Slicely Countably Determined Banach spaces

Miguel Martín

http://www.ugr.es/local/mmartins

May 2012 - Universidad de Valencia

Introduction

Introduction

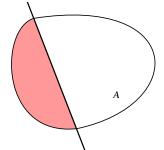
00000

Basic notation

X real or complex Banach space.

- ullet S_X unit sphere, B_X closed unit ball, ${\mathbb T}$ modulus-one scalars.
- ullet X* dual space, L(X) bounded linear operators from X to X.
- $\bullet \ \operatorname{conv}(\cdot)$ convex hull, $\overline{\operatorname{conv}}(\cdot)$ closed convex hull,
- \bullet A slice of $A\subset X$ is a (nonempty) subset of the form

$$S(A, x^*, \alpha) = \{x \in A : \operatorname{Re} x^*(x) > \sup \operatorname{Re} x^*(A) - \alpha\} \quad (x^* \in X^*, \ \alpha > 0)$$



Two classical concepts: Radon-Nikodým property and Asplund spaces

The Radon-Nikodým property or RNP (1930's

- X has the RNP iff the Radon-Nikodým theorem is valid for X-valued meassures;
- Equivalently [1960's], every bcc subset contains a denting point (i.e. a point belonging to slices of arbitrarily small diameter).

Asplund spaces (1960's)

- X is an Asplund space if every continuous convex real-valued function defined on an open subset of X is F-differentiable on a dense subset;
- Equivalently [1970's], every separable subspace has separable dual.

The road map of the talk

The property

Introduction

00000

We introduce an isomorphic property for (separable) Banach spaces, the so-called slicely countably determination (SCD)

such that

- it is satisfied by RNP spaces
 (actually, by strongly regular spaces PCP in particular–);
- it is satisfied by Asplund spaces (actually, by spaces not containing ℓ_1).

We also present examples and stability properties.

The applications

- We apply SCD to get results for the Daugavet property, the alternative Daugavet property and spaces with numerical index 1.
- We present SCD operators and applications.

Outline

Introduction

0000

- Introduction
- Slicely Countably Determined sets and spaces
 - SCD sets
 - SCD spaces
- Applications
 - ullet The DPr, the ADP and numerical index 1
 - Lush spaces
 - From ADP to lushness
- SCD operators
- Final remarks

Slicely Countably Determined sets and spaces

SCD sets: Definitions and preliminary remarks

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is Slicely Countably Determined (SCD) if there is a sequence $\{S_n:n\in\mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- if $B \subseteq A$ satisfies $B \cap S_n \neq \emptyset \ \forall n$, then $A \subseteq \overline{\operatorname{conv}}(B)$,
- given $\{x_n\}_{n\in\mathbb{N}}$ with $x_n\in S_n\ \forall n\in\mathbb{N},\ A\subseteq \overline{\operatorname{conv}}\big(\{x_n:n\in\mathbb{N}\}\big)$,
- every slice of A contains one of the S_n 's,

Remarks

- A is SCD iff \overline{A} is SCD.
- ullet If A is SCD, then it is separable.

SCD sets: Elementary examples I

Example

A separable and $A = \overline{\operatorname{conv}}(\operatorname{dent}(A)) \Longrightarrow A$ is SCD.

Proof.

- Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\operatorname{conv}}(\{a_n : n \in \mathbb{N}\})$.
- For every $n,m \in \mathbb{N}$, take a slice $S_{n,m}$ containing a_n and of diameter 1/m.
- If $B \cap S_{n,m} \neq \emptyset \Longrightarrow a_n \in \overline{B}$.
- Therefore, $A = \overline{\operatorname{conv}} \big(\{ a_n : n \in \mathbb{N} \} \big) \subseteq \overline{\operatorname{conv}}(\overline{B}) = \overline{\operatorname{conv}}(B)$.

Example

In particular, A RNP separable $\Longrightarrow A$ SCD.

Corollary

- If X is separable LUR $\Longrightarrow B_X$ is SCD.
- ullet So, every separable space can be renormed such that $B_{(X,|\cdot|)}$ is SCD.

SCD sets: Elementary examples II

Example

If X^* is separable $\Longrightarrow A$ is SCD.

Proof.

- Take $\{x_n^*:n\in\mathbb{N}\}$ dense in S_{X^*} .
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.
- ullet It is easy to show that any slice of A contains one of the $S_{n,m}$

Example

 $B_{C[0,1]}$ and $B_{L_1[0,1]}$ are not SCD.

SCD sets: Further examples I

Convex combination of slice

$$W = \sum_{k=1}^{m} \lambda_k S_k \subset A$$
 where $\lambda_k \geqslant 0$, $\sum \lambda_k = 1$, S_k slices.

Proposition

In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of convex combination of slices.

Small combinations of slices

A has small combinations of slices iff every slice of A contains convex combinations of slices of A with arbitrary small diameter.

Example

If A has small combinations of slices + separable $\Longrightarrow A$ is SCD.

Particular case

A strongly regular (in particular, PCP) + separable $\Longrightarrow A$ is SCD.

Bourgain's lemma

Every relative weak open subset of \boldsymbol{A} contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence of relative weak open subsets: the set A is SCD iff there is a sequence $\{V_n:n\in\mathbb{N}\}$ of relative weak open subsets of A such that every slice of A contains one of the V_n 's.

π -base

A π -base of the weak topology of A is a family $\{V_i: i \in I\}$ of weak open sets of A such that every weak open subset of A contains one of the V_i 's.

Proposition

If $(A, \sigma(X, X^*))$ has a countable π -base $\Longrightarrow A$ is SCD.

SCD sets: Further examples III

Theorem

A separable without ℓ_1 -sequences $\Longrightarrow (A, \sigma(X, X^*))$ has a countable π -base.

Proof.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $(A, \sigma(X, X^*))$ has a σ -disjoint π -base.
- $\{V_i:i\in I\}$ is σ -disjoint if $I=\bigcup_{n\in\mathbb{N}}I_n$ and each $\{V_i:i\in I_n\}$ is pairwise disjoint.
- A σ -disjoint family of open subsets in a separable space is countable. \checkmark

Main example

A separable without ℓ_1 -sequences $\Longrightarrow A$ is SCD.

SCD spaces: definition and examples

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

- f 0 X separable strongly regular. In particular, RNP, PCP spaces.

Examples of NOT SCD spaces

- $C[0,1], L_1[0,1]$
- ② Actually, every X containing (an isomorphic copy of) C[0,1] or $L_1[0,1]$.
- $oldsymbol{\circ}$ There is X with the Schur property which is not SCD.

Remark

- Every subspace of a SCD space is SCD.
- This is false for quotients.

SCD spaces: stability properties

Theorem

 $Z \subset X$. If Z and X/Z are SCD $\Longrightarrow X$ is SCD.

Corollary

X separable NOT SCD $\Longrightarrow X \supset \ell_1$ and

- If $\ell_1 \simeq Y \subset X \implies X/Y$ contains a copy of ℓ_1 .
- If $\ell_1 \simeq Y_1 \subset X \implies$ there is $\ell_1 \simeq Y_2 \subset X$ with $Y_1 \cap Y_2 = 0$.

Corollary

 $X_1, \dots, X_m \text{ SCD} \Longrightarrow X_1 \oplus \dots \oplus X_m \text{ SCD}.$

SCD spaces: stability properties II

Theorem

 X_1, X_2, \dots SCD, E with unconditional basis.

- $E \not\supseteq c_0 \Longrightarrow \left[\bigoplus_{n \in \mathbb{N}} X_n\right]_E SCD.$
- $E \not\supseteq \ell_1 \Longrightarrow \left[\bigoplus_{n \in \mathbb{N}} X_n\right]_E$ SCD.

Examples

- \bullet $c_0(\ell_1)$ and $\ell_1(c_0)$ are SCD.
- $2 c_0 \otimes_{\varepsilon} c_0, \ c_0 \otimes_{\pi} c_0, \ c_0 \otimes_{\varepsilon} \ell_1, \ c_0 \otimes_{\pi} \ell_1, \ \ell_1 \otimes_{\varepsilon} \ell_1, \ \text{and} \ \ell_1 \otimes_{\pi} \ell_1 \ \text{are SCD}.$
- \bullet $K(c_0)$ and $K(c_0, \ell_1)$ are SCD.
- $\ell_2 \otimes_{\varepsilon} \ell_2 \equiv K(\ell_2)$ and $\ell_2 \oplus_{\pi} \ell_2 \equiv \mathcal{L}_1(\ell_2)$ are SCD

Applications

The DPr. the ADP and numerical index 1

Definition of the properties

• Kadets-Shvidkoy-Sirotkin-Werner, 1997:

X has the Daugavet property (DPr) if

$$\|Id + T\| = 1 + \|T\|$$
 (DE)

for every rank-one $T \in L(X)$.

- Then every T not fixing copies of ℓ_1 also satisfies (DE).
- **2** Lumer, 1968: X has numerical index 1 (n(X) = 1) if

$$\max_{\theta \in \mathbb{T}} \| \operatorname{Id} + \theta T \| = 1 + \| T \|$$
 (aDE)

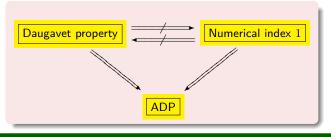
for EVERY operator on X.

Equivalently,

$$\|T\| = \sup\{|x^*(Tx)|: x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}$$
 for every $T \in L(X)$.

- **M.-Oikhberg, 2004:** X has the alternative Daugavet property (ADP) if every rank-one $T \in L(X)$ satisfies (aDE).
 - Then every weakly compact T also satisfies (aDE).

Relations between these properties



Examples

- ullet $Cig([0,1],K(\ell_2)ig)$ has DPr, but has not numerical index 1
- \bullet c_0 has numerical index 1, but has not DPr
- $c_0 \oplus_{\infty} C\big([0,1],K(\ell_2)\big)$ has ADP, neither DPr nor numerical index 1

Remarks

- For RNP or Asplund spaces, $\boxed{\mathsf{ADP}} \Longrightarrow \boxed{\mathsf{numerical index } 1}$.
- Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.

For C^* -algebras and preduals

Let V_{st} be the predual of the von Neumann algebra V.

The Daugavet property of V_st is equivalent to:

- ullet V has no atomic projections, or
- ullet the unit ball of V_{st} has no extreme points.

V_* has numerical index 1 iff:

- ullet V is commutative, or
- $|v^*(v)| = 1$ for $v \in \text{ext}(B_V)$ and $v^* \in \text{ext}(B_{V^*})$.

The alternative Daugavet property of V_st is equivalent to:

- ullet the atomic projections of V are central, or
- $|v(v_*)| = 1$ for $v \in \text{ext}(B_V)$ and $v_* \in \text{ext}(B_{V_*})$, or
- ullet $V=C\oplus_{\infty}N$, where C is commutative and N has no atomic projections.

Let X be a C^* -algebra.

The Daugavet property of X is equivalent to:

- ullet X does not have any atomic projection, or
- ullet the unit ball of X^* does not have any w^* -strongly exposed point.

X has numerical index 1 iff:

- X is commutative, or
- $|x^{**}(x^*)| = 1$ for $x^{**} \in \text{ext}(B_{X^{**}})$ and $x^* \in \text{ext}(B_{X^*})$.

The alternative Daugavet property of X is equivalent to:

- ullet the atomic projections of X are central, or
- $|x^{**}(x^*)|=1$, for $x^{**}\in \mathrm{ext}\,(B_{X^{**}})$, and $x^*\in B_{X^*}$ w^* -strongly exposed, or
- ullet \exists a commutative ideal Y such that X/Y has the Daugavet property.

A sufficient condition for numerical index 1: lushness

Lushness (Boyko-Kadets-M.-Werner, 200)

X is lush if given $x,y\in S_X$, $\varepsilon>0$, there is $y^*\in S_{X^*}$ such that

$$x \in S = S(B_X, y^*, \varepsilon)$$
 dist $(y, \text{conv}(\mathbb{T}S)) < \varepsilon$.

Theorem (Boyko-Kadets-M.-Werner, 2007)

If X is lush, then X has numerical index 1

Example (Kadets-M.-Merí-Shepelska, 2009)

There is X with numerical index 1 which is not lush.

$ADP + SCD \Longrightarrow lushness$

Characterization of ADP

X Banach space. TFAE:

- X has ADP (i.e. $\max_{\theta \in \mathbb{T}} \| \operatorname{Id} + \theta T \| = 1 + \| T \|$ for all T rank-one).
- $\bullet \ \ {\rm Given} \ x \in S_X \hbox{, a slice } S \ \hbox{of} \ B_X \ \hbox{and} \ \varepsilon > 0 \hbox{, there is} \ y \in S \ \hbox{with}$

$$\max_{\theta \in \mathbb{T}} \|x + \theta y\| > 2 - \varepsilon.$$

• Given $x \in S_X$, a sequence $\{S_n\}$ of slices of B_X , and $\varepsilon > 0$, there is $y^* \in S_{X^*}$ such that $x \in S(B_X, y^*, \varepsilon)$ and

$$\overline{\operatorname{conv}}(\mathbb{T}S(B_X, y^*, \varepsilon)) \bigcap S_n \neq \emptyset \qquad (n \in \mathbb{N}).$$

Theorem

 $X \text{ ADP} + B_X \text{ SCD} \Longrightarrow \text{given } x \in S_X \text{ and } \varepsilon > 0 \text{, there is } y^* \in S_{X^*} \text{ such that }$ $x \in S(B_X, y^*, \varepsilon) \quad \text{and} \quad B_X = \overline{\operatorname{conv}} \big(\mathbb{T} S(B_X, y^*, \varepsilon) \big).$

• This clearly implies lushness, and so numerical index 1 (i.e. $\max_{\theta \in \mathbb{T}} \|\operatorname{Id} + \theta T\| = 1 + \|T\|$ for all T).

Some consequences

Corollary

- $\bullet \ \mathsf{ADP} + \mathsf{strongly} \ \mathsf{regular} \implies \mathsf{numerical} \ \mathsf{index} \ 1.$
- ADP $+ X \not\supseteq \ell_1 \implies$ numerical index 1.

Corollary

$$X \text{ real} + \dim(X) = \infty + \mathsf{ADP} \implies X^* \supseteq \ell_1.$$

In particular,

Corollary

 $X \text{ real } + \dim(X) = \infty + \text{ numerical index } 1 \implies X^* \supseteq \ell_1.$

Some consequences II

Proposition (Kadets-M.-Merí-Werner, 2010)

- X with 1-unconditional basis $\implies B_X$ is SCD.
- ullet X with 1-unconditional basis and ADP $\Longrightarrow X$ is lush.

Theorem (Kadets-M.-Merí-Werner, 2010)

- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- **②** The unique r.i. Banach spaces over $\mathbb N$ with the ADP are c_0 , ℓ_1 and ℓ_∞ .
- **②** The unique separable r.i. Banach space on [0,1] with the Daugavet property is $L_1[0,1]$.
- The unique separable r.i. Banach space on [0,1] which is lush is $L_1[0,1]$.

Question

Is it possible to prove the above results for the ADP ?

SCD operators

SCD operators

Introduction

SCD operator

 $T \in L(X)$ is an SCD-operator if $T(B_X)$ is an SCD-set.

Examples

T is an SCD-operator when $T(B_X)$ is separable and

- \bullet $T(B_X)$ is RNP,
- **2** $T(B_X)$ has no ℓ_1 sequences,
- lacksquare T does not fix copies of ℓ_1

Theorem

- $X \text{ ADP} + T \text{ SCD-operator} \implies \max_{\theta \in \mathbb{T}} \| \operatorname{Id} + \theta T \| = 1 + \| T \|.$
- $X \text{ DPr} + T \text{ SCD-operator} \implies \|\text{Id} + T\| = 1 + \|T\|.$

Main corollary

 $X \text{ ADP} + T \text{ does not fix copies of } \ell_1 \implies \max_{\theta \in \mathbb{T}} \|\operatorname{Id} + \theta T\| = 1 + \|T\|.$

HSCD-majorized operators (Kadets-Shepelska, 2010)

HSCD and HSDC-majorized operator

- $T \in L(X,Y)$ is an Hereditary-SCD-operator if every convex subset of $T(B_X)$ is an SCD-set.
- $\begin{tabular}{ll} \bullet & T \in L(X,Y) \text{ is an HSCD-majorized operator if there is } S \in L(X,Z) \\ & \text{HSCD-operator such that } \|Tx\| \leqslant \|Sx\| \text{ for every } x \in X. \\ \end{tabular}$

Proposition

The class of HSCD-majorized operators is a two-sided operator ideal.

Theorem

 $X \ \mathsf{DPr} + T \in L(X) \ \mathsf{HSCD} ext{-majorized operator} \implies \|\mathrm{Id} + T\| = 1 + \|T\|.$

Remark

The class of operators satisfying (DE) is not even a subspace.

Final remarks

Open questions

- Find more sufficient conditions for a set to be SCD.
- ${\bf @}$ Is SCD equivalent to the existence of a countable $\pi\text{-base}$ for the weak topology ${\bf ?}$
- **3** E with (1)-unconditional basis. Is E SCD **?**
- \bullet E with 1-unconditional basis, $\{X_n\}$ a family of SCD spaces. Is $[\oplus X_n]_E$ SCD \ref{SCD}
- \bullet X, Y SCD. Are $X \otimes_{\varepsilon} Y$ and $X \otimes_{\pi} Y$ SCD ?
- Find a good extension of the SCD property to the nonseparable case.
- Clarify the relationship between SCD and the Daugavet property.
- **3** X ADP, $T \in L(X)$ HSCD-majorized, does T satisfies (aDE) **?**

Bibliography

A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska Slicely Countably Determined Banach spaces *Trans. Amer. Math. Soc.* (2010)

V. Kadets and V. Shepelska Sums of SCD sets and their applications to SCD operators and narrow operators Cent. Eur. J. Math. (2010)