Vector space structure in the set of norm attaining functionals

(V. Kadets, G. López, M. Martín, and D. Werner)

Workshop on Infinite Dimensional Analysis to celebrate the 60th birthday of Domingo García

Bibliography

V. Kadets, G. López, and M. Martín

Some geometric properties of Read's space
J. Funct. Anal. (2018)
V. Kadets, G. López, M. Martín, and D. Werner

Equivalent norms with an extremely nonlineable set of norm attaining functionals J. Inst. Math. Jussieu (to appear)

C. Read

Banach spaces with no proximinal subspaces of codimension 2
Israel J. Math. (to appear)
M. Rmoutil

Norm-attaining functionals need not contain 2-dimensional subspaces
J. Funct. Anal. (2017)

Roadmap of the talk

1 Preliminaries

- Lineability of NA (X)
- Proximinality

2 Read's and Rmoutil's results
3 Our construction

- A direct approach to (G)

■ Modest subspaces

- Main theorem
- Consequences

4 Open problems and limitations of the construction

Norm attaining functionals

Norm attaining functionals

$x^{*} \in X^{*}$ attains its norm when

$$
\exists x \in X,\|x\|=1: x^{*}(x)=\left\|x^{*}\right\|
$$

$\star \mathrm{NA}(X)=\left\{x^{*} \in X^{*}: x^{*}\right.$ attains its norm $\}$

First results
$\square \operatorname{dim}(X)<\infty \Longrightarrow \mathrm{NA}(X)=X^{*}$ (Heine-Borel),
■ X reflexive $\Longrightarrow \mathrm{NA}(X)=X^{*}$ (Hahn-Banach),
■ X non-reflexive $\Longrightarrow \mathrm{NA}(X) \neq X^{*}$ (James),
■ $\mathrm{NA}(X)$ is always norm dense in X^{*} (Bishop-Phelps).

Examples

■ NA $\left(c_{0}\right)=c_{00} \leqslant \ell_{1}$,
■ $\mathrm{NA}\left(\ell_{1}\right)=\left\{x \in \ell_{\infty}:\|x\|_{\infty}=\max _{n}\{|x(n)|\}\right\}$.

Lineability

> Examples $$
\begin{array}{l}\mathrm{NA}\left(c_{0}\right)=c_{00} \leqslant \ell_{1}, \\ ■ \mathrm{NA}\left(\ell_{1}\right)=\left\{x \in \ell_{\infty}:\|x\|_{\infty}=\max _{n}\{|x(n)|\}\right\}\end{array}
$$

- Note that $\mathrm{NA}\left(c_{0}\right)$ is a linear space, but $\mathrm{NA}\left(\ell_{1}\right)$ is not.

■ However, $\mathrm{NA}\left(\ell_{1}\right)$ contains the infinite-dimensional space c_{0}.

Lineability

Recall that a subset S of a vector space V is called lineable if $S \cup\{0\}$ contains an infinite-dimensional subspace.

Lineability of NA (X)

Main question

Lineability of $\mathrm{NA}(X)$?
More concretely,
Problems (G. Godefroy, 2001)
$\left(\mathrm{G}_{\infty}\right)$ Does $\mathrm{NA}(X)$ always contain an infinite-dimensional linear subspace?
(G) Does $\mathrm{NA}(X)$ always contain a linear subspace of dimension 2?

The case of dimension 1 is taken care of by the Hahn-Banach theorem!

Note that $\left(\mathrm{G}_{\infty}\right)$ holds in all classical spaces.

Proximinality

Proximinal subspace

$Y \leqslant X$ is proximinal iff

$$
\forall x \in X \exists y_{0} \in Y: \quad\left\|x-y_{0}\right\|=\inf \{\|x-y\|: y \in Y\}=\operatorname{dist}(x, Y)
$$

- Y proximinal iff $Q\left(B_{X}\right)=B_{X / Y} \quad(Q: X \longrightarrow X / Y$ quotient map $)$
- $x^{*} \in \mathrm{NA}(X) \Longleftrightarrow \operatorname{ker} x^{*}$ proximinal.

Problem (I. Singer, 1974)
(S) Is there always a proximinal subspace of codimension 2?

The two main problems

(S) Does there always exist a proximinal subspace of codimension 2?
(G) Does NA (X) always contain a linear subspace of dimension 2?

Important result (Garkavi, 1967)

$$
Y \leqslant X \text { proximinal of finite codimension } \Longrightarrow Y^{\perp} \subset \mathrm{NA}(X) .
$$

Therefore. . .
If (S) is true, then (G) is true.

The converse result is not true
There exist X and finite codimensional Y such that $Y^{\perp} \subset \mathrm{NA}(X)$ but Y is not proximinal (Phelps, 1963)

Read's and Rmoutil's theorems

Theorem (Read, 2013)
There is a counterexample X_{R} to (S).
As $(\mathrm{S}) \Rightarrow(\mathrm{G}), X_{R}$ is a natural candidate for a counterexample to (G).
Actually,

Theorem (Rmoutil, 2015)

- X / Y strictly convex and $Y^{\perp} \subset \mathrm{NA}(X) \Longrightarrow Y$ proximinal.
- $\operatorname{dim} X_{R} / Y=2 \Longrightarrow X_{R} / Y$ strictly convex.
- Consequently, X_{R} is also a counterexample to (G).

A simplification of Rmoutil's proof by Kadets/López/Martín:

Proposition

$X_{R}^{* *}$ is strictly convex; hence all quotients of X_{R} are strictly convex.

Read's construction

X_{R} is a renorming of c_{0} :

Let $\Omega=\left\{\left(s_{n}\right):\left(s_{n}\right)\right.$ has finite support, all $\left.s_{n} \in \mathbb{Q}\right\} \subset \ell_{1}$.
Enumerate $\Omega=\left\{u_{1}, u_{2}, \ldots\right\}$ so that every element is repeated infinitely often.
Take a sequence of integers $\left(a_{n}\right)$ such that

$$
a_{k}>\max \operatorname{supp} u_{k}, \quad a_{k} \geqslant\left\|u_{k}\right\|_{\ell_{1}} .
$$

Renorm c_{0} by

$$
p(x)=\|x\|_{\infty}+\sum_{k} 2^{-a_{k}^{2}}\left|\left\langle u_{k}-e_{a_{k}}, x\right\rangle\right| .
$$

Then Read shows that $\left(c_{0}, p\right)$ fails (S), and Rmoutil shows, relying on Read's work, that $\left(c_{0}, p\right)$ fails (G).

The proof of Read's theorem is not trivial at all!!!!!

A new, direct approach to (G)

We four are more used to norm-attainment than to proximinality, so we changed the point of view:

We want to show directly that certain Banach spaces have a renorming failing (G) and hence have a renorming failing (S).

Let $R: X \longrightarrow \ell_{1}$ be continuous; we renorm X by

$$
p(x)=\|x\|+\|R x\|_{\ell_{1}} .
$$

More precisely, let $[R x](n)=2^{-n} v_{n}^{*}(x), \quad\left(v_{n}^{*}\right) \subset B_{X^{*}}$, so

$$
p(x)=\|x\|+\sum_{n=1}^{\infty} \frac{v_{n}^{*}(x)}{2^{n}} .
$$

(Note that Read's renorming is of this type.)

Aim

Under suitable assumptions, the v_{n}^{*} can be chosen so that (X, p) fails (G) (and hence fails (S)).

A tentative calculation

$p(x)=\|x\|+\sum 2^{-n}\left|v_{n}^{*}(x)\right|$. Then $B_{\left(X^{*}, p^{*}\right)}=B_{X}+\sum 2^{-n}\left[-v_{n}^{*}, v_{n}^{*}\right]$ (Minkowski sum).
Let $x^{*} \in \mathrm{NA}_{1}(X, p)$ be norm attaining at x; then

$$
x^{*}=x_{0}^{*}+\sum 2^{-n} t_{n} v_{n}^{*}
$$

for some $x_{0}^{*} \in \mathrm{NA}_{1}(X)$ and $t_{n}=\operatorname{sign} v_{n}^{*}(x)$ whenever $v_{n}^{*}(x)$ is nonzero.
Write the same decomposition for $y^{*} \in \mathrm{NA}_{1}(X, p)$, norm attaining at y :

$$
y^{*}=y_{0}^{*}+\sum 2^{-n} t_{n}^{\prime} v_{n}^{*}
$$

Let's try to prove that $x^{*}+y^{*} \notin \mathrm{NA}(X, p)$: Otherwise we would have a similar decomposition for $z^{*}=\left(x^{*}+y^{*}\right) /\left\|x^{*}+y^{*}\right\|$:

$$
z^{*}=z_{0}^{*}+\sum 2^{-n} s_{n} v_{n}^{*}
$$

Sort the items, setting $\lambda=\left\|x^{*}+y^{*}\right\|$:

$$
0=x^{*}+y^{*}-\lambda z^{*}=\left[x_{0}^{*}+y_{0}^{*}-\lambda z_{0}^{*}\right]+\left[\sum\left(t_{n}+t_{n}^{\prime}-\lambda s_{n}\right) v_{n}^{*}\right]
$$

Wish list

$$
0=\left[x_{0}^{*}+y_{0}^{*}-\lambda z_{0}^{*}\right]+\left[\sum\left(t_{n}+t_{n}^{\prime}-\lambda s_{n}\right) v_{n}^{*}\right]
$$

We now wish to select the v_{n}^{*} to be sort of "orthogonal" to span $(\mathrm{NA}(X)$) (which contains the first bracket) so that both brackets vanish.

In addition we wish the v_{n}^{*} to have some Schauder basis character so that we can deduce from $\sum\left(t_{n}+t_{n}^{\prime}-\lambda s_{n}\right) v_{n}^{*}=0$ that all $t_{n}+t_{n}^{\prime}-\lambda s_{n}=0$.

Finally we wish the support points x and y to be distinct, and we wish the span of the v_{n}^{*} to be dense enough to separate x and y for many n, i.e., $v_{n}^{*}(x)<0<v_{n}^{*}(y)$ and thus $t_{n}+t_{n}^{\prime}=0$ fairly often, while at the same time $s_{n} \neq 0$ for at least one of those n.

This contradiction would show that $x^{*}+y^{*} \notin \mathrm{NA}(X, p)$.

Modest subspaces

Definition: operator range, (weak*) modest subspace

- V, W Banach spaces, $T: V \longrightarrow W$ injective.

Then $T(V)$ is called an operator range.

- $Z \leqslant W$ is modest if there is a separable dense operator range Y with $Y \cap Z=\{0\}$.

■ If W is a dual space, then $Z \leqslant W$ is weak* modest if there is a separable weak* dense operator range Y with $Y \cap Z=\{0\}$.

Note that the choice of V in the definition of a modest subspace is at our discretion since
E, F separable $\Longrightarrow \exists$ continuous injection $S: E \longrightarrow F$ with dense range.
Example

$$
\left\{\left(s_{n}\right):\left(s_{n}\right) \text { has finite support }\right\} \text { is modest in } \ell_{1} .
$$

Indeed, let $A_{r}(\mathbb{D})$ the real Banach space of those function of the disk algebra which takes real valued on the real axis;
define $T: A_{r}(\mathbb{D}) \longrightarrow \ell_{1}$ by $[T f](n)=2^{-n} f\left(2^{-n}\right)$; then T has dense range and every non-null sequence in $T\left(A_{r}(\mathbb{D})\right)$ can only take the value 0 finitely many times.

Main Theorem

Theorem

If $\operatorname{span}(\mathrm{NA}(X))$ is weak* modest, then X has a renorming that fails (G) and, consequently, fails (S). (We call such an equivalent norm a Read norm.)

Recall ansatz: $p(x)=\|x\|+\sum 2^{-n}\left|v_{n}^{*}(x)\right|$; how to choose the v_{n}^{*} ?

Lemma

Let $Y \leqslant X^{*}$ be a separable operator range. Then there is an injective operator $S: \ell_{1} \longrightarrow X^{*}$ such that, for $v_{n}^{*}=S\left(e_{n}\right)$, the set $\left\{v_{n}^{*} /\left\|v_{n}^{*}\right\|\right\}$ is dense in S_{Y}.

With this choice of v_{n}^{*} it is possible to fulfill our wishes: the v_{n}^{*} are "orthogonal" to $\mathrm{NA}(X)$ (wish $\# 1$), they are an injective image of a Schauder basis (wish \#2) and sufficiently dense (wish \#4). As for wish $\# 3$, if $x=y$, then $x \neq-y$ and one should look at $x^{*}-y^{*}$!

Thus we can show that for linearly independent $x^{*}, y^{*} \in \mathrm{NA}(X, p)$ of norm 1 , at most one of $x^{*} \pm y^{*}$ can be in $\mathrm{NA}(X, p)$.

First consequence

Example (we recuperate Read's and Rmoutil's results)
c_{0} admits a Read norm, that is, a norm failing (G) and hence failing (S).
Indeed, $\mathrm{NA}\left(c_{0}\right)=c_{00}$ is modest in ℓ_{1}.

Note

The original construction by Read is NOT a particular case of ours:

Indeed, both norms are of the form $p(x)=\|x\|+\sum 2^{-n}\left|v_{n}^{*}(x)\right|$, but
■ in the original Read's construction, the v_{n}^{*} 's belong to NA $\left(c_{0}\right)$,
■ in our construction, the v_{n}^{*} 's are "orthogonal" to NA $\left(c_{0}\right)$.

Proposition

A separable Banach space containing a copy of c_{0} admits a Read norm.

Indeed, renorm X so that $X=c_{0} \oplus_{\infty} E$; then $X^{*}=\ell_{1} \oplus_{1} E^{*}$ and $\mathrm{NA}(X) \subset \mathrm{NA}\left(c_{0}\right) \oplus_{1} E^{*}$. The latter can be shown to be contained in a weak* modest subspace.

Example

$$
C[0,1] \text { admits an equivalent Read norm. }
$$

Norms with additional properties
X separable containing c_{0}. Then for each $0<\varepsilon<2$ there is a Read norm p_{ε} on X with the following properties:

- p_{ε} is strictly convex and smooth,
- p_{ε}^{*} is strictly convex,
- p_{ε}^{*} is $(2-\varepsilon)$-rough; i.e., every slice of $B_{\left(X, p_{\varepsilon}\right)}$ has diameter $\geqslant 2-\varepsilon$,
- If moreover X^{*} is separable, then $p_{\varepsilon}^{* *}$ is strictly convex.

Theorem

A Banach space containing a copy of c_{0} which has a countable system of norming functionals admits a Read norm.
$\left\{x_{n}^{*}\right\}$ is a norming system if $x \longmapsto \sup _{n}\left|x_{n}^{*}(x)\right|$ is an equivalent norm. Such a space is isomorphic to a closed subspace of ℓ_{∞} and vice versa.

Example

$$
\ell_{\infty} \text { admits an equivalent Read norm. }
$$

Norms with additional properties
X containing c_{0} which a countable system of norming functionals. Then for each $0<\varepsilon<2$ there is a Read norm p_{ε} on X so that

- p_{ε} is strictly convex,
- p_{ε}^{*} is $(2-\varepsilon)$-rough; i.e., every slice of $B_{\left(X, p_{\varepsilon}\right)}$ has diameter $\geqslant 2-\varepsilon$,
- actually, every convex combination of slices (hence every relatively weakly open subset) of $B_{\left(X, p_{\varepsilon}\right)}$ has diameter $\geqslant 2-\varepsilon$.

Open problems

Open problem

Does every separable non-reflexive Banach space admit an equivalent Read norm ?

- $\ell_{\infty}(\Gamma)$ with Γ uncontable does not admit a Read norm

Some remarks

- Our construction needs span(NA (X)) to be "small" (weak-star modest).
- This is not always possible: if X RNP, then $\operatorname{span}(\mathrm{NA}(X))=X^{*}$ (Bourgain).
- Actually, if $\mathrm{NA}(X)$ is residual, then $\operatorname{span}(\mathrm{NA}(X))=X^{*}$.

```
An stronger result
X separable, span(NA(X)) second category \Longrightarrow span(NA(X)) = X*
```


Two concrete problems

- Does ℓ_{1} admit a Read norm? (observe that span(NA $\left.(X)\right)=X^{*}$ for every $X \simeq \ell_{1}$)
- Does $L_{1}[0,1]$ admit a norm such that $\operatorname{span}(\mathrm{NA}(X))$ is weak-star modest? (observe that $\mathrm{NA}\left(L_{1}[0,1]\right)$ is first category but $\left.\operatorname{span}\left(\mathrm{NA}\left(L_{1}[0,1]\right)\right)=L_{1}[0,1]^{*}\right)$

