The group of isometries of a Banach space and duality

Miguel Martín

http://www.ugr.es/local/mmartins

Seoul (Republic of Korea), November 2015

서울대학교 SEQUL NATIONAL UNIVERSITY

Introduction

Sección 1

- Introduction
 - Notation and objective
 - A previous attempt
 - Motivation
 - Summary

Basic notation and main objective

Notation

${\cal X}$ Banach space.

- $S_X = \{x \in X : ||x|| = 1\}$ unit sphere, $B_X = \{x \in X : ||x|| \leqslant 1\}$ closed unit ball.
- X* dual space.
- L(X) bounded linear operators.
- W(X) weakly compact linear operators.
- Iso(X) surjective (linear) isometries group.

Note

- $\bullet \ T: X \longrightarrow X \ \text{isometry} \quad \stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \|Tx Ty\| = \|x y\| \ \text{for all} \ x, y \in X.$
- (Mazur-Ulam) T surjective isometry, $T(0) = 0 \implies T$ linear.

Objective

Observation

In concrete non-reflexive Banach spaces X, it is usually easy to construct elements in $\operatorname{Iso}(X^*)$ which are not adjoins to members of $\operatorname{Iso}(X)$.

But, can the "size" of Iso(X) and $Iso(X^*)$ be very different ?

Yes, our objective is. . .

 \star Construct a Banach space X with "small" Iso(X) and "big" $Iso(X^*)$.

A previous attempt

M., 2008

There is X such that

- ullet Iso(X) does not contains uniformly continuous semigroups of isometries;
- $\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2)$ and, therefore, $\operatorname{Iso}(X^*)$ contains infinitely many uniformly continuous semigroups of isometries.
- ullet But $\mathrm{Iso}(X)$ contains infinitely many strongly continuous semigroups of isometries.

Question we are going to solve

Is is possible to produce a space X such that $\mathrm{Iso}(X^*) \supset \mathrm{Iso}(\ell_2)$ but $\mathrm{Iso}(X)$ is "small" (for instance, it does not contain strongly continuous semigroups) ?

X Banach space.

Autonomous linear dynamical system

One-parameter semigroup of operators

- $\Phi:\mathbb{R}^+_0\longrightarrow L(X) \text{ such that } \Phi(t+s)=\Phi(t)\Phi(s) \ \forall t,s\in\mathbb{R}^+_0 \text{, } \Phi(0)=\mathrm{Id}.$
 - Uniformly continuous: $\Phi: \mathbb{R}_0^+ \longrightarrow (L(X), \|\cdot\|)$ continuous.
 - Strongly continuous: $\Phi: \mathbb{R}_0^+ \longrightarrow (L(X), \mathrm{SOT})$ continuous.

Relationship (Hille-Yoshida, 1950's)

- Bounded case:
 - If $A \in L(X) \Longrightarrow \Phi(t) = \exp(t A)$ solution of (\diamondsuit) uniforly continuous.
 - Φ uniformly continuous $\Longrightarrow A = \Phi'(0) \in L(X)$ and Φ solution of (\diamondsuit) .
- Unbounded case:
 - Φ strongly continuous $\Longrightarrow A = \Phi'(0)$ closed and Φ solution of (\diamondsuit) .
 - If (\diamondsuit) has solution Φ strongly continuous $\Longrightarrow A = \Phi'(0)$ and $\Phi(t) = \text{``} \exp(t A)$ ".

What we are going to show

The example

we will construct X such that

$$Iso(X) = {\pm Id}$$

but

 $\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2).$

The main tools

- Extremely non-complex Banach spaces: spaces X such that $\|\operatorname{Id} + T^2\| = 1 + \|T^2\|$ for every $T \in L(X)$.
- Koszmider type compact spaces: topological compact spaces K such that C(K) has few operators.

The talk is based on the papers

P. Koszmider, M. Martín, and J. Merí. Extremely non-complex C(K) spaces. J. Math. Anal. Appl. (2009).

P. Koszmider, M. Martín, and J. Merí. Isometries on extremely non-complex Banach spaces. J. Inst. Math. Jussieu (2011).

M. Martín

The group of isometries of a Banach space and duality.

J. Funct. Anal. (2008).

Sketch of the talk

- Introduction
- Extremely non-complex Banach spaces: motivation and examples
- 3 Isometries on extremely non-complex spaces

Extremely non-complex Banach spaces: motivation and examples

Sección 2

- Extremely non-complex Banach spaces: motivation and examples
 - Complex structures
 - The first examples: C(K) spaces with few operators
 - ullet More C(K)-type examples
 - Further examples

Complex structures

Definition

X has complex structure if there is $T \in L(X)$ such that $T^2 = -\mathrm{Id}$.

Some remarks

• This gives a structure of vector space over \mathbb{C} :

$$(\alpha + i\beta) x = \alpha x + \beta T(x)$$
 $(\alpha + i\beta \in \mathbb{C}, x \in X)$

Defining

$$|\!|\!|x|\!|\!|=\max\bigl\{\|\mathrm{e}^{i\theta}x\|\ :\ \theta\in[0,2\pi]\bigr\}\qquad(x\in X)$$

one gets that $(X, \| \cdot \|)$ is a complex Banach space.

- ullet If T is an isometry, then the given norm of X is actually complex.
- ullet Conversely, if X is a complex Banach space, then

$$T(x) = i x \qquad (x \in X)$$

satisfies $T^2 = -Id$ and T is an isometry.

Complex structures II

Some examples

- If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.
- ② If $X \simeq Z \oplus Z$ (in particular, $X \simeq X^2$), then X has complex structure.
- There are infinite-dimensional Banach spaces without complex structure:
 - Dieudonné, 1952: the James' space \mathcal{J} (since $\mathcal{J}^{**} \equiv \mathcal{J} \oplus \mathbb{R}$).
 - Szarek, 1986: some uniformly convex examples.
 - Gowers-Maurey, 1993: their H.I. space (no H.I. has complex structure) .

Definition

X is extremely non-complex if $\operatorname{dist}(T^2, -\operatorname{Id})$ is the maximum possible, i.e.

$$\|\mathrm{Id} + T^2\| = 1 + \|T^2\| \qquad (T \in L(X))$$

Question (Gilles Godefroy, private communication, 2005)

Is there any $X \neq \mathbb{R}$ such that $\|\operatorname{Id} + T^2\| = 1 + \|T^2\|$ for every $T \in L(X)$?

Examples: C(K) spaces with few operators

Theorem (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all operators on C(K) are weak multipliers.

They are called weak Koszmider spaces.

Definition: weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$T^* = g \operatorname{Id} + S$$

where g is a Borel function and S is weakly compact.

Proposition

$$K \text{ perfect, } T \in L\big(C(K)\big) \text{ weak multiplier} \quad \Longrightarrow \quad \|\mathrm{Id} + T^2\| = 1 + \|T^2\|$$

Corollary

There are infinitely many non-isomorphic extremely non-complex spaces.

More C(K)-type examples

More $\overline{C(K)}$ type examples

There are perfect compact spaces K_1 , K_2 such that:

- ullet $C(K_1)$ and $C(K_2)$ are extremely non-complex,
- $C(K_1)$ contains a complemented copy of $C(\Delta)$.
- $C(K_2)$ contains a (1-complemented) isometric copy of ℓ_{∞} .

Observation

- $C(K_1)$ and $C(K_2)$ have operators which are not weak multipliers.
- They are decomposable spaces.

Further examples

Spaces $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$. Define

$$C_E(K||L) := \{ f \in C(K) : f|_L \in E \}.$$

Observation

$$C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$$

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$

 $\implies C_E(K||L)$ is extremely non-complex.

Isometries on extremely non-complex spaces

Sección 3

- 3 Isometries on extremely non-complex spaces
 - Isometries on extremely non-complex spaces
 - Isometries on extremely non-complex $C_E(K||L)$ spaces
 - The main example

Isometries on extremely non-complex spaces

Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}.$
- $\bullet \ T_1, T_2 \in \operatorname{Iso}(X) \implies T_1 T_2 = T_2 T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\Phi: \mathbb{R}_0^+ \longrightarrow \mathrm{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\mathrm{Id}\}.$

Consequences

- Iso(X) is a Boolean group with the composition.
- $\operatorname{Iso}(X)$ identifies with the set $\operatorname{Unc}(X)$ of unconditional projections on X:

$$P \in \mathsf{Unc}(X) \iff P^2 = P, \ 2P - \mathsf{Id} \in \mathsf{Iso}(X)$$

 $\iff P = \frac{1}{2}(\mathsf{Id} + T), \ T \in \mathsf{Iso}(X), \ T^2 = \mathsf{Id}.$

Extremely non-complex $C_E(K||L)$ spaces.

Remember

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$ $\implies C_E(K\|L)$ is extremely non-complex and $C_E(K\|L)^* \equiv E^* \oplus_1 C_0(K\|L)^*$.

Proposition

K perfect $\implies \exists \ L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.

A good example

Take K perfect weak Koszmider, $L\subset K$ closed nowhere dense with $E=\ell_2\subset C[0,1]\subset C(L)$:

- ullet $C_{\ell_2}(K\|L)$ has no non-trivial one-parameter semigroup of isometries.
- $C_{\ell_2}(K||L)^* \equiv \ell_2 \oplus_1 C_0(K||L)^* \implies \operatorname{Iso}(C_{\ell_2}(K||L)^*) \supset \operatorname{Iso}(\ell_2).$

But we are able to give a better result...

Isometries on extremely non-complex $C_E(K||L)$ spaces

Theorem (Banach-Stone like)

 $C_E(K||L)$ extremely non-complex, $T \in \operatorname{Iso}(C_E(K||L))$ \Longrightarrow exists $\theta: K \setminus L \longrightarrow \{-1,1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x)$$
 $(x \in K \setminus L, f \in C_E(K||L))$

Consequence: cases E=C(L) and E=0

- ullet C(K) extremely non-complex, $\varphi:K\longrightarrow K$ homeomorphism $\implies \varphi=\mathrm{id}$
- $C_0(K \setminus L) \equiv C_0(K || L)$ extremely non-complex, $\varphi : K \setminus L \longrightarrow K \setminus L$ homeomorphism $\implies \varphi = \mathrm{id}$

Consequence: connected case

If $K \setminus L$ is connected, then

$$\operatorname{Iso}(C_E(K||L)) = \{-\operatorname{Id}, +\operatorname{Id}\}\$$

The main example

Koszmider, 2004

 $\exists \mathcal{K}$ weak Koszmider space such that $\mathcal{K} \setminus F$ is connected if $|F| < \infty$.

Important observation on the construction above

There is $\mathcal{L} \subset \mathcal{K}$ closed and nowhere dense, with

- $\mathcal{K} \setminus \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

Consequence: the best example

Consider $X = C_{\ell_2}(\mathcal{K}||\mathcal{L})$. Then:

$$Iso(X) = \{-Id, +Id\}$$
 and

$$\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2)$$