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Spear operators on Banach spaces

Our objective

Our objective is to study spear operators on Banach spaces that is,
(bounded linear) operators G : X −→ Y satisfying that

max
|ω|=1

∥∥G+ ω T
∥∥ = 1 + ‖T‖

for every other operator T : X −→ Y .

Where is the material contained?

V. Kadets, M. Mart́ın, J. Meŕı, A. Pérez
Spear operators on Banach spaces
Lecture Notes in Mathematics, 2205, Springer Verlag, 2018

What will we study?
Many examples,
characterizations in some environments,
isomorphic and isometric consequences. . .

What is the main motivation for
this?
The case when G is the identity
operator
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Spear operators on Banach spaces

Roadmap of the talk

1 Motivation: numerical range
Hilbert space numerical range
Notation
Banach space numerical range

2 Motivation: Banach spaces with numerical index one
How to deal with numerical index one property?
Working with weaker properties
Working with stronger properties

3 Slicely countably determined Banach spaces
Motivation
SCD sets and spaces
SCD is a link between ADP and lushness
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Motivation: numerical range

Section 1

1 Motivation: numerical range
Hilbert space numerical range
Notation
Banach space numerical range
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The case of the identity

When G = Id
X Banach space. The identity operator is a spear operator iff

max
|ω|=1

‖IdX + ω T‖ = 1 + ‖T‖ (aDE)

for every bounded linear operator T : X −→ X.

When does this happen?
when X = C0(L) for any Hausdorff locally compact space,
when X = L1(µ) for any measure µ,
when X is the disk algebra A(D),
and many more cases. . .

But. . .
What is the origin and the meaning of equality (aDE)?
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Self-adjoint operators on Hilbert spaces

Old result
H Hilbert space, T : H −→ H self-adjoint, then

‖T‖ = sup
{
|〈Tx, x〉| : x ∈ H, ‖x‖ = 1

}
(by polarization).

Consequence
This implies that for T : H −→ H self-adjoint, there is ω with modulus one such that

‖Id + ω T‖ = 1 + ‖T‖.
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Numerical radius for Hilbert space operators

Numerical range and numerical radius
For arbitrary T : H −→ H, define

V (T ) :=
{
〈Tx, x〉 : x ∈ H, ‖x‖ = 1

}
, v(T ) := sup

{
|λ| : λ ∈ V (T )

}
to be, respectively, the numerical range and numerical radius of T .

Proposition
T self-adjoint =⇒ v(T ) = ‖T‖;
For general T , v(T ) = ‖T‖ ⇐⇒ max

|ω|=1
‖Id + ω T‖ = 1 + ‖T‖.

Some properties
H Hilbert space, T : H −→ H

V (T ) is convex.
Spec(T ) ⊆ V (T ) (complex case).
If T is normal, then V (T ) = conv Spec(T ) (complex case).
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Numerical range: Hilbert spaces. Motivation

Some reasons to study numerical ranges
It gives a “picture” of the operator which allows to “see” many properties
(algebraic or geometrical) of it.
It is a comfortable way to study the spectrum.
It is useful to work with some concepts like hermitian operator, skew-hermitian
operator, dissipative operator. . .

What happens for general Banach spaces?

Let first present the needed notation
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Basic notation I

K base field (R or C):
T modulus-one scalars,
Re z real part of z (Re z = z if K = R).

X, Y Banach spaces:
SX unit sphere, BX unit ball,
X∗ dual space,
L(X,Y ) bounded linear operators,
L(X) := L(X,X).

T ∈ L(X,Y ):
T ∗ ∈ L(Y ∗, X∗) adjoint operator of T .
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Basic notation II

X Banach space, B ⊂ X:
‖B‖ = sup{‖b‖ : b ∈ B},
B is rounded if TB = B,
conv(B) convex hull of B, conv(B) closed convex hull of B,
aconv(B) = conv(TB) absolutely convex hull of B, aconv(B) = conv(TB),
Slice(B, x∗, α) :=

{
x ∈ B : Rex∗(x) > sup Rex∗(B)− α

}
,

where x∗ ∈ X∗ and α > 0,
Face(B, x∗) :=

{
x ∈ B : Rex∗(x) = sup Rex∗(B)

}
,

where x∗ ∈ X∗ attains its supremum on B.
ext(B) extreme points of B,
dent(B) denting points of B (i.e. those belonging to arbitrarily small slices).

S

F

a

b
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Banach space numerical range and numerical radius

Definition (Bauer 1962; Lumer, 1961)
X Banach space, T ∈ L(X),

V (T ) :=
{
x∗(Tx) : x∗ ∈ SX∗ , x ∈ SX , x

∗(x) = 1
}

v(T ) := sup
{
|λ| : λ ∈ V (T )

}
are the numerical range and numerical radius of T .

Some properties
v(·) is a seminorm,
Spec(T ) ⊂ V (T ) (complex case),
if X = H, both definitions coincide.
This concept allows to carry to arbitrary Banach spaces the concept of hermitian,
skew-hermitian, dissipative. . . operators.

Important result (Duncan-McGregor-Price-White, 1970)

v(T ) = ‖T‖ ⇐⇒ ‖Id + TT‖ = 1 + ‖T‖.
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Numerical index of a Banach space

Definition (Lumer, 1968)
X Banach space, its numerical index is

n(X) := inf
{
v(T ) : T ∈ L(X), ‖T‖ = 1

}
= max

{
k > 0: k ‖T‖ 6 v(T ) ∀ T ∈ L(X)

}
.

Some basic properties
n(X) = 1 iff v and ‖ · ‖ coincide iff ‖Id + TT‖ = 1 + ‖T‖ ∀T ∈ L(X)
iff Id is a spear operator,
n(X) = 0 iff v is not an equivalent norm in L(X),
X complex ⇒ n(X) > 1/e.

(Bohnenblust–Karlin, 1955; Glickfeld, 1970)
Actually,

{n(X) : X complex, dim(X) = 2} = [e−1, 1]
{n(X) : X real, dim(X) = 2} = [0, 1]

(Duncan–McGregor–Pryce–White, 1970)
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Numerical index of Banach spaces: examples (I)

Some examples
1 H Hilbert space, dim(H) > 1,

n(H) = 0 if H is real
n(H) = 1/2 if H is complex

2 n
(
L1(µ)

)
= 1 µ positive measure

n
(
C(K)

)
= 1 K compact Hausdorff space

(Duncan et al., 1970)

3 If A is a C∗-algebra ⇒
{
n(A) = 1 A commutative
n(A) = 1/2 A not commutative

(Huruya, 1977; Kaidi–Morales–Rodŕıguez, 2000)
4 If A is a function algebra ⇒ n(A) = 1

(Werner, 1997)
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Numerical index of Banach spaces: some examples (II)

More examples
5 For n > 2, the unit ball of Xn is a 2n regular polygon:

n(Xn) =


tan
(
π

2n

)
if n is even,

sin
(
π

2n

)
if n is odd.

(M.–Meŕı, 2007)
6 Every finite-codimensional subspace of C[0, 1] has numerical index one

(Boyko–Kadets–M.–Werner, 2007)
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Numerical index of Banach spaces: some examples (III)

Even more examples
7 Numerical index of Lp-spaces, 1 < p <∞:

n
(
Lp[0, 1]

)
= n(`p) = lim

m→∞
n
(
`(m)

p

)
.

(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)
In the real case,

max
{ 1

21/p
,

1
21/q

}
Mp 6 n

(
`(2)

p

)
6Mp

and Mp = v

(
0 1
−1 0

)
= max

t∈[0,1]

|tp−1 − t|
1 + tp

(M.–Meŕı, 2009)

In the real case, n
(
Lp(µ)

)
>
Mp

8e .
In particular, n

(
Lp(µ)

)
> 0 for p 6= 2.

(M.–Meŕı–Popov, 2009)
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Motivation: Banach spaces with numerical index one

Section 2

2 Motivation: Banach spaces with numerical index one
How to deal with numerical index one property?
Working with weaker properties
Working with stronger properties
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Banach spaces with numerical index one

Numerical index one
Recall that X has numerical index one (n(X) = 1) iff

‖T‖ = sup
{
|x∗(Tx)| : x ∈ SX , x

∗ ∈ SX∗ , x∗(x) = 1
}

(i.e. v(T ) = ‖T‖) for every T ∈ L(X).
Equivalently, Id is a spear operator.

Examples
C(K), L1(µ), A(D), H∞, finite-codimensional subspaces of C[0, 1]. . .

This is a property of X which is very complicated to work with as one has to deal with
all the operators on the space.

Leading open question
X Banach space with numerical index one =⇒ X ⊃ c0 or X ⊃ `1 ?
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How to deal with numerical index one property?

One the one hand: weaker properties
In a general Banach space, we only can construct compact (nuclear) operators.
Actually, we only may easily calculate the norm of rank-one operators.
Most of the results we know for Banach spaces with numerical index one are
actually true for Banach spaces with the alternative Daugavet property (ADP),
that is, those Banach spaces satisfying:

v(T ) = ‖T‖ for every rank-one T ,
equivalently, ‖Id + TT‖ = 1 + ‖T‖ for every T rank-one.

One the other hand: stronger properties
We do not know any operator-free characterization of Banach spaces with
numerical index one.
When we know that a Banach space has numerical index one (or that it can be
renormed with numerical index one), we actually prove more.
There are some sufficient geometrical conditions.
The weakest property is called lushness.
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How to deal with numerical index one property?

Relationship between the properties
One of the key ideas to get interesting results for Banach spaces with numerical
index one is to study when the three properties below are equivalent.
A very interesting property appears: the slicely countably determination.

lushness ===-�=6== Numerical index one ===-�=6== ADP

�===================
with SCD property

(RNP, Asplund...)
==================
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The numerical index one has isomorphic consequences

Question
Does every Banach space admit an equivalent norm with numerical index one ?

Negative answer (López–M.–Payá, 1999)
Not every Banach space can be renormed to have numerical index one.
Concretely:

If X is real, reflexive, and dim(X) =∞, then n(X) < 1.
Actually, if X is real, X∗∗/X separable and n(X) = 1,
then X is finite-dimensional.
Moreover, if X is real, RNP, dim(X) =∞, and n(X) = 1, then X ⊃ `1.
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Proving the 1999 results (I)

Lemma
X Banach space, n(X) = 1
=⇒ |x∗0(x0)| = 1 for every x∗0 ∈ ext (BX∗ ) and every x0 ∈ dent(BX).

Proof:
Fix ε > 0. As x0 denting point, ∃y∗ ∈ SX∗ and α > 0 such that

‖z − x0‖ < ε whenever z ∈ BX∗ satisfies Re y∗(z) > 1− α.
(Choquet’s lemma): x∗0 ∈ ext (BX∗ ), ∃y ∈ SX and β > 0 such that

|z∗(x0)− x∗0(x0)| < ε whenever z∗ ∈ BX∗ satisfies Re z∗(y) > 1− β.
Let T = y∗ ⊗ y ∈ L(X). ‖T‖ = 1 =⇒ v(T ) = 1.
We may find x ∈ SX , x∗ ∈ SX∗ , such that

x∗(x) = 1 and |x∗(Tx)| = |y∗(x)||x∗(y)| > 1−min{α, β}.
By choosing suitable s, t ∈ T we have

Re y∗(sx) = |y∗(x)| > 1− α & Re tx∗(y) = |x∗(y)| > 1− β.
It follows that ‖sx− x0‖ < ε and |tx∗(x0)− x∗0(x0)| < ε, and so
1−|x∗0(x0)| 6 |tx∗(sx)−x∗0(x0)| 6 |tx∗(sx)− tx∗(x0)|+ |tx∗(x0)−x∗0(x0)| < 2ε.X
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Proving the 1999 results (II)

Proposition
X real, A ⊂ SX infinite with |x∗(a)| = 1 ∀x∗ ∈ ext (BX∗ ), ∀a ∈ A.
=⇒ X ⊇ c0 or X ⊇ `1.

Proof:
X ⊇ `1 X
(Rosenthal `1-theorem): Otherwise, ∃ {an} ⊆ A non-trivial weak Cauchy.
Consider Y the closed linear span of {an : n ∈ N}.
‖an − am‖ = 2 if n 6= m =⇒ dim(Y ) =∞.
(Krein-Milman theorem): every y∗ ∈ ext (BY ∗ ) has an extension which belongs to
ext (BX∗ ).
So, |y∗(an)| = 1 ∀y∗ ∈ ext (BY ∗ ), ∀n ∈ N.
{an} weak Cauchy =⇒ {y∗(an)} is eventually 1 or −1.
Then ext (BY ∗ ) =

⋃
k∈N

(Ek ∪ −Ek) where

Ek = {y∗ ∈ ext (BY ∗ ) : y∗(an) = 1 for n > k}.

{an} separates points of Y ∗ =⇒ Ek finite, so ext (BY ∗ ) countable.
(Fonf): Y ⊇ c0. So, X ⊇ c0.X
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Proving the 1999 results (III)

Lemma
X Banach space, n(X) = 1
=⇒ |x∗0(x0)| = 1 for every x∗0 ∈ ext (BX∗ ) and every x0 ∈ dent(BX).

Proposition
X real, A ⊂ SX infinite with |x∗(a)| = 1 ∀x∗ ∈ ext (BX∗ ), ∀a ∈ A.
=⇒ X ⊇ c0 or X ⊇ `1.

Main consequence
X real, RNP, dim(X) =∞, and n(X) = 1 =⇒ X ⊇ `1.

Proof.
X RNP, dim(X) =∞ =⇒ ∃ infinitely many denting points of BX .
Therefore, X ⊇ c0 or X ⊇ `1.
If X RNP, then X + c0. X
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Sufficient conditions for numerical index one

Some sufficient conditions
Let X be a Banach space. Consider:
(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family of

three mutually intersecting balls is not empty.
(b) Fullerton, 1961: X is a CL-space if BX is the absolutely convex hull of every

maximal face of SX .
(c) Lima, 1978: X is an almost-CL-space if BX is the closed absolutely convex hull

of every maximal face of SX .

(a) ===-�=6== (b) ===-�=6=== (c) ===-�=6== n(X) = 1

Showing that (c) =⇒ n(X) = 1, one realizes that (c) is too much.

Lushness (Boyko–Kadets–M.–Werner, 2007)
X is lush if given x, y ∈ SX , ε > 0, there is x∗ ∈ SX∗ such that

x ∈ Slice(BX , x
∗, ε) and dist

(
y, aconv

(
Slice(BX , x

∗, ε)
))
< ε.
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Definition and first property

Lushness (Boyko–Kadets–M.–Werner, 2007)
X is lush if given x, y ∈ SX , ε > 0, there is x∗ ∈ SX∗ such that

x ∈ Slice(BX , x
∗, ε) and dist

(
y, aconv

(
Slice(BX , x

∗, ε)
))
< ε.

Theorem (Boyko–Kadets–M.–Werner, 2007)
X lush =⇒ n(X) = 1.

Proof.
T ∈ L(X) with ‖T‖ = 1, ε > 0. Find y0 ∈ SX which ‖Ty0‖ > 1− ε.
Use lushness for x0 = Ty0/‖Ty0‖ and y0 to get x∗ ∈ SX∗ and

v =
n∑

i=1

λiθixi where xi ∈ Slice(BX , x
∗, ε), λi ∈ [0, 1],

∑
λi = 1, θi ∈ T,

with Rex∗(x0) > 1− ε and ‖v − y0‖ < ε.

Then |x∗(Tv)| =
∣∣x∗(x0)− x∗

(
T
(

y0
‖T y0‖

− v
))∣∣ ∼ ‖T‖.

By a convexity argument, ∃ i such that |x∗(Txi)| ∼ ‖T‖ and Rex∗(xi) ∼ 1.
Then ‖Id + TT‖ ∼ 1 + ‖T‖ =⇒ v(T ) ∼ ‖T‖. X
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Reformulations of lushness and applications

Proposition (Boyko–Kadets–M.–Meŕı, 2009)
X Banach space. TFAE:

X is lush,
Every separable E ⊂ X is contained in a separable lush Y with E ⊂ Y ⊂ X.

Separable lush spaces (Kadets–M.–Meri–Payá, 2009; Lee–M., 2012)
X separable. TFAE:

X is lush.
There is G ⊆ SX∗ norming for X such that

BX = aconv (Face(BX , x
∗)) (x∗ ∈ G).

Therefore, |x∗∗(x∗)| = 1 ∀x∗∗ ∈ ext (BX∗∗ ) ∀x∗ ∈ G.
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An important consequence

Showed in the previous slide. . .
X lush separable, dim(X) =∞ =⇒ there is G ∈ SX∗ infinite such that

|x∗∗(x∗)| = 1
(
x∗∗ ∈ ext (BX∗∗ ) , x∗ ∈ G

)
.

Proposition (López–M.–Payá, 1999)
X real, A ⊂ SX infinite with |x∗(a)| = 1 ∀x∗ ∈ ext (BX∗ ), ∀a ∈ A.
=⇒ X ⊇ c0 or X ⊇ `1.

Main consequence
X real lush, dim(X) =∞ =⇒ X∗ ⊇ `1.

Proof.
There is E ⊆ X infinite-dimensional, separable, and lush.
Then E∗ ⊇ c0 or E∗ ⊇ `1 =⇒ E∗ ⊇ `1.
By the “lifting” property of `1 =⇒ X∗ ⊇ `1. X
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Lushness is not equivalent to numerical index one

Example (Kadets–M.–Meŕı–Shepelska, 2009)
There is a separable Banach space X such that
X ∗ is lush but X is not lush.
Since n(X ∗) = 1, also n(X ) = 1.
But the set

{x∗ ∈ SX∗ : |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext (BX∗∗ )}

is empty.

Remark
We cannot expect to show that X∗ ⊇ `1 when n(X) = 1 using the previous ideas for
lush spaces.
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Slicely countably determined Banach spaces

Section 3

3 Slicely countably determined Banach spaces
Motivation
SCD sets and spaces
SCD is a link between ADP and lushness
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Two classical concepts: Radon-Nikodým property and Asplund spaces

The Radon-Nikodým property or RNP (1930’s)
X has the RNP iff the Radon-Nikodým theorem is valid for X-valued meassures;
Equivalently [1960’s], every bcc subset contains a denting point.

X Asplund ⇐⇒ X∗ RNP

Reflexive (say) ==-
(

RNP and Asplund
)

(
RNP or Asplund

)
===- ???

Asplund spaces (1960’s)
X is an Asplund space if every continuous convex real-valued function defined on
an open subset of X is Frechet-differentiable on a dense subset;
Equivalently [1970’s], every separable subspace has separable dual.
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SCD sets and spaces: Definitions and examples

SCD sets
A ⊂ X bounded convex is slicely countably determined (SCD) if there is a sequence
{Sn : n ∈ N} of slices of A satisfying one of the following equivalent conditions:

every slice of A contains one of the Sn’s,
A ⊆ conv(B) if B ⊆ A satisfies B ∩ Sn 6= ∅ ∀n,
given {xn}n∈N with xn ∈ Sn ∀n ∈ N, A ⊆ conv

(
{xn : n ∈ N}

)
.

SCD spaces
X is Slicely Countably Determined (SCD) if so are all its bounded convex subsets.

Avilés–Kadets–M.–Meŕı–Shepelska, 2010

Remarks
A is SCD iff A is SCD.
If A is SCD, then it is separable.
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Main examples of SCD sets and spaces

Examples of sets
A ⊂ X separable bounded and convex.

1 (Easy): A RNP =⇒ A is SCD,
2 (Easy): A Asplund =⇒ A is SCD,
3 (Main): A + `1 =⇒ A is SCD,
4 BC[0,1] and BL1[0,1] are not SCD.

Examples of spaces
X separable Banach space.

1 X RNP =⇒ X is SCD,
2 (Easy): X Asplund =⇒ X is SCD,
3 (Main): X + `1 =⇒ X is SCD,
4 C[0, 1] and L1[0, 1] are not SCD.
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SCD sets: Proving the elementary examples I

Example
A separable and A = conv(dent(A)) =⇒ A is SCD.

Proof.
Take {an : n ∈ N} denting points with A = conv

(
{an : n ∈ N}

)
.

For every n,m ∈ N, take a slice Sn,m containing an and of diameter 1/m.
If B ∩ Sn,m 6= ∅ =⇒ an ∈ B.
Therefore, A = conv

(
{an : n ∈ N}

)
⊆ conv(B) = conv(B).

Example
In particular, A RNP separable =⇒ A SCD.

Corollary
If X is separable LUR =⇒ BX is SCD.
So, every separable space can be renormed such that B(X,|·|) is SCD.
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SCD sets: proving the elementary examples II

Example
If X∗ is separable =⇒ A is SCD.

Proof.
Take {x∗n : n ∈ N} dense in SX∗ .
For every n,m ∈ N, consider Sn,m = Slice(A, x∗n, 1/m).
It is easy to show that any slice of A contains one of the Sn,m
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SCD sets: proving the main example I

Convex combination of slices

W =
m∑

k=1
λk Sk ⊂ A where λk > 0,

∑
λk = 1, Sk slices.

Proposition
In the definition of SCD we can use a sequence {Sn : n ∈ N} of convex combination of
slices.

Bourgain’s lemma
Every relative weak open subset of A contains a convex combination of slices.

Corollary
In the definition of SCD we can use a sequence of relative weak open subsets: the set
A is SCD if there is a sequence {Vn : n ∈ N} of relative weak open subsets of A such
that every slice of A contains one of the Vn’s.
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SCD sets: proving the main example II

Corollary
In the definition of SCD we can use a sequence of relative weak open subsets: the set
A is SCD if there is a sequence {Vn : n ∈ N} of relative weak open subsets of A such
that every slice of A contains one of the Vn’s.

π-bases
A π-base of the weak topology of A is a family {Vi : i ∈ I} of weak open sets of A such
that every weak open subset of A contains one of the Vi’s.

Proposition
If (A, σ(X,X∗)) has a countable π-base =⇒ A is SCD.
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SCD sets: proving the main example III

Theorem
A separable without `1-sequences =⇒ (A, σ(X,X∗)) has a countable π-base.

Proof.
We see (A, σ(X,X∗)) ⊂ C(T ) where T = (BX∗ , σ(X∗, X)).
By Rosenthal `1 theorem, (A, σ(X,X∗)) is a relatively compact subset of the space
of first Baire class functions on T .
By a result of Todorčević, (A, σ(X,X∗)) has a σ-disjoint π-base.
{Vi : i ∈ I} is σ-disjoint if I =

⋃
n∈N In and each {Vi : i ∈ In} is pairwise disjoint.

A σ-disjoint family of open subsets in a separable space is countable. X

Main example
A separable without `1-sequences =⇒ A is SCD.
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SCD is a link between ADP and lushness

Theorem
X (separable) SCD,

n(X) = 1 (actually ADP) =⇒ X lush.

Main consequence
X (arbitrary) such that X + `1,

n(X) = 1 (actually ADP) =⇒ X lush.

Corollary
X real + dim(X) =∞ + ADP =⇒ X∗ ⊇ `1.

Proof.
If X ⊇ `1 =⇒ X∗ contains `∞ as a quotient, so X∗ contains `1 as a quotient, and
the lifting property gives X∗ ⊇ `1 X
If X + `1 =⇒ X is SCD + ADP, so X is lush.
Lush + dim(X) =∞ =⇒ X∗ ⊇ `1 X
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