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| Introduction

Some notation

Notation
X real or complex Banach space

BX closed unit ball

SX unit sphere

X∗ topological dual

y∗ ∈ X∗ attains its norm if there is y ∈ BX such that ‖y∗‖ = |y∗(y)|

Π(X ) = {(y , y∗) ∈ SX × SX∗ : y∗(y) = 1}

For (x , x∗) ∈ X × X∗ its distance to Π(X ) is

d
(
(x , x∗),Π(X )

)
= inf

{
max{‖x − y‖, ‖x∗ − y∗‖} : (y , y∗) ∈ Π(X )

}
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| Introduction

The starting point

A PROOF THAT EVERY BANACH SPACE IS 
SUBREFLEXIVE 

BY ERRETT BISHOP AND R. R. PHELPS 

Communicated by Mahlon M. Day, August 19, 1960 

A real or complex normed space is subreflexive if those functionals 
which attain their supremum on the unit sphere S of E are norm
dense in E*, i.e., if for each fin E* and each e>O there exist gin E* 
and x in S such that lg(x)I =llgll and llf-g¡¡ <e. There exist in
complete normed spaces which are not subreflexive [1] 1 as well as 
incomplete spaces which are subreflexive (e.g., a dense subspace of a 
Hilbert space). It is evident that every reflexive Banach space is sub
reflexive. The theorem mentioned in the title will be proved for real 
Banach spaces; the result for complex spaces follows from this by 
considering the spaces over the real field and using the known isome
try between complex functionals and the real functionals defined by 
their real parts. 

In other words. . .
Norm attaining funcionals are dense in X∗.
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| Introduction

The starting point

AN EXTENSION TO THE THEOREM OF BISHOP AND 

PHELPS 

BÉLA BOLLOBÁS 

Bishop and Phelps proved in [1] that every real or complex Banach space is 
subreflexive, that is the functionals (real or complex) which attain their supremum 
on the unit sphere of the space are dense in the dual space. We shall sharpen this 
result and then apply it to a problem about the numerical range of an operator. 

Denote by S and S' the unit spheres in a Banach space B and its dual space B', 

respectively. 

THEOREM l. Suppose x e S, fe S' and  If(x)- 11 � e2 /2 (O < e < !).  Then there 

exist yeS and geS' such that g(y) = l, llf-gll � e and llx-yll < e+e2
• 

This is nowadays known as the Bishop-Phelps-Bollobás theorem
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| Introduction

The starting point

AN EXTENSION TO THE THEOREM OF BISHOP AND 

PHELPS 

BÉLA BOLLOBÁS 

Bishop and Phelps proved in [1] that every real or complex Banach space is 
subreflexive, that is the functionals (real or complex) which attain their supremum 
on the unit sphere of the space are dense in the dual space. We shall sharpen this 
result and then apply it to a problem about the numerical range of an operator. 

Denote by S and S' the unit spheres in a Banach space B and its dual space B', 

respectively. 

THEOREM l. Suppose x e S, fe S' and  If(x)- 11 � e2 /2 (O < e < !).  Then there 

exist yeS and geS' such that g(y) = l, llf-gll � e and llx-yll < e+e2
• 

Our objective is to introduce two moduli which measure the best possible
Bishop-Phelps-Bollobás theorem in a concrete Banach space
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| Definitions and basic properties

Definitions
X Banach space, δ ∈ (0, 2)

Bishop-Phelps-Bollobás modulus
ΦX (δ) is the smallest ε > 0 such that given x ∈ BX , x∗ ∈ BX∗ with
Re x∗(x) > 1− δ, ∃(y , y∗) ∈ Π(X ) with ‖x − y‖< ε, ‖x∗ − y∗‖< ε

• ΦX (δ) = dH
(
Π(X ) , {(x , x∗) ∈ BX × BX∗ : Re x∗(x) > 1− δ}

)
Spherical Bishop-Phelps-Bollobás modulus
ΦS

X (δ) is the smallest ε > 0 such that given x ∈ SX , x∗ ∈ SX∗ with
Re x∗(x) > 1− δ, ∃(y , y∗) ∈ Π(X ) with ‖x − y‖< ε, ‖x∗ − y∗‖< ε

• ΦS
X (δ) = dH

(
Π(X ) , {(x , x∗) ∈ SX × SX∗ : Re x∗(x) > 1− δ}

)
Observation
The smaller are ΦX and ΦS

X , the better is the Bishop-Phelps-Bollobás theorem
in the space X
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| Definitions and basic properties

Basic properties

Properties of the moduli
ΦS

X (δ) 6 ΦX (δ) for all δ
ΦX and ΦS

X are non-decreasing functions
ΦX and ΦS

X are continuous on δ
Fixed δ, X 7−→ ΦX (δ) and X 7−→ ΦS

X (δ) are continuous (Banach-Mazur)
Consequence: if X1 and X2 are almost isometric,
then ΦX1(δ) = ΦX2(δ) and ΦS

X1
(δ) = ΦS

X2
(δ)

ΦX (δ) 6 ΦX∗ (δ) and ΦS
X (δ) 6 ΦS

X∗ (δ) for all δ

Miguel Martín (Granada) 10 / 24



| The upper bound of the moduli

The upper bound of the moduli

Miguel Martín (Granada) 11 / 24



| The upper bound of the moduli

The upper bound of the moduli

X Banach space, δ ∈ (0, 2). Then, ΦX (δ) 6
√
2δ (so, ΦS

X (δ) 6
√
2δ).

• In other words, given (x , x∗) ∈ BX × BX∗ with Re x∗(x) > 1− δ, there is
(y , y∗) ∈ Π(X ) with ‖x − y‖ <

√
2δ, ‖x∗ − y∗‖ <

√
2δ.

Idea of the Proof (for ΦS
X )

Phelps, 1974

6 R. R. PHELPS 

(C - x0) n Wf, k) = (0) readily implies that C, n C, = ((0, 0)), and 
hence C, misses the interior of C, . By the separation theorem, there 
exists a continuous linear functional F on E x R such that 

supF(C,) = 0 = infF(C,). 

Since (0, 1) is an interior point of C, , we must have F(0, 1) > 0; using 
the identification between (E x R)* and E* x R, this permits us to 
write 

F(x, r) = d.4 + y, (x, Y) E E x R 

for some g in E *. Now, if x E C, then (x - x,, , 0) E C, so that 0 > 
F(x - x0( , 0) = g(x) - g(x,,), and h ence g(q) = sup g(C). Furthermore, 
for every x we have (x, q(x)) E C, , so 0 < F(x, p)(x)) = g(x) + p)(x) 
and therefore 

--B(x) < P)(x) = k II x II -f(x)* 

This shows that /If - g 11 < k and the proof is complete. 
There are two rather technical corollaries to this lemma which turn 

out to be useful in applications. The first was suggested by the formula- 
tion used in [4], while the second is a sharpened form of Lemma 3 of [I]. 

COROLLARY 2.2. Suppose that C is a closed convex subset of the Banach 
space E, that f E E* has norm 1, and that E > 0 and z E C are such that 

Then for any 0 < k < 1 there exist g E E* and x,, E C such that sup g(C) = 
g(xo), 11x0 - ~11 < Elk and llf- gll < k. 

Proof. By Lemma 1.1 there exists x0 E C such that 

By Lemma 2.1 there exists g E E* such that sup g(C) = g(xo) and 
/If - g I/ < k. Finally, we have x0 - z E K(f, k) so that k // x0 - z 1) < 
f (x0) -f(z) < sup f (C) -f(z) < e and the proof is complete. 

COROLLARY 2.3. Suppose that E is a Banach space, that f, g E E* 
have norm one, and that 1 > E > 0. Ifg 2 0 on. K(f, E), then I( f - g (I < 2~. 

Use with C = BX , z = x , f = x∗,
ε = δ, k = δ√

2δ

Get y = x0 ∈ SX , g ∈ Y ∗ \ {0}
with ‖x − y‖ <

√
2δ,

‖x∗ − g‖ < δ√
2δ

y∗ = g/‖g‖, (y , y∗) ∈ Π(X)
‖x∗ − y∗‖
6 ‖x∗ − g‖+

∥∥g − g/‖g‖
∥∥

= ‖x∗ − g‖+
∣∣1− ‖g‖∣∣

6 2‖x∗ − g‖ <
√

2δ
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| The upper bound of the moduli

The best possible general Bishop-Phelps-Bollobás theorem

Bishop-Phelps-Bollobás Theorem
X Banach space, ε ∈ (0, 2). Given (x , x∗) ∈ BX × BX∗ with
Re x∗(x) > 1− ε2/2, there is (y , y∗) ∈ Π(X ) with ‖x − y‖ < ε, ‖x∗ − y∗‖ < ε.

This is best possible
The real space X = `

(2)
∞ satisfies ΦS

X (δ) = ΦX (δ) =
√
2δ for all δ ∈ (0, 2).

Indeed,

z = (1−
√
2δ, 1) ∈ SX z∗ =

(√
2δ
2 , 1−

√
2δ
2

)
∈ SX∗

satisfy Re z∗(z) = 1− δ and d
(
(z , z∗),Π(X )

)
=
√
2δ.
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| Examples

Hilbert spaces

Example

ΦR(δ) =
{
δ if 0 < δ 6 1√
δ − 1 + 1 if 1 < δ < 2

ΦS
R(δ) = 0 for every δ ∈ (0, 2).

Example
Let H be a Hilbert space of dimension over R greater than or equal to two.
Then:
(a) ΦS

H(δ) =
√
2−
√
4− 2δ for every δ ∈ (0, 2).

(b) For δ ∈ (0, 1], ΦH(δ) = max
{
δ,
√

2−
√
4− 2δ

}
.

For δ ∈ (1, 2), ΦH(δ) =
√
δ.
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| Examples

More examples

Proposition
X Banach space satisfying one of the following conditions:

X = Y ⊕1 Z
X∗ = V ⊕1 W and V ,W are not weak*-dense in X∗

in particular, X = Y ⊕∞ Z
then ΦS

X (δ) = ΦX (δ) =
√
2δ for δ ∈ (0, 1/2).

Examples
The above result applies to

1 L1(µ), L∞(µ), C(K ).
2 C∗-algebras with non-trivial center.
3 L(H)∗∗, but not known for K(H) or L(H).
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A picture of the moduli of the known examples

1 2

1

2

0

The value of ΦX (δ) for R, C, `(2)
∞

1 2

1

2

0

The value of ΦS
X (δ) for R, C, `(2)

∞
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| Relation with uniformly non-squareness

Relation with uniformly non-squareness

Theorem
If X is uniformly non-square, then ΦX (δ) <

√
2δ.

Remarks
X is uniformly non-square iff it does not contain almost isometric
copies of the real space `(2)

∞

X is uniformly non-square iff so is X∗

The result can be quantified, relating ΦX (δ) with a modulus of uniformly
non-squareness for small δ’s
The theorem reads also as: if ΦX (δ) =

√
2δ for some δ, then X contains

almost isometric copies of `(2)
∞ .

ΦX (δ) =
√
2δ iff ΦS

X (δ) =
√
2δ

We are going to prove the theorem in the finite-dimensional case.

Miguel Martín (Granada) 19 / 24



| Relation with uniformly non-squareness

Recalling the slide “The upper bound of the moduli”

X Banach space, δ ∈ (0, 2). Then, ΦX (δ) 6
√
2δ (so, ΦS

X (δ) 6
√
2δ).

• In other words, given (x , x∗) ∈ BX × BX∗ with Re x∗(x) > 1− δ, there is
(y , y∗) ∈ Π(X ) with ‖x − y‖ <

√
2δ, ‖x∗ − y∗‖ <

√
2δ.

Idea of the Proof (for ΦS
X )

Phelps, 1974

6 R. R. PHELPS 

(C - x0) n Wf, k) = (0) readily implies that C, n C, = ((0, 0)), and 
hence C, misses the interior of C, . By the separation theorem, there 
exists a continuous linear functional F on E x R such that 

supF(C,) = 0 = infF(C,). 

Since (0, 1) is an interior point of C, , we must have F(0, 1) > 0; using 
the identification between (E x R)* and E* x R, this permits us to 
write 

F(x, r) = d.4 + y, (x, Y) E E x R 

for some g in E *. Now, if x E C, then (x - x,, , 0) E C, so that 0 > 
F(x - x0( , 0) = g(x) - g(x,,), and h ence g(q) = sup g(C). Furthermore, 
for every x we have (x, q(x)) E C, , so 0 < F(x, p)(x)) = g(x) + p)(x) 
and therefore 

--B(x) < P)(x) = k II x II -f(x)* 

This shows that /If - g 11 < k and the proof is complete. 
There are two rather technical corollaries to this lemma which turn 

out to be useful in applications. The first was suggested by the formula- 
tion used in [4], while the second is a sharpened form of Lemma 3 of [I]. 

COROLLARY 2.2. Suppose that C is a closed convex subset of the Banach 
space E, that f E E* has norm 1, and that E > 0 and z E C are such that 

Then for any 0 < k < 1 there exist g E E* and x,, E C such that sup g(C) = 
g(xo), 11x0 - ~11 < Elk and llf- gll < k. 

Proof. By Lemma 1.1 there exists x0 E C such that 

By Lemma 2.1 there exists g E E* such that sup g(C) = g(xo) and 
/If - g I/ < k. Finally, we have x0 - z E K(f, k) so that k // x0 - z 1) < 
f (x0) -f(z) < sup f (C) -f(z) < e and the proof is complete. 

COROLLARY 2.3. Suppose that E is a Banach space, that f, g E E* 
have norm one, and that 1 > E > 0. Ifg 2 0 on. K(f, E), then I( f - g (I < 2~. 

If ΦX (δ) =
√
2δ and dim(X ) <∞, ∃x∗, g with∥∥x∗ − g/‖g‖

∥∥ = 2‖x∗ − g‖

Use with C = BX , z = x , f = x∗,
ε = δ, k = δ√

2δ

Get y = x0 ∈ SX , g ∈ Y ∗ \ {0}
with ‖x − y‖ <

√
2δ,

‖x∗ − g‖ < δ√
2δ

y∗ = g/‖g‖, (y , y∗) ∈ Π(X)∥∥x∗ − g/‖g‖
∥∥

6 ‖x∗ − g‖+
∥∥g − g/‖g‖

∥∥
= ‖x∗ − g‖+

∣∣1− ‖g‖∣∣
6 2‖x∗ − g‖ < 2δ√

2δ
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A way to find `(2)
∞

A sufficient condition
X Banach space, k ∈ (0, 1), exist x ∈ SX , y ∈ X with
‖x − y‖ = k and

∥∥∥x − y
‖y‖

∥∥∥ = 2k. Then, X contains (the real) `(2)
∞ .

Proof.

1 It is enough to find u, v ∈ SX such that
‖u + v‖ = ‖u − v‖ = 2.

2
∣∣1− ‖y‖∣∣ = k, so ‖y‖ = 1− k or
‖y‖ = 1 + k.

3 If ‖y‖ = 1− k, take u = y/(1− k),
v = (x − y)/k in SX

4 If ‖y‖ = 1 + k, take u = y/(1 + k),
v = (y − x)/k in SX

If dim(X ) =∞, either use limits or
ultrapowers

y
‖y‖

u

v

x

k

2kk

y
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Containing `(2)
∞ is not enough

Example
Fix δ ∈ (0, 2). Let Xδ such that BX is the
absolutely convex hull of

(0, 0, 34 ), (1− ε, 1, ε2 ), (1− ε,−1, ε2 ),

(ε− 1, 1, ε2 ), (ε− 1,−1, ε2 ), (1, 1− ε, ε2 ),

(−1, 1− ε, ε2 ), (1, ε− 1, ε2 ),

(−1, ε− 1, ε2 ), (1, 1, 0), (1,−1, 0).

where ε =
√
2δ.

Then, Xδ contains `(2)
∞ isometrically but ΦXδ

(δ) <
√
2δ
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Final remarks and open problems

Remark
It is possible to get a modulus which depends on the norm of points and
functionals which is more accurate than the general one.

It is possible to get the minimum value which is valid for all Banach spaces,
It has been calculated for Hilbert spaces, L1(µ), C(K ). . .

Open problems
1 Calculate or estimate the moduli for other spaces like Lp(µ)
2 Find a lower bound of the moduli valid for all Banach spaces with

dimension greater than or equal to two
3 Can we get the same consequences if we just study the behaviour of the

moduli close to 0?
For instance, does X contain `(2)

∞ if lim sup
δ→0

ΦX (δ)√
2δ

= 1?
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