Bishop-Phelps-Bollobás version of Lindenstrauss properties A and B

Miguel Martín

http://www.ugr.es/local/mmartins

Valencia, December 2014

XIII Encuentro de Análisis Funcional Murcia-Valencia Celebrando el 70 cumpleaños de Richard M. Aron TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000–000 S 0002-9947(XX)0000-0

THE BISHOP-PHELPS-BOLLOBÁS VERSION OF LINDENSTRAUSS PROPERTIES A AND B

RICHARD ARON, YUN SUNG CHOI, SUN KWANG KIM, HAN JU LEE, AND MIGUEL MARTÍN

Dedicated to the memory of Joram Lindenstrauss and Robert Phelps

ABSTRACT. We study a Bishop-Phelps-Bollobás version of Lindenstrauss properties A and B. For domain spaces, we study Banach spaces X such that (X, Y) has the Bishop-Phelps-Bollobás property (BPBp) for every Banach space Y. We show that in this case, there exists a universal function $\eta_X(\varepsilon)$ such that for every Y, the pair (X, Y) has the BPBp with this function. This allows us to prove some necessary isometric conditions for X to have the property. We also prove that if X has this property in every equivalent norm, then X is one-dimensional. For range spaces, we study Banach spaces Y such that (X, Y) has the Bishop-Phelps-Bollobás property for every Banach space X. In this case, we show that there is a universal function $\eta_Y(\varepsilon)$ such that for every X, the pair (X, Y) has the BPBp with this function. This implies that this property of Y is strictly stronger than Lindenstrauss property B. The main tool to get these results is the study of the Bishop-Phelps-Bollobás property for α_{0^-} , ℓ_{1^-} and ℓ_{∞} -sums of Banach spaces.

Preliminaries: Lindenstrauss world

2 Preliminaries: Bishop-Phelps-Bollobás world

The results 3

Preliminaries: Lindenstrauss world

Sección 1

Preliminaries: Lindenstrauss world

- Bishop-Phelps theorem
- Norm attaining operators
- Lindenstrauss properties A and B

Bishop-Phelps theorem

Norm attaining functionals

X real or complex Banach space

 $B_X = \{x \in X : ||x|| \leq 1\}$ $S_X = \{x \in X : ||x|| = 1\}$ X^* dual of X

 $||x^*|| = \sup \{ |x^*(x)| : x \in B_X \} \quad (x^* \in X^*)$

 x^* attains its norm when this supremum is a maximum: $\exists \ x \in S_X$: $|x^*(x)| = \|x^*\|$

Theorem (E. Bishop & R. Phelps, 1961)

Norm attaining functionals are dense in X^* (in the norm topology)

Lindenstrauss: Norm attaining operators

Norm attaining operator

X, Y Banach spaces, L(X, Y) (bounded linear) operators

$$||T|| = \sup\{||Tx|| : x \in B_X\} \quad (T \in L(X, Y))$$

T attains its norm when this supremum is a maximum:

 $T \in NA(X,Y) \iff \exists x \in S_X : ||Tx|| = ||T||$

Problem

$i \overline{NA(X,Y)} = L(X,Y) ?$

• J. Lindenstrauss, Israel J. Math. (1963) started the study of this problem.

- The answer is **Negative** in general.
- For the study of this problem, Lindenstrauss introduced properties A and B.

Lindenstrauss properties A and B

Definition

- X has property A if $\overline{NA(X,Y)} = L(X,Y) \quad \forall Y.$
- Y has property B if $\overline{NA(X,Y)} = L(X,Y) \quad \forall X.$

First positive examples (Lindenstrauss)

- Reflexive spaces have property A.
- ℓ_1 has property A (property α).
- If $c_0 \subset Y \subset \ell_{\infty}$ or Y finite dimensional and polyhedral,
 - \implies Y has property B (property β).

First negative examples (Lindenstrauss)

- $L_1[0,1]$ and $C_0(L)$ (L infinite) fails property A.
- Y strictly convex containing c_0 fails property B.

Lindenstrauss properties A and B: further examples

Relationship with RNP (J. Bourgain, 1977 & R. Huff, 1980)

• RNP
$$\implies$$
 A

• X no RNP $\implies \exists X_1 \sim X \sim X_2 : \overline{NA(X_1, X_2)} \neq L(X_1, X_2)$

W. Gowers, 1990 & M. D. Acosta, 1999

- (Gowers) Infinite-dimensional $L_p(\mu)$ $(1 spaces fail property B. Squeezing, strictly convex spaces containing <math>\ell_p$ (1 fail property B.
- (Acosta) Infinite-dimensional strictly convex spaces fail property B.
- (Acosta) Infinite-dimensional $L_1(\mu)$ spaces fail property B.

A pair of classical spaces (W. Schachermayer, 1983)

 $NA(L_1[0,1], C[0,1])$ is not dense in $L(L_1[0,1], C[0,1])$

Miguel Martín (Granada)

Preliminaries: Bishop-Phelps-Bollobás world

Sección 2

Preliminaries: Bishop-Phelps-Bollobás world

- Bishop-Phelps-Bollobás theorem
- Bishop-Phelps-Bollobás property
- Universal BPB spaces

Bishop-Phelps-Bollobás theorem

Theorem (E. Bishop & R. Phelps, 1961)

Norm attaining functionals are dense in X^*

B. Bollobás contribution, 1970

Fix $0 < \varepsilon < 2$.

If $x_0 \in B_X$ and $x_0^* \in B_{X^*}$ satisfy $\operatorname{Re} x_0^*(x_0) > 1 - \varepsilon^2/2$,

there exist $x \in S_X$, $x^* \in S_{X^*}$ with

 $x^*(x) = 1,$ $||x_0 - x|| < \varepsilon,$ $||x_0^* - x^*|| < \varepsilon.$

(see Chica-Kadets-Martín-Moreno-Rambla 2014 for this version)

Bishop-Phelps-Bollobás property

Bishop-Phelps-Bollobás property (M. Acosta, R. Aron, D. García & M. Maestre, 2008)

A pair of Banach spaces (X, Y) has the **Bishop-Phelps-Bollobás property** if given $\varepsilon \in (0, 1)$ there is $\eta(\varepsilon) > 0$ such that whenever

 $T_0 \in S_{L(X,Y)}, \quad x_0 \in S_X, \quad ||T_0 x_0|| > 1 - \eta(\varepsilon),$

there exist $S \in L(X, Y)$ and $x \in S_X$ such that

 $1 = ||S|| = ||Sx||, \qquad ||x_0 - x|| < \varepsilon, \qquad ||T_0 - S|| < \varepsilon.$

Observation

If (X, Y) has the BPBp $\implies \overline{NA(X, Y)} = L(X, Y)$. \bigstar Does this implication reverse? No

First examples

- There is Y_0 such that (ℓ_1, Y_0) fails BPBp.
- X, Y finite-dimensional, then (X, Y) has BPBp.
- Y with property β (example $c_0 \leq Y \leq \ell_{\infty}$), then (X, Y) has BPBp $\forall X$.

More examples

Pairs of classical spaces

- (Aron-Choi-García-Maestre, 2011) $(L_1[0,1], L_{\infty}[0,1])$ has BPBp.
- (Acosta + 7) $(C(K_1), C(K_2))$ has BPBp (in the real case).
- (Choi-Kim-Lee-Martín, 2014) $(L_1(\mu), L_1(\nu))$ has BPBp.

Other examples

- (Acosta + 3, 2013; Kim-Lee, 2014) X uniformly convex, then (X, Y) has BPBp for all Y.
- (Cascales-Guirao-Kadets, 2013) X Asplund, then (X, A) has BPBp for every uniform algebra A (in particular, $A = C_0(L)$ or $A = A(\mathbb{D})$).
- (Choi-Kim, 2011) $(L_1(\mu), Y)$ has the BPBp when Y has the RNP and the AHSP.
- (Kim-Lee, 2015) (C(K), Y) has the BPBp when Y is uniformly convex.
- (Acosta, 201?) (C(K), Y) has the BPBp when Y is uniformly complex convex (e.g. complex $L_1(\mu)$).

The BPB version of Lindenstrauss properties A and B

Universal BPB domain and range spaces

- X is a universal BPB domain space if (X, Y) has BPBp $\forall Y$.
- Y is a universal BPB range space if (X, Y) has BPBp $\forall X$.

Observations

- X universal BPB domain space \implies X has property A.
- This implication does not reverse: ℓ_1 is not a universal BPB domain space. Evenmore, ℓ_1^2 fails to be a universal BPB domain space (we'll see later).
- Y universal BPB range space \implies Y has property B.
- Does this implication reverse? No, as we will see later.

Examples

- Uniformly convex spaces are universal BPB domain spaces.
- \bullet Property β implies being universal BPB range space.

These are, up to now, the only known examples.

The results

Sección 3

3 The results

- The tools
- Results on universal BPB domain spaces
- Results on universal BPB range spaces

The results The tools

The best function for the BPBp

A pair of Banach spaces (X, Y) has the **Bishop-Phelps-Bollobás property** if given $\varepsilon \in (0, 1)$ there is $\eta(\varepsilon) > 0$ such that whenever

$$T_0 \in S_{L(X,Y)}, \quad x_0 \in S_X, \quad ||T_0 x_0|| > 1 - \eta(\varepsilon),$$

there exist $S \in L(X, Y)$ and $x \in S_X$ such that

$$1 = ||S|| = ||Sx||, \qquad ||x_0 - x|| < \varepsilon, \qquad ||T_0 - S|| < \varepsilon.$$

In this case, (X, Y) has the **BPBp** with the function $\varepsilon \mapsto \eta(\varepsilon)$.

We write $\eta(X,Y)(\varepsilon)$ for the best (the greatest) function η that we may use in the definition of BPBp. Equivalently,

$$\eta(X,Y)(\varepsilon) = \inf \Big\{ 1 - \|T\| : x \in S_X, \ T \in S_{L(X,Y)}, \ \operatorname{dist}\Big((x,T), \Pi(X,Y)\Big) \geqslant \varepsilon \Big\},$$

•
$$\Pi(X,Y) = \{(x,S) : \|Sx\| = \|S\| = \|x\| = 1\},\$$

• dist
$$((x,T),\Pi(X,Y))$$
 = inf $\{\max\{\|x-y\|,\|T-S\|\} : (y,S) \in \Pi(X,Y)\}$

(X, Y) has BPBp iff $\eta(X, Y)(\varepsilon) > 0$ for every $\varepsilon \in (0, 1)$

Miguel Martín (Granada)

The results

The tools

BPB property and direct sums

=

Theorem

 $\{X_i : i \in I\}, \{Y_i : j \in J\}$ families of Banach spaces; let X be the c_0 -, ℓ_1 -, or ℓ_∞ -sum of $\{X_i\}$ and let Y be the c_0 -, ℓ_1 -, or ℓ_∞ -sum of $\{Y_i\}$.

$$\Rightarrow \qquad \eta(X,Y) \leqslant \eta(X_i,Y_j) \qquad \left(i \in I, \ j \in J\right).$$

Recent extension (Dantas)

The result extends to arbitrary absolute sums of range spaces and to some absolute sums of domain spaces.

Main consequence

- **Q** X universal BPB domain space, then there exists $\eta^X : (0,1) \longrightarrow \mathbb{R}^+$ such that $\eta(X, Z) \ge \eta^X$ for every Banach space Z.
- **2** Y universal BPB range space, then there exists $\eta_Y: (0,1) \longrightarrow \mathbb{R}^+$ such that $\eta(Z,Y) \ge \eta_Y$ for every Banach space Z.

Universal BPB domain spaces: necessary conditions

Theorem

- \boldsymbol{X} universal BPB domain space. Then,
 - (real case) no face of S_X contains a non-empty relatively open subset of S_X ;
 - **2** if X is isomorphic to a strictly convex Banach space, then extreme points of B_X are dense in S_X ;
 - \bigcirc if X is superreflexive, then strongly exposed points of B_X are dense in S_X .
 - In particular, if X is a real 2-dimensional Banach space which is a universal BPB domain space, then X is uniformly convex.
 - **(9)** More in particular, ℓ_1^2 is not a universal BPB domain space.

It was proved by Kim-Lee (2015) under the assumption of the existence of a "universal" function η^X , now unnecessary.

Open question

X universal BPB domain space $\implies X$ uniformly convex ?

Miguel Martín (Granada)

Universal BPB domain spaces: renorming

Theorem	
X universal BPB domain space in every equivalent renorming $\implies \dim X =$	= 1.
This comes from	
Lemma	
$X = X_1 \oplus_1 X_2$, Y strictly convex. If (X, Y) has the BPBp \implies Y uniformly convext.	onvex.

Other consequences of the Lemma

- ℓ_1^2 is not a universal BPB domain space
- There exists $X \simeq \ell_2$ such that (X, X) fails the BPBp (just take $X = \ell_1^2 \oplus_1 Y$ where $Y \simeq \ell_2$ strictly convex not uniformly convex.)

Universal BPB range spaces: a counterexample

Main result on range spaces

Lindenstrauss property B does not imply being a universal BPB range space.

This comes from...

Example

For $k \in \mathbb{N}$, consider $Y_k = \mathbb{R}^2$ endowed with the norm

 $||(x,y)|| = \max\{|x|, |y| + \frac{1}{k}|x|\} \quad (x, y \in \mathbb{R}).$

- Y_k is polyhedral and so it is a universal BPB range space.
- $\inf_{k \in \mathbb{N}} \eta(\ell_1^2, Y_k)(\varepsilon) = 0$ for $0 < \varepsilon < 1/2$.
- Therefore, if we consider $\mathcal{Y} = \Big[\bigoplus_{i=1}^{} Y_k \Big]_{c_0}$, then (ℓ_1^2, \mathcal{Y}) fails the BPBp.
- On the other hand, \mathcal{Y} has Lindenstrauss property B (it has property quasi- β).