X RNP =⇒ X is SCD,
2 X Asplund =⇒ X is SCD,
3 X ⊉ ℓ1 =⇒ X is SCD,
4 C[0, 1] and L1[0, 1] are not SCD.

The proofs of the easy ones are straightforward. . .
The proof of the main one relies on a deep result of S. Todorčević which needs “forcing”.
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SCD spaces: definition and examples

SCD space
X is Slicely Countably Determined (SCD) if so are all of its convex bounded subsets.

Examples of SCD spaces
1 X separable strongly regular. In particular, RNP, CPCP spaces.
2 X separable X ⊉ ℓ1. In particular, if X∗ is separable.

Examples of NOT SCD spaces
1 C[0, 1], L1[0, 1]
2 There is X with the Schur property which is not SCD.

Remark
Every subspace of a SCD space is SCD.
This is false for quotients.
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ADP + SCD =⇒ numerical index 1

Characterizations of the ADP
X Banach space. TFAE:

X has ADP (i.e. maxθ∈T ∥Id + θ T ∥ = 1 + ∥T ∥ for all T rank-one).
Given x ∈ SX , a slice S of BX and ε > 0, there is y ∈ S with

max
θ∈T

∥x + θ y∥ > 2 − ε.

Given x ∈ SX , a sequence {Sn} of slices of BX , and ε > 0,
there is y∗ ∈ SX∗ such that x ∈ Slice(BX , y∗, ε) and

conv
(
T Slice(BX , y∗, ε)

)
∩ Sn ̸= ∅ (n ∈ N).

Theorem
X ADP + BX SCD =⇒ given x ∈ SX and ε > 0, there is y∗ ∈ SX∗ such that

x ∈ Slice(BX , y∗, ε) and BX = conv
(
T Slice(BX , y∗, ε)

)
.

⋆ This implies lushness and so, numerical index 1.
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Some consequences

Corollary
ADP + strongly regular =⇒ numerical index 1 (actually, lushness).
ADP + X ⊉ ℓ1 =⇒ numerical index 1 (actually, lushness).

Main consequence
X real + dim(X) = ∞ + ADP =⇒ X∗ ⊇ ℓ1.

In particular,

Corollary
X real + dim(X) = ∞ + numerical index 1 =⇒ X∗ ⊇ ℓ1.

Open question
X real, dim(X) = ∞, n(X) = 1 =⇒ X ⊃ c0 or X ⊃ ℓ1 ?
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The numerical index with respect to an operator

Section 5

5 The numerical index with respect to an operator
Extending the concept of numerical range
Numerical index with respect to an operator: definition
Numerical index with respect to an operator: examples and properties
Spear operators
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Motivation

Geometry of the space of operators
X Banach space

The numerical range of T ∈ L(X) represent the geometry of the unit ball of L(X) at Id

in the direction of T : sup Re V (T ) = lim
α→0+

∥Id + α T ∥ − 1
α

.

Actually, n(X) > 0 ⇐⇒ Id is a geometrically unitary element of BL(X). . .
A point u ∈ SZ is unitary if the linear span of the set {z∗ ∈ SZ∗ : z∗(u) = 1} coincides
with the whole of Z∗.
Equivalently, exists k > 0 such that maxθ∈T ∥u + θz∥ ⩾ 1 + k∥z∥ ∀z ∈ Z.
The study of unitary elements has been very important in many results of functional
analysis as, for instance, in Vidav’s characterization of C∗-algebras.

Question
Can we do the same for an arbitrary norm one operator between Banach spaces ?
That is, is there a notion of numerical range, numerical radius, numerical index. . .
for an arbitrary operator which helps to study when the operator is a unitary ?
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Spatial numerical range

Bauer–Lumer (spatial) Numerical range
X Banach space, T ∈ L(X),

V (T ) = {x∗(T x) : x ∈ SX , x∗ ∈ SX∗ , x∗(Id x) = 1}

⋆ G ∈ L(X, Y ) with ∥G∥ = 1, T ∈ L(X, Y ), how to define VG(T )?
The first idea (not working):

VG(T ) = {y∗(T x) : x ∈ SX , y∗ ∈ SY ∗ , y∗(Gx) = 1}

(Approximate spatial) Numerical range with respect to G (Ardalani, 2014)
X, Y Banach spaces, G ∈ L(X, Y ) with ∥G∥ = 1, T ∈ L(X, Y )

VG(T ) =
⋂
δ>0

{y∗(T x) : x ∈ SX , y∗ ∈ SY ∗ , Re y∗(Gx) > 1 − δ}

For G = Id, by the Bishop–Phelps–Bollobás theorem (Ardalani, 2014)
VId(T ) = V (T ) for every T ∈ L(X)
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Intrinsic Numerical range

(Bonsall-Duncan, 1971)
Let X be a Banach space. Then for every T ∈ L(X)

conv V (T ) = {Φ(T ) : Φ ∈ L(X)∗, ∥Φ∥ = Φ(Id) = 1}.

Consequently, v(T ) = max{|Φ(T )| : Φ ∈ L(X)∗, ∥Φ∥ = Φ(Id) = 1}.

Intrinsic (or algebraic) numerical range
X Banach space, T ∈ L(X),

Ṽ (T ) = {Φ(T ) : Φ ∈ L(X)∗, ∥Φ∥ = Φ(Id) = 1}

Intrinsic numerical range with respect to G

X, Y Banach spaces, G ∈ L(X, Y ) with ∥G∥ = 1, T ∈ L(X, Y )

ṼG(T ) = {Φ(T ) : Φ ∈ L(X, Y )∗, ∥Φ∥ = Φ(G) = 1}
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The relationship

Two possible numerical ranges
X, Y Banach spaces, G ∈ L(X, Y ) with ∥G∥ = 1, T ∈ L(X, Y )

VG(T ) =
⋂
δ>0

{y∗(T x) : x ∈ SX , y∗ ∈ SY ∗ , Re y∗(Gx) > 1 − δ}

ṼG(T ) = {Φ(T ) : Φ ∈ L(X, Y )∗, ∥Φ∥ = Φ(G) = 1}

Relationship (M., 2016)
X, Y be Banach spaces, G ∈ L(X, Y ) with ∥G∥ = 1, then

ṼG(T ) = conv VG(T ) for every T ∈ L(X, Y )

Both concepts produce the same numerical radius:

Numerical radius with respect to G

X, Y Banach spaces, G ∈ L(X, Y ) with ∥G∥ = 1, T ∈ L(X, Y )

vG(T ) = sup{|λ| : λ ∈ VG(T )} = sup{|λ| : λ ∈ ṼG(T )}
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Numerical index with respect to an operator

Numerical index with respect to G

X, Y Banach spaces, G ∈ L(X, Y ) with ∥G∥ = 1,
nG(X, Y ) = inf{vG(T ) : T ∈ SL(X,Y )} = max{k ⩾ 0: k∥T ∥ ⩽ vG(T )}

We recuperate the classical numerical index
nId(X, X) = n(X)

Characterization
For k ∈ [0, 1], TFAE:

nG(X, Y ) ⩾ k,

inf
δ>0

sup{|y∗(T x)| : x ∈ SX , y∗ ∈ SY ∗ , Re y∗(Gx) > 1 − δ} ⩾ k∥T ∥ ∀ T ∈ L(X, Y ),

max
|θ|=1

∥G + θ T ∥ ⩾ 1 + k∥T ∥ ∀ T ∈ L(X, Y ).

Consequence
nG(X, Y ) > 0 ⇐⇒ G is a (geometrically) unitary element of L(X, Y )
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Some interesting examples I

Set of values
There exists X (real and complex versions) such that{

nG(X, X) : G ∈ L(X, X), ∥G∥ = 1
}

= [0, 1].

Hilbert spaces
H1, H2 Hilbert spaces of dimension at least two,

Real case: nG(H1, H2) = 0 for all G ∈ L(H1, H2) with ∥G∥ = 1,
Complex case: nG(H1, H2) ∈ {0, 1/2} for all G ∈ L(H1, H2) with ∥G∥ = 1.

Actually...
G ∈ L(X, Y ) with ∥G∥ = 1, if X or Y is a real Hilbert space

=⇒ nG(X, Y ) = 0.
⋆ There are more spaces with this property. . .
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Some interesting examples II

Lp-spaces
G ∈ L(X, Y ) with ∥G∥ = 1, if X or Y is a Lp(µ)-space (1 < p < ∞),

=⇒ nG(X, Y ) ⩽

supt∈[0,1]
|tp−1−t|

1+tp real case

p−1/pq−1/q complex case

Spaces of integrable functions
µ1, µ2 σ-finite measures,

nG

(
L1(µ1), L1(µ2)

)
∈ {0, 1} for all G ∈ L

(
L1(µ1), L1(µ2)

)
with ∥G∥ = 1.

Spaces of essentially bounded functions
µ1, µ2 σ-finite measures,

nG

(
L∞(µ1), L∞(µ2)

)
∈ {0, 1} for all G ∈ L

(
L∞(µ1), L∞(µ2)

)
with ∥G∥ = 1.

Spaces of continuous functions
For SOME pairs of compact Hausdorff topological spaces K1 and K2:

nG

(
C(K1), C(K2)

)
∈ {0, 1} for all G ∈ L

(
C(K1), C(K2)

)
with ∥G∥ = 1.
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Sums of Banach spaces

Proposition
Let {Xλ : λ ∈ Λ}, {Yλ : λ ∈ Λ} be two families of Banach spaces and let Gλ ∈ L(Xλ, Yλ)
with ∥Gλ∥ = 1 for every λ ∈ Λ. Let E be one of the Banach spaces c0, ℓ∞ or ℓ1, let
X =

[⊕
λ∈Λ Xλ

]
E

and Y =
[⊕

λ∈Λ Yλ

]
E

and define the operator G : X −→ Y by

G [(xλ)λ∈Λ] = (Gλxλ)λ∈Λ

for every (xλ)λ∈Λ ∈
[⊕

λ∈Λ Xλ

]
E

. Then

nG(X, Y ) = inf
λ

nGλ
(Xλ, Yλ).

Moreover, for 1 < p < ∞

nG

(
[⊕λ∈ΛXλ]ℓp

, [⊕λ∈ΛYλ]ℓp

)
⩽ inf

λ
nGλ

(Xλ, Yλ).
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Composition operators

Theorem
Let X, Y be Banach spaces, and G ∈ L(X, Y ) with ∥G∥ = 1.

K compact, consider G̃ : C(K, X) −→ C(K, Y ) given by G̃(f) = G ◦ f ; then

n
G̃

(
C(K, X), C(K, Y )

)
= nG(X, Y ).

µ measure, consider G̃ : L1(µ, X) −→ L1(µ, Y ) given by G̃(f) = G ◦ f ; then

n
G̃

(
L1(µ, X), L1(µ, Y )

)
= nG(X, Y ).

µ σ-finite, consider G̃ : L∞(µ, X) −→ L∞(µ, Y ) given by G̃(f) = G ◦ f ; then

n
G̃

(
L∞(µ, X), L∞(µ, Y )

)
= nG(X, Y ).

Besides, for vector-valued Lp-spaces one inequality holds:

n
G̃

(
Lp(µ, X), Lp(µ, Y )

)
⩽ nG(X, Y )

for 1 < p < ∞, G̃ defined analogously.
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Examples of spear operators

Spear operator (Ardalani, 2014; Kadets, Mart́ın, Meŕı, Pérez, 2018)
G spear operator ⇐⇒ nG(X, Y ) = 1 ⇐⇒ max

|θ|=1
∥G + θ T ∥ = 1 + ∥T ∥ ∀ T ∈ L(X, Y ).

Some interesting examples of spear operators
Fourier transform (for example, F : L1(R) −→ C0(R));

The inclusion A(D) −→ C(T);

The identity operator on C(K), L1(µ). . .

G : X −→ c0 spear iff
∣∣x∗∗

(
G∗(en)

)∣∣ = 1 for n ∈ N and x∗∗ ∈ ext (BX∗∗ );

G : ℓ1 −→ Y spear iff
∣∣y∗

(
G(en)

)∣∣ = 1 for n ∈ N and y∗ ∈ ext (BY ∗ );

If dim(X) < ∞, G spear iff
∣∣y∗

(
Gx)

∣∣ = 1 for y∗ ∈ ext (BY ∗ ) and x ∈ ext (BX);

If dim(Y ) < ∞, G spear iff
∣∣x∗∗

(
G∗(y∗)

)∣∣ = 1 for x∗∗ ∈ ext (BX∗∗ ) and
y∗ ∈ ext (BX∗ );
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Studying spear operators

Spear operator (Ardalani, 2014; Kadets, Mart́ın, Meŕı, Pérez, 2018)
G spear operator ⇐⇒ nG(X, Y ) = 1 ⇐⇒ max

|θ|=1
∥G + θ T ∥ = 1 + ∥T ∥ ∀ T ∈ L(X, Y ).

Remark
To work with spear operators, two other concepts are introduced:

lush operator,
the alternative Daugavet property (aDP),

⋆ Both are geometric properties (related to G)
⋆ They are related as follows:

lush operator ===========-�====≠====== spear operator ===========-�========≠== operator with aDP

�==========================================================
SCD operator

(X RNP, X ⊉ ℓ1, Y Asplund. . . )
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Spear operators: consequences

Some isomorphic and isometric consequences
X, Y Banach spaces, G ∈ L(X, Y ) spear operator,

if dim(G(X)) = ∞ and X is real, then X∗ ⊃ ℓ1,
if X∗ is strictly convex, then X = K,
if X∗ is smooth, then X = K,
if BX contains a WLUR point, then X = K,
if Y ∗ is strictly convex, then Y = K,
if BY contains a WLUR point, then Y = K.

Norm attaintment
If G is lush, G attains its norm; actually:

BX = conv
{

x ∈ SX : ∥Gx∥ = 1
}

,

There are examples of aDP operators which do not attain the norm,
What about spear operators ?
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The second numerical index

Section 6

6 The second numerical index
Relationship with absolute sums
Spaces with absolute norm and n′(X) = 1
Vector valued spaces
Duality
An application to BPB-property for numerical radius
Open problems on the second numerical index
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The base field does matter for the numerical index

(Bohnenblust-Karlin, Glickfeld-1970)
n(X) ⩾ 1/e for every complex Banach space X

Examples in the real case
n(H) = 0 for H real Hilbert space with dim(H) ⩾ 2
n(XR) = 0 for X complex Banach space
But there is X such that n(X) = 0 and v is a norm (Mart́ın–Payá, 2000)

In the first two cases there is T ∈ L(X) \ {0} with v(T ) = 0:
(x1, x2, x3, . . .) 7−→ (−x2, x1, 0, . . .),
x 7−→ ix

Observation
v(T ) = 0 ⇐⇒ exp(ρT ) is an onto isometry for every ρ ∈ R
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The second numerical index

Lie Algebra
X real Banach space

Z(X) := {S ∈ L(X) : v(S) = 0} (it is a closed subspace of L(X))

Then, for all T + Z(X) ∈ L(X)/Z(X) we may consider two norms:

∥T + Z(X)∥ := inf
{

∥T − S∥ : S ∈ Z(X)
}

v(T + Z(X)) := inf
{

v(T − S) : S ∈ Z(X)
}

= v(T )

It is immediate that v(T ) ⩽ ∥T + Z(X)∥ for every T ∈ L(X)

Second numerical index
n′(X) := inf

{
v(T ) : T ∈ L(X) , ∥T + Z(X)∥ = 1

}
= max

{
k ⩾ 0: k∥T + Z(X)∥ ⩽ v(T ) ∀T ∈ L(X)

}
Obviously 0 ⩽ n′(X) ⩽ 1
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The second numerical index

Observations
If Z(X) = {0} (in particular if n(X) > 0), then n′(X) = n(X)

n(X) ⩽ n′(X) (observe that v(T ) ⩽ ∥T + Z(X)∥ ⩽ ∥T ∥)

On L(X)/Z(X), both ∥ · +Z(X)∥ and v(·) are norms

Further observation
There is no third numerical index

Some examples
n′(X) > 0 when X is finite-dimensional

But there is a Banach space X with n(X) = 0 and n′(X) = 0
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Main example

Theorem
Let H be a Hilbert space. Then, n′(H) = 1.

Proof
Fixed T ∈ L(H) we have to show that

v(T ) = ∥T + Z(H)∥
(

=
∥∥∥T + T ∗

2

∥∥∥)
Facts

S ∈ Z(H) ⇐⇒ S = −S∗

T = T ∗ =⇒ v(T ) = ∥T ∥
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Absolute norm on Rm and absolute sum of Banach spaces

Absolute norm
A norm ∥ · ∥ on Rm is absolute if

∥(a1, . . . , am)∥ =
∥∥(|a1|, . . . , |am|)

∥∥ for every (a1, . . . , am) ∈ Rm.

∥ek∥ = 1 for every k = 1, . . . , m where ek = (0, . . . , 0, 1︸︷︷︸
k

, 0, . . . , 0).

Absolute sum
Let E be Rm endowed with an absolute norm. We write

[
X1 ⊕ · · · ⊕ Xm

]
E

for the E-sum of
the Banach spaces X1, . . . , Xm. That is, the space X1 × · · · × Xm endowed with the complete
norm ∥(x1, . . . , xn)∥ =

∥∥(∥x1∥, . . . , ∥xm∥)
∥∥

E
.

When E is R2 endowed with an absolute norm ∥ · ∥a we just write X1 ⊕a X2 = [X1 ⊕ X2]E .
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Relationship of n′ with absolute sums

Proposition
Let X = X1 ⊕a X2, where ⊕a ̸= ⊕2 is an absolute sum. Then,

n′(X) ⩽ min{n′(X1), n′(X2)}.

Corollary
Let {Xλ : λ ∈ Λ} be a family of Banach spaces, 1 ⩽ p ⩽ ∞ with p ̸= 2. Then

n′
([ ⊕

λ∈Λ

Xλ

]
ℓp

)
⩽ inf{n′(Xλ) : λ ∈ Λ}.

Examples (equality does not hold)
n′(ℓ2

2 ⊕∞ R) ⩽
√

3
2 < 1 and n′(ℓ2

2 ⊕1 R) ⩽
√

3
2 < 1
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Relationship of n′ with absolute sums

Proposition
Let X1, X2 be Banach spaces and write X = X1 ⊕∞ X2 or X = X1 ⊕1 X2.

If n(X1) > 0 and n(X2) > 0, then n′(X) = n(X) = min {n(X1), n(X2)}.

If n(X1) > 0 and n(X2) = 0, then n′(X) ⩾ min
{

n(X1), n′(X2)
n′(X2)+1

}
.

If n(X1) = 0 and n(X2) = 0, then

n′(X) ⩾ min
{

n′(X1)
n′(X1) + 1

,
n′(X2)

n′(X2) + 1

}
.

Example
1
2 ⩽ n′(ℓ2

2 ⊕∞ R) ⩽
√

3
2 and 1

2 ⩽ n′(ℓ2
2 ⊕1 R) ⩽

√
3

2
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A family of examples

Example
For every θ ∈ (0, 1/2], there is a four-dimensional Banach space Xθ such that n(Xθ) = 0 and
n′(Xθ) = θ.

Let Yθ be a two-dimensional space with n(Yθ) = θ and take Xθ = Yθ ⊕∞ ℓ2
2. Then:

n(Xθ) ⩽ n(ℓ2
2) = 0

n′(Xθ) ⩽ n′(Yθ) = n(Yθ) = θ

n′(Xθ) ⩾ min
{

n(Yθ),
n′(ℓ2

2)
n′(ℓ2

2) + 1

}
= min

{
θ, 1

2

}
= θ

More examples (low dimensions)
dim(X) = 2, n(X) = 0 =⇒ n′(X) = 1,

{n′(X) : n(X) = 0, dim(X) = 3} ⊃ [1/e, 1/2] and it is NOT an interval,

{n′(X) : n(X) = 0, dim(X) = 4} ⊃ (0, 1/2].
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n′ is not continuous with respect Banach-Mazur distance

Example
For 1 < p < ∞, let Xp = ℓ2

p ⊕p ℓ2
2 (observe that n(Xp) = 0 for every p).

Then n′(Xp) ⩽ n′(ℓ2
p) = n(ℓ2

p) for p ̸= 2

Therefore lim
p→2

n′(Xp) ⩽ lim
p→2

n(ℓp) = 0

On the other hand n′(X2) = n′(ℓ4
2) = 1

Another example
For 1 < p < ∞, let Xp = ℓ2

p ⊕1 ℓ2
2 (observe that n(Xp) = 0 for every p).

Then n′(Xp) ⩽ n′(ℓ2
p) = n(ℓ2

p) for p ̸= 2

Therefore lim
p→2

n′(Xp) ⩽ lim
p→2

n(ℓp) = 0

On the other hand 1
2 ⩽ n′(X2) < 1

Observation
Continuity of n′(·) holds if Z(X) does not change
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Spaces with absolute norm and n′(X) = 1

Theorem
Let X be Rm endowed with an absolute norm. Suppose that n(X) = 0 and n′(X) = 1.
Then, X is a Hilbert space.

Observation
The result is more general and it can be extended to Banach spaces with
(long) one-unconditional basis.
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Vector valued spaces

Proposition
Let X be a Banach space, L locally compact Hausdorff, K compact Hausdorff, Ω completely
regular Hausdorff, and µ positive measure. Then

n′
(

C0(L, X)
)
⩽ n′(X)

n′
(

Cw(K, X)
)
⩽ n′(X)

n′
(

Cb(Ω, X)
)
⩽ n′(X)

n′
(

L1(µ, X)
)
⩽ n′(X)

n′
(

L∞(µ, X)
)
⩽ n′(X)

Example
Let K be a compact Hausdorff topological space with at least two points. Then

n′(C(K, ℓ2
2)) ⩽

√
3

2
< 1.
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Duality

Observation
Let X be a Banach space. If every element in Z(X∗) is the transpose of an element in Z(X)
then n′(X∗) ⩽ n′(X)

Proposition
Suppose that one of the following holds

The norm of X∗ is Fréchet-smooth on a dense set (e.g. X = ℓ∞);

BX is the closed convex hull of the w − ∥ · ∥ continuity points of Id
(in particular, X RNP, X CPCP, X LUR, X has a Kadec norm,
X = X1⊗̃πX2 where X1, X2 RNP, or X = L(R) where R is reflexive);

X∗ ⊉ ℓ1;

X is isomorphic to a subspace of a separable L-embedded space;

X is the (unique) predual of a von Neumann algebra.
Then n′(X∗) ⩽ n′(X)
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Duality II

On the other hand,

Example
Given 0 ⩽ α ⩽ β ⩽ 1/2, there is a Banach space Xα,β with n(Xα,β) = 0 such that

n′(Xα,β) = β and n′(X∗
α,β) = α.
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An application

Definition (Guirao-Kozhushkina, 2013; Kim-Lee-Mart́ın,2014)
X Banach space.

X has the Bishop-Phelps-Bollobás property for numerical radius if for
every 0 < ε < 1, there is η(ε) > 0 such that whenever T ∈ L(X) and (x, x∗) ∈ Π(X)
satisfy v(T ) = 1 and |x∗T x| > 1 − η(ε), there exist S ∈ L(X) and (y, y∗) ∈ Π(X) such
that

v(S) = |y∗Sy| = 1, ∥T − S∥ < ε, ∥x − y∥ < ε, and ∥x∗ − y∗∥ < ε.

X has the weak-Bishop-Phelps-Bollobás property for numerical radius if for every
0 < ε < 1, there is η(ε) > 0 such that whenever T ∈ L(X) and (x, x∗) ∈ Π(X) satisfy
v(T ) = 1 and |x∗T x| > 1 − η(ε), there exist S ∈ L(X) and (y, y∗) ∈ Π(X) such that

v(S) = |y∗Sy|, ∥T − S∥ < ε, ∥x − y∥ < ε, and ∥x∗ − y∗∥ < ε.
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An application

Proposition (Kim–Lee–Mart́ın, 2014)
X Banach space with n(X) > 0. Then, the weak-Bishop-Phelps-Bollobás property for
numerical radius implies the Bishop-Phelps-Bollobás property for numerical radius

Actually. . .
X Banach space with n′(X) > 0. Then, the weak-Bishop-Phelps-Bollobás property for
numerical radius implies the Bishop-Phelps-Bollobás property for numerical radius

Proposition (Kim–Lee–Mart́ın, 2014)
X uniformly convex and uniformly smooth =⇒ X has the weak-Bishop-Phelps-Bollobás
property for numerical radius

Corollary
(Real) Hilbert spaces have the Bishop-Phelps-Bollobás property for numerical radius
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Some open problems on the second numerical index

Which is the set of values of n′(X) for Banach spaces X with n(X) = 0?
Does it cover the interval [0, 1]?

We know that it covers the interval [0, 1/2] and contains 1.
It can be done (except for the value cero) with four-dimensional spaces.
If dim(X) = 2 and n(X) = 0 then X = ℓ2

2.
If dim(X) = 3 and n(X) = 0 then X = ℓ2

2 ⊕a R.
In this case we know that it is NOT an interval.

Is n′(X ⊕2 Y ) ⩽ min{n′(Y ), n′(W )}?

Let µ be a positive measure, X a Banach space and 1 < p < ∞.
Is it true that n′(Lp(µ, X)) ⩽ n′(X)?

Is n′(X∗) ⩽ n′(X) for every Banach space X?

Are Hilbert spaces the unique Banach spaces X with n(X) = 0 and n′(X) = 1?

X complex, what is the meaning of n′(XR)?

X = C ⊕a C. What is the value of n′(XR)?
⊕a = ⊕2 =⇒ n′(XR) = 1,
⊕a = ⊕1 =⇒ 1

2 ⩽ n′(XR) ⩽
√

3
2 .
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