Vector space structure in the set of norm attaining functionals and proximinality of subspaces of finite-codimension

Miguel Martín

UNIVERSIDAD DE GRANADA

(joint work with V. Kadets, G. López, and D. Werner)

Madrid, October 2019

CONSEJERÍA DE ECONOMÍA, CONOCIMIENTO, EMPRESAS Y UNIVERSIDAD Secretaría General de Universidades, investigadon y Tecnología Directón General de Investigadon y Transferenda del Conodmiento

Roadmap of the talk

1 Preliminaries

- Basic notation
- Norm attaining functionals
- Proximinality
- 2 Read's and Rmoutil's results
- 3 Our construction
 - A direct approach to (G)
 - Modest subspaces
 - Main theorem
 - Consequences
- 4 An n-by-n version of the results
- 5 A brushstroke on norm attaining operators of finite rank

6 Bibliography

Preliminaries

Section 1

1 Preliminaries

- Basic notation
- Norm attaining functionals
- Proximinality

Basic notation

X, Y real Banach spaces

- B_X closed unit ball
- S_X unit sphere
- X^* topological dual
- $\mathcal{L}(X,Y)$ bounded linear operators from X to Y
 - $\mathcal{L}(X)$ bounded linear operators from X to X
 - $\mathcal{K}(X)$ compact linear operators from X to X

Norm attaining functionals

Norm attaining functionals

 $x^* \in X^*$ attains its norm when

$$\exists x \in X, \|x\| = 1 : x^*(x) = \|x^*\|$$

★ NA(X) = { $x^* \in X^* : x^*$ attains its norm}

First results

•
$$\dim(X) < \infty \implies \operatorname{NA}(X) = X^*$$
 (Heine-Borel),

- X reflexive \implies NA(X) = X^{*} (Hahn-Banach),
- X non-reflexive \implies NA(X) \neq X^{*} (James),
- NA(X) is always norm dense in X^* (Bishop-Phelps).

First examples

•
$$\operatorname{NA}(c_0) = c_{00} \leqslant \ell_1$$
,

• NA(
$$\ell_1$$
) = { $x \in \ell_\infty : ||x||_\infty = \max_n \{|x(n)|\}$ }.

Lineability of NA(X)

Examples

•
$$\operatorname{NA}(c_0) = c_{00} \leqslant \ell_1$$
,

• NA(
$$\ell_1$$
) = { $x \in \ell_\infty : ||x||_\infty = \max_n \{|x(n)|\}$ }.

- Note that $NA(c_0)$ is a linear space, but $NA(\ell_1)$ is not.
- However, $NA(\ell_1)$ contains the infinite-dimensional space c_0 .

Lineability

Recall that a subset S of a vector space V is called lineable if $S\cup\{0\}$ contains an infinite-dimensional subspace.

More examples

- $NA(L_1(\mu))$ is a (dense) linear subspace,
- NA(C(K)) is lineable.

Lineability of NA(X) II

Main question

Lineability of NA(X)?

More concretely,

Problems (G. Godefroy, 2001) (G_{∞}) Does NA(X) always contain an infinite-dimensional linear subspace?(G) Does NA(X) always contain a linear subspace of dimension 2?

The case of dimension 1 is taken care of by the Hahn-Banach theorem!

Note that (G_{∞}) holds in all classical spaces.

Why lineability of NA(X) is interesting?

Theorem (Petunin-Plichko, 1974)

X separable Banach space, $W \leq X^*$ (norm) closed, separating, $W \subset NA(X)$ $\implies W$ is an isometric predual of X.

Two remarks

- "Norming for free": X separable, $W \leq X^*$ closed, $W \subset NA(X)$, separating $\implies W$ is 1-norming.
- Separability is needed: for $X = \ell_1([0, 1])$, there is a closed, separating subspace of X^* contained in NA(X) which is not even norming.

Examples of application

 \blacksquare M compact metric space, $\mathrm{lip}_0(M)$ is an isometric predual of $\mathcal{F}(M)$ as soon as it separates it.

• X separable reflexive space with the (compact) approximation property. Then, $\mathcal{K}(X)^{**} = \mathcal{L}(X)$ and X has the metric (compact) approximation property.

Proximinality

Proximinal subspace

 $Y \leqslant X$ is proximinal (in X) iff

 $\forall x \in X \; \exists y_0 \in Y : ||x - y_0|| = \inf\{||x - y|| : y \in Y\} = \operatorname{dist}(x, Y)$

- It is a notion related to best approximation
 - by least square approximation (Gauss, Legendre, 1800's),
 - of functions by polynomials of a fix degree (Chebyshev, 1853)...
- Y proximinal iff $q(B_X) = B_{X/Y}$ $(q: X \longrightarrow X/Y \text{ quotient map})$
- If Y is reflexive, then it is proximinal in any superspace.
- $x^* \in NA(X) \iff \ker x^*$ proximinal.

Problem (I. Singer, 1974)

(S) Is there always a proximinal subspace of codimension 2?

Proximinality and norm attaining functionals

The two main problems

(S) Does there always exist a proximinal subspace of codimension 2?

(G) Does NA(X) always contain a linear subspace of dimension 2?

Important observation (Garkavi, 1967)

 $Y \leqslant X$ proximinal, X/Y reflexive $\implies Y^{\perp} \subset \operatorname{NA}(X)$.

★ $Y \leq X$ such that X/Y reflexive is called factor reflexive.

Therefore...

If (S) has positive answer, then so does (G).

The converse to Garkavi's result is not true (Phelps, 1963)

There exist X = C(K) and finite codimensional Y such that $Y^{\perp} \subset NA(X)$ but Y is not proximinal.

Read's and Rmoutil's results

Section 2

Read's and Rmoutil's theorems

Theorem (Read, 2013)

There is a counterexample X_R to (S).

As (S) \Rightarrow (G), X_R is a natural candidate for a counterexample to (G).

Actually,

Theorem (Rmoutil, 2015)

- dim $X_R/Y < \infty$, $Y^{\perp} \subset \operatorname{NA}(X_R) \implies X_R/Y$ strictly convex.
- (Known result) X/Y strictly convex and $Y^{\perp} \subset NA(X) \implies Y$ proximinal.
- Consequently, X_R is also a counterexample to (G).

A simplification of Rmoutil's proof by Kadets/López/M.:

Proposition

 X_R^{**} is strictly convex; hence *all* quotients of X_R are strictly convex.

Read's construction

 X_R is a renorming of c_0 :

Let $\Omega = \{(s_n): (s_n) \text{ has finite support, all } s_n \in \mathbb{Q}\} \subset \ell_1$. Enumerate $\Omega = \{u_1, u_2, \ldots\}$ so that every element is repeated infinitely often. Take a sequence of integers (a_n) such that

 $a_k > \max \operatorname{supp} u_k, \quad a_k \ge \|u_k\|_{\ell_1}.$

Renorm c_0 by

$$p(x) = ||x||_{\infty} + \sum_{k} 2^{-a_{k}^{2}} |\langle u_{k} - e_{a_{k}}, x \rangle|.$$

Then Read shows that (c_0, p) fails (S), and Rmoutil shows, relying on Read's work, that (c_0, p) fails (G).

The proof of Read's theorem is not trivial at all!!!!!

Our construction

Section 3

3 Our construction

- A direct approach to (G)
- Modest subspaces
- Main theorem
- Consequences

A new, direct approach to (G)

We four are more used to norm attainment than to proximinality, so we changed the point of view:

We want to show directly that certain Banach spaces have a renorming failing (G) and hence have a renorming failing (S).

Let $R \colon X \longrightarrow \ell_1$ be continuous; we renorm X by

$$p(x) = \|x\| + \|Rx\|_{\ell_1}.$$

More precisely, let $[Rx](n) = 2^{-n}v_n^*(x)$, with $(v_n^*) \subset B_{X^*}$, so

$$p(x) = ||x|| + \sum_{n=1}^{\infty} \frac{v_n^*(x)}{2^n}$$

(Note that Read's renorming is of this type.)

Aim

Under suitable assumptions, the v_n^* can be chosen so that (X,p) fails (G) (and hence fails (S)).

A tentative calculation

 $p(x) = ||x|| + \sum 2^{-n} |v_n^*(x)|$. Then $B_{(X^*, p^*)} = B_{X^*} + \sum 2^{-n} [-v_n^*, v_n^*]$ (Minkowski sum)

Let $x^* \in NA_1(X, p)$ be norm attaining at x; then

$$x^* = x_0^* + \sum 2^{-n} t_n v_n^*$$

for some $x_0^* \in NA_1(X)$ and $t_n = \operatorname{sign} v_n^*(x)$ whenever $v_n^*(x)$ is nonzero. Write the same decomposition for $y^* \in NA_1(X, p)$, norm attaining at y:

$$y^* = y_0^* + \sum 2^{-n} t'_n v_n^*.$$

Let's try to prove that $x^* + y^* \notin NA(X, p)$: Otherwise we would have a similar decomposition for $z^* = (x^* + y^*)/||x^* + y^*||$:

$$z^* = z_0^* + \sum 2^{-n} s_n v_n^*.$$

Sort the items, setting $\lambda = \|x^* + y^*\|$:

$$0 = x^* + y^* - \lambda z^* = [x_0^* + y_0^* - \lambda z_0^*] + \left[\sum (t_n + t'_n - \lambda s_n)v_n^*\right]$$

Wish list

$$0 = [x_0^* + y_0^* - \lambda z_0^*] + \left[\sum (t_n + t'_n - \lambda s_n)v_n^*\right]$$

We now wish to select the v_n^* to be sort of "orthogonal" to span(NA(X)) (which contains the first bracket) so that both brackets vanish.

In addition we wish the v_n^* to have some Schauder basis character so that we can deduce from $\sum (t_n + t'_n - \lambda s_n)v_n^* = 0$ that all $t_n + t'_n - \lambda s_n = 0$.

Finally we **wish** the support points x and y to be distinct, and we **wish** the span of the v_n^* to be dense enough to separate x and y for many n, i.e., $v_n^*(x) < 0 < v_n^*(y)$ and thus $t_n + t'_n = 0$ fairly often, while at the same time $s_n \neq 0$ for at least one of those n.

This contradiction would show that $x^* + y^* \notin NA(X, p)$.

Modest subspaces

Definition: operator range, (weak*) modest subspace V, W infinite-dimensional Banach spaces, $T: V \longrightarrow W$ bounded injective. Then T(V) is called an operator range.

- $Z \leq W$ is modest if there is a separable dense operator range Y with $Y \cap Z = \{0\}$.
- If W is a dual space, then Z ≤ W is weak^{*} modest if there is a separable weak^{*} dense operator range Y with Y ∩ Z = {0}.

Note that the choice of V in the definition of a modest subspace is at our discretion since

E, F separable $\implies \exists$ continuous injection $S \colon E \longrightarrow F$ with dense range.

Example

 $c_{00} := \{(s_n) \colon (s_n) \text{ has finite support}\}$ is modest in ℓ_1 .

Indeed, let $A_r(\mathbb{D})$ the real Banach space of those function of the disk algebra which takes real valued on the real axis;

define $T: A_r(\mathbb{D}) \longrightarrow \ell_1$ by $[Tf](n) = 2^{-n}f(2^{-n})$; then T has dense range and every non-null sequence in $T(A_r(\mathbb{D}))$ can only take the value 0 finitely many times.

Main Theorem

Theorem

If $\operatorname{span}(\operatorname{NA}(X))$ is weak^{*} modest, then X has a renorming that fails (G) and, consequently, fails (S). (We call such an equivalent norm a Read norm.)

Recall ansatz: $p(x) = ||x|| + \sum 2^{-n} |v_n^*(x)|$; how to choose the v_n^* ?

Lemma (where the technicalities appears)

Let $Y \leq X^*$ be a separable operator range. Then there is an injective operator $S: \ell_1 \longrightarrow X^*$ such that, for $v_n^* = S(e_n)$, the set $\{v_n^*/||v_n^*||\}$ is dense in S_Y .

With this choice of v_n^* it is possible to fulfill our wishes: the v_n^* are "orthogonal" to NA(X) (wish #1), they are an injective image of a Schauder basis (wish #2) and sufficiently dense (wish #4). As for wish #3, if x = y, then $x \neq -y$ and one should look at $x^* - y^*$!

Thus we can show that for linearly independent $x^*, y^* \in NA(X, p)$ of norm 1, at most one of $x^* \pm y^*$ can be in NA(X, p).

First consequence

Example (we recuperate Read's and Rmoutil's results)

 c_0 admits an equivalent Read norm, that is, a norm failing (G) and hence failing (S).

Indeed, $NA(c_0) = c_{00}$ is modest in ℓ_1 .

Note

The original construction by Read is NOT a particular case of ours:

Indeed, both norms are of the form $p(x) = ||x|| + \sum 2^{-n} |v_n^*(x)|$, but

- in the original Read's construction, the v_n^* 's belong to NA(c_0),
- in our construction, the v_n^* 's are "orthogonal" to NA (c_0) .

More consequences I

Proposition

A separable Banach space containing a copy of c_0 admits a Read norm.

Indeed, renorm X so that $X = c_0 \oplus_{\infty} E$; then $X^* = \ell_1 \oplus_1 E^*$ and $NA(X) \subset NA(c_0) \times E^*$. The latter can be shown to be a weak^{*} modest subspace.

Example

C[0,1] admits an equivalent Read norm.

Norms with additional properties

X separable containing c_0 . Then for each $0 < \varepsilon < 2$ there is a Read norm p_{ε} on X with the following properties:

- p_{ε} is strictly convex and smooth,
- p^{*}_ε is strictly convex,
- p_{ε}^* is (2ε) -rough; i.e., every slice of $B_{(X,p_{\varepsilon})}$ has diameter $\ge 2 \varepsilon$,
- If X^* is separable, then p_{ε} can be found to get p_{ε}^{**} strictly convex.

More consequences II

Theorem

A Banach space which isomorphically embeds into ℓ_∞ and contains a copy of c_0 admits an equivalent Read norm.

Example

 ℓ_∞ admits an equivalent Read norm.

Norms with additional properties

X containing a copy of c_0 and isomorphic to a subspace of $\ell_\infty.$ Then, for each $0<\varepsilon<2$ there is a Read norm p_ε on X so that

- *p*_ε is strictly convex,
- p_{ε}^* is (2ε) -rough; i.e., every slice of $B_{(X,p_{\varepsilon})}$ has diameter $\ge 2 \varepsilon$,
- actually, every convex combination of slices has diameter $\ge 2 \varepsilon$.

Limitation of the construction

 $\ell_{\infty}(\Gamma)$ with Γ uncountable does not admit a Read norm (by a result of Partington)

An n-by-n version of the results

Section 4

An n-by-n version of the results

Problem (I. Singer, 1974), exact formulation

Let $1 < n < \infty$. Does every infinite-dimensional normed linear space (or, in particular, Banach space) contain a proximal subspace of codimension n?

Observations

- If X contains n-codimensional proximinal subspaces, then it contains k-codimensional proximinal subspaces for all $k \leq n$.
- But, is it possible to construct X_n having proximinal subspaces of codimension n but not higher?

Example

Let $1 \leq n < \infty$. There exists X_n satisfying:

- X_n contains *n*-codimensional proximinal subspaces,
- but no (n+1)-codimensional proximinal subspace;
- $NA(X_n)$ contains subspaces of dimension n,
- but no subspace of dimension n + 1.

One possibility:

$$X_{n+1} = X_1 \oplus_2 X_n$$

An infinite version of the results

Example

Exists X_{∞} non-separable satisfying:

$$X_{\infty} = \left[\bigoplus_{n \in \mathbb{N}} X_n\right]_{c_0}$$

 X_n **non-separable** with Read norm

- $NA(X_{\infty})$ contains infinite-dimensional separable subspaces,
- but $NA(X_{\infty})$ contains no non-separable subspaces,
- and every closed subspace contained in $NA(X_{\infty})$ is finite-dimensional;
- X_{∞} contains *n*-codimensional proximinal subspaces for every $n \in \mathbb{N}$,
- but every proximinal factor reflexive subspace is of finite-codimension.

Open problem

Is there exist a Banach space X such that NA(X) contains linear subspaces of every finite dimensions but NA(X) contains no infinite-dimensional linear subspaces?

A brushstroke on norm attaining operators of finite rank

Section 5

5 A brushstroke on norm attaining operators of finite rank

Norm attaining operators

Norm attaining operators

X, Y Banach spaces, $NA(X, Y) := \{T \in \mathcal{L}(X, Y) : ||T|| = \max_{x \in S_X} ||Tx||\}.$

A few results

- Lindenstrauss, 1963: NA(X, Y) is not always dense,
- it is dense when X is reflexive or $c_0 \subset Y \subset \ell_\infty$ or Y polyhedral finite dimensional.
- **Bourgain**, 1977: NA(X, Y) dense if X RNP (and certain reciprocate).
- Gowers, 1990: for $1 , exists <math>X_p$ such that $NA(X_p, \ell_p)$ is not dense.
- Acosta, 1999: ℓ_p above can be substituted by any infinite-dimensional strictly convex space and by ℓ_1 .
- Johnsoh–Wolfe, 1979: for most "classical" Banach spaces as domain, compact operators can be approximated by norm attaining operators.
- M., 2014: there exist compact operators which cannot be approximated by norm attaining operators.

Open problem

Is every finite rank operator aproximable by norm attaining operators?

Norm attaining operators of finite rank: existence I

Open problem

Is every finite rank operator aproximable by norm attaining operators?

But, actually, we do not know whether...

 \ldots given X and Y of dimension greater than 2, there always exists $T\in \mathrm{NA}(X,Y)$ of rank-two.

Observation

If there is $T \in NA(X, \ell_2)$ which is not rank-one, then for every Y with $\dim(Y) \ge 2$, there is $S \in NA(X, Y)$ of rank-two.

A characterization

There are surjective operators in $NA(X, \ell_2^{(2)})$ iff there exist $f \in NA(X)$ with ||f|| = 1and $h \in B_{X^*} \setminus \{0\}$ such that

$$\limsup_{t \to 0} \frac{\|f + th\| - 1}{t^2} < \infty.$$

Norm attaining operators of finite rank: existence II

"Easy" sufficient conditions for existence

X Banach space, NA(X, Y) contains a rank-two operator for all Y's with $\dim(Y) \ge 2$ provided one of the following conditions holds:

- there is a norm-one projection $P \in \mathcal{L}(X)$ with two-dimensional range,
- X contains a two-codimensional proximinal subspace,
- NA(X) contains two-dimensional subspaces,
- X is not smooth.

What happens with smooth spaces with Read norms?

Theorem

If NA(X) contains non-trivial cones, then NA(X, Y) contains rank-two operators for all Y's with $\dim(Y) \ge 2$.

Example

This applies to all known (smooth) spaces with Read norms.

Kadets, López, Martín, Werner | Colloquium, Universidad Complutense de Madrid | October 2019

Norm attaining operators of finite rank: density

Open problem

Is every finite rank operator aproximable by norm attaining operators?

A sufficient condition

If $\mathrm{NA}(X)$ contains a dense linear subspace, then finite rank operators with domain X can be approximated by finite rank norm attaining operators.

■ If, besides, *X*^{*} has the AP, then compact operators with domain *X* can be approximated by finite rank norm attaining operators.

This applies to...

- $X = L_1(\mu)$ (density known from Diestel–Uhl 1976),
- stronger version applies to $X = C_0(L)$ (density known from Johnson-Wolfe 1979),
- if $X^* \equiv \ell_1$ (density known from M. 2016),
- subspaces of c_0 with monotone Schauder basis (density known from M. 2016),
- finite-codimensional proximinal subspaces of c_0 or $\mathcal{K}(\ell_2)$,
- *c*₀-sums of reflexive spaces.

Bibliography

Section 6

6 Bibliography

Kadets, López, Martín, Werner | Colloquium, Universidad Complutense de Madrid | October 2019

Bibliography

V. Kadets, G. López, and M. Martín Some geometric properties of Read's space *J. Funct. Anal.* (2018)

V. Kadets, G. López, M. Martín, and D. Werner Equivalent norms with an extremely nonlineable set of norm attaining functionals *J. Inst. Math. Jussieu* (to appear). Doi: 10.1017/S1474748018000087

V. Kadets, G. López, M. Martín, and D. Werner

Norm attaining operators of finite rank The Matematical Legacy of Victor Lomonosov, De Gruyter (to appear), Arxiv: 1905.08272

M. Martín

Vector space structure in the set of norm attaining functionals and proximinality of subspaces of finite-codimension

J. Funct. Anal. (to appear). Doi: 10.1016/j.jfa.2019.108353

C. Read

Banach spaces with no proximinal subspaces of codimension 2 *Israel J. Math.* (2018)

M. Rmoutil

Norm-attaining functionals need not contain 2-dimensional subspaces

J. Funct. Anal. (2017)