The Bishop-Phelps-Bollobás modulus

of a Banach space

Miguel Martín (Granada, Spain)

http://www.ugr.es/local/mmartins

The coauthors

The talk is based on the following paper
M. Chica, V. Kadets, M. Martín, S. Moreno, F. Rambla

The Bishop-Phelps-Bollobás modulus of a Banach space
In preparation

Outline of the talk

(1) Introduction

- Notation
- The starting point
(2) Definition and first properties
- Definition
- The upper bound of the modulus
- Some properties
(3) Examples
(4) Spaces with the greatest possible value of the modulus
(5) Open problems

Introduction

Section 1

Basic notation

Basic notation

X real or complex Banach space.

- S_{X} unit sphere
- B_{X} closed unit ball
- X^{\star} dual space
- An element $f \in X^{\star}$ attains its norm if

$$
\|f\|=\max \left\{|f(x)|: x \in B_{X}\right\}
$$

that is, there is $x_{0} \in B_{X}$ such that $\|f\|=\left|f\left(x_{0}\right)\right|$.

- The above is equivalent to say that $\operatorname{Re} f$ is a supporting functional of B_{X} at x_{0}.
- $\Pi(X):=\left\{\left(x, x^{*}\right) \in S_{X} \times S_{X^{*}}: x^{*}(x)=1\right\}$

Three theorems and one definition

James, 1957

Let X be a Banach space. Then

$$
X \text { is reflexive } \Longleftrightarrow \quad \text { every element of } X^{\star} \text { attains its norm }
$$

Bishop-Phelps, 1961

The set of norm-attaining functionals on a Banach space X is dense in X^{\star}.

Bollobás, 1970 (known as Bishop-Phelps-Bollobás theorem)

Let X be a Banach space. Suppose $x \in S_{X}$ and $x^{*} \in S_{X^{\star}}$ satisfy

$$
\left|1-x^{*}(x)\right| \leqslant \varepsilon^{2} / 2 \quad(0<\varepsilon<1 / 2)
$$

Then there exists $\left(y, y^{*}\right) \in \Pi(X)$ (i.e. $\left.y^{*}(y)=1\right)$ such that

$$
\|x-y\|<\varepsilon+\varepsilon^{2} \quad \text { and } \quad\left\|x^{*}-y^{*}\right\| \leqslant \varepsilon
$$

Three theorems and one definition

Our idea

Jan

- Can the result bellow be improved for concrete Banach spaces?

Let - That is, for a Banach space X, we want to quantify how good or bad is the approximation in Bollobás' theorem:

Bishop-Phelps, 1961

The set of norm-attaining functionals on a Banach space X is dense in X^{\star}.

Three theorems and one definition

James, 1957

Let X be a Banach space. Then

$$
X \text { is reflexive } \Longleftrightarrow \quad \text { every element of } X^{\star} \text { attains its norm }
$$

Bishop-Phelps, 1961

The set of norm-attaining functionals on a Banach space X is dense in X^{\star}.

Bishop-Phelps-Bollobás modulus

Let X be a Banach space. For every $\delta \in(0,2)$ find the smaller $\varepsilon>0$ such that whenever $x \in B_{X}$ and $x^{*} \in B_{X^{*}}$ satisfy

$$
\operatorname{Re} x^{*}(x)>1-\delta,
$$

there exists $\left(y, y^{*}\right) \in \Pi(X)$ (i.e. $\left.y^{*}(y)=1\right)$ such that

$$
\|x-y\|<\varepsilon \quad \text { and } \quad\left\|x^{*}-y^{*}\right\|<\varepsilon .
$$

Definition and first properties

Section 2

Definition of the Bishop-Phelps-Bollobás modulus

Bishop-Phelps-Bollobás modulus of a Banach space X

It is the function $\Phi_{X}:(0,2) \longrightarrow \mathbb{R}$ defined as

$$
\begin{aligned}
\Phi_{X}(\delta):=\inf \{\varepsilon>0 & : \forall\left(x, x^{*}\right) \in B_{X} \times B_{X^{*}} \text { with } \operatorname{Re} x^{*}(x)>1-\delta, \\
& \left.\exists\left(y, y^{*}\right) \in \Pi(X) \text { with }\|x-y\|<\varepsilon \text { and }\left\|x^{*}-y^{*}\right\|<\varepsilon\right\}
\end{aligned}
$$

- In other words: if for $\delta \in(0,2)$ we write

$$
A_{X}(\delta):=\left\{\left(x, x^{*}\right) \in B_{X} \times B_{X^{\star}}: \operatorname{Re} x^{*}(x)>1-\delta\right\}
$$

it is clear that

$$
\Phi_{X}(\delta)=\sup _{\left(x, x^{*}\right) \in A_{X}(\delta)} \inf _{\left(y, y^{*}\right) \in \Pi(X)} \max \left\{\|x-y\|,\left\|x^{*}-y^{*}\right\|\right\}
$$

- Therefore,

$$
\Phi_{X}(\delta)=d_{H}\left(A_{X}(\delta), \Pi(X)\right) \quad(0<\delta<2)
$$

where d_{H} is the Hausdorff distance in $X \oplus \infty X^{\star}$.

A remark

$$
\begin{aligned}
\Phi_{X}(\delta)= & \inf \{\varepsilon>0: \\
& \forall\left(x, x^{*}\right) \in B_{X} \times B_{X^{*}} \text { with } \operatorname{Re} x^{*}(x)>1-\delta, \\
= & \inf \left\{\varepsilon>0: \forall\left(x, x^{*}\right) \in B_{X} \times B_{X^{*}} \text { with } \operatorname{Re} x^{*}(x) \geqslant 1-\delta,\right. \\
& \left.\exists\left(y, y^{*}\right) \in \Pi(X) \text { with }\|x-y\|<\varepsilon \text { and }\left\|x^{*}-y^{*}\right\|<\varepsilon\right\} \\
= & \inf \left\{\varepsilon>0: \forall\left(x, x^{*}\right) \in B_{X} \times B_{X^{*}} \text { with } \operatorname{Re} x^{*}(x)>1-\delta,\right. \\
& \left.\exists\left(y, y^{*}\right) \in \Pi(X) \text { with }\|x-y\| \leqslant \varepsilon \text { and }\left\|x^{*}-y^{*}\right\| \leqslant \varepsilon\right\} \\
= & \inf \left\{\varepsilon>0: \forall\left(x, x^{*}\right) \in B_{X} \times B_{X^{*}} \text { with } \operatorname{Re} x^{*}(x) \geqslant 1-\delta,\right. \\
& \left.\exists\left(y, y^{*}\right) \in \Pi(X) \text { with }\|x-y\| \leqslant \varepsilon \text { and }\left\|x^{*}-y^{*}\right\| \leqslant \varepsilon\right\}
\end{aligned}
$$

Three observations

Observation 1

$\Phi_{X}(\delta)$ is increasing in δ.

observation 2

As a consequence of the Bishop-Phelps-Bollobás theorem, we have

$$
\lim _{\delta \downarrow 0} \Phi_{X}(\delta)=0
$$

Observation 3

The smaller is $\Phi_{X}(\cdot)$, the better is the approximation in the space X.

The upper bound of the modulus

$$
\begin{aligned}
& \text { Theorem } \\
& \text { For every Banach space } X \text { and every } \delta \in(0,2), \\
& \qquad \Phi_{X}(\delta) \leqslant \sqrt{2 \delta}
\end{aligned}
$$

Some coments:

- We prove the result using a lemma by Phelps from 1974.
- Most of the technical main difficulties come from the fact that we approximate elements from B_{X} and functional from $B_{X^{\star}}$.
- But, on the other hand, this gives a slightly improved version of Bollobás theorem:

The Bishop-Phelps-Bollobás revisited

Corollary

Let X be a Banach space.

- Let $0<\varepsilon<2$ and suppose that $x \in B_{X}$ and $x^{*} \in B_{X^{*}}$ satisfy

$$
\operatorname{Re} x^{*}(x)>1-\varepsilon^{2} / 2
$$

Then, there exists $\left(y, y^{*}\right) \in \Pi(X)$ such that

$$
\|x-y\|<\varepsilon \quad \text { and } \quad\left\|x^{*}-y^{*}\right\|<\varepsilon
$$

- Let $0<\delta<2$ and suppose that $x \in B_{X}$ and $x^{*} \in B_{X^{*}}$ satisfy

$$
\operatorname{Re} x^{*}(x)>1-\delta
$$

Then, there exists $\left(y, y^{*}\right) \in \Pi(X)$ such that

$$
\|x-y\|<\sqrt{2 \delta} \quad \text { and } \quad\left\|x^{*}-y^{*}\right\|<\sqrt{2 \delta}
$$

Some properties

Proposition

The function $\delta \longmapsto \Phi_{X}(\delta)$ is continuous in $(0,2)$

Proposition

$$
\Phi_{X}(\delta) \leqslant \Phi_{X^{\star}}(\delta)
$$

- We do not know whether equality holds or not

Corollary

If X is reflexive, then $\Phi_{X}(\delta)=\Phi_{X^{\star}}(\delta)$.

Examples

Section 3

The one dimensional case

Example

$$
\Phi_{\mathbb{R}}(\delta)= \begin{cases}\delta & \text { if } 0<\delta \leqslant 1 \\ \sqrt{\delta-1}+1 & \text { if } 1<\delta<2\end{cases}
$$

Hilbert spaces

Example

Let H be a Hilbert space, $\operatorname{dim}(H)>1$,

$$
\begin{array}{ll}
\Phi_{H}(\delta) \leqslant \sqrt{\delta} & \text { for } 0<\delta<2 \\
\Phi_{H}(\delta)=\sqrt{\delta} & \text { for } 1 \leqslant \delta<2
\end{array}
$$

Catching the maximum value of the modulus

Proposition

Suppose $X=Y \oplus_{1} Z$. Then

$$
\Phi_{X}(\delta)=\sqrt{2 \delta} \quad(0<\delta<1 / 2)
$$

Proposition

Suppose $X=Y \oplus_{\infty} Z$. Then

$$
\Phi_{X}(\delta)=\sqrt{2 \delta} \quad(0<\delta<1 / 2)
$$

Examples

$$
\Phi_{X}(\delta)=\sqrt{2 \delta} \quad(0<\delta<1 / 2)
$$

for X equals $c_{0}, \ell_{1}, \ell_{\infty}, L_{1}[0,1], L_{\infty}[0,1] \ldots$

Catching the maximum value of the modulus II

Proposition

Suppose $X^{\star}=Y \oplus_{1} Z$ and Y, Z are NOT w^{*}-dense in X^{\star}. Then

$$
\Phi_{X}(\delta)=\sqrt{2 \delta} \quad(0<\delta<1 / 2)
$$

Corollary

Suppose X contains two M-ideals J_{1} and J_{2} with $J_{1} \cap J_{2}=\{0\}$. Then

$$
\Phi_{X}(\delta)=\sqrt{2 \delta} \quad(0<\delta<1 / 2)
$$

Examples

$$
\Phi_{X}(\delta)=\sqrt{2 \delta} \quad(0<\delta<1 / 2)
$$

for X equals $C[0,1], C_{0}(\mathbb{R}), C_{b}\left(\mathbb{R}^{N}\right) \ldots$

A picture of the values of the modulus for some examples

Spaces with the greatest possible value of the modulus

Section 4

Theorem

Let X be a Banach space. Suppose there is $\delta_{0} \in(0,2)$ such that $\Phi_{X}\left(\delta_{0}\right)=\sqrt{2 \delta_{0}}$. Then X^{\star} contains an almost isometric copy of the real two-dimensional ℓ_{∞}.

Some comments:

- What we show: $\forall \varepsilon>0, \exists x_{\varepsilon}^{*}, y_{\varepsilon}^{*} \in S_{X^{\star}}$ with

$$
\left\|x_{\varepsilon}^{*}+y_{\varepsilon}^{*}\right\|=2 \quad \text { and } \quad\left\|x_{\varepsilon}^{*}-y_{\varepsilon}^{*}\right\| \geqslant 2-\varepsilon .
$$

- The proof is rather technical. It is actually an analysis of techniques used in the proof of the Bishop-Phelps theorem, but studying what happens when they give the "worst" possible value.
- In the complex case, it is not possible to get an almost isometric copy of either ℓ_{1}^{2} or ℓ_{∞}^{2}, since they are not isometric and both have the greatest possible Bishop-Phelps-Bollobás modulus.

Example

There is a real three-dimensional space X whose dual contains an isometric copy of the two-dimensional ℓ_{∞} space, but for which

$$
\Phi_{X}(\delta)<\sqrt{2 \delta} \text { for every } \delta \in(0,2) .
$$

Open problems

Section 5

Open problems

Problem 1

Is $\Phi_{X}(\delta)$ equal to $\Phi_{X^{\star}}(\delta)$ for every Banach space ?

Problem 2

Calculate $\Phi_{H}(\delta)$ for a Hilbert space H of dimension greater than one.
In particular, is $\Phi_{H}(\delta)=\sqrt{\delta}$?

Problem 3

Is $\Phi_{X}(\delta) \geqslant \sqrt{\delta}$ when $\operatorname{dim}(X) \geqslant 2$?

Problem 4

Characterize those Banach spaces for which $\Phi_{X}(\delta)=\sqrt{2 \delta}$.

