Bishop-Phelps-Bollobás version of Lindenstrauss properties A and B

Miguel Martín
http://www.ugr.es/local/mmartins

Valencia, December 2014
XIII Encuentro de Análisis Funcional Murcia-Valencia
Celebrando el 70 cumpleaños de Richard M. Aron

THE BISHOP-PHELPS-BOLLOBÁS VERSION OF LINDENSTRAUSS PROPERTIES A AND B

RICHARD ARON, YUN SUNG CHOI, SUN KWANG KIM, HAN JU LEE, AND MIGUEL MARTÍN

Dedicated to the memory of Joram Lindenstrauss and Robert Phelps

Abstract. We study a Bishop-Phelps-Bollobás version of Lindenstrauss properties A and B. For domain spaces, we study Banach spaces X such that (X, Y) has the Bishop-Phelps-Bollobás property (BPBp) for every Banach space Y. We show that in this case, there exists a universal function $\eta_{X}(\varepsilon)$ such that for every Y, the pair (X, Y) has the BPBp with this function. This allows us to prove some necessary isometric conditions for X to have the property. We also prove that if X has this property in every equivalent norm, then X is one-dimensional. For range spaces, we study Banach spaces Y such that (X, Y) has the Bishop-Phelps-Bollobás property for every Banach space X. In this case, we show that there is a universal function $\eta_{Y}(\varepsilon)$ such that for every X, the pair (X, Y) has the BPBp with this function. This implies that this property of Y is strictly stronger than Lindenstrauss property B. The main tool to get these results is the study of the Bishop-Phelps-Bollobás property for $c_{0^{-}}, \ell_{1}-$ and $\ell_{\infty^{-}}$-sums of Banach spaces.
(1) Preliminaries: Lindenstrauss world
(2) Preliminaries: Bishop-Phelps-Bollobás world
(3) The results

Preliminaries: Lindenstrauss world

Sección 1

(1) Preliminaries: Lindenstrauss world

- Bishop-Phelps theorem
- Norm attaining operators
- Lindenstrauss properties A and B

Bishop-Phelps theorem

Norm attaining functionals

X real or complex Banach space

$$
\begin{gathered}
B_{X}=\{x \in X:\|x\| \leqslant 1\} \quad S_{X}=\{x \in X:\|x\|=1\} \quad X^{*} \text { dual of } X \\
\left\|x^{*}\right\|=\sup \left\{\left|x^{*}(x)\right|: x \in B_{X}\right\} \quad\left(x^{*} \in X^{*}\right)
\end{gathered}
$$

x^{*} attains its norm when this supremum is a maximum: $\exists x \in S_{X}:\left|x^{*}(x)\right|=\left\|x^{*}\right\|$

Theorem (E. Bishop \& R. Phelps, 1961)

Norm attaining functionals are dense in X^{*} (in the norm topology)

Lindenstrauss: Norm attaining operators

Norm attaining operator

X, Y Banach spaces, $L(X, Y)$ (bounded linear) operators

$$
\|T\|=\sup \left\{\|T x\|: x \in B_{X}\right\} \quad(T \in L(X, Y))
$$

T attains its norm when this supremum is a maximum:

$$
T \in N A(X, Y) \Longleftrightarrow \exists x \in S_{X}:\|T x\|=\|T\|
$$

Problem

$$
¿ \overline{N A(X, Y)}=L(X, Y) ?
$$

- J. Lindenstrauss, Israel J. Math. (1963) started the study of this problem.
- The answer is Negative in general.
- For the study of this problem, Lindenstrauss introduced properties A and B.

Lindenstrauss properties A and B

Definition

- X has property A if $\overline{N A(X, Y)}=L(X, Y) \quad \forall Y$.
- Y has property B if $\overline{N A(X, Y)}=L(X, Y) \quad \forall X$.

First positive examples (Lindenstrauss)

- Reflexive spaces have property A.
- ℓ_{1} has property A (property α).
- If $c_{0} \subset Y \subset \ell_{\infty}$ or Y finite dimensional and polyhedral, $\Longrightarrow \quad Y$ has property B (property β).

First negative examples (Lindenstrauss)

- $L_{1}[0,1]$ and $C_{0}(L)$ (L infinite) fails property A.
- Y strictly convex containing c_{0} fails property B .

Lindenstrauss properties A and B : further examples

Relationship with RNP (J. Bourgain, 1977 \& R. Huff, 1980)

- RNP $\Longrightarrow A$
- X no RNP $\Longrightarrow \exists X_{1} \sim X \sim X_{2}: \overline{N A\left(X_{1}, X_{2}\right)} \neq L\left(X_{1}, X_{2}\right)$

W. Gowers, 1990 \& M. D. Acosta, 1999

- (Gowers) Infinite-dimensional $L_{p}(\mu)(1<p<\infty)$ spaces fail property B. Squeezing, strictly convex spaces containing $\ell_{p}(1<p<\infty)$ fail property B.
- (Acosta) Infinite-dimensional strictly convex spaces fail property B.
- (Acosta) Infinite-dimensional $L_{1}(\mu)$ spaces fail property \mathbf{B}.

A pair of classical spaces (W. Schachermayer, 1983)

$$
N A\left(L_{1}[0,1], C[0,1]\right) \text { is not dense in } L\left(L_{1}[0,1], C[0,1]\right)
$$

Preliminaries: Bishop-Phelps-Bollobás world

Sección 2

(2) Preliminaries: Bishop-Phelps-Bollobás world

- Bishop-Phelps-Bollobás theorem
- Bishop-Phelps-Bollobás property
- Universal BPB spaces

Bishop-Phelps-Bollobás theorem

Theorem (E. Bishop \& R. Phelps, 1961)

Norm attaining functionals are dense in X^{*}

B. Bollobás contribution, 1970

Fix $0<\varepsilon<2$.
If $x_{0} \in B_{X}$ and $x_{0}^{*} \in B_{X^{*}}$ satisfy $\operatorname{Re} x_{0}^{*}\left(x_{0}\right)>1-\varepsilon^{2} / 2$, there exist $x \in S_{X}, x^{*} \in S_{X^{*}}$ with

$$
x^{*}(x)=1, \quad\left\|x_{0}-x\right\|<\varepsilon, \quad\left\|x_{0}^{*}-x^{*}\right\|<\varepsilon .
$$

(see Chica-Kadets-Martín-Moreno-Rambla 2014 for this version)

Bishop-Phelps-Bollobás property

Bishop-Phelps-Bollobás property (M. Acosta, R. Aron, D. García \& M. Maestre, 2008)

A pair of Banach spaces (X, Y) has the Bishop-Phelps-Bollobás property if given $\varepsilon \in(0,1)$ there is $\eta(\varepsilon)>0$ such that whenever

$$
T_{0} \in S_{L(X, Y)}, \quad x_{0} \in S_{X}, \quad\left\|T_{0} x_{0}\right\|>1-\eta(\varepsilon)
$$

there exist $S \in L(X, Y)$ and $x \in S_{X}$ such that

$$
1=\|S\|=\|S x\|, \quad\left\|x_{0}-x\right\|<\varepsilon, \quad\left\|T_{0}-S\right\|<\varepsilon
$$

Observation

If (X, Y) has the BPBp $\Longrightarrow \overline{N A(X, Y)}=L(X, Y)$.
\star Does this implication reverse? No

First examples

- There is Y_{0} such that $\left(\ell_{1}, Y_{0}\right)$ fails BPBp.
- X, Y finite-dimensional, then (X, Y) has BPBp.
- Y with property β (example $c_{0} \leqslant Y \leqslant \ell_{\infty}$), then (X, Y) has BPBp $\forall X$.

More examples

Pairs of classical spaces

- (Aron-Choi-García-Maestre, 2011) $\left(L_{1}[0,1], L_{\infty}[0,1]\right)$ has BPBp.
- (Acosta +7$)\left(C\left(K_{1}\right), C\left(K_{2}\right)\right)$ has BPBp (in the real case).
- (Choi-Kim-Lee-Martín, 2014) $\left(L_{1}(\mu), L_{1}(\nu)\right)$ has BPBp.

Other examples

- (Acosta +3 , 2013; Kim-Lee, 2014) X uniformly convex, then (X, Y) has BPBp for all Y.
- (Cascales-Guirao-Kadets, 2013) X Asplund, then (X, A) has BPBp for every uniform algebra A (in particular, $A=C_{0}(L)$ or $A=A(\mathbb{D})$).
- (Choi-Kim, 2011) $\left(L_{1}(\mu), Y\right)$ has the BPBp when Y has the RNP and the AHSP.
- (Kim-Lee, 2015) $(C(K), Y)$ has the BPBp when Y is uniformly convex.
- (Acosta, 201?) $(C(K), Y)$ has the BPBp when Y is uniformly complex convex (e.g. complex $\left.L_{1}(\mu)\right)$.

The BPB version of Lindenstrauss properties A and B

Universal BPB domain and range spaces

- X is a universal BPB domain space if (X, Y) has BPBp $\forall Y$.
- Y is a universal BPB range space if (X, Y) has BPBp $\forall X$.

Observations

- X universal BPB domain space $\Longrightarrow X$ has property A.
- This implication does not reverse: ℓ_{1} is not a universal BPB domain space.

Evenmore, ℓ_{1}^{2} fails to be a universal BPB domain space (we'll see later).

- Y universal BPB range space $\Longrightarrow Y$ has property B.
- Does this implication reverse? No, as we will see later.

Examples

- Uniformly convex spaces are universal BPB domain spaces.
- Property β implies being universal BPB range space.

These are, up to now, the only known examples.

The results

Sección 3

(3) The results

- The tools
- Results on universal BPB domain spaces
- Results on universal BPB range spaces

The best function for the BPBp

Bishop-Phelps-Bollobás property (Acosta, Aron, García, Maestre, 2008)

A pair of Banach spaces (X, Y) has the Bishop-Phelps-Bollobás property if given $\varepsilon \in(0,1)$ there is $\eta(\varepsilon)>0$ such that whenever

$$
T_{0} \in S_{L(X, Y)}, \quad x_{0} \in S_{X}, \quad\left\|T_{0} x_{0}\right\|>1-\eta(\varepsilon)
$$

there exist $S \in L(X, Y)$ and $x \in S_{X}$ such that

$$
1=\|S\|=\|S x\|, \quad\left\|x_{0}-x\right\|<\varepsilon, \quad\left\|T_{0}-S\right\|<\varepsilon
$$

In this case, (X, Y) has the BPBp with the function $\varepsilon \longmapsto \eta(\varepsilon)$.

The best BPBp function

We write $\eta(X, Y)(\varepsilon)$ for the best (the greatest) function η that we may use in the definition of BPBp. Equivalently,

$$
\eta(X, Y)(\varepsilon)=\inf \left\{1-\|T\|: x \in S_{X}, T \in S_{L(X, Y)}, \operatorname{dist}((x, T), \Pi(X, Y)) \geqslant \varepsilon\right\}
$$

- $\Pi(X, Y)=\{(x, S):\|S x\|=\|S\|=\|x\|=1\}$,
- dist $((x, T), \Pi(X, Y))=\inf \{\max \{\|x-y\|,\|T-S\|\}:(y, S) \in \Pi(X, Y)\}$.

$$
(X, Y) \text { has BPBp iff } \eta(X, Y)(\varepsilon)>0 \text { for every } \varepsilon \in(0,1)
$$

BPB property and direct sums

Theorem

$\left\{X_{i}: i \in I\right\},\left\{Y_{j}: j \in J\right\}$ families of Banach spaces;
let X be the $c_{0^{-}}, \ell_{1^{-}}$, or ℓ_{∞}-sum of $\left\{X_{i}\right\}$ and let Y be the $c_{0^{-}}, \ell_{1^{-}}$, or ℓ_{∞}-sum of $\left\{Y_{j}\right\}$.

$$
\Longrightarrow \quad \eta(X, Y) \leqslant \eta\left(X_{i}, Y_{j}\right) \quad(i \in I, j \in J)
$$

Recent extension (Dantas)

The result extends to arbitrary absolute sums of range spaces and to some absolute sums of domain spaces.

Main consequence

(1) X universal BPB domain space, then there exists $\eta^{X}:(0,1) \longrightarrow \mathbb{R}^{+}$such that $\eta(X, Z) \geqslant \eta^{X}$ for every Banach space Z.
(2) Y universal BPB range space, then there exists $\eta_{Y}:(0,1) \longrightarrow \mathbb{R}^{+}$such that $\eta(Z, Y) \geqslant \eta_{Y}$ for every Banach space Z.

Universal BPB domain spaces: necessary conditions

Theorem

X universal BPB domain space. Then,
(1) (real case) no face of S_{X} contains a non-empty relatively open subset of S_{X};
(2) if X is isomorphic to a strictly convex Banach space, then extreme points of B_{X} are dense in S_{X};
(3) if X is superreflexive, then strongly exposed points of B_{X} are dense in S_{X}.
(4) In particular, if X is a real 2-dimensional Banach space which is a universal BPB domain space, then X is uniformly convex.
(5) More in particular, ℓ_{1}^{2} is not a universal BPB domain space.

It was proved by Kim-Lee (2015) under the assumption of the existence of a "universal" function η^{X}, now unnecessary.

Open question

X universal BPB domain space $\Longrightarrow X$ uniformly convex ?

Universal BPB domain spaces: renorming

Theorem

X universal BPB domain space in every equivalent renorming $\quad \Longrightarrow \quad \operatorname{dim} X=1$.

This comes from...

Lemma

$X=X_{1} \oplus_{1} X_{2}, Y$ strictly convex. If (X, Y) has the BPBp $\Longrightarrow Y$ uniformly convex.

Other consequences of the Lemma

- ℓ_{1}^{2} is not a universal BPB domain space
- There exists $X \simeq \ell_{2}$ such that (X, X) fails the BPBp (just take $X=\ell_{1}^{2} \oplus_{1} Y$ where $Y \simeq \ell_{2}$ strictly convex not uniformly convex.)

Universal BPB range spaces: a counterexample

Main result on range spaces

Lindenstrauss property B does not imply being a universal BPB range space.

This comes from...

Example

For $k \in \mathbb{N}$, consider $Y_{k}=\mathbb{R}^{2}$ endowed with the norm

$$
\|(x, y)\|=\max \left\{|x|,|y|+\frac{1}{k}|x|\right\} \quad(x, y \in \mathbb{R})
$$

- Y_{k} is polyhedral and so it is a universal BPB range space.

- $\inf _{k \in \mathbb{N}} \eta\left(\ell_{1}^{2}, Y_{k}\right)(\varepsilon)=0$ for $0<\varepsilon<1 / 2$.
- Therefore, if we consider $\mathcal{Y}=\left[\bigoplus_{i=1}^{\infty} Y_{k}\right]_{c_{0}}$, then $\left(\ell_{1}^{2}, \mathcal{Y}\right)$ fails the BPBp.
- On the other hand, \mathcal{Y} has Lindenstrauss property B (it has property quasi- β).

