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Basic notation

X, Y real Banach spaces
BX closed unit ball

SX unit sphere

X∗ topological dual

L(X,Y ) bounded linear operators from X to Y

L(X) bounded linear operators from X to X

K(X) compact linear operators from X to X
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Norm attaining functionals

Norm attaining functionals
x∗ ∈ X∗ attains its norm when

∃ x ∈ X, ‖x‖ = 1 : x∗(x) = ‖x∗‖

F NA(X) = {x∗ ∈ X∗ : x∗ attains its norm}

First results
dim(X) <∞ =⇒ NA(X) = X∗ (Heine-Borel),
X reflexive =⇒ NA(X) = X∗ (Hahn-Banach),
X non-reflexive =⇒ NA(X) 6= X∗ (James),
NA(X) is always norm dense in X∗ (Bishop-Phelps).

First examples
NA(c0) = c00 6 `1,
NA(`1) =

{
x ∈ `∞ : ‖x‖∞ = max

n
{|x(n)|}

}
.
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Lineability of NA(X)

Examples
NA(c0) = c00 6 `1,
NA(`1) =

{
x ∈ `∞ : ‖x‖∞ = maxn{|x(n)|}

}
.

Note that NA(c0) is a linear space, but NA(`1) is not.
However, NA(`1) contains the infinite-dimensional space c0.

Lineability
Recall that a subset S of a vector space V is called lineable if S ∪ {0} contains an
infinite-dimensional subspace.

More examples
NA(L1(µ)) is a (dense) linear subspace,
NA(C(K)) is lineable.
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Lineability of NA(X) II

Main question
Lineability of NA(X)?

More concretely,

Problems (G. Godefroy, 2001)
(G∞) Does NA(X) always contain an infinite-dimensional linear subspace?

(G) Does NA(X) always contain a linear subspace of dimension 2?

The case of dimension 1 is taken care of by the Hahn-Banach theorem!

Note that (G∞) holds in all classical spaces.
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Why lineability of NA(X) is interesting?

Theorem (Petunin–Plichko, 1974)
X separable Banach space, W 6 X∗ (norm) closed, separating, W ⊂ NA(X)
=⇒ W is an isometric predual of X.

Two remarks
“Norming for free”: X separable, W 6 X∗ closed, W ⊂ NA(X), separating
=⇒ W is 1-norming.
Separability is needed: for X = `1([0, 1]), there is a closed, separating subspace of
X∗ contained in NA(X) which is not even norming.

Examples of application
M compact metric space, lip0(M) is an isometric predual of F(M) as soon as it
separates it.
X separable reflexive space with the (compact) approximation property.
Then, K(X)∗∗ = L(X) and X has the metric (compact) approximation property.
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Proximinality

Proximinal subspace
Y 6 X is proximinal (in X) iff

∀x ∈ X ∃y0 ∈ Y : ‖x− y0‖ = inf{‖x− y‖ : y ∈ Y } = dist(x, Y )

• It is a notion related to best approximation
by least square approximation (Gauss, Legendre, 1800’s),
of functions by polynomials of a fix degree (Chebyshev, 1853). . .

• Y proximinal iff q(BX) = BX/Y (q : X −→ X/Y quotient map)

• If Y is reflexive, then it is proximinal in any superspace.

• x∗ ∈ NA(X) ⇐⇒ kerx∗ proximinal.

Problem (I. Singer, 1974)
(S) Is there always a proximinal subspace of codimension 2?
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Proximinality and norm attaining functionals

The two main problems
(S) Does there always exist a proximinal subspace of codimension 2?
(G) Does NA(X) always contain a linear subspace of dimension 2?

Important observation (Garkavi, 1967)
Y 6 X proximinal, X/Y reflexive =⇒ Y ⊥ ⊂ NA(X).

F Y 6 X such that X/Y reflexive is called factor reflexive.

Therefore. . .
If (S) has positive answer, then so does (G).

The converse to Garkavi’s result is not true (Phelps, 1963)
There exist X = C(K) and finite codimensional Y such that Y ⊥ ⊂ NA(X) but Y is
not proximinal.
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Read’s and Rmoutil’s results

Section 2

2 Read’s and Rmoutil’s results
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Read’s and Rmoutil’s theorems

Theorem (Read, 2013)
There is a counterexample XR to (S).

As (S) ⇒ (G), XR is a natural candidate for a counterexample to (G).

Actually,

Theorem (Rmoutil, 2015)
• dimXR/Y <∞, Y ⊥ ⊂ NA(XR) =⇒ XR/Y strictly convex.
• (Known result) X/Y strictly convex and Y ⊥ ⊂ NA(X) =⇒ Y proximinal.
• Consequently, XR is also a counterexample to (G).

A simplification of Rmoutil’s proof by Kadets/López/M.:

Proposition
X∗∗R is strictly convex; hence all quotients of XR are strictly convex.
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Read’s construction

XR is a renorming of c0:

Let Ω = {(sn) : (sn) has finite support, all sn ∈ Q} ⊂ `1.
Enumerate Ω = {u1, u2, . . . } so that every element is repeated infinitely often.
Take a sequence of integers (an) such that

ak > max suppuk, ak > ‖uk‖`1 .

Renorm c0 by
p(x) = ‖x‖∞ +

∑
k

2−a2
k |〈uk − eak , x〉|.

Then Read shows that (c0, p) fails (S), and Rmoutil shows, relying on Read’s work,
that (c0, p) fails (G).

The proof of Read’s theorem is not trivial at all!!!!!
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A new, direct approach to (G)

We four are more used to norm attainment than to proximinality,
so we changed the point of view:

We want to show directly that certain Banach spaces have a renorming failing (G)
and hence have a renorming failing (S).

Let R : X −→ `1 be continuous; we renorm X by

p(x) = ‖x‖+ ‖Rx‖`1 .

More precisely, let [Rx](n) = 2−nv∗n(x), with (v∗n) ⊂ BX∗ , so

p(x) = ‖x‖+
∞∑

n=1

v∗n(x)
2n

.

(Note that Read’s renorming is of this type.)

Aim
Under suitable assumptions, the v∗n can be chosen so that (X, p) fails (G)
(and hence fails (S)).
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A tentative calculation

p(x) = ‖x‖+
∑

2−n|v∗n(x)|. Then B(X∗,p∗) = BX∗ +
∑

2−n[−v∗n, v∗n] (Minkowski sum)

Let x∗ ∈ NA1(X, p) be norm attaining at x; then

x∗ = x∗0 +
∑

2−ntnv
∗
n

for some x∗0 ∈ NA1(X) and tn = sign v∗n(x) whenever v∗n(x) is nonzero.
Write the same decomposition for y∗ ∈ NA1(X, p), norm attaining at y:

y∗ = y∗0 +
∑

2−nt′nv
∗
n.

Let’s try to prove that x∗ + y∗ /∈ NA(X, p): Otherwise we would have a similar
decomposition for z∗ = (x∗ + y∗)/‖x∗ + y∗‖:

z∗ = z∗0 +
∑

2−nsnv
∗
n.

Sort the items, setting λ = ‖x∗ + y∗‖:

0 = x∗ + y∗ − λz∗ = [x∗0 + y∗0 − λz∗0 ] +
[∑

(tn + t′n − λsn)v∗n
]
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Wish list

0 = [x∗0 + y∗0 − λz∗0 ] +
[∑

(tn + t′n − λsn)v∗n
]

We now wish to select the v∗n to be sort of “orthogonal” to span(NA(X)) (which
contains the first bracket) so that both brackets vanish.

In addition we wish the v∗n to have some Schauder basis character so that we can deduce
from

∑
(tn + t′n − λsn)v∗n = 0 that all tn + t′n − λsn = 0.

Finally we wish the support points x and y to be distinct, and we wish the span of the
v∗n to be dense enough to separate x and y for many n, i.e., v∗n(x) < 0 < v∗n(y) and thus
tn + t′n = 0 fairly often, while at the same time sn 6= 0 for at least one of those n.

This contradiction would show that x∗ + y∗ /∈ NA(X, p).
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Modest subspaces

Definition: operator range, (weak∗) modest subspace
V,W infinite-dimensional Banach spaces, T : V −→W bounded injective.
Then T (V ) is called an operator range.
Z 6W is modest if there is a separable dense operator range Y with Y ∩Z = {0}.
If W is a dual space, then Z 6W is weak∗ modest if there is a separable weak∗
dense operator range Y with Y ∩ Z = {0}.

Note that the choice of V in the definition of a modest subspace is at our discretion since

E,F separable =⇒ ∃ continuous injection S : E −→ F with dense range.

Example
c00 := {(sn) : (sn) has finite support} is modest in `1.

Indeed, let Ar(D) the real Banach space of those function of the disk algebra which takes
real valued on the real axis;
define T : Ar(D) −→ `1 by [Tf ](n) = 2−nf(2−n); then T has dense range and
every non-null sequence in T (Ar(D)) can only take the value 0 finitely many times.

Kadets, López, Mart́ın, Werner | Colloquium, Universidad Complutense de Madrid | October 2019 18 / 32



Vector space structure in NA(X) and proximinality | Our construction | Main theorem

Main Theorem

Theorem
If span(NA(X)) is weak∗ modest, then X has a renorming that fails (G) and,
consequently, fails (S). (We call such an equivalent norm a Read norm.)

Recall ansatz: p(x) = ‖x‖+
∑

2−n|v∗n(x)|; how to choose the v∗n?

Lemma (where the technicalities appears)
Let Y 6 X∗ be a separable operator range. Then there is an injective operator
S : `1 −→ X∗ such that, for v∗n = S(en), the set {v∗n/‖v∗n‖} is dense in SY .

With this choice of v∗n it is possible to fulfill our wishes: the v∗n are “orthogonal” to
NA(X) (wish #1), they are an injective image of a Schauder basis (wish #2) and
sufficiently dense (wish #4). As for wish #3, if x = y, then x 6= −y and one should look
at x∗ − y∗!

Thus we can show that for linearly independent x∗, y∗ ∈ NA(X, p) of norm 1,
at most one of x∗ ± y∗ can be in NA(X, p).
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First consequence

Example (we recuperate Read’s and Rmoutil’s results)
c0 admits an equivalent Read norm, that is, a norm failing (G) and hence failing (S).

Indeed, NA(c0) = c00 is modest in `1.

Note
The original construction by Read is NOT a particular case of ours:

Indeed, both norms are of the form p(x) = ‖x‖+
∑

2−n|v∗n(x)|, but
in the original Read’s construction, the v∗n’s belong to NA(c0),
in our construction, the v∗n’s are “orthogonal” to NA(c0).
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More consequences I

Proposition
A separable Banach space containing a copy of c0 admits a Read norm.

Indeed, renorm X so that X = c0 ⊕∞ E; then X∗ = `1 ⊕1 E
∗ and

NA(X) ⊂ NA(c0)× E∗. The latter can be shown to be a weak∗ modest subspace.

Example
C[0, 1] admits an equivalent Read norm.

Norms with additional properties
X separable containing c0. Then for each 0 < ε < 2 there is a Read norm pε on X
with the following properties:
• pε is strictly convex and smooth,
• p∗ε is strictly convex,
• p∗ε is (2− ε)-rough; i.e., every slice of B(X,pε) has diameter > 2− ε,
• If X∗ is separable, then pε can be found to get p∗∗ε strictly convex.

Kadets, López, Mart́ın, Werner | Colloquium, Universidad Complutense de Madrid | October 2019 21 / 32



Vector space structure in NA(X) and proximinality | Our construction | Consequences

More consequences II

Theorem
A Banach space which isomorphically embeds into `∞ and contains a copy of c0 admits
an equivalent Read norm.

Example
`∞ admits an equivalent Read norm.

Norms with additional properties
X containing a copy of c0 and isomorphic to a subspace of `∞. Then, for each
0 < ε < 2 there is a Read norm pε on X so that
• pε is strictly convex,
• p∗ε is (2− ε)-rough; i.e., every slice of B(X,pε) has diameter > 2− ε,
• actually, every convex combination of slices has diameter > 2− ε.

Limitation of the construction
`∞(Γ) with Γ uncountable does not admit a Read norm (by a result of Partington)
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An n-by-n version of the results

Section 4

4 An n-by-n version of the results

Kadets, López, Mart́ın, Werner | Colloquium, Universidad Complutense de Madrid | October 2019 23 / 32



Vector space structure in NA(X) and proximinality | An n-by-n version of the results

An n-by-n version of the results

Problem (I. Singer, 1974), exact formulation
Let 1 < n <∞. Does every infinite-dimensional normed linear space
(or, in particular, Banach space) contain a proximal subspace of codimension n?

Observations
If X contains n-codimensional proximinal subspaces, then it contains
k-codimensional proximinal subspaces for all k 6 n.
But, is it possible to construct Xn having proximinal subspaces of codimension n
but not higher?

Example
Let 1 6 n <∞. There exists Xn satisfying:

Xn contains n-codimensional proximinal subspaces,
but no (n+ 1)-codimensional proximinal subspace;
NA(Xn) contains subspaces of dimension n,
but no subspace of dimension n+ 1.

One possibility:
Xn+1 = X1 ⊕2 Xn
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An infinite version of the results

Example
Exists X∞ non-separable satisfying:

NA(X∞) contains infinite-dimensional separable subspaces,
but NA(X∞) contains no non-separable subspaces,
and every closed subspace contained in NA(X∞) is finite-dimensional;
X∞ contains n-codimensional proximinal subspaces for every n ∈ N,
but every proximinal factor reflexive subspace is of finite-codimension.

X∞ =
[⊕

n∈NXn

]
c0

Xn non-separable with Read norm

Open problem
Is there exist a Banach space X such that NA(X) contains linear subspaces
of every finite dimensions but NA(X) contains no infinite-dimensional linear subspaces?
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A brushstroke on norm attaining operators of finite
rank

Section 5

5 A brushstroke on norm attaining operators of finite rank
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Norm attaining operators

Norm attaining operators
X, Y Banach spaces, NA(X,Y ) := {T ∈ L(X,Y ) : ‖T‖ = maxx∈SX ‖Tx‖}.

A few results
Lindenstrauss, 1963: NA(X,Y ) is not always dense,
it is dense when X is reflexive or c0 ⊂ Y ⊂ `∞ or Y polyhedral finite dimensional.
Bourgain, 1977: NA(X,Y ) dense if X RNP (and certain reciprocate).
Gowers, 1990: for 1 < p <∞, exists Xp such that NA(Xp, `p) is not dense.
Acosta, 1999: `p above can be substituted by any infinite-dimensional strictly
convex space and by `1.
Johnsoh–Wolfe, 1979: for most “classical” Banach spaces as domain, compact
operators can be approximated by norm attaining operators.
M., 2014: there exist compact operators which cannot be approximated by norm
attaining operators.

Open problem
Is every finite rank operator aproximable by norm attaining operators?
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Norm attaining operators of finite rank: existence I

Open problem
Is every finite rank operator aproximable by norm attaining operators?

But, actually, we do not know whether. . .
. . . given X and Y of dimension greater than 2, there always exists
T ∈ NA(X,Y ) of rank-two.

Observation
If there is T ∈ NA(X, `2) which is not rank-one, then for every Y with dim(Y ) > 2,
there is S ∈ NA(X,Y ) of rank-two.

A characterization
There are surjective operators in NA(X, `(2)

2 ) iff there exist f ∈ NA(X) with ‖f‖ = 1
and h ∈ BX∗ \ {0} such that

lim sup
t→0

‖f + th‖ − 1
t2

<∞.
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Norm attaining operators of finite rank: existence II

“Easy” sufficient conditions for existence
X Banach space, NA(X,Y ) contains a rank-two operator for all Y ’s with dim(Y ) > 2
provided one of the following conditions holds:

there is a norm-one projection P ∈ L(X) with two-dimensional range,
X contains a two-codimensional proximinal subspace,
NA(X) contains two-dimensional subspaces,
X is not smooth.

What happens with smooth spaces with Read norms?

Theorem
If NA(X) contains non-trivial cones, then NA(X,Y ) contains rank-two operators for
all Y ’s with dim(Y ) > 2.

Example
This applies to all known (smooth) spaces with Read norms.
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Norm attaining operators of finite rank: density

Open problem
Is every finite rank operator aproximable by norm attaining operators?

A sufficient condition
If NA(X) contains a dense linear subspace, then finite rank operators with domain X
can be approximated by finite rank norm attaining operators.

If, besides, X∗ has the AP, then compact operators with domain X can be
approximated by finite rank norm attaining operators.

This applies to. . .
X = L1(µ) (density known from Diestel–Uhl 1976),
stronger version applies to X = C0(L) (density known from Johnson-Wolfe 1979),
if X∗ ≡ `1 (density known from M. 2016),
subspaces of c0 with monotone Schauder basis (density known from M. 2016),
finite-codimensional proximinal subspaces of c0 or K(`2),
c0-sums of reflexive spaces.

Kadets, López, Mart́ın, Werner | Colloquium, Universidad Complutense de Madrid | October 2019 30 / 32



Vector space structure in NA(X) and proximinality | Bibliography

Bibliography

Section 6

6 Bibliography
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Kadets, López, Mart́ın, Werner | Colloquium, Universidad Complutense de Madrid | October 2019 32 / 32

https://doi.org/10.1017/S1474748018000087
https://arxiv.org/abs/1905.08272
https://doi.org/10.1016/j.jfa.2019.108353

	Preliminaries
	Basic notation
	Norm attaining functionals
	Proximinality

	Read's and Rmoutil's results
	Our construction
	A direct approach to (G)
	Modest subspaces
	Main theorem
	Consequences

	An n-by-n version of the results
	A brushstroke on norm attaining operators of finite rank
	Bibliography

