Operadores compactos que alcanzan su norma

Miguel Martín

Granada, Julio 2013 Seminario del grupo de investigación Geometría de los espacios de Banach

Esquema de la charla

- Preliminares
- Operadores compactos: resultados negativos
- 3 Las propiedades A y B de Lindenstrauss
- lacktriangle Las propiedades A^k y B^k

Preliminares

Sección 1

- Preliminares
 - El Teorema de Bishop-Phelps
 - Operadores que alcanzan la norma
 - Planteamiento del problema para operadores compactos

El Teorema de Bishop-Phelps

Funcionales que alcanzan su norma

X espacio de Banach real o complejo

$$B_X = \{x \in X : ||x|| \le 1\}$$
 $S_X = \{x \in X : ||x|| = 1\}$ X^* dual de X

$$||x^*|| = \sup\{|x^*(x)| : x \in B_X\} \quad (x^* \in X^*)$$

 x^* alcanza su norma cuando este supremo es un máximo:

$$\exists \ x \in S_X \ : \ |x^*(x)| \ = \ ||x^*||$$

Teorema (E. Bishop & R. Phelps, 1961)

El conjunto de los funcionales que alcanzan su norma es denso en X^* (para la topología de la norma).

Operadores que alcanzan la norma: planteamiento del problema

Operadores que alcanzan su norma

X, Y espacios de Banach, L(X,Y) operadores (lineales y continuos)

$$||T|| = \sup\{||Tx|| : x \in B_X\} \quad (T \in L(X,Y))$$

T alcanza su norma cuando este supremo es un máximo:

$$T \in NA(X,Y) \iff \exists x \in S_X : ||Tx|| = ||T||$$

Problema

$$\overline{NA(X,Y)} = L(X,Y) ?$$

J. Lindenstrauss, Israel J. Math. (1963) inicia el estudio de este problema

En general, la respuesta es negativa

Contraejemplo de Lindenstrauss

• Tomamos $X = c_0$

Sea
$$T\in NA(c_0,Y)$$
, $1=\|T\|=\|Tx\|$ con $x\in S_{c_0}$ Fijado $0<\delta<1$, para $n\geqslant m$ será $x\pm\delta e_n\in B_{c_0}$ luego $\|Tx\pm\delta Te_n\|=1$

Supongamos que Y es estrictamente convexo

Entonces
$$Te_n=0$$
 para $n\geqslant m$, luego $\dim T(c_0)<\infty$

ullet Supongamos que existe un operador no compacto de $\,c_0\,$ en $\,Y\,$

$$\overline{NA(c_0,Y)} \neq L(c_0,Y)$$

Por ejemplo, puede ser Y estrictamente convexo e isomorfo a c_0 .

Observaciones

- En este ejemplo, los operadores compactos que alcanzan la norma son densos.
- En los demás contraejemplos conocidos (Bourgain, Gowers, Acosta...) se encuentran operadores no compactos que no se pueden aproximar por operadores que alcanzan la norma.

Planteamiento del problema

; Es cierto que todo operador compacto entre espacios de Banach puede aproximarse por operadores que alcanzan la norma?

¿Dónde aparece?

- Diestel-Uhl, Rocky Mount. J. Math., 1976.
- Diestel-Uhl, Vector measures (monografía), 1977.
- Johnson-Wolfe. Studia Math., 1979.
- Acosta, RACSAM (artículo expositivo), 2006.

Solución

La respuesta es negativa

Operadores compactos: resultados negativos

Sección 2

- Operadores compactos: resultados negativos
 - La primera respuesta
 - Sobre el espacio de partida
 - Sobre el espacio de llegada
 - Dominio=Rango

Extendiendo el resultado de Lindenstrauss

Proposición (extensión del resultado de Lindenstrauss)

$$X \leqslant c_0$$
, Y estrictamente convexo, $T \in NA(X,Y) \implies \dim T(X) < \infty$.

Demostración.

- $x \in X$ tal que 1 = ||T|| = ||Tx||.
- Como $x \in c_0$, existe m tal que |x(n)| < 1/2 para $n \geqslant m$.
- Sea $Z = \{z \in X : x(i) = 0 \text{ for } 1 \leqslant i \leqslant m\}.$
- Para $z \in Z$ con $||z|| \le 1/2$, se tiene $||x \pm z|| \le 1$.
- Por tanto, $||Tx \pm Tz|| \le 1$. Como Y es estrictamente convexo, Tz = 0.

Un inciso sobre la propiedad de aproximación

Definición (Grothendieck, 1950's)

X tiene la propiedad de aproximación (AP) si para cada $K \subset X$ compacto y cada $\varepsilon > 0$, existe $F \in L(X,X)$ de rango finito tal que $\|Fx - x\| < \varepsilon$ para todo $x \in K$.

Notación

X e Y Banach, F(X,Y) operadores de rango finito K(X,Y) operadores compactos

Resultados básicos

- (Grothendieck) Y tiene AP sii $\overline{F(X,Y)} = K(X,Y)$ para todo X.
- (Grothendieck) X^* tiene AP sii $\overline{F(X,Y)} = K(X,Y)$ para todo Y.
- (Grothendieck) Si X^* tiene AP, entonces X tiene AP.
- (Enflo, 1973) Existe $X \leqslant c_0 \sin AP$.

El primer ejemplo

Hecho

Existen espacios de Banach X e Y y un operador compacto de X a Y que no se puede aproximar por operadores que alcanzan la norma.

Demostración:

- Tomamos $X \leqslant c_0$ sin la propiedad de aproximación (Enflo).
- X^* tampoco tiene la propiedad de aproximación \implies existe Y y $T \in K(X,Y)$ con $T \notin \overline{F(X,Y)}$.
- Podemos suponer $Y=\overline{T(X)}$, que es separable y, por tanto, admite una norma equivalente estrictamente convexa (Klee).
- Aplicamos la extensión del resultado de Lindenstrauss: $NA(X,Y) \subseteq F(X,Y)$.

Otros ejemplos I. Sobre el espacio de partida

Teorema

X subespacio de c_0 tal que X^* no tiene la propiedad de aproximación. Entonces existe Y y un operador compacto de X en Y que no se puede aproximar por operadores que alcanzan la norma.

Ejemplo de Johnson y Schechtman, 2001

Existe X subespacio de c_0 con base de Schauder tal que X^* carece de la propiedad de aproximación.

Corolario

Existe un espacio de Banach X con base de Schauder, un espacio Y y un operador compacto de X en Y que no se puede aproximar por operadores que alcanzan la norma.

Otros ejemplos II. Sobre el espacio de llegada

Espacios estrictamente convexos

Y espacio estrictamente convexo sin la propiedad de aproximación. Entonces existe X y un operador compacto de X en Y que no se puede aproximar por operadores que alcanzan la norma.

Lema (Grothendieck)

Y tiene la propiedad de aproximación si para cualquier subespacio cerrado X de c_0 , F(X,Y) es denso en K(X,Y).

Subespacios de $L_1(\mu)$

Y subespacio del espacio complejo $L_1(\mu)$ sin la propiedad de aproximación.

Entonces existe X y un operador compacto de X en Y que no se puede aproximar por operadores que alcanzan la norma.

Otros ejemplos III. Dominio=Rango

Ejemplo

Existe un espacio de Banach Z y un operador compacto de Z en sí mismo que no se puede aproximar por operadores que alcanzan la norma.

De hecho:

X e Y espacios de Banach.

Si todos los operadores (compactos) de $Z=X\oplus_{\infty}Y$ en sí mismo se pueden aproximar por operadores (compactos) que alcanzan la norma, entonces le ocurre lo mismo a todos los operadores (compactos) de X en Y.

Las propiedades A y B de Lindenstrauss

Sección 3

3 Las propiedades A y B de Lindenstrauss

Las propiedades A y B de Lindenstrauss

Definición

- $\bullet \ X \ \ {\rm tiene \ la \ propiedad \ A \ cuando:} \ \ NA(X,Y) = L(X,Y) \quad \forall \, Y$
- ullet Y tiene la propiedad B cuando: $\overline{NA(X,Y)} = L(X,Y) \quad \forall \, X$

Primeros ejemplos positivos (Lindenstrauss)

- ullet X reflexivo \implies X tiene la propiedad A.
- ℓ_1 tiene la propiedad A (propiedad α).
- Si $c_0 \subset Y \subset \ell_\infty$ o Y finito-dimensional poliédrico, entonces Y tiene la propiedad B (propiedad β).

Primeros ejemplos negativos (Lindenstrauss)

- $L_1[0,1]$ y $C_0(L)$ (L infinito) no tienen la propiedad A.
- ullet Si Y es estrictamente convexo y contiene una copia isomorfa de c_0 , entonces Y no tiene la propiedad B

Relación con la propiedad de Radon-Nikodym

El Teorema de Bourgain (1977)

RNP \implies A (en toda norma equivalente)

Bourgain probó también un recíproco.

R. Huff (1980)

$$X$$
 no RNP \implies $\exists X_1 \sim X \sim X_2 : \overline{NA(X_1,X_2)} \neq L(X_1,X_2)$

Otros contraejemplos

W. Gowers (1990)

Ningún espacio de Hilbert de dimensión infinita tiene la propiedad B

Para
$$1 , ℓ_p y L_p no tienen la propiedad B$$

Apurando: Si Y es estrictamente convexo y contiene un subespacio isomorfo a ℓ_p con 1 , entonces <math>Y no tiene la propiedad B.

M. D. Acosta (1999)

Ningún espacio de Banach estrictamente convexo de dimensión infinita tiene la propiedad B

 ℓ_1 y $L_1[0,1]$ no tienen la propiedad B

Las propiedades A^k y B^k

Sección 4

- 4 Las propiedades A^k y B^k
 - Definición y primeros ejemplos
 - Los principales problemas abiertos
 - Resultados positivos sobre la propiedad A^k
 - Resultados positivos sobre la propiedad B^k

Definición

- ullet X tiene la propiedad ${\sf A}^k$ cuando: $\overline{NA(X,Y)}\cap K(X,\overline{Y})=K(X,Y) \quad \forall\, Y$
- ullet Y tiene la propiedad ${\sf B}^k$ cuando: $\overline{NA(X,Y)\cap K(X,Y)}=K(X,Y) \quad \forall\, X$

Primeros ejemplos positivos

- Todos los ejemplos expuestos de espacios con A tienen A^k
 y todos los ejemplos expuestos de espacios con B tienen B^k.
- (Diestel-Uhl) $L_1(\mu)$ tiene A^k .
- (Johnson-Wolfe) $C_0(L)$ tiene A^k .
- (Johnson-Wolfe) Todo predual isométrico de $L_1(\mu)$ tiene B^k . En caso real, $L_1(\mu)$ tiene B^k .
- ullet (Cascales-Guirao-Kadets) $A(\mathbb{D})$ tiene B^k (de hecho, cualquier álgebra uniforme).

Ejemplos negativos

- Para A^k : todo subespacio de c_0 cuyo dual no tenga AP.
- Para B^k: todo espacio estrictamente convexo sin AP.

Los principales problemas abiertos

Problema principal

¿Tiene todo espacio de dimensión finita la propiedad B de Lindenstrauss?

Este problema es equivalente a:

Problema

$$iAP \implies B^k$$
?

Sobre el espacio dominio, tenemos el siguiente problema:

Problema

$$iX^*AP \implies XA^k$$
?

Resultados positivos sobre la propiedad A^k .

Una respuesta parcial es la siguiente:

(Johnson-Wolfe) Si tenemos una propiedad de aproximación más fuerte...

Supongamos que existe $(P_{\alpha})_{\alpha}$ red de proyecciones contractivas en X con rango finito tal que $\lim_{\alpha} P_{\alpha}^* = \operatorname{Id}_{X^*}$ en SOT. Entonces, X tiene A^k .

Demostración:

Fijamos $T \in K(X,Y)$.

- $TP_{\alpha}(B_X) = T(B_{P_{\alpha}(X)})$ (usamos que P_{α} es proyección y que $||P_{\alpha}|| = 1$).
- Luego, TP_{α} alcanza la norma.
- Como T^* es compacto, $P_{\alpha}^*T^* \longrightarrow T^*$ en norma, luego $TP_{\alpha} \longrightarrow T$ en norma.

Resultados positivos sobre la propiedad A^k .

Problema

$$i X^* AP \implies X A^k$$
?

Una respuesta parcial es la siguiente:

(Johnson-Wolfe) Si tenemos una propiedad de aproximación más fuerte...

Supongamos que existe $(P_{\alpha})_{\alpha}$ red de proyecciones contractivas en X con rango finito tal que $\lim_{\alpha} P_{\alpha}^* = \operatorname{Id}_{X^*}$ en SOT. Entonces, X tiene A^k .

Consecuencias

- (Diestel-Uhl) $L_1(\mu)$ tiene A^k .
- (Johnson-Wolfe) $C_0(L)$ tiene A^k .
- X con base monótona y "shrinking" $\implies X$ tiene A^k .
- $X^* \equiv \ell_1 \implies X$ tiene A^k (usando un resultado de Gasparis).
- $X \le c_0$ con base monótona $\implies X$ tiene A^k (usando un resultado de Godefroy-Saphar).

Resultados positivos sobre la propiedad B^k .

$$iAP \implies B^k$$
?

Una respuesta parcial positiva

- Si Y es poliédrico (real) y tiene AP \implies Y tiene B^k.
- Hay un análogo complejo...

Ejemplo

$$Y \leqslant c_0 \text{ con AP} \implies Y \text{ tiene B}^k$$
.

Un cierto recíproco al problema...

Y separable con B^k para toda norma equivalente $\implies Y$ tiene AP.

Esquema de la charla

- **Preliminares**
- Operadores compactos: resultados negativos
- Las propiedades A y B de Lindenstrauss
- 4 Las propiedades A^k y B^k