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V. Kadets, G. López, and M. Mart́ın
Some geometric properties of Read’s space
J. Funct. Anal. (2018)
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Vector space structure in NA(X) | Preliminaries

Norm attaining functionals

Norm attaining functionals
x∗ ∈ X∗ attains its norm when

∃ x ∈ X, ‖x‖ = 1 : x∗(x) = ‖x∗‖

F NA(X) = {x∗ ∈ X∗ : x∗ attains its norm}

First results
dim(X) <∞ =⇒ NA(X) = X∗ (Heine-Borel),
X reflexive =⇒ NA(X) = X∗ (Hahn-Banach),
X non-reflexive =⇒ NA(X) 6= X∗ (James),
NA(X) is always norm dense in X∗ (Bishop-Phelps).

Examples
NA(c0) = c00 6 `1,
NA(`1) =

{
x ∈ `∞ : ‖x‖∞ = max

n
{|x(n)|}

}
.
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Vector space structure in NA(X) | Preliminaries

Lineability

Examples
NA(c0) = c00 6 `1,
NA(`1) =

{
x ∈ `∞ : ‖x‖∞ = maxn{|x(n)|}

}
.

Note that NA(c0) is a linear space, but NA(`1) is not.
However, NA(`1) contains the infinite-dimensional space c0.

Lineability
Recall that a subset S of a vector space V is called lineable if S ∪ {0} contains an
infinite-dimensional subspace.
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Vector space structure in NA(X) | Preliminaries | Lineability of NA(X)

Lineability of NA(X)

Main question
Lineability of NA(X)?

More concretely,

Problems (G. Godefroy, 2001)
(G∞) Does NA(X) always contain an infinite-dimensional linear subspace?

(G) Does NA(X) always contain a linear subspace of dimension 2?

The case of dimension 1 is taken care of by the Hahn-Banach theorem!

Note that (G∞) holds in all classical spaces.
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Vector space structure in NA(X) | Preliminaries | Proximinality

Proximinality

Proximinal subspace
Y 6 X is proximinal iff

∀x ∈ X ∃y0 ∈ Y : ‖x− y0‖ = inf{‖x− y‖ : y ∈ Y } = dist(x, Y )

• Y proximinal iff Q(BX) = BX/Y (Q : X −→ X/Y quotient map)

• x∗ ∈ NA(X) ⇐⇒ kerx∗ proximinal.

Problem (I. Singer, 1974)
(S) Is there always a proximinal subspace of codimension 2?

Miguel Mart́ın | University of Granada (Spain) | WIDA 2018 (Domingo’s party) 7 / 19



Vector space structure in NA(X) | Preliminaries | Proximinality

Proximinality and norm attaining functionals

The two main problems
(S) Does there always exist a proximinal subspace of codimension 2?
(G) Does NA(X) always contain a linear subspace of dimension 2?

Important result (Garkavi, 1967)
Y 6 X proximinal of finite codimension =⇒ Y ⊥ ⊂ NA(X).

Therefore. . .
If (S) is true, then (G) is true.

The converse result is not true
There exist X and finite codimensional Y such that Y ⊥ ⊂ NA(X) but Y is not
proximinal (Phelps, 1963)
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Vector space structure in NA(X) | Read’s and Rmoutil’s results

Read’s and Rmoutil’s theorems

Theorem (Read, 2013)
There is a counterexample XR to (S).

As (S) ⇒ (G), XR is a natural candidate for a counterexample to (G).

Actually,

Theorem (Rmoutil, 2015)
• X/Y strictly convex and Y ⊥ ⊂ NA(X) =⇒ Y proximinal.
• dimXR/Y = 2 =⇒ XR/Y strictly convex.
• Consequently, XR is also a counterexample to (G).

A simplification of Rmoutil’s proof by Kadets/López/Mart́ın:

Proposition
X∗∗R is strictly convex; hence all quotients of XR are strictly convex.
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Vector space structure in NA(X) | Read’s and Rmoutil’s results

Read’s construction

XR is a renorming of c0:

Let Ω = {(sn) : (sn) has finite support, all sn ∈ Q} ⊂ `1.
Enumerate Ω = {u1, u2, . . . } so that every element is repeated infinitely often.
Take a sequence of integers (an) such that

ak > max suppuk, ak > ‖uk‖`1 .

Renorm c0 by
p(x) = ‖x‖∞ +

∑
k

2−a2
k |〈uk − eak , x〉|.

Then Read shows that (c0, p) fails (S), and Rmoutil shows, relying on Read’s work,
that (c0, p) fails (G).

The proof of Read’s theorem is not trivial at all!!!!!
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Vector space structure in NA(X) | Our construction | A direct approach to (G)

A new, direct approach to (G)

We four are more used to norm-attainment than to proximinality,
so we changed the point of view:

We want to show directly that certain Banach spaces have a renorming failing (G)
and hence have a renorming failing (S).

Let R : X −→ `1 be continuous; we renorm X by

p(x) = ‖x‖+ ‖Rx‖`1 .

More precisely, let [Rx](n) = 2−nv∗n(x), (v∗n) ⊂ BX∗ , so

p(x) = ‖x‖+
∞∑

n=1

v∗n(x)
2n

.

(Note that Read’s renorming is of this type.)

Aim
Under suitable assumptions, the v∗n can be chosen so that (X, p) fails (G)
(and hence fails (S)).
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Vector space structure in NA(X) | Our construction | A direct approach to (G)

A tentative calculation

p(x) = ‖x‖+
∑

2−n|v∗n(x)|. Then B(X∗,p∗) = BX +
∑

2−n[−v∗n, v∗n] (Minkowski sum).

Let x∗ ∈ NA1(X, p) be norm attaining at x; then

x∗ = x∗0 +
∑

2−ntnv
∗
n

for some x∗0 ∈ NA1(X) and tn = sign v∗n(x) whenever v∗n(x) is nonzero.
Write the same decomposition for y∗ ∈ NA1(X, p), norm attaining at y:

y∗ = y∗0 +
∑

2−nt′nv
∗
n.

Let’s try to prove that x∗ + y∗ /∈ NA(X, p): Otherwise we would have a similar
decomposition for z∗ = (x∗ + y∗)/‖x∗ + y∗‖:

z∗ = z∗0 +
∑

2−nsnv
∗
n.

Sort the items, setting λ = ‖x∗ + y∗‖:

0 = x∗ + y∗ − λz∗ = [x∗0 + y∗0 − λz∗0 ] +
[∑

(tn + t′n − λsn)v∗n
]

Miguel Mart́ın | University of Granada (Spain) | WIDA 2018 (Domingo’s party) 12 / 19



Vector space structure in NA(X) | Our construction | A direct approach to (G)

Wish list

0 = [x∗0 + y∗0 − λz∗0 ] +
[∑

(tn + t′n − λsn)v∗n
]

We now wish to select the v∗n to be sort of “orthogonal” to span(NA(X)) (which
contains the first bracket) so that both brackets vanish.

In addition we wish the v∗n to have some Schauder basis character so that we can deduce
from

∑
(tn + t′n − λsn)v∗n = 0 that all tn + t′n − λsn = 0.

Finally we wish the support points x and y to be distinct, and we wish the span of the
v∗n to be dense enough to separate x and y for many n, i.e., v∗n(x) < 0 < v∗n(y) and thus
tn + t′n = 0 fairly often, while at the same time sn 6= 0 for at least one of those n.

This contradiction would show that x∗ + y∗ /∈ NA(X, p).

Miguel Mart́ın | University of Granada (Spain) | WIDA 2018 (Domingo’s party) 13 / 19



Vector space structure in NA(X) | Our construction | Modest subspaces

Modest subspaces

Definition: operator range, (weak∗) modest subspace
V,W Banach spaces, T : V −→W injective.
Then T (V ) is called an operator range.
Z 6W is modest if there is a separable dense operator range Y with Y ∩Z = {0}.
If W is a dual space, then Z 6W is weak∗ modest if there is a separable weak∗
dense operator range Y with Y ∩ Z = {0}.

Note that the choice of V in the definition of a modest subspace is at our discretion since

E,F separable =⇒ ∃ continuous injection S : E −→ F with dense range.

Example
{(sn) : (sn) has finite support} is modest in `1.

Indeed, let Ar(D) the real Banach space of those function of the disk algebra which takes
real valued on the real axis;
define T : Ar(D) −→ `1 by [Tf ](n) = 2−nf(2−n); then T has dense range and
every non-null sequence in T (Ar(D)) can only take the value 0 finitely many times.
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Vector space structure in NA(X) | Our construction | Main theorem

Main Theorem

Theorem
If span(NA(X)) is weak∗ modest, then X has a renorming that fails (G) and,
consequently, fails (S). (We call such an equivalent norm a Read norm.)

Recall ansatz: p(x) = ‖x‖+
∑

2−n|v∗n(x)|; how to choose the v∗n?

Lemma
Let Y 6 X∗ be a separable operator range. Then there is an injective operator
S : `1 −→ X∗ such that, for v∗n = S(en), the set {v∗n/‖v∗n‖} is dense in SY .

With this choice of v∗n it is possible to fulfill our wishes: the v∗n are “orthogonal” to
NA(X) (wish #1), they are an injective image of a Schauder basis (wish #2) and
sufficiently dense (wish #4). As for wish #3, if x = y, then x 6= −y and one should look
at x∗ − y∗!

Thus we can show that for linearly independent x∗, y∗ ∈ NA(X, p) of norm 1,
at most one of x∗ ± y∗ can be in NA(X, p).
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Vector space structure in NA(X) | Our construction | Consequences

First consequence

Example (we recuperate Read’s and Rmoutil’s results)
c0 admits a Read norm, that is, a norm failing (G) and hence failing (S).

Indeed, NA(c0) = c00 is modest in `1.

Note
The original construction by Read is NOT a particular case of ours:

Indeed, both norms are of the form p(x) = ‖x‖+
∑

2−n|v∗n(x)|, but
in the original Read’s construction, the v∗n’s belong to NA(c0),
in our construction, the v∗n’s are “orthogonal” to NA(c0).
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Vector space structure in NA(X) | Our construction | Consequences

More consequences I

Proposition
A separable Banach space containing a copy of c0 admits a Read norm.

Indeed, renorm X so that X = c0 ⊕∞ E; then X∗ = `1 ⊕1 E
∗ and

NA(X) ⊂ NA(c0)⊕1 E
∗.The latter can be shown to be contained in a weak∗ modest

subspace.

Example
C[0, 1] admits an equivalent Read norm.

Norms with additional properties
X separable containing c0. Then for each 0 < ε < 2 there is a Read norm pε on X
with the following properties:
• pε is strictly convex and smooth,
• p∗ε is strictly convex,
• p∗ε is (2− ε)-rough; i.e., every slice of B(X,pε) has diameter > 2− ε,
• If moreover X∗ is separable, then p∗∗ε is strictly convex.
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Vector space structure in NA(X) | Our construction | Consequences

More consequences II

Theorem
A Banach space containing a copy of c0 which has a countable system of norming
functionals admits a Read norm.

{x∗n} is a norming system if x 7−→ supn |x∗n(x)| is an equivalent norm. Such a space is
isomorphic to a closed subspace of `∞ and vice versa.

Example
`∞ admits an equivalent Read norm.

Norms with additional properties
X containing c0 which a countable system of norming functionals. Then for each
0 < ε < 2 there is a Read norm pε on X so that
• pε is strictly convex,
• p∗ε is (2− ε)-rough; i.e., every slice of B(X,pε) has diameter > 2− ε,
• actually, every convex combination of slices (hence every relatively weakly open

subset) of B(X,pε) has diameter > 2− ε.
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Vector space structure in NA(X) | Open problems and limitations of the construction

Open problems

Open problem
Does every separable non-reflexive Banach space admit an equivalent Read norm ?

`∞(Γ) with Γ uncontable does not admit a Read norm

Some remarks
Our construction needs span(NA(X)) to be “small” (weak-star modest).
This is not always possible: if X RNP, then span(NA(X)) = X∗ (Bourgain).
Actually, if NA(X) is residual, then span(NA(X)) = X∗.

An stronger result
X separable, span(NA(X)) second category =⇒ span(NA(X)) = X∗.

Two concrete problems
Does `1 admit a Read norm? (observe that span(NA(X)) = X∗ for every X ' `1)
Does L1[0, 1] admit a norm such that span(NA(X)) is weak-star modest?
(observe that NA(L1[0, 1]) is first category but span(NA(L1[0, 1])) = L1[0, 1]∗)
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