Duality and the group of isometries of a Banach space

Miguel Martín

http://www.ugr.es/local/mmartins

International Conference on Mathematics and Statistics "ICOMAS 2012"
Memphis (TN, USA), May 15th, 2012

Basic notation and main objective

Notation

X Banach space.

- S_{X} unit sphere, B_{X} closed unit ball.
- X^{*} dual space.
- $L(X)$ bounded linear operators.
- $W(X)$ weakly compact linear operators.
- Iso (X) surjective isometries group.

Objective

Construct a Banach space X with "small" $\operatorname{Iso}(X)$ and "big" $\operatorname{Iso}\left(X^{*}\right)$.

M., 2008

There is X such that

- Iso (X) does not contains uniformly continuous semigroups of isometries;
- $\operatorname{Iso}\left(X^{*}\right) \supset \operatorname{Iso}\left(\ell_{2}\right)$ and, therefore, $\operatorname{Iso}\left(X^{*}\right)$ contains infinitely many uniformly continuous semigroups of isometries.
- But Iso (X) contains infinitely many strongly continuous semigroups of isometries.

Question we are going to solve

Is is possible to produce a space X such that $\operatorname{Iso}\left(X^{*}\right) \supset \operatorname{Iso}\left(\ell_{2}\right)$ but $\operatorname{Iso}(X)$ is "small" (for instance, it does not contain strongly continuous semigroups)?
X Banach space.

Autonomous dynamic system

$(\diamond) \quad\left\{\begin{array}{l}x^{\prime}(t)=A x(t) \\ x(0)=x_{0}\end{array} \quad x_{0} \in X, A\right.$ linear, closed, densely defined.

One-parameter semigroup of operators

$\Phi: \mathbb{R}_{0}^{+} \longrightarrow L(X)$ such that $\Phi(t+s)=\Phi(t) \Phi(s) \forall t, s \in \mathbb{R}_{0}^{+}, \Phi(0)=\mathrm{Id}$.

- Uniformly continuous: $\Phi: \mathbb{R}_{0}^{+} \longrightarrow(L(X),\|\cdot\|)$ continuous.
- Strongly continuous: $\Phi: \mathbb{R}_{0}^{+} \longrightarrow(L(X)$, SOT $)$ continuous.

Relationship (Hille-Yoshida, 1950's)

- Bounded case:
- If $A \in L(X) \Longrightarrow \Phi(t)=\exp (t A)$ solution of (\diamond) uniforly continuous.
- Φ uniformly continuous $\Longrightarrow A=\Phi^{\prime}(0) \in L(X)$ and Φ solution of (\diamond).
- Unbounded case:
- Φ strongly continuous $\Longrightarrow A=\Phi^{\prime}(0)$ closed and Φ solution of (\diamond).
- If (\diamond) has solution Φ strongly continuous $\Longrightarrow A=\Phi^{\prime}(0)$ and $\Phi(t)=" \exp (t A) "$.

The example

we will construct X such that

$$
\operatorname{Iso}(X)=\{ \pm \operatorname{Id}\} \quad \text { but } \quad \operatorname{Iso}\left(X^{*}\right) \supset \operatorname{Iso}\left(\ell_{2}\right) .
$$

The tools

- Extremely non-complex Banach spaces: spaces X such that $\left\|\mathrm{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|$ for every $T \in L(X)$.
- Koszmider type compact spaces: topological compact spaces K such that $C(K)$ has few operators.
P. Koszmider, M. Martín, and J. Merí.

Extremely non-complex $C(K)$ spaces. J. Math. Anal. Appl. (2009).
P. Koszmider, M. Martín, and J. Merí.

Isometries on extremely non-complex Banach spaces.
J. Inst. Math. Jussieu (2011).
M. Martín

The group of isometries of a Banach space and duality. J. Funct. Anal. (2008).
(1) Introduction

2 Extremely non-complex Banach spaces: motivation and examples
(3) Isometries on extremely non-complex spaces

Extremely non-complex Banach spaces: motivation and examples

(2) Extremely non-complex Banach spaces: motivation and examples - Complex structures

- The first examples: $C(K)$ spaces with few operators
- More $C(K)$-type examples
- Further examples
(3) Isometries on extremely non-complex spaces

Complex structures

Definition

X has complex structure if there is $T \in L(X)$ such that $T^{2}=-\mathrm{Id}$.

Some remarks

- This gives a structure of vector space over \mathbb{C} :

$$
(\alpha+i \beta) x=\alpha x+\beta T(x) \quad(\alpha+i \beta \in \mathbb{C}, x \in X)
$$

- Defining

$$
\|x\|=\max \left\{\left\|\mathrm{e}^{i \theta} x\right\|: \theta \in[0,2 \pi]\right\} \quad(x \in X)
$$

one gets that $(X,\|\cdot\|)$ is a complex Banach space.

- If T is an isometry, then the given norm of X is actually complex.
- Conversely, if X is a complex Banach space, then

$$
T(x)=i x \quad(x \in X)
$$

satisfies $T^{2}=-\mathrm{Id}$ and T is an isometry.

Complex structures II

Some examples

(1) If $\operatorname{dim}(X)<\infty, X$ has complex structure iff $\operatorname{dim}(X)$ is even.
(2) If $X \simeq Z \oplus Z$ (in particular, $X \simeq X^{2}$), then X has complex structure.
(3) There are infinite-dimensional Banach spaces without complex structure:

- Dieudonné, 1952: the James' space $\mathcal{J}\left(\right.$ since $\left.\mathcal{J}^{* *} \equiv \mathcal{J} \oplus \mathbb{R}\right)$.
- Szarek, 1986: uniformly convex examples.
- Gowers-Maurey, 1993: their H.I. space (no H.I. has complex structure) .

Definition

X is extremely non-complex if $\operatorname{dist}\left(T^{2},-\mathrm{Id}\right)$ is the maximum possible, i.e.

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\| \quad(T \in L(X))
$$

Question (Gilles Godefroy, private communication, 2005)

Is there any $X \neq \mathbb{R}$ such that $\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|$ for every $T \in L(X) ?$

Weak multipliers

Weak multipliers

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$
T^{*}=g \operatorname{Id}+S
$$

where g is a Borel function and S is weakly compact.

Proposition

K perfect, $T \in L(C(K))$ weak multiplier $\Longrightarrow\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|$

Theorem (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all operators on $C(K)$ are weak multipliers.
They are called weak Koszmider spaces.

Corollary

There are infinitely many non-isomorphic extremely non-complex spaces.

More $C(K)$-type examples

More $C(K)$ type examples

There are perfect compact spaces K_{1}, K_{2} such that:

- $C\left(K_{1}\right)$ and $C\left(K_{2}\right)$ are extremely non-complex,
- $C\left(K_{1}\right)$ contains a complemented copy of $C(\Delta)$.
- $C\left(K_{2}\right)$ contains a (1-complemented) isometric copy of ℓ_{∞}.

Observation

- $C\left(K_{1}\right)$ and $C\left(K_{2}\right)$ have operators which are not weak multipliers.
- They are not indecomposable spaces.

Further examples

Spaces $C_{E}(K \mid L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$. Define

$$
C_{E}(K \| L):=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Observation

$C_{0}(K \| L)$ is an M-ideal in $C_{E}(K \| L)$, meaning that

$$
C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*}
$$

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$ $\Longrightarrow C_{E}(K \| L)$ is extremely non-complex.

Isometries on extremely non-complex spaces

(1) Introduction
(2) Extremely non-complex Banach spaces: motivation and examples
(3) Isometries on extremely non-complex spaces

- Isometries on extremely non-complex spaces
- Isometries on extremely non-complex $C_{E}(K \| L)$ spaces
- The main example

Isometries on extremely non-complex spaces

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=\mathrm{Id}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{\operatorname{Id}\}$.

Proof.

- Take $S=\frac{1}{\sqrt{2}}\left(T-T^{-1}\right) \Longrightarrow S^{2}=\frac{1}{2} T^{2}-\mathrm{Id}+\frac{1}{2} T^{-2}$.
- $1+\left\|S^{2}\right\|=\left\|\mathrm{Id}+S^{2}\right\|=\left\|\frac{1}{2} T^{2}+\frac{1}{2} T^{-2}\right\| \leqslant 1 \Longrightarrow S^{2}=0$.
- Then Id $=\frac{1}{2} T^{2}+\frac{1}{2} T^{-2}$.
- Since Id is an extreme point of $B_{L(X)} \Longrightarrow T^{2}=T^{-2}=\mathrm{Id}$.

Extremely non-complex $C_{E}(K \| L)$ spaces.

Remember

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$
$\Longrightarrow C_{E}(K \| L)$ is extremely non-complex and $C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*}$.

Proposition

K perfect $\Longrightarrow \exists L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.

A good example

Take K perfect weak Koszmider, $L \subset K$ closed nowhere dense with $E=\ell_{2} \subset C[0,1] \subset C(L):$

- $C_{\ell_{2}}(K \| L)$ has no non-trivial one-parameter semigroup of isometries.
- $C_{\ell_{2}}(K \| L)^{*} \equiv \ell_{2} \oplus_{1} C_{0}(K \| L)^{*} \quad \Longrightarrow \quad \operatorname{Iso}\left(C_{\ell_{2}}(K \| L)^{*}\right) \supset \operatorname{Iso}\left(\ell_{2}\right)$.

But we are able to give a better result...

Theorem (Banach-Stone like)

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$ \Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Consequence: cases $E=C(L)$ and $E=0$

- $C(K)$ extremely non-complex, $\varphi: K \longrightarrow K$ homeomorphism $\Longrightarrow \varphi=\mathrm{id}$
- $C_{0}(K \backslash L) \equiv C_{0}(K \| L)$ extremely non-complex, $\varphi: K \backslash L \longrightarrow K \backslash L$ homeomorphism $\Longrightarrow \varphi=\mathrm{id}$

Consequence: connected case

If $K \backslash L$ is connected, then

$$
\operatorname{Iso}\left(C_{E}(K \| L)\right)=\{-\mathrm{Id},+\mathrm{Id}\}
$$

The main example

Koszmider, 2004

$\exists \mathcal{K}$ weak Koszmider space such that $\mathcal{K} \backslash F$ is connected if $|F|<\infty$.

Important observation on the construction above

There is $\mathcal{L} \subset \mathcal{K}$ closed and nowhere dense, with

- $\mathcal{K} \backslash \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

Consequence: the best example

Consider $X=C_{\ell_{2}}(\mathcal{K} \| \mathcal{L})$. Then:

$$
\operatorname{Iso}(X)=\{-\operatorname{Id},+\operatorname{Id}\} \quad \text { and } \quad \operatorname{Iso}\left(X^{*}\right) \supset \operatorname{Iso}\left(\ell_{2}\right)
$$

Proof.

- \mathcal{K} weak Koszmider, \mathcal{L} nowhere dense, $\ell_{2} \subset C[0,1] \subset C(\mathcal{L})$ $\Longrightarrow X$ well-defined and extremely non-complex.
- $\mathcal{K} \backslash \mathcal{L}$ connected $\Longrightarrow \operatorname{Iso}(X)=\{-\mathrm{Id},+\mathrm{Id}\}$.
- $X^{*} \equiv \ell_{2} \oplus_{1} C_{0}(\mathcal{K} \| \mathcal{L})^{*} \Longrightarrow \operatorname{Iso}\left(\ell_{2}\right) \subset \operatorname{Iso}\left(X^{*}\right)$.

