Duality and the group of isometries of a Banach space

Miguel Martín

http://www.ugr.es/local/mmartins

International Conference on Mathematics and Statistics "ICOMAS 2012"

Memphis (TN, USA), May 15th, 2012

Basic notation and main objective

Notation

X Banach space.

- S_X unit sphere, B_X closed unit ball.
 - X* dual space.
 - L(X) bounded linear operators.
 - \bullet W(X) weakly compact linear operators.
 - Iso(X) surjective isometries group.

Objective

 \star Construct a Banach space X with "small" Iso(X) and "big" $Iso(X^*)$.

M., 2008

There is X such that

- ullet Iso(X) does not contains uniformly continuous semigroups of isometries;
- $\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2)$ and, therefore, $\operatorname{Iso}(X^*)$ contains infinitely many uniformly continuous semigroups of isometries.
- But Iso(X) contains infinitely many strongly continuous semigroups of isometries.

Question we are going to solve

Is is possible to produce a space X such that $\mathrm{Iso}(X^*) \supset \mathrm{Iso}(\ell_2)$ but $\mathrm{Iso}(X)$ is "small" (for instance, it does not contain strongly continuous semigroups) ?

Motivation

X Banach space.

Autonomous dynamic systen

One-parameter semigroup of operators

$$\Phi: \mathbb{R}_0^+ \longrightarrow L(X)$$
 such that $\Phi(t+s) = \Phi(t)\Phi(s) \ \forall t, s \in \mathbb{R}_0^+, \ \Phi(0) = \mathrm{Id}.$

- Uniformly continuous: $\Phi: \mathbb{R}_0^+ \longrightarrow (L(X), \|\cdot\|)$ continuous.
- Strongly continuous: $\Phi: \mathbb{R}_0^+ \longrightarrow (L(X), \mathrm{SOT})$ continuous.

Relationship (Hille-Yoshida, 1950's)

- Bounded case:
 - If $A \in L(X) \Longrightarrow \Phi(t) = \exp(tA)$ solution of (\diamondsuit) uniforly continuous.
 - Φ uniformly continuous $\Longrightarrow A = \Phi'(0) \in L(X)$ and Φ solution of (\diamondsuit) .
- Unbounded case:
 - Φ strongly continuous $\Longrightarrow A = \Phi'(0)$ closed and Φ solution of (\diamondsuit) .
 - If (\diamondsuit) has solution Φ strongly continuous $\Longrightarrow A = \Phi'(0)$ and $\Phi(t) = \text{``exp}(t\,A)\text{''}.$

 $\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2).$

What we are going to show

The example

we will construct X such that

$$Iso(X) = {\pm Id}$$
 but

The tools

- Extremely non-complex Banach spaces: spaces X such that $\|\operatorname{Id} + T^2\| = 1 + \|T^2\|$ for every $T \in L(X)$.
- ullet Koszmider type compact spaces: topological compact spaces K such that C(K) has few operators.

The talk is based on the papers

P. Koszmider, M. Martín, and J. Merí. Extremely non-complex C(K) spaces.

J. Math. Anal. Appl. (2009).

P. Koszmider, M. Martín, and J. Merí. Isometries on extremely non-complex Banach spaces.

J. Inst. Math. Jussieu (2011).

M. Martín

The group of isometries of a Banach space and duality.

J. Funct. Anal. (2008).

Sketch of the talk

- Introduction
- Extremely non-complex Banach spaces: motivation and examples
- 3 Isometries on extremely non-complex spaces

Extremely non-complex Banach spaces: motivation and examples

- Introduction
- 2 Extremely non-complex Banach spaces: motivation and examples
 - Complex structures
 - The first examples: C(K) spaces with few operators
 - More C(K)-type examples
 - Further examples
- 3 Isometries on extremely non-complex spaces

Complex structures

Definition

X has complex structure if there is $T \in L(X)$ such that $T^2 = -\mathrm{Id}$.

Some remarks

 \bullet This gives a structure of vector space over \mathbb{C} :

$$(\alpha + i\beta) x = \alpha x + \beta T(x)$$
 $(\alpha + i\beta \in \mathbb{C}, x \in X)$

Defining

$$||x|| = \max\{||e^{i\theta}x|| : \theta \in [0, 2\pi]\}$$
 $(x \in X)$

one gets that $(X, ||\!| \cdot |\!|\!|)$ is a complex Banach space.

- If T is an isometry, then the given norm of X is actually complex.
- ullet Conversely, if X is a complex Banach space, then

$$T(x) = i x \qquad (x \in X)$$

satisfies $T^2 = -Id$ and T is an isometry.

Complex structures II

Some examples

- If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.
- $\textbf{ 0} \ \, \text{If} \, \, X \simeq Z \oplus Z \, \, \text{(in particular,} \, \, X \simeq X^2 \text{), then} \, \, X \, \, \text{has complex structure.}$
- There are infinite-dimensional Banach spaces without complex structure:
 - Dieudonné, 1952: the James' space \mathcal{J} (since $\mathcal{J}^{**} \equiv \mathcal{J} \oplus \mathbb{R}$).
 - Szarek, 1986: uniformly convex examples.
 - Gowers-Maurey, 1993: their H.I. space (no H.I. has complex structure) .

Definitior

X is extremely non-complex if $\operatorname{dist}(T^2,-\operatorname{Id})$ is the maximum possible, i.e.

$$\|\operatorname{Id} + T^2\| = 1 + \|T^2\| \qquad (T \in L(X))$$

Question (Gilles Godefroy, private communication, 2005)

Is there any $X \neq \mathbb{R}$ such that $\|\operatorname{Id} + T^2\| = 1 + \|T^2\|$ for every $T \in L(X)$?

Weak multipliers

Weak multipliers

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$T^* = g\operatorname{Id} + S$$

where g is a Borel function and S is weakly compact.

Proposition

$$K \text{ perfect, } T \in L \big(C(K) \big) \text{ weak multiplier } \quad \Longrightarrow \quad \| \operatorname{Id} + T^2 \| = 1 + \| T^2 \|$$

Theorem (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all operators on C(K) are weak multipliers.

They are called weak Koszmider spaces.

Corollary

There are infinitely many non-isomorphic extremely non-complex spaces.

More C(K)-type examples

More C(K) type examples

There are perfect compact spaces K_1, K_2 such that:

- ullet $C(K_1)$ and $C(K_2)$ are extremely non-complex,
- ullet $C(K_1)$ contains a complemented copy of $C(\Delta)$.
- ullet $C(K_2)$ contains a (1-complemented) isometric copy of ℓ_{∞} .

Observation

- ullet $C(K_1)$ and $C(K_2)$ have operators which are not weak multipliers.
- They are not indecomposable spaces.

Further examples

Spaces $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$. Define

$$C_E(K||L) := \{ f \in C(K) : f|_L \in E \}.$$

Observation

 $C_0(K||L)$ is an M-ideal in $C_E(K||L)$, meaning that

$$C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$$

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E\subset C(L)$ $\implies C_E(K\|L)$ is extremely non-complex.

Isometries on extremely non-complex spaces

- Introduction
- Extremely non-complex Banach spaces: motivation and examples
- 3 Isometries on extremely non-complex spaces
 - Isometries on extremely non-complex spaces
 - Isometries on extremely non-complex $C_E(K||L)$ spaces
 - The main example

Theorem

X extremely non-complex.

- $T \in \text{Iso}(X) \implies T^2 = \text{Id}.$
- $T_1, T_2 \in \operatorname{Iso}(X) \implies T_1 T_2 = T_2 T_1$.
- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\bullet \ \Phi : \mathbb{R}_0^+ \longrightarrow \mathrm{Iso}(X) \ \text{one-parameter semigroup} \ \Longrightarrow \ \Phi(\mathbb{R}_0^+) = \{\mathrm{Id}\}.$

Proof.

• Take
$$S = \frac{1}{\sqrt{2}} (T - T^{-1}) \implies S^2 = \frac{1}{2} T^2 - \operatorname{Id} + \frac{1}{2} T^{-2}$$
.

•
$$1 + ||S^2|| = ||\operatorname{Id} + S^2|| = ||\frac{1}{2}T^2 + \frac{1}{2}T^{-2}|| \le 1 \implies S^2 = 0.$$

• Then
$$Id = \frac{1}{2}T^2 + \frac{1}{2}T^{-2}$$
.

• Since Id is an extreme point of
$$B_{L(X)} \implies T^2 = T^{-2} = \mathrm{Id}$$
.

Extremely non-complex $C_E(K||L)$ spaces.

Remember

K perfect weak Koszmider, L closed nowhere dense, $E\subset C(L)$ $\implies C_E(K\|L)$ is extremely non-complex and $C_E(K\|L)^*\equiv E^*\oplus_1 C_0(K\|L)^*$.

Proposition

K perfect $\implies \exists \ L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.

A good example

Take K perfect weak Koszmider, $L\subset K$ closed nowhere dense with $E=\ell_2\subset C[0,1]\subset C(L)$:

- \bullet $C_{\ell_2}(K||L)$ has no non-trivial one-parameter semigroup of isometries.
- $C_{\ell_2}(K||L)^* \equiv \ell_2 \oplus_1 C_0(K||L)^* \implies \operatorname{Iso}(C_{\ell_2}(K||L)^*) \supset \operatorname{Iso}(\ell_2).$

But we are able to give a better result...

Isometries on extremely non-complex $C_E(K||L)$ spaces

Theorem (Banach-Stone like)

 $C_E(K\|L)$ extremely non-complex, $T \in \mathrm{Iso}(C_E(K\|L))$ \Longrightarrow exists $\theta: K \setminus L \longrightarrow \{-1,1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, \ f \in C_E(K||L))$$

Consequence: cases E = C(L) and E = 0

- $\bullet \ C(K) \ \text{extremely non-complex,} \ \varphi: K \longrightarrow K \ \text{homeomorphism} \ \Longrightarrow \ \varphi = \mathrm{id}$
- $C_0(K \setminus L) \equiv C_0(K \parallel L)$ extremely non-complex, $\varphi: K \setminus L \longrightarrow K \setminus L$ homeomorphism $\implies \varphi = \mathrm{id}$

Consequence: connected case

If $K \setminus L$ is connected, then

$$\operatorname{Iso}(C_E(K||L)) = \{-\operatorname{Id}, +\operatorname{Id}\}\$$

The main example

Koszmider, 2004

 $\exists \ \mathcal{K}$ weak Koszmider space such that $\mathcal{K} \setminus F$ is connected if $|F| < \infty$.

Important observation on the construction above

There is $\mathcal{L} \subset \mathcal{K}$ closed and nowhere dense, with

- ullet $\mathcal{K} \setminus \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

Consequence: the best example

Consider $X = C_{\ell_2}(\mathcal{K}||\mathcal{L})$. Then:

$$\operatorname{Iso}(X) = \{-\operatorname{Id}, +\operatorname{Id}\}$$
 and $\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2)$

Proof.

- \mathcal{K} weak Koszmider, \mathcal{L} nowhere dense, $\ell_2 \subset C[0,1] \subset C(\mathcal{L})$ $\Longrightarrow X$ well-defined and extremely non-complex.
- $\mathcal{K} \setminus \mathcal{L}$ connected $\implies \operatorname{Iso}(X) = \{-\operatorname{Id}, +\operatorname{Id}\}.$
- $X^* \equiv \ell_2 \oplus_1 C_0(\mathcal{K}||\mathcal{L})^* \implies \operatorname{Iso}(\ell_2) \subset \operatorname{Iso}(X^*).$