# The Bishop-Phelps-Bollobás point property

# Miguel Martín

http://www.ugr.es/local/mmartins

(work in progress with Sheldon Dantas, Vladimir Kadets, Sun Kwang Kim, and Han Ju Lee)





Universidad de Valencia, April 2017 Research supported by grant MTM2015-65020-P funded by Spanish MINECO and FEDER

# Roadmap of the talk

- **1** Introducing the topic
- 2 Preliminaries
- 3 The Bishop-Phelps-Bollobás point property
- 4 The dual property is not possible

# Introducing the topic

Section 1

#### **1** Introducing the topic

- Notation
- Norm attaining functionals and operators

# Introducing the topic

Section 1

#### **1** Introducing the topic

- Notation
- Norm attaining functionals and operators

### Notation

- $\boldsymbol{X},\,\boldsymbol{Y}$  real or complex Banach spaces
  - $\blacksquare$   $\mathbb K$  base field  $\mathbb R$  or  $\mathbb C,$
  - $B_X = \{x \in X : ||x|| \leq 1\}$  closed unit ball of X,
  - $S_X = \{x \in X \colon ||x|| = 1\}$  unit sphere of X,
  - $\mathcal{L}(X,Y)$  bounded linear operators from X to Y,

$$\blacksquare ||T|| = \sup\{||T(x)|| \colon x \in S_X\} \text{ for } T \in \mathcal{L}(X, Y),$$

•  $\mathcal{K}(X,Y)$  compact linear operators from X to Y,

• 
$$X^* = \mathcal{L}(X, \mathbb{K})$$
 topological dual of  $X$ .

# Introducing the topic

Section 1

#### **1** Introducing the topic

- Notation
- Norm attaining functionals and operators

# Norm attaining functionals

#### Norm attaining functionals

 $x^* \in X^*$  attains its norm when

$$\exists x \in S_X : |x^*(x)| = ||x^*||$$

★ NA(X,  $\mathbb{K}$ ) = { $x^* \in X^* : x^*$  attains its norm}

#### First examples

- $\bullet \dim(X) < \infty \implies \operatorname{NA}(X, \mathbb{K}) = \mathcal{L}(X, \mathbb{K}) \text{ (Heine-Borel)}.$
- X reflexive  $\implies$  NA $(X, \mathbb{K}) = \mathcal{L}(X, \mathbb{K})$  (Hahn-Banach).
- X non-reflexive  $\implies$  NA $(X, \mathbb{K}) \neq \mathcal{L}(X, \mathbb{K})$  (James),
- but  $NA(X, \mathbb{K})$  always separates the points of X (Hahn-Banach).

• 
$$\operatorname{NA}(c_0, \mathbb{K}) = c_{00} \leqslant \ell_1$$

•  $\operatorname{NA}(\ell_1, \mathbb{K}) = \left\{ x \in \ell_\infty \colon \|x\|_\infty = \max_n\{|x(n)\} \right\} \leq \ell_\infty$ , not subspace, contains  $c_0$ ,

■  $NA(X, \mathbb{K})$  may contain no two-dimensional subspaces (Rmoutil, 2017).

#### Norm attaining operators

Norm attaining operators

 $T \in \mathcal{L}(X,Y)$  attains its norm when

 $\exists x \in S_X : ||T(x)|| = ||T||$ 

★ NA(X, Y) = { $T \in \mathcal{L}(X, Y)$ : T attains its norm}

#### First examples

- $\blacksquare \dim(X) < \infty \implies \operatorname{NA}(X, Y) = \mathcal{L}(X, Y) \text{ for every } Y \text{ (Heine-Borel)}.$
- $NA(X, Y) \neq \emptyset$  (Hahn-Banach),
- X reflexive  $\implies \mathcal{K}(X,Y) \subseteq \mathrm{NA}(X,Y)$  for every Y (by complete continuity),
- X non-reflexive  $\implies \mathcal{K}(X,Y) \nsubseteq \mathrm{NA}(X,Y)$  for any Y (James),
- $\dim(X) = \infty \implies \operatorname{NA}(X, c_0) \neq \mathcal{L}(X, c_0)$  (see M.-Merí-Payá, 2006).

# Preliminaries

Section 2

#### 2 Preliminaries

- Norm attaining operators
- Bishop-Phelps-Bollobás property

# Preliminaries

Section 2

#### 2 Preliminaries

- Norm attaining operators
- Bishop-Phelps-Bollobás property

# Bishop-Phelps theorem and the question of density of norm attaining operators

# Theorem (Bishop-Phelps, 1961)

Norm attaining functionals are dense in  $X^*$ (in the norm topology)

# Problem

# $i \overline{NA(X,Y)} = L(X,Y) ?$

- Lindenstrauss, Israel J. Math. (1963) started the study of this problem.
- The answer is Negative in general.
- For the study of this problem, Lindenstrauss introduced properties A and B.

## Lindenstrauss properties A and B

#### Definition

- X has property A if  $\overline{NA(X,Y)} = L(X,Y) \quad \forall Y.$
- Y has property **B** if  $\overline{NA(X,Y)} = L(X,Y) \quad \forall X$ .



#### First negative examples (Lindenstrauss)

- X separable with property A, then  $B_X$  is the closed convex hull of its strongly exposed points.
- $L_1[0,1]$  and  $C_0(L)$  (L infinite) fails property A.
- Y strictly convex containing  $c_0$  fails property B.

# Lindenstrauss properties A and B: further examples

Relationship with RNP (Bourgain, 1977 & Huff, 1980)

 $\blacksquare \mathsf{RNP} \implies \mathsf{A}$ 

 $\blacksquare X \text{ no RNP} \implies \exists X_1 \sim X \sim X_2 \ : \ \overline{NA(X_1, X_2)} \neq L(X_1, X_2)$ 

#### Examples (Gowers, 1990 & Acosta, 1999)

- (Gowers) Infinite-dimensional  $L_p(\mu)$  (1 ) spaces fail property B. $Squeezing, strictly convex spaces containing <math>\ell_p$  (1 ) fail property B.
- (Acosta) Infinite-dimensional strictly convex spaces fail property B.
- (Acosta) Infinite-dimensional  $L_1(\mu)$  spaces fail property B.

#### Compact operators (Martín, 2014)

Exist compact operators which cannot be approximated by norm attaining operators.

#### Main open question

Can finite-rank operators be approximated by norm attaining operators?

# Preliminaries

Section 2

#### 2 Preliminaries

- Norm attaining operators
- Bishop-Phelps-Bollobás property

# Bishop-Phelps-Bollobás theorem

# Theorem (Bishop-Phelps, 1961)

Norm attaining functionals are dense in  $X^*$ 

Bollobás contribution, 1970 Fix  $0 < \varepsilon < 2$ . If  $x_0 \in B_X$  and  $x_0^* \in B_{X^*}$  satisfy  $\operatorname{Re} x_0^*(x_0) > 1 - \varepsilon^2/2$ , there exist  $x \in S_X$ ,  $x^* \in S_{X^*}$  with  $x^*(x) = 1$ ,  $||x_0 - x|| < \varepsilon$ ,  $||x_0^* - x^*|| < \varepsilon$ .

(see Chica-Kadets-Martín-Moreno-Rambla 2014 for this version)

# Bishop-Phelps-Bollobás property

Bishop-Phelps-Bollobás property (Acosta-Aron-García-Maestre, 2008)

A pair of Banach spaces (X, Y) has the **Bishop-Phelps-Bollobás property (BPBp)** if given  $\varepsilon \in (0, 1)$  there is  $\eta(\varepsilon) > 0$  such that whenever

 $T_0 \in S_{L(X,Y)}, \quad x_0 \in S_X, \quad ||T_0 x_0|| > 1 - \eta(\varepsilon),$ 

there exist  $S \in L(X, Y)$  and  $x \in S_X$  such that

 $1 = ||S|| = ||Sx||, \qquad ||x_0 - x|| < \varepsilon, \qquad ||T_0 - S|| < \varepsilon.$ 

#### Observation

If (X, Y) has the BPBp  $\implies \overline{NA(X, Y)} = L(X, Y)$ .  $\bigstar$  Does this implication reverse? No

#### First examples

- There is  $Y_0$  such that  $(\ell_1, Y_0)$  fails BPBp.
- X, Y finite-dimensional, then (X, Y) has BPBp.
- Y with property  $\beta$  (example  $c_0 \leq Y \leq \ell_{\infty}$ ), then (X, Y) has BPBp  $\forall X$ .

# More examples

#### Pairs of classical spaces

- (Aron-Choi-García-Maestre, 2011)  $(L_1[0,1], L_{\infty}[0,1])$  has BPBp.
- (Acosta + 7)  $(C(K_1), C(K_2))$  has BPBp (in the real case).
- (Choi-Kim-Lee-Martín, 2014)  $(L_1(\mu), L_1(\nu))$  has BPBp.

### Other examples

- (Acosta-Becerra-García-Maestre, 2013; Kim-Lee, 2014) X uniformly convex  $\implies$  (X, Y) has BPBp for all Y.
- (Cascales-Guirao-Kadets, 2013) X Asplund  $\implies$  (X, A) has BPBp for every uniform algebra A (in particular,  $A = C_0(L)$  or  $A = A(\mathbb{D})$ ).
- (Choi-Kim, 2011)  $(L_1(\mu), Y)$  has the BPBp when Y has the RNP and the AHSP.
- (Kim-Lee, 2015) (C(K), Y) has the BPBp when Y is uniformly convex.
- (Acosta, 2016) (C(K), Y) has the BPBp when Y is uniformly complex convex (e.g. complex  $L_1(\mu)$ ).

# The BPB version of Lindenstrauss properties A and B

#### Universal BPB domain and range spaces

- X is a universal BPB domain space if (X, Y) has BPBp  $\forall Y$ .
- Y is a universal BPB range space if (X, Y) has BPBp  $\forall X$ .

#### Observations

- X universal BPB domain space  $\implies$  X has property A.
- Y universal BPB range space  $\implies$  Y has property B.
- Do these implications reverse? No:
  - $\bigstar$  There is  $\mathcal Y$  with property B such that  $(\ell_1^2,\mathcal Y)$  fails BPBp

(Aron-Choi-Kim-Lee-Martín, 2015).

#### Positive examples

- Uniformly convex spaces are universal BPB domain spaces.
- Property  $\beta$  implies being universal BPB range space.

These are, up to now, the only known positive examples.

#### Universal BPB domain spaces: some necessary conditions

### Theorem (Aron-Choi-Lim-Lee-Martín, 2015)

 $\boldsymbol{X}$  universal BPB domain space. Then,

- **1** (real case) no face of  $S_X$  contains a non-empty relatively open subset of  $S_X$ ;
- **2** if X is separable, then extreme points of  $B_X$  are dense in  $S_X$ ;
- **B** if X is superreflexive, then strongly exposed points of  $B_X$  are dense in  $S_X$ .
- In particular, if X is a real 2-dimensional Banach space which is a universal BPB domain space, then X is uniformly convex.

#### Question

Is uniformly convex every universal BPBp domain space ?

# Theorem (Aron-Choi-Kim-Lee-Martín, 2015)

X universal BPB domain space in every equivalent renorming  $\implies \dim X = 1.$ 

# The Bishop-Phelps-Bollobás point property

Section 3

#### 3 The Bishop-Phelps-Bollobás point property

- Definition and first results
- Universal BPBpp spaces
- BPBpp for compact operators

# The Bishop-Phelps-Bollobás point property

Section 3

# 3 The Bishop-Phelps-Bollobás point property Definition and first results Universal BPBpp spaces

BPBpp for compact operators

#### Definition

#### Recalling the Bishop-Phelps-Bollobás property

(X,Y) has the **BPBp** if given  $\varepsilon \in (0,1)$  there is  $\eta(\varepsilon) > 0$  such that whenever

 $T_0 \in S_{L(X,Y)}, \quad x_0 \in S_X, \quad ||T_0 x_0|| > 1 - \eta(\varepsilon),$ 

there exist  $S \in L(X, Y)$  and  $x \in S_X$  such that

 $1 = ||S|| = ||Sx||, \qquad ||x_0 - x|| < \varepsilon, \qquad ||T_0 - S|| < \varepsilon.$ 

Bishop-Phelps-Bollobás point property (Dantas-Kim-Lee, 2016)

(X,Y) has the **Bishop-Phelps-Bollobás point property (BPBpp)** if given  $\varepsilon \in (0,1)$  there is  $\widetilde{\eta}(\varepsilon) > 0$  such that whenever

$$T_0 \in S_{L(X,Y)}, \quad x_0 \in S_X, \quad ||T_0x_0|| > 1 - \widetilde{\eta}(\varepsilon),$$

there exists  $S \in L(X, Y)$  such that

$$1 = ||S|| = ||Sx_0||, \qquad ||T_0 - S|| < \varepsilon.$$

Obviously, BPBpp 
$$\implies$$
 BPBp.

Miguel Martín | University of Granada (Spain) | April 2017

#### First results

Bishop-Phelps-Bollobás point property (Dantas-Kim-Lee, 2016)

(X,Y) has the **BPBpp** if given  $\varepsilon \in (0,1)$  there is  $\widetilde{\eta}(\varepsilon) > 0$  such that whenever

$$T_0 \in S_{L(X,Y)}, \quad x_0 \in S_X, \quad ||T_0 x_0|| > 1 - \widetilde{\eta}(\varepsilon),$$

there exists  $S \in L(X, Y)$  such that

$$1 = ||S|| = ||Sx_0||, \qquad ||T_0 - S|| < \varepsilon.$$

#### Main known results (Dantas-Kim-Lee, 2016)

- $(X, \mathbb{K})$  has BPBpp  $\iff X$  is uniformly smooth,
- (X,Y) has BPBpp for some  $Y \implies X$  is uniformly smooth,
- Taking X with dim(X) = 2, uniformly smooth, not strictly convex, then there is Y such that (X, Y) fails BPBp and so BPBpp,
- H Hilbert space  $\implies$  (H, Y) has BPBpp for every Y,
- X uniformly smooth, Y property  $\beta$  or uniform algebra  $\implies$  (X,Y) has BPBpp,

• 
$$X = X_1 \oplus_1 X_2$$
 or  $X = X_1 \oplus_{\infty} X_2$ ,  $Y = Y_1 \oplus_1 Y_2$  or  $Y = Y_1 \oplus_{\infty} Y_2$ ,  
 $(X, Y)$  BPBpp  $\implies (X_i, Y_j)$  BPBpp.

# Some stability results

#### Domain spaces

 $X_1$  contractively complemented in X, (X, Y) BPBpp  $\implies (X_1, Y)$  BPBpp.

#### Question

Is the analogous result true for the BPBp or for the density of norm-attaining operators?

Range spaces (adaptation of a result of Dantas-García-Maestre-Martín)  $Y = Y_1 \oplus_a Y_2$  (absolute sum), (X, Y) BPBpp  $\implies (X, Y_j)$  BPBpp.

# The Bishop-Phelps-Bollobás point property

Section 3

# 3 The Bishop-Phelps-Bollobás point property Definition and first results Universal BPBpp spaces BPBpp for compact operators

# The BPBpp version of Lindenstrauss properties A and B

#### Universal BPBpp domain and range spaces

- X universal BPBpp domain space if (X, Y) has BPBpp  $\forall Y$ .
- Y universal BPBpp range space if (X, Y) has BPBpp  $\forall X$  uniformly smooth.

#### Observations

- X universal BPBpp domain space  $\implies$  X universal BPBp domain,
- Y universal BPBpp range space  $\implies$  Y universal BPBp range for uniformly smooth X's.
- Do these implications reverse?
  - We will show that the first question has a negative answer.

#### Positive examples

- Hilbert spaces are universal BPBpp domain spaces,
- property  $\beta$  and being uniform algebra implies being universal BPBpp range space.

#### Question

Are Hilbert spaces the only universal BPBpp domain spaces?

Miguel Martín | University of Granada (Spain) | April 2017

# Universal BPBpp domain spaces

#### An important property

If X is universal BPBpp domain space, then there is a universal function  $\widetilde{\eta}_X : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$  such that (X, Y) has BPBpp with  $\widetilde{\eta}_X$  for every Y.

#### Theorem

X universal BPBpp domain space  $\implies X$  uniformly convex.

#### Theorem

X universal BPBpp domain space, X isomorphic to a Hilbert space  $\implies \delta_X(\varepsilon) \ge C \varepsilon^2$ .

#### Consequence

 $L_p(\mu)$  is NOT a universal BPBpp domain space for p > 2.

#### Question

```
Is L_p(\mu) a universal BPBpp domain space for 1
```

# Universal BPBpp range spaces I

Some sufficient conditions (adaptation of Cascales-Guirao-Kadets-Soloviova) Y having  $ACK_{\rho}$ -structure  $\implies$  Y universal BPBpp range space. Examples:

- Spaces with property  $\beta$ ,
- uniform algebras (in particular, C(K) spaces),
- stability by finite injective tensor product,
- stability by C(K, Y),  $C_w(K, Y)$ , some vector-valued function algebras...

# Universal BPBpp range spaces II

#### Example

For  $p \ge 2 \exists X_p$  uniformly convex and uniformly smooth such that  $(X_p, \ell_p^2)$  fails BPBpp

#### Remarks on the example

- The pair  $(X_p, \ell_p^2)$  has the BPBp (as  $X_p$  is uniformly convex).
- It is also true that  $(X_p, \ell_p)$  fails BPBpp (but has BPBp), but, in this case, it is known that  $\ell_p$  fails Lindenstrauss property B.
- Recall that it is not known whether  $\ell_p^2$  has Lindenstrauss property B.
- It also shows that the BPBpp is not stable by finite  $\ell_p$ -sum of the range; it is not known if the analogous result for the BPBp is true.

# Universal BPBpp range spaces III

#### Example

 $\exists \ X \text{ uniformly smooth with } \dim(X) = 2 \text{ and a sequence } \{Y_n \colon n \in \mathbb{N}\} \text{ of polyhedral spaces such that}$ 

$$\widetilde{\eta}(X, Y_n)(\varepsilon) \longrightarrow 0 \quad \text{when } n \to \infty.$$

Consequences

Write

$$\mathcal{Y} = \left[ \bigoplus_{n \in \mathbb{N}} Y_n \right]_{c_0}$$
 and  $\mathcal{Z} = \left[ \bigoplus_{n \in \mathbb{N}} Y_n \right]_{\ell_{\infty}}$ 

then  $(X, \mathcal{Y})$  and  $(X, \mathcal{Z})$  fail the BPBpp.

Therefore:

Being universal BPBpp range space is NOT stable by  $c_0$  or  $\ell_\infty$  sums.

Property B (actually quasi- $\beta$ ) is NOT enough to be universal BPBpp range space.

# The Bishop-Phelps-Bollobás point property

Section 3

# 3 The Bishop-Phelps-Bollobás point property Definition and first results Universal BPBpp spaces

BPBpp for compact operators

# BPBpp for compact operators

Bishop-Phelps-Bollobás point property (Dantas-Kim-Lee, 2016)

(X,Y) has the Bishop-Phelps-Bollobás point property for compact operators (BPBpp-K) if given  $\varepsilon \in (0,1)$  there is  $\tilde{\eta}(\varepsilon) > 0$  such that whenever

 $T_0 \in S_{K(X,Y)}, \quad x_0 \in S_X, \quad ||T_0 x_0|| > 1 - \widetilde{\eta}(\varepsilon),$ 

there exist  $S \in K(X, Y)$  such that

$$1 = ||S|| = ||Sx_0||, \qquad ||T_0 - S|| < \varepsilon.$$

First examples (adapting proofs for all operators)

- H Hilbert  $\implies$  (H, Y) has BPBpp-K for every Y,
- Y having  $ACK_{\rho}$ -structure  $\implies (X, Y)$  BPBpp-K for every X uniformly convex,
- this include Y's with property  $\beta$ , Y uniform algebra...

# Results which are only for compact operators

For the BPBp-K -only one "p"- (Dantas-García-Maestre-Martín, 201?)

• X with a net of contractive projections  $\{P_{\alpha}\}$  with SOT  $-\lim P_{\alpha} = \operatorname{Id}_X$  and SOT  $-\lim P_{\alpha}^* = \operatorname{Id}_{X^*}$ . If all the pairs  $(P_{\alpha}(X), Y)$  have the BPBp-K with a common  $\eta \implies (X, Y)$  has BPBp-K.

• Y with a net of contractive projections  $\{Q_{\alpha}\}$  with SOT  $-\lim P_{\alpha} = \operatorname{Id}_{Y}$ . If all the pairs  $(X, Q_{\alpha}(Y))$  have the BPBp-K with a common  $\eta \implies (X, Y)$  has BPBp-K.

#### BPBpp-K for domain spaces

We do not know if the first part translated to the BPBpp-K.

#### BPBpp-K for range spaces

Y with a net of contractive projections  $\{Q_{\alpha}\}$  with SOT  $-\lim P_{\alpha} = \operatorname{Id}_{Y}$ . If all the pairs  $(X, Q_{\alpha}(Y))$  have the BPBpp-K with a common  $\eta \implies (X, Y)$  has BPBpp-K.

# Results which are only for compact operators II

#### BPBpp-K for range spaces

Y with a net of contractive projections  $\{Q_{\alpha}\}$  with SOT  $-\lim P_{\alpha} = \operatorname{Id}_{Y}$ . If all the pairs  $(X, Q_{\alpha}(Y))$  have the BPBpp-K with a common  $\eta \implies (X, Y)$  has BPBpp-K.

#### Consequences

- $1 \leq p < \infty$ ,  $(X, \ell_p(Y))$  BPBpp-K  $\implies (X, L_p(\mu, Y))$  BPBpp-K.
- (X, Y) BPBpp-K  $\implies (X, L_{\infty}(\mu, Y))$  BPBpp-K.
- (X,Y) BPBpp-K  $\implies$  (X,C(K,Y)) BPBpp-K.
- X uniformly convex, Y predual of  $L_1 \implies (X,Y)$  BPBpp-K.

# The dual property is not possible

Section 4

#### 4 The dual property is not possible

# A dual property

#### Recalling the BPBpp

(X,Y) has the **BPBpp** if given  $\varepsilon \in (0,1)$  there is  $\tilde{\eta}(\varepsilon) > 0$  such that whenever

$$T_0 \in S_{L(X,Y)}, \quad x_0 \in S_X, \quad ||T_0 x_0|| > 1 - \widetilde{\eta}(\varepsilon),$$

there exists  $S \in L(X, Y)$  such that  $1 = ||S|| = ||Sx_0||$ ,  $||T_0 - S|| < \varepsilon$ .

#### A possible dual property...

(X,Y) has property **(P)** iff given  $\varepsilon \in (0,1)$  there is  $\widehat{\eta}(\varepsilon) > 0$  such that whenever

$$T_0 \in S_{L(X,Y)}, \quad x_0 \in S_X, \quad ||T_0x_0|| > 1 - \widehat{\eta}(\varepsilon),$$

there exists  $x \in S_X$  such that  $||T_0x|| = 1$ ,  $||x_0 - x|| < \varepsilon$ .

- Introduced by Dantas in 2016, as an auxiliary definition to study an analogous property where  $\hat{\eta}$  depends on  $\varepsilon$  and on  $T_0$ ,
- in the same paper, it is shown that many pairs fail it,
- for  $Y = \mathbb{K}$ , it characterizes uniform convexity:

# Characterizing uniform convexity

#### A possible dual property...

(X,Y) has property (P) iff given  $\varepsilon \in (0,1)$  there is  $\widehat{\eta}(\varepsilon) > 0$  such that whenever

$$T_0 \in S_{L(X,Y)}, \quad x_0 \in S_X, \quad ||T_0 x_0|| > 1 - \widehat{\eta}(\varepsilon),$$

there exists  $x \in S_X$  such that  $||T_0x|| = 1$ ,  $||x_0 - x|| < \varepsilon$ .

#### Theorem (Kim-Lee, 2014)

X is uniformly convex iff  $(X, \mathbb{K})$  has property (P).

#### Observation

For  $X = \mathbb{K}$ , the property is trivial:

For every Y, the pair  $(\mathbb{K}, Y)$  has property (P).

#### Question

Are there more cases?

#### There are no more cases...

#### Theorem

```
\dim(X) > 1 and \dim(Y) > 1 \implies (X, Y) fails property (P).
```

• The proof reduces to the case of  $\dim(X) = \dim(Y) = 2$ :

#### Proposition

(X, Y) with property (P),  $X_0 \leq X$  and  $Y_0 \leq Y$  such that  $\dim(X/X_0) = \dim(Y_0) = 2$ .  $\implies (X_0, Y_0)$  has property (P).

even in this case, the proof is rather involved,

it needs to construct an operator  $T \in L(X, Y)$  such that  $T(B_X)$  has an special "position" in Y:

#### There are no more cases...

#### Proposition

If  $\dim(X) = \dim(Y) = 2$ , then there exists  $T \in L(X, Y)$  with ||T|| = 1 such that there are  $y_1, y_2 \in T(B_X) \cap S_Y$  and  $y_1^* \in S_{Y^*}$  such that

$$y_1^*(y_1) = 1$$
 and  $y_2 \notin [y_1^*]^{-1}(\{1, -1\}).$ 

Two cases: X is Hilbertian (use John's maximal ellipsoid); X is not Hilbertian (use Day's and Nordlander's theorems on the modulus of convexity of X).

#### Proposition

# X, Y 2-dimensional $\implies \exists \delta > 0$ and $(T_n) \subset L(X, Y)$ with $||T_n|| = 1, x_0 \in S_X$ with $||T_n(x_0)|| \longrightarrow 1$ $\operatorname{dist}(x_0, \{x \in S_X : ||T_nx|| = 1\}) \ge \delta.$

**Proof.** Take T from the previous proposition, write

$$x_0 = T^{-1}(y_2) \in S_X, \quad \delta = \operatorname{dist}(y_2, [y_1^*]^{-1}(\{1, -1\}), \quad P = y_1^* \otimes y_1 \in L(Y, Y).$$

We just have to define

$$T_n = \frac{n}{n+1}T + \frac{1}{n+1}PT \in L(X,Y).$$

Miguel Martín | University of Granada (Spain) | April 2017