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Basic notation

Basic notation
X real or complex Banach space.

SX unit sphere, BX closed unit ball, T modulus-one scalars.
X∗ dual space, L(X) bounded linear operators from X to X.
conv(·) convex hull, conv(·) closed convex hull,
A slice of A⊂X is a (nonempty) subset of the form

S(A,x∗,α) = {x ∈A : Rex∗(x)> supRex∗(A)−α} (x∗ ∈X∗, α > 0)

Re f (x) = α

A
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Two classical concepts: Radon-Nikodým property and Asplund spaces

The Radon-Nikodým property or RNP (1930’s)
X has the RNP iff the Radon-Nikodým theorem is valid for X-valued
meassures;
Equivalently [1960’s], every bcc subset contains a denting point
(i.e. a point belonging to slices of arbitrarily small diameter).

X Asplund ⇐⇒ X∗ RNP

Reflexive (say) ==- RNP and Asplund

RNP or Asplund ===- ???

Asplund spaces (1960’s)
X is an Asplund space if every continuous convex real-valued function
defined on an open subset of X is F-differentiable on a dense subset;
Equivalently [1970’s], every separable subspace has separable dual.
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The road map of the talk

The property
We introduce an isomorphic property for (separable) Banach spaces, the so-called

slicely countably determination (SCD)

such that
it is satisfied by RNP spaces
(actually, by strongly regular spaces – PCP in particular–);
it is satisfied by Asplund spaces
(actually, by spaces not containing `1).

We also present examples and stability properties.

The applications
We apply SCD to get results for the Daugavet property, the alternative
Daugavet property and spaces with numerical index 1.
We present SCD operators and applications.
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Slicely Countably Determined sets and spaces
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SCD sets: Definitions and preliminary remarks

X Banach space, A⊂X bounded and convex.

SCD sets
A is Slicely Countably Determined (SCD) if there is a sequence {Sn : n ∈N} of
slices of A satisfying one of the following equivalent conditions:

if B ⊆A satisfies B∩Sn 6= ∅ ∀n, then A⊆ conv(B),
given {xn}n∈N with xn ∈ Sn ∀n ∈ N, A⊆ conv

(
{xn : n ∈ N}

)
,

every slice of A contains one of the Sn’s,

Remarks
A is SCD iff A is SCD.
If A is SCD, then it is separable.
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SCD sets: Elementary examples I

Example
A separable and A= conv(dent(A)) =⇒ A is SCD.

Proof.
Take {an : n ∈ N} denting points with A= conv

(
{an : n ∈ N}

)
.

For every n,m ∈ N, take a slice Sn,m containing an and of diameter 1/m.
If B∩Sn,m 6= ∅ =⇒ an ∈B.
Therefore, A= conv

(
{an : n ∈ N}

)
⊆ conv(B) = conv(B).

Example
In particular, A RNP separable =⇒ A SCD.

Corollary
If X is separable LUR =⇒ BX is SCD.
So, every separable space can be renormed such that B(X,|·|) is SCD.
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SCD sets: Elementary examples II

Example
If X∗ is separable =⇒ A is SCD.

Proof.
Take {x∗n : n ∈ N} dense in SX∗ .
For every n,m ∈ N, consider Sn,m = S(A,x∗n,1/m).
It is easy to show that any slice of A contains one of the Sn,m

Example
BC[0,1] and BL1[0,1] are not SCD.
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SCD sets: Further examples I

Convex combination of slices

W =
m∑
k=1

λk Sk ⊂A where λk > 0,
∑
λk = 1, Sk slices.

Proposition
In the definition of SCD we can use a sequence {Sn : n ∈ N} of convex
combination of slices.

Small combinations of slices
A has small combinations of slices iff every slice of A contains convex combina-
tions of slices of A with arbitrary small diameter.

Example
If A has small combinations of slices + separable =⇒ A is SCD.

Particular case
A strongly regular (in particular, PCP) + separable =⇒ A is SCD.
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SCD sets: Further examples II

Bourgain’s lemma
Every relative weak open subset of A contains a convex combination of slices.

Corollary
In the definition of SCD we can use a sequence of relative weak open subsets:
the set A is SCD iff there is a sequence {Vn : n ∈ N} of relative weak open
subsets of A such that every slice of A contains one of the Vn’s.

π-bases
A π-base of the weak topology of A is a family {Vi : i ∈ I} of weak open sets
of A such that every weak open subset of A contains one of the Vi’s.

Proposition
If (A,σ(X,X∗)) has a countable π-base =⇒ A is SCD.
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SCD sets: Further examples III

Theorem
A separable without `1-sequences =⇒ (A,σ(X,X∗)) has a countable π-base.

Proof.
We see (A,σ(X,X∗))⊂ C(T ) where T = (BX∗ ,σ(X∗,X)).
By Rosenthal `1 theorem, (A,σ(X,X∗)) is a relatively compact subset of
the space of first Baire class functions on T .
By a result of Todorčević, (A,σ(X,X∗)) has a σ-disjoint π-base.
{Vi : i ∈ I} is σ-disjoint if I =

⋃
n∈N In and each {Vi : i ∈ In} is pairwise

disjoint.
A σ-disjoint family of open subsets in a separable space is countable. X

Main example
A separable without `1-sequences =⇒ A is SCD.
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SCD spaces: definition and examples

SCD space
X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces
1 X separable strongly regular. In particular, RNP, PCP spaces.
2 X separable X + `1. In particular, if X∗ is separable.

Examples of NOT SCD spaces
1 C[0,1], L1[0,1]
2 Actually, every X containing (an isomorphic copy of) C[0,1] or L1[0,1].
3 There is X with the Schur property which is not SCD.

Remark
Every subspace of a SCD space is SCD.
This is false for quotients.
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SCD spaces: stability properties

Theorem
Z ⊂X. If Z and X/Z are SCD =⇒ X is SCD.

Corollary
X separable NOT SCD =⇒ X ⊃ `1 and

If `1 ' Y ⊂X =⇒ X/Y contains a copy of `1.
If `1 ' Y1 ⊂X =⇒ there is `1 ' Y2 ⊂X with Y1∩Y2 = 0.

Corollary
X1, . . . ,Xm SCD =⇒ X1⊕·· ·⊕Xm SCD.
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SCD spaces: stability properties II

Theorem
X1,X2, . . . SCD, E with unconditional basis.

E + c0 =⇒
[⊕

n∈NXn
]
E

SCD.

E + `1 =⇒
[⊕

n∈NXn
]
E

SCD.

Examples
1 c0(`1) and `1(c0) are SCD.
2 c0⊗ε c0, c0⊗π c0, c0⊗ε `1, c0⊗π `1, `1⊗ε `1, and `1⊗π `1 are SCD.
3 K(c0) and K(c0, `1) are SCD.
4 `2⊗ε `2 ≡K(`2) and `2⊕π `2 ≡ L1(`2) are SCD
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Applications
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The DPr, the ADP and numerical index 1

Definition of the properties
1 Kadets-Shvidkoy-Sirotkin-Werner, 1997:
X has the Daugavet property (DPr) if

‖Id +T‖= 1 +‖T‖ (DE)

for every rank-one T ∈ L(X).
Then every T not fixing copies of `1 also satisfies (DE).

2 Lumer, 1968: X has numerical index 1 (n(X) = 1) if

max
θ∈T
‖Id +θT‖= 1 +‖T‖ (aDE)

for every operator on X.
Equivalently,

‖T‖= sup{|x∗(T x)| : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}

for every T ∈ L(X).
3 M.-Oikhberg, 2004: X has the alternative Daugavet property (ADP) if

every rank-one T ∈ L(X) satisfies (aDE).
Then every weakly compact T also satisfies (aDE).
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Relations between these properties

Daugavet property ====6====-
�===6===== Numerical index 1

ADP
�===

===
===

===========-

Examples
C
(
[0,1],K(`2)

)
has DPr, but has not numerical index 1

c0 has numerical index 1, but has not DPr
c0⊕∞C

(
[0,1],K(`2)

)
has ADP, neither DPr nor numerical index 1

Remarks

For RNP or Asplund spaces, ADP =⇒ numerical index 1 .
Every Banach space with the ADP can be renormed still having the ADP
but failing the Daugavet property.
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For C∗-algebras and preduals

Let V∗ be the predual of the von Neumann algebra V .

The Daugavet property of V∗ is equivalent to:
V has no atomic projections, or
the unit ball of V∗ has no extreme points.

V∗ has numerical index 1 iff:
V is commutative, or
|v∗(v)|= 1 for v ∈ ext(BV ) and v∗ ∈ ext(BV ∗ ).

The alternative Daugavet property of V∗ is equivalent to:
the atomic projections of V are central, or
|v(v∗)|= 1 for v ∈ ext(BV ) and v∗ ∈ ext(BV∗ ), or
V = C⊕∞N , where C is commutative and N has no atomic projections.
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Let X be a C∗-algebra.

The Daugavet property of X is equivalent to:
X does not have any atomic projection, or
the unit ball of X∗ does not have any w∗-strongly exposed point.

X has numerical index 1 iff:
X is commutative, or
|x∗∗(x∗)|= 1 for x∗∗ ∈ ext(BX∗∗ ) and x∗ ∈ ext(BX∗ ).

The alternative Daugavet property of X is equivalent to:
the atomic projections of X are central, or
|x∗∗(x∗)|= 1, for x∗∗ ∈ ext(BX∗∗ ), and x∗ ∈BX∗ w∗-strongly exposed,
or
∃ a commutative ideal Y such that X/Y has the Daugavet property.
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A sufficient condition for numerical index 1: lushness

Lushness (Boyko-Kadets-M.-Werner, 2007)

X is lush if given x,y ∈ SX , ε > 0, there is y∗ ∈ SX∗ such that

x ∈ S = S(BX ,y∗,ε) dist(y , conv(TS))< ε.

Theorem (Boyko-Kadets-M.-Werner, 2007)
If X is lush, then X has numerical index 1

Example (Kadets-M.-Meŕı-Shepelska, 2009)
There is X with numerical index 1 which is not lush.
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ADP + SCD =⇒ lushness

Characterization of ADP
X Banach space. TFAE:

X has ADP (i.e. maxθ∈T ‖Id +θT‖= 1 +‖T‖ for all T rank-one).
Given x ∈ SX , a slice S of BX and ε > 0, there is y ∈ S with

max
θ∈T
‖x+θy‖> 2−ε.

Given x ∈ SX , a sequence {Sn} of slices of BX , and ε > 0,
there is y∗ ∈ SX∗ such that x ∈ S(BX ,y∗,ε) and

conv
(
TS(BX ,y∗,ε)

)⋂
Sn 6= ∅ (n ∈ N).

Theorem
X ADP + BX SCD =⇒ given x ∈ SX and ε > 0, there is y∗ ∈ SX∗ such that

x ∈ S(BX ,y∗,ε) and BX = conv
(
TS(BX ,y∗,ε)

)
.

This clearly implies lushness, and so numerical index 1
(i.e. maxθ∈T ‖Id +θT‖= 1 +‖T‖ for all T ).
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Some consequences

Corollary
ADP + strongly regular =⇒ numerical index 1.
ADP + X + `1 =⇒ numerical index 1.

Corollary
X real + dim(X) =∞ + ADP =⇒ X∗ ⊇ `1.

In particular,

Corollary
X real + dim(X) =∞ + numerical index 1 =⇒ X∗ ⊇ `1.
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Some consequences II

Proposition (Kadets-M.-Meŕı-Werner, 2010)
X with 1-unconditional basis =⇒ BX is SCD.
X with 1-unconditional basis and ADP =⇒ X is lush.

Theorem (Kadets-M.-Meŕı-Werner, 2010)
1 The unique Banach spaces with 1-symmetric basis and the ADP are c0

and `1.
2 The unique r.i. Banach spaces over N with the ADP

are c0, `1 and `∞.
3 The unique separable r.i. Banach space on [0,1] with the Daugavet

property is L1[0,1].
4 The unique separable r.i. Banach space on [0,1] which is lush is L1[0,1].

Question
Is it possible to prove the above results for the ADP ?
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SCD operators
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SCD operators

SCD operator
T ∈ L(X) is an SCD-operator if T (BX) is an SCD-set.

Examples
T is an SCD-operator when T (BX) is separable and

1 T (BX) is RNP,
2 T (BX) has no `1 sequences,
3 T does not fix copies of `1

Theorem
X ADP + T SCD-operator =⇒ maxθ∈T ‖Id +θT‖= 1 +‖T‖.
X DPr + T SCD-operator =⇒ ‖Id +T‖= 1 +‖T‖.

Main corollary
X ADP + T does not fix copies of `1 =⇒ maxθ∈T ‖Id +θT‖= 1 +‖T‖.
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HSCD-majorized operators (Kadets-Shepelska, 2010)

HSCD and HSDC-majorized operator
T ∈ L(X,Y ) is an Hereditary-SCD-operator if every convex subset of
T (BX) is an SCD-set.
T ∈ L(X,Y ) is an HSCD-majorized operator if there is S ∈ L(X,Z)
HSCD-operator such that ‖Tx‖6 ‖Sx‖ for every x ∈X.

Proposition
The class of HSCD-majorized operators is a two-sided operator ideal.

Theorem
X DPr + T ∈ L(X) HSCD-majorized operator =⇒ ‖Id +T‖= 1 +‖T‖.

Remark
The class of operators satisfying (DE) is not even a subspace.
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Final remarks
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Open questions

1 Find more sufficient conditions for a set to be SCD.

2 Is SCD equivalent to the existence of a countable π-base for the weak
topology ?

3 E with (1)-unconditional basis. Is E SCD ?

4 E with 1-unconditional basis, {Xn} a family of SCD spaces.
Is [⊕Xn]E SCD ?

5 X, Y SCD. Are X⊗ε Y and X⊗π Y SCD ?

6 Find a good extension of the SCD property to the nonseparable case.

7 Clarify the relationship between SCD and the Daugavet property.

8 X ADP, T ∈ L(X) HSCD-majorized, does T satisfies (aDE) ?
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