Norm attaining compact operators

Miguel Martín

http://www.ugr.es/local/mmartins

IMUS - Sevilla, January 27th, 2017

Roadmap of the talk

- 1 Introducing the topic
- 2 An quick overview on norm attaining operators
- 3 Norm attaining compact operators

Bibliography

M. D. Acosta

Denseness of norm attaining mappings *RACSAM* (2006)

A. Capel

Norm-attaining operators

Master thesis. Universidad Autónoma de Madrid. 2015

S. Dantas, D. García, M. Maestre, and M. Martín

The Bishop-Phelps-Bollobás property for compact operators,

Canadian J. Math. (to appear)

M. Martín

Norm-attaining compact operators

J. Funct. Anal. (2014)

M. Martín

The version for compact operators of Lindenstrauss properties A and B RACSAM (2016)

Introducing the topic

- 1 Introducing the topic
 - Notation
 - Short introduction

Introducing the topic

- 1 Introducing the topic
 - Notation
 - Short introduction

Notation

X, Y real or complex Banach spaces

- \blacksquare \mathbb{K} base field \mathbb{R} or \mathbb{C} ,
- $B_X = \{x \in X : ||x|| \le 1\}$ closed unit ball of X,
- $S_X = \{x \in X : ||x|| = 1\}$ unit sphere of X,
- $\mathcal{L}(X,Y)$ bounded linear operators from X to Y,
 - $||T|| = \sup\{||T(x)|| : x \in S_X\}$ for $T \in \mathcal{L}(X, Y)$,
- $lackbox{}{\mathcal K}(X,Y)$ compact linear operators from X to Y,
- $\mathcal{F}(X,Y)$ bounded linear operators from X to Y with finite rank (i.e. dimension of the range is finite),
- $X^* = \mathcal{L}(X, \mathbb{K})$ topological dual of X.

Introducing the topic

- 1 Introducing the topic
 - Notation
 - Short introduction

Norm attaining functionals

Norm attaining functionals

 $x^* \in X^*$ attains its norm when

$$\exists x \in S_X : |x^*(x)| = ||x^*||$$

 \star NA $(X, \mathbb{K}) = \{x^* \in X^* : x^* \text{ attains its norm}\}$

First examples

- \blacksquare dim $(X) < \infty \implies NA(X, \mathbb{K}) = \mathcal{L}(X, \mathbb{K})$ (Heine-Borel).
- X reflexive \Longrightarrow NA $(X, \mathbb{K}) = \mathcal{L}(X, \mathbb{K})$ (Hahn-Banach).
- X non-reflexive \Longrightarrow NA $(X, \mathbb{K}) \neq \mathcal{L}(X, \mathbb{K})$ (James),
- but $NA(X, \mathbb{K})$ always separates the points of X (Hahn-Banach).

Norm attaining operators

Norm attaining operators

 $T \in \mathcal{L}(X,Y)$ attains its norm when

$$\exists x \in S_X : ||T(x)|| = ||T||$$

 \star NA $(X,Y) = \{T \in \mathcal{L}(X,Y) : T \text{ attains its norm} \}$

First examples

- $\dim(X) < \infty \implies \operatorname{NA}(X,Y) = \mathcal{L}(X,Y)$ for every Y (Heine-Borel).
- $NA(X,Y) \neq \emptyset$ (Hahn-Banach),
- X reflexive $\implies \mathcal{K}(X,Y) \subseteq \mathrm{NA}(X,Y)$ for every Y (we will comment),
- X non-reflexive $\implies \mathcal{K}(X,Y) \nsubseteq \mathrm{NA}(X,Y)$ for any Y (James),
- $\blacksquare \dim(X) = \infty \implies \operatorname{NA}(X, c_0) \neq \mathcal{L}(X, c_0)$ (see M.-Merí-Payá, 2006).

The problem of density of norm attaining functionals

Problem

Is $NA(X, \mathbb{K})$ always dense in X^* ?

Theorem (E. Bishop & R. Phelps, 1961)

The set of norm attaining functionals is dense in X^* (for the norm topology).

Problem

Is NA(X,Y) always dense in $\mathcal{L}(X,Y)$?

The answer is \mathbf{No} , and this is the origin of the study of norm attaining operators.

Modified problem

When is NA(X,Y) dense in $\mathcal{L}(X,Y)$?

The study of this problem was initiated by J. Lindenstrauss in 1963, who provided the first negative and positive examples.

An quick overview on norm attaining operators

- 2 An quick overview on norm attaining operators
 - First results: Lindenstrauss
 - The relation with the RNP: Bourgain
 - Counterexamples for property B: Gowers and Acosta
 - Some results on pairs of classical spaces
 - Main open problems

An quick overview on norm attaining operators

- 2 An quick overview on norm attaining operators
 - First results: Lindenstrauss
 - The relation with the RNP: Bourgain
 - Counterexamples for property B: Gowers and Acosta
 - Some results on pairs of classical spaces
 - Main open problems

Lindenstrauss' seminal paper of 1963

Negative answer

There are bounded linear operators which cannot be approximated by norm-attaining operators:

- the domain can be c_0 (usual norm),
- lacktriangle the range can be any strictly convex renorming of c_0 ,
- the domain and the range may coincide.

The result for c_0 (we will give a detailed proof later)

Y strictly convex, $T \in NA(c_0, Y) \implies Te_n = 0$ for n big enough

Observation

- The question then is for which *X* and *Y* the density holds.
- As this problem is too general, Lindenstrauss introduced two properties.

Lindenstrauss properties A and B

Definition

X, Y Banach spaces,

- **Theorem 1** A has (Lindenstrauss) property A iff $\overline{\mathrm{NA}(X,Z)} = \mathcal{L}(X,Z) \quad \forall \, Z$
- Y has (Lindenstrauss) property B iff $\overline{NA(Z,Y)} = \mathcal{L}(Z,Y) \quad \forall Z$

Examples

- \blacksquare If X is finite-dimensional, then X has property A,
- Actually, reflexive spaces have property A,
- \blacksquare ℓ_1 has property A,
- lacksquare c_0 fails property A,
- K has property B (Bishop-Phelps theorem),
- lacksquare every Y such that $c_0 \subset Y \subset \ell_\infty$ has property B,
- finite-dimensional polyhedral spaces have property B,
- \blacksquare every strictly convex renorming of c_0 fails property B.

An quick overview on norm attaining operators

- 2 An quick overview on norm attaining operators
 - First results: Lindenstrauss
 - The relation with the RNP: Bourgain
 - Counterexamples for property B: Gowers and Acosta
 - Some results on pairs of classical spaces
 - Main open problems

The Radon-Nikodým property

Definitions

X Banach space.

- X has the Radon-Nikodým property (RNP) if the Radon-Nikodým theorem is valid for X-valued vector measures (with respect to every finite positive measure).
- $C \subset X$ is dentable if for every $\varepsilon > 0$ there is $x \in C$ which does not belong to the closed convex hull of $C \setminus (x + \varepsilon B_X)$.
- ${f C} \subset X$ is subset-dentable if every subset of C is dentable.

Theorem (Rieffel, Maynard, Huff, David, Phelps, 1970's)

 $X \text{ RNP} \iff \text{ every bounded } C \subset X \text{ is dentable } \iff B_X \text{ subset-dentable.}$

Remark

In the book

there are more than 30 different reformulations of the RNP.

The RNP and property A: positive results

Theorem (Bourgain, 1977)

X Banach space, $C\subset X$ absolutely convex closed bounded subset-dentable, Y Banach space. Then

$$\{T \in \mathcal{L}(X,Y) \colon \text{the norm of } T \text{ attains its supremum on } C\}$$

is dense in $\mathcal{L}(X,Y)$.

★ In particular, RNP ⇒ property A.

Non-linear Bourgain-Stegall variational principle (Stegall, 1978)

 $X,\,Y$ Banach spaces, $C\subset X$ bounded subset-dentable, $\varphi:C\longrightarrow Y$ uniformly bounded such that $x\longmapsto \|\varphi(x)\|$ is upper semicontinuous.

Then for every $\delta > 0$, there exists $x_0^* \in X^*$ with $||x_0^*|| < \delta$ and $y_0 \in S_Y$ such that the function $x \longmapsto ||\varphi(x) + x_0^*(x)y_0||$ attains its supremum on C.

The RNP and property A: negative results

Theorem (Bourgain, 1977)

 $C \subset X$ separable, bounded, closed and convex,

 $\{T\in\mathcal{L}(X,Y)\colon$ the norm of T attains its supremum on $C\}$ dense in $\mathcal{L}(X,Y)$. $\implies C$ is dentable.

 \bigstar In particular, if X is separable and has property A \implies B_X is dentable.

A refinement (Huff, 1980)

X Banach space failing the RNP.

Then there exist X_1 and X_2 equivalent renorming of X such that

 $NA(X_1, X_2)$ is NOT dense in $\mathcal{L}(X, Y)$.

Main consequence

Every renorming of X has property A \iff X has the RNP.

Another consequence

Every renorming of Y has property $B \implies Y$ has the RNP.

An quick overview on norm attaining operators

- 2 An quick overview on norm attaining operators
 - First results: Lindenstrauss
 - The relation with the RNP: Bourgain
 - Counterexamples for property B: Gowers and Acosta
 - Some results on pairs of classical spaces
 - Main open problems

Gowers' result

Observation

It was an open question in the 1970's and 1980's whether RNP \implies property B

But...

Theorem (Gowers, 1990)

 ℓ_p does not have property B for any 1 .

Extending the result (Acosta-Aguirre-Payá, 1990's)

- Infinite-dimensional L_p -spaces fails property B for 1 .
- Actually, if Y is strictly convex and contains an isomorphic copy of ℓ_p with 1 , then <math>Y does not have property B.

Acosta's results

Theorem (Acosta, 1999)

Every infinite-dimensional strictly convex space fails property B.

Consequence

Y separable, every renorming of Y has property $\mathsf{B} \implies Y$ is finite-dimensional

Theorem (Acosta, 1999)

Every infinite-dimensional $L_1(\mu)$ space fails property B.

An quick overview on norm attaining operators

- 2 An quick overview on norm attaining operators
 - First results: Lindenstrauss
 - The relation with the RNP: Bourgain
 - Counterexamples for property B: Gowers and Acosta
 - Some results on pairs of classical spaces
 - Main open problems

Pairs of classical spaces: positive results

Example (Johnson-Wolfe, 1979)

In the real case, $\operatorname{NA}(C(K_1),C(K_2))$ is dense in $\mathcal{L}(C(K_1),C(K_2))$.

Example (Iwanik, 1979)

$$NA(L_1(\mu), L_1(\nu))$$
 is dense in $\mathcal{L}(L_1(\mu), L_1(\nu))$.

Theorem (Schachermayer, 1983)

Every weakly compact operator from ${\cal C}(K)$ can be approximated by (weakly compact) norm attaining operators.

Consequence (Schachermayer, 1983)

$$NA(C(K), L_p(\mu))$$
 is dense in $\mathcal{L}(C(K), L_p(\mu))$ for $1 \leq p < \infty$.

Example (Finet-Payá, 1998)

$$NA(L_1[0,1], L_{\infty}[0,1])$$
 is dense in $\mathcal{L}(L_1[0,1], L_{\infty}[0,1])$.

Pairs of classical spaces: negative results

Example (Schachermayer, 1983)

$$NA(L_1[0,1], C[0,1])$$
 is NOT dense in $\mathcal{L}(L_1[0,1], C[0,1])$.

Consequence

C[0,1] does not have property B and it was the first "classical" example.

$$Z = C[0,1] \oplus_1 L_1[0,1]$$
 or
$$Z = C[0,1] \oplus_{\infty} L_1[0,1]$$
 \Longrightarrow $\operatorname{NA}(Z,Z)$ not dense in $\mathcal{L}(Z)$.

An quick overview on norm attaining operators

- 2 An quick overview on norm attaining operators
 - First results: Lindenstrauss
 - The relation with the RNP: Bourgain
 - Counterexamples for property B: Gowers and Acosta
 - Some results on pairs of classical spaces
 - Main open problems

Main open problems

The main open problem

★ Do finite-dimensional spaces have Lindenstrauss property B?

(Stunning) open problem

Do finite-dimensional Hilbert spaces have Lindenstrauss property B?

Open problem

Characterize the topological compact spaces K such that C(K) has property B.

Open problem

X Banach space without the RNP, does there exists a renorming of X such that $\mathrm{NA}(X,X)$ is not dense in $\mathcal{L}(X,X)$?

Remark

If $X \simeq Z \oplus Z$, then the answer to the question above is positive (use Bourgain-Huff).

Norm attaining compact operators

- 3 Norm attaining compact operators
 - Posing the problem for compact operators
 - The easiest negative example
 - More negative examples
 - Positive results on property AK
 - Positive results on property BK
 - Open Problems

Norm attaining compact operators

- 3 Norm attaining compact operators
 - Posing the problem for compact operators
 - The easiest negative example
 - More negative examples
 - Positive results on property AK
 - Positive results on property BK
 - Open Problems

Norm attaining compact operators | Norm attaining compact operators | Posing the problem for compact operators

Posing the problem for compact operators

Question

Can every compact operator be approximated by norm-attaining operators?

Observations

- In all the negative examples of the previous section, the authors constructed NON COMPACT operators which cannot be approximated by norm attaining operators.
- Actually, the idea of the proofs is to use that the operator which is not going to be approximated is not compact or, even, it is an isomorphism.
- In most examples, it was even known that compact operators attaining the norm are dense.

Where was it explicitly possed?

- Diestel-Uhl, Rocky Mount. J. Math., 1976.
- Diestel-Uhl, Vector measures (monograph), 1977.
- Johnson-Wolfe, Studia Math., 1979.
- Acosta, RACSAM (survey), 2006.

More observations on compact operators

Question

Can every compact operator be approximated by norm-attaining operators?

Observations

- lacktriangleright If X is reflexive, then ALL compact operators from X into Y are norm attaining. (Indeed, compact operators carry weak convergent sequences to norm convergent sequences.)
- It is known from the 1970's that whenever $X=C_0(L)$ or $X=L_1(\mu)$ (and Y arbitrary) or $Y=L_1(\mu)$ or $Y^*\equiv L_1(\mu)$ (and X arbitrary), $\Longrightarrow \operatorname{NA}(X,Y)\cap \mathcal{K}(X,Y)$ is dense in $\mathcal{K}(X,Y)$.

Norm attaining compact operators

- 3 Norm attaining compact operators
 - Posing the problem for compact operators
 - The easiest negative example
 - More negative examples
 - Positive results on property AK
 - Positive results on property BK
 - Open Problems

Extending a result by Lindenstrauss

- X, Y Banach spaces, $T \in \mathcal{L}(X,Y)$ and $x_0 \in S_X$ with $||T|| = ||Tx_0|| = 1$.
 - If x_0 is not extreme point of B_X , there is $z \in X$ such that $||x_0 \pm z|| \le 1$, so $||Tx_0 \pm Tz|| \le 1$.
 - If Tx_0 is an extreme point of B_Y , then Tz = 0.

Extending a result by Lindenstrauss

- X, Y Banach spaces, $T \in \mathcal{L}(X,Y)$ and $x_0 \in S_X$ with $||T|| = ||Tx_0|| = 1$.
 - If x_0 is not extreme point of B_X , there is $z \in X$ such that $||x_0 \pm z|| \le 1$, so $||Tx_0 \pm Tz|| \le 1$.
 - If Tx_0 is an extreme point of B_Y , then Tz=0.

Geometrical lemma (abstract version of a Lindenstrauss' result)

X, Y Banach spaces. Suppose that

- for every $x_0 \in S_X$, $\lim\{z \in X : ||x_0 \pm z|| \le 1\}$ has finite codimension,
- Y is strictly convex.

Then, $NA(X, Y) \subseteq \mathcal{F}(X, Y)$.

First consequence (recalling, Lindenstrauss, 1963)

- $NA(c_0, Y) \subseteq \mathcal{F}(c_0, Y)$ if Y is strictly convex.
- Therefore, c_0 fails property A.

Extending a result by Lindenstrauss (II)

Proposition (extension of Lindenstrauss result)

 $X \leqslant c_0$. For every $x_0 \in S_X$, $\lim\{z \in X : ||x_0 \pm z|| \leqslant 1\}$ has finite codimension.

Proof.

- as $x_0 \in c_0$, there exists m such that $|x_0(n)| < 1/2$ for every $n \ge m$;
- let $Z = \{z \in X : x_0(i) = 0 \text{ for } 1 \leqslant i \leqslant m\}$ (finite codimension in X);
- for $z \in Z$ with $||z|| \leq 1/2$, one has $||x_0 \pm z|| \leq 1$.

Main consequence

 $X \leq c_0$, Y strictly convex. Then $NA(X,Y) \subseteq \mathcal{F}(X,Y)$.

Question

What's next? How to use this result?

Grothendieck's approximation property

Definition (Grothendieck, 1950's)

Z has the approximation property (AP) if for every $K\subset Z$ compact and every $\varepsilon>0$, there exists $F\in\mathcal{F}(Z)$ such that $\|Fz-z\|<\varepsilon$ for all $z\in K$.

Basic results

X, Y Banach spaces.

- (Grothendieck) Y has AP $\iff \overline{\mathcal{F}(Z,Y)} = \mathcal{K}(Z,Y)$ for all Z.
- (Grothendieck) X^* has AP $\iff \overline{\mathcal{F}(X,Z)} = \mathcal{K}(X,Z)$ for all Z.
- \blacksquare (Grothendieck) X^* AP $\implies X$ AP.
- (Enflo, 1973) There exists $X \leq c_0$ without AP.

The first example

Theorem

There exists a **compact** operator which cannot be approximated by norm attaining operators.

Proof:

- consider $X \leqslant c_0$ without AP (Enflo);
- X* does not has AP
 - \implies there exists Y and $T \in \mathcal{K}(X,Y)$ such that $T \notin \overline{\mathcal{F}(X,Y)}$;
- we may suppose $Y = \overline{T(X)}$, which is separable;
- so Y admits an equivalent strictly convex renorming (Klee);
- lacksquare we apply the extension of Lindenstrauss result: $\operatorname{NA}(X,Y) \subseteq \mathcal{F}(X,Y)$;
- therefore, $T \notin \overline{\mathrm{NA}(X,Y)}$.

Two useful definitions

Definitions

X and Y Banach spaces.

- X has property AK when $\overline{\mathrm{NA}(X,Z)\cap\mathcal{K}(X,Z)}=\mathcal{K}(X,Z)$ $\forall\,Z$;
- Y has property BK when $\overline{\mathrm{NA}(Z,Y)\cap\mathcal{K}(Z,Y)}=\mathcal{K}(Z,Y)\quad\forall\,Z.$

Some basic results

- Finite-dimensional spaces have property AK;
- $V = \mathbb{K}$ has property BK;
- Real finite-dimensional polyhedral spaces have property BK.

Our negative example (recalling)

There exists $X \leqslant c_0$ failing AK and there exits Y failing BK.

Section 3

- Posing the problem for compact operators
- The easiest negative example
- More negative examples
- Positive results on property AK
- Positive results on property BK
- Open Problems

More examples: Domain space

Proposition (what we have proved so far...)

 $X \leqslant c_0$ such that X^* fails AP $\implies X$ does not have AK.

Example by Johnson-Schechtman, 2001

Exists X subspace of c_0 with Schauder basis such that X^* fails the AP.

Corolary

There exists a Banach space X with Schauder basis failing property AK.

More examples: Range space

Strictly convex spaces

Y strictly convex without AP $\implies Y$ fails BK.

Lemma (Grothendieck)

Y has AP iff $\mathcal{F}(X,Y)$ is dense in $\mathcal{K}(X,Y)$ for every $X \leqslant c_0$.

Subspaces of $L_1(\mu)$

 $Y \leqslant L_1(\mu)$ (complex case) without AP $\implies Y$ fails BK.

Observation (Globevnik, 1975)

Complex $L_1(\mu)$ spaces are complex strictly convex:

$$f, g \in L_1(\mu), \|f\| = 1 \text{ and } \|f + \theta g\| \leqslant 1 \,\forall \theta \in B_{\mathbb{C}} \implies g = 0.$$

More examples: Domain=Range

Theorem

There exists a Banach space Z and a compact operator from Z to Z which cannot be approximated by norm attaining operators.

Proposition

X and Y Banach spaces, $Z=X\oplus_1 Y$ or $Z=X\oplus_\infty Y$.

 $\operatorname{NA}(Z,Z) \cap \mathcal{K}(Z,Z) \text{ dense in } \mathcal{K}(Z,Z) \implies \operatorname{NA}(X,Y) \cap \mathcal{K}(X,Y) \text{ dense in } \mathcal{K}(X,Y).$

Section 3

- Posing the problem for compact operators
- The easiest negative example
- More negative examples
- Positive results on property AK
- Positive results on property BK
- Open Problems

Property AK: leading open problem

Problem

$$X^* AP \implies X AK$$
?

Observation

Known positive results on property AK are partial answers to the above question, as strong forms of the AP for the dual are involved.

Old known examples

- (Diestel-Uhl, 1976) $L_1(\mu)$ has AK;
- (Johnson-Wolfe, 1979) $C_0(L)$ has AK.

An interesting observation

If X^* has AP and X has property A $\implies X$ has property AK.

Positive results on property AK

Problem

$$X^* AP \implies X AK$$
?

Partial answer:

(Johnson-Wolfe) With a strong approximation property of the dual...

Suppose there exists a net of contractive projections $(P_{\alpha})_{\alpha}$ in X with finite rank such that $\lim_{\alpha} P_{\alpha}^* = \operatorname{Id}_{X^*}$ in SOT. Then, X has AK.

Proof. Fix $T \in \mathcal{K}(X, Y)$.

$$lacksquare TP_{\alpha}(B_X) = T(B_{P_{\alpha}(X)})$$
 (we need $P_{\alpha}^2 = P_{\alpha}$ and $\|P_{\alpha}\| = 1$).

- Then, TP_{α} attains the norm.
- As T^* is compact, $P_{\alpha}^*T^* \longrightarrow T^*$ in norm, so $TP_{\alpha} \longrightarrow T$ in norm.

Positive results on property AK

Problem

$$X^* AP \implies X AK$$
?

Partial answer:

(Johnson-Wolfe) With a strong approximation property of the dual...

Suppose there exists a net of contractive projections $(P_{\alpha})_{\alpha}$ in X with finite rank such that $\lim_{\alpha} P_{\alpha}^* = \operatorname{Id}_{X^*}$ in SOT. Then, X has AK.

Consequences

- (Diestel-Uhl) $L_1(\mu)$ has AK.
- (Johnson-Wolfe) $C_0(L)$ has AK.
- $\blacksquare X$ with monotone and shrinking basis $\implies X$ has AK.
- lacksquare X with monotone unconditional basis, $X \not\supseteq \ell_1 \implies X$ has AK.
- $X^* \equiv \ell_1 \implies X$ has AK (using a result by Gasparis).
- $X \leq c_0$ with monotone basis $\implies X$ has AK (using a result by Godefroy–Saphar).

Section 3

- Posing the problem for compact operators
- The easiest negative example
- More negative examples
- Positive results on property AK
- Positive results on property BK
- Open Problems

Positive results on property BK I

Main open question

$$AP \implies BK$$
?

A partial answer (Johnson-Wolfe)

- If Y is polyhedral (real) and has AP $\implies Y$ has BK.
- X (complex) space with AP such that the norm of every finite-dimensional subspace can be calculated as the maximum of a finite set of functionals Y has BK.

Example (Johnson-Wolfe)

 $Y \leqslant c_0$ (real or complex) with AP $\implies Y$ has BK.

A somehow reciprocal to the problem...

Y separable with BK for every equivalent norm $\implies Y$ has AP.

Positive results on property BK II

Main open question

$$AP \implies BK$$
?

Another partial answer (Johnson-Wolfe)

Y Banach space. Suppose there exists a uniformly bounded net of projections $(Q_{\alpha})_{\alpha}$ in Y such that $\lim_{\alpha} Q_{\alpha} = \operatorname{Id}_{Y}$ in SOT and $Q_{\alpha}(Y)$ has property BK. Then, Y has property BK.

Examples (Johnson-Wolfe)

- Y predual of $L_1(\mu)$ (real or complex) $\Longrightarrow Y$ has BK;
- in particular, real or complex $C_0(L)$ spaces have property BK;
- real $L_1(\mu)$ spaces have property BK.

Section 3

- Posing the problem for compact operators
- The easiest negative example
- More negative examples
- Positive results on property AK
- Positive results on property BK
- Open Problems

Some open problems

Main open problem

★ Can every finite-rank operator be approximated by norm-attaining operators ?

Open problem

 ${\cal X}$ Banach space, does there exist a norm-attaining rank-two operator from ${\cal X}$ to a Hilbert space?

Another main open problem

$$\star X^* AP \implies X AK$$
?

Open problem

 $X \leqslant c_0$ with the metric AP, does it have AK?

Open problem

X such that $X^* \equiv L_1(\mu)$, does X have AK?

Open problem

Y subspace of the real $L_1(\mu)$ without the AP, does Y fail property BK?