The Bishop-Phelps-Bollobás modulus of a Banach space

Miguel Martín (Granada, Spain)

http://www.ugr.es/local/mmartins

International conference dedicated to the 120th anniversary of Stefan Banach

Lviv (Ukraine), September 17-21, 2012

M. CHICA, V. KADETS, M. MARTÍN, S. MORENO, F. RAMBLA The Bishop-Phelps-Bollobás modulus of a Banach space In preparation

Miguel Martín (Universidad de Granada)

Introduction

- Notation
- The starting point

2 Definition and first properties

- Definition
- The upper bound of the modulus
- Some properties

3 Examples

Spaces with the greatest possible value of the modulus

Open problems

Introduction

Section 1

- X real or complex Banach space.
 - S_X unit sphere
 - B_X closed unit ball
 - X^{\star} dual space
 - An element $f \in X^*$ attains its norm if

$$||f|| = \max\{|f(x)|: x \in B_X\},\$$

that is, there is $x_0 \in B_X$ such that $||f|| = |f(x_0)|$.

• The above is equivalent to say that $\operatorname{Re} f$ is a supporting functional of B_X at x_0 . • $\Pi(X) := \{(x, x^*) \in S_X \times S_{X^*} : x^*(x) = 1\}$

Three theorems and one definition

Bishop-Phelps, 1961

The set of norm-attaining functionals on a Banach space X is dense in X^* .

Bollobás, 1970 (known as Bishop-Phelps-Bollobás theorem)

Let X be a Banach space. Suppose $x \in S_X$ and $x^* \in S_{X^\star}$ satisfy

$$|1 - x^*(x)| \leq \varepsilon^2/2 \qquad (0 < \varepsilon < 1/2).$$

Then there exists $(y,y^*)\in\Pi(X)$ (i.e. $y^*(y)=1$) such that

 $\|x-y\|<\varepsilon+\varepsilon^2 \quad \text{ and } \quad \|x^*-y^*\|\leqslant \varepsilon.$

Three theorems and one definition Our idea Jan • Can the result bellow be improved for concrete Banach spaces? Let • That is, for a Banach space X, we want to quantify how good or bad is the approximation in Bollobás' theorem:

Bishop-Phelps, 1961

The set of norm-attaining functionals on a Banach space X is dense in X^* .

Three theorems and one definition

Bishop-Phelps-Bollobás modulus

Let X be a Banach space. For every $\delta \in (0,2)$ find the smaller $\varepsilon > 0$ such that whenever $x \in B_X$ and $x^* \in B_{X^*}$ satisfy

$$\operatorname{Re} x^*(x) > 1 - \delta,$$

there exists $(y,y^*)\in\Pi(X)$ (i.e. $y^*(y)=1$) such that

$$|x-y|| < \varepsilon$$
 and $||x^*-y^*|| < \varepsilon$.

Definition and first properties

Section 2

Definition of the Bishop-Phelps-Bollobás modulus

It is the function $\Phi_X : (0,2) \longrightarrow \mathbb{R}$ defined as

$$\begin{split} \Phi_X(\delta) &:= \inf \left\{ \varepsilon > 0 : \forall (x, x^*) \in B_X \times B_{X^*} \text{ with } \operatorname{Re} x^*(x) > 1 - \delta, \\ \exists (y, y^*) \in \Pi(X) \text{ with } \|x - y\| < \varepsilon \text{ and } \|x^* - y^*\| < \varepsilon \right\} \end{split}$$

• In other words: if for $\delta \in (0,2)$ we write

$$A_X(\delta) := \{(x, x^*) \in B_X \times B_{X^*} : \operatorname{Re} x^*(x) > 1 - \delta\},\$$

it is clear that

$$\Phi_X(\delta) = \sup_{(x,x^*) \in A_X(\delta)} \inf_{(y,y^*) \in \Pi(X)} \max\{\|x-y\|, \|x^*-y^*\|\}.$$

• Therefore,

$$\Phi_X(\delta) = d_H \left(A_X(\delta), \Pi(X) \right) \qquad (0 < \delta < 2)$$

where d_H is the Hausdorff distance in $X \oplus_{\infty} X^{\star}$.

Miguel Martín (Universidad de Granada)

A remark

$$\begin{split} \Phi_X(\delta) &= \inf \left\{ \varepsilon > 0 \, : \, \forall (x, x^*) \in B_X \times B_{X^*} \text{ with } \operatorname{Re} x^*(x) > 1 - \delta, \\ \exists (y, y^*) \in \Pi(X) \text{ with } \|x - y\| < \varepsilon \text{ and } \|x^* - y^*\| < \varepsilon \right\} \end{split}$$

$$= \inf \left\{ \varepsilon > 0 : \forall (x, x^*) \in B_X \times B_{X^*} \text{ with } \operatorname{Re} x^*(x) \ge 1 - \delta, \\ \exists (y, y^*) \in \Pi(X) \text{ with } \|x - y\| < \varepsilon \text{ and } \|x^* - y^*\| < \varepsilon \right\}$$

$$= \inf \left\{ \varepsilon > 0 : \forall (x, x^*) \in B_X \times B_{X^*} \text{ with } \operatorname{Re} x^*(x) > 1 - \delta, \\ \exists (y, y^*) \in \Pi(X) \text{ with } \|x - y\| \leqslant \varepsilon \text{ and } \|x^* - y^*\| \leqslant \varepsilon \right\}$$

$$= \inf \left\{ \varepsilon > 0 : \forall (x, x^*) \in B_X \times B_{X^*} \text{ with } \operatorname{Re} x^*(x) \ge 1 - \delta, \\ \exists (y, y^*) \in \Pi(X) \text{ with } \|x - y\| \leqslant \varepsilon \text{ and } \|x^* - y^*\| \leqslant \varepsilon \right\}$$

Observation 1

 $\Phi_X(\delta)$ is increasing in δ .

observation 2

As a consequence of the Bishop-Phelps-Bollobás theorem, we have

 $\lim_{\delta \downarrow 0} \ \Phi_X(\delta) = 0$

Observation 3

The smaller is $\Phi_X(\cdot)$, the better is the approximation in the space X.

The upper bound of the modulus

Theorem

For every Banach space X and every $\delta \in (0,2)$,

 $\Phi_X(\delta) \leqslant \sqrt{2\delta}$

Some coments:

- We prove the result using a lemma by Phelps from 1974.
- Most of the technical main difficulties come from the fact that we approximate elements from B_X and functional from B_{X^\star} .
- But, on the other hand, this gives a slightly improved version of Bollobás theorem:

The Bishop-Phelps-Bollobás revisited

Corollary

Let X be a Banach space.

• Let $0 < \varepsilon < 2$ and suppose that $x \in B_X$ and $x^* \in B_{X^*}$ satisfy

$$\operatorname{Re} x^*(x) > 1 - \varepsilon^2/2.$$

Then, there exists $(y, y^*) \in \Pi(X)$ such that

$$||x-y|| < \varepsilon$$
 and $||x^*-y^*|| < \varepsilon$.

• Let $0 < \delta < 2$ and suppose that $x \in B_X$ and $x^* \in B_{X^*}$ satisfy

$$\operatorname{Re} x^*(x) > 1 - \delta.$$

Then, there exists $(y, y^*) \in \Pi(X)$ such that

$$\|x-y\| < \sqrt{2\delta} \quad \text{ and } \quad \|x^*-y^*\| < \sqrt{2\delta}.$$

Some properties

Proposition

The function $\delta \mapsto \Phi_X(\delta)$ is continuous in (0,2)

Proposition

 $\Phi_X(\delta) \leqslant \Phi_{X^\star}(\delta)$

We do not know whether equality holds or not

Corollary

If X is reflexive, then $\Phi_X(\delta) = \Phi_{X^{\star}}(\delta)$.

Miguel Martín (Universidad de Granada)

Section 3

The one dimensional case

Example

$$\Phi_{\mathbb{R}}(\delta) = \begin{cases} \delta & \text{if } 0 < \delta \leqslant 1 \\ \sqrt{\delta - 1} + 1 & \text{if } 1 < \delta < 2 \end{cases}$$

Let H be a Hilbert space, $\dim(H) > 1$,

$$\begin{split} \Phi_H(\delta) \leqslant \sqrt{\delta} & \text{for } 0 < \delta < 2, \\ \Phi_H(\delta) = \sqrt{\delta} & \text{for } 1 \leqslant \delta < 2 \end{split}$$

Catching the maximum value of the modulus

Proposition

Suppose $X = Y \oplus_1 Z$. Then

$$\Phi_X(\delta) = \sqrt{2\delta} \qquad (0 < \delta < 1/2)$$

Proposition

Suppose $X = Y \oplus_{\infty} Z$. Then

$$\Phi_X(\delta) = \sqrt{2\delta} \qquad (0 < \delta < 1/2)$$

Examples

$$\Phi_X(\delta) = \sqrt{2\delta} \qquad (0 < \delta < 1/2)$$

for X equals c_0 , ℓ_1 , ℓ_∞ , $L_1[0,1]$, $L_\infty[0,1]$...

Catching the maximum value of the modulus II

Proposition

Suppose $X^{\star} = Y \oplus_1 Z$ and Y, Z are NOT w^* -dense in X^{\star} . Then

$$\Phi_X(\delta) = \sqrt{2\delta} \qquad (0 < \delta < 1/2)$$

Corollary

Suppose X contains two M-ideals J_1 and J_2 with $J_1 \cap J_2 = \{0\}$. Then

$$\Phi_X(\delta) = \sqrt{2\delta} \qquad (0 < \delta < 1/2)$$

Examples

$$\Phi_X(\delta) = \sqrt{2\delta} \qquad (0 < \delta < 1/2)$$

for X equals C[0,1], $C_0(\mathbb{R})$, $C_b(\mathbb{R}^N)$...

A picture of the values of the modulus for some examples

Spaces with the greatest possible value of the modulus

Section 4

A necessary condition...

Theorem

Let X be a Banach space. Suppose there is $\delta_0 \in (0,2)$ such that $\Phi_X(\delta_0) = \sqrt{2\delta_0}$. Then X^* contains an almost isometric copy of the real two-dimensional ℓ_{∞} .

Some comments:

• What we show: $\forall \varepsilon > 0$, $\exists x_{\varepsilon}^*, y_{\varepsilon}^* \in S_{X^{\star}}$ with

$$\|x_{\varepsilon}^{*}+y_{\varepsilon}^{*}\|=2 \quad \text{ and } \quad \|x_{\varepsilon}^{*}-y_{\varepsilon}^{*}\| \geqslant 2-\varepsilon.$$

- The proof is rather technical. It is actually an analysis of techniques used in the proof of the Bishop-Phelps theorem, but studying what happens when they give the "worst" possible value.
- In the complex case, it is not possible to get an almost isometric copy of either ℓ_1^2 or ℓ_∞^2 , since they are not isometric and both have the greatest possible Bishop-Phelps-Bollobás modulus.

... which is not sufficient

Example

There is a real three-dimensional space X whose dual contains an isometric copy of the two-dimensional ℓ_∞ space, but for which

 $\Phi_X(\delta) < \sqrt{2\delta}$ for every $\delta \in (0,2)$.

Open problems

Section 5

Open problems

Problem 1

Is $\Phi_X(\delta)$ equal to $\Phi_{X^\star}(\delta)$ for every Banach space ?

Problem 2

Calculate $\Phi_H(\delta)$ for a Hilbert space H of dimension greater than one. In particular, is $\Phi_H(\delta)=\sqrt{\delta}$?

Problem 3

Is
$$\Phi_X(\delta) \ge \sqrt{\delta}$$
 when $\dim(X) \ge 2$?

Problem 4

Characterize those Banach spaces for which $\Phi_X(\delta) = \sqrt{2\delta}$.

Miguel Martín (Universidad de Granada)