Isometries of Banach spaces and duality

Miguel Martín

http://www.ugr.es/local/mmartins

Summer Conference on General Topology and its Applications

New York, July 2011

Extremely non-complex spaces 000000

Isometries on extremely non-complex spaces 00000

Basic notation and main objective

Notation

- X Banach space.
 - S_X unit sphere, B_X closed unit ball.
 - X* dual space.
 - L(X) bounded linear operators.
 - W(X) weakly compact linear operators.
 - Iso(X) surjective isometries group.

Objective

 \star Construct a Banach space X with "small" Iso(X) and "big" $Iso(X^*)$.

Extremely non-complex spaces 000000

Isometries on extremely non-complex spaces 00000

A previous attempt

M., 2008

There is X such that

- Iso(X) does not contains uniformly continuous semigroups of isometries;
- $\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2)$ and, therefore, $\operatorname{Iso}(X^*)$ contains infinitely many uniformly continuous semigroups of isometries.
- But Iso(X) contains infinitely many strongly continuous semigroups of isometries.

Question we are going to solve

Is is possible to produce a space X such that $Iso(X^*) \supset Iso(\ell_2)$ but Iso(X) is "smaller" (for instance, it does not contain strongly continuous semigroups) ?

Extremely non-complex spaces 000000

Isometries on extremely non-complex spaces 00000

Motivation

X Banach space.

Autonomous dynamic system

$$(\diamondsuit) \qquad \begin{cases} x'(t) = A x(t) \\ x(0) = x_0 \end{cases} \qquad x_0 \in X, \ A \text{ linear, closed, densely defined.} \end{cases}$$

One-parameter semigroup of operators

$$\Phi: \mathbb{R}^+_0 \longrightarrow L(X) \text{ such that } \Phi(t+s) = \Phi(t)\Phi(s) \ \forall t, s \in \mathbb{R}^+_0, \ \Phi(0) = \mathrm{Id}.$$

- Uniformly continuous: $\Phi : \mathbb{R}_0^+ \longrightarrow (L(X), \|\cdot\|)$ continuous.
- Strongly continuous: $\Phi : \mathbb{R}_0^+ \longrightarrow (L(X), \text{SOT})$ continuous.

Relationship (Hille-Yoshida, 1950's)

- Bounded case:
 - If $A \in L(X) \Longrightarrow \Phi(t) = \exp(tA)$ solution of (\diamondsuit) uniforly continuous.
 - Φ uniformly continuous $\Longrightarrow A = \Phi'(0) \in L(X)$ and Φ solution of (\diamondsuit) .
- Unbounded case:
 - Φ strongly continuous $\Longrightarrow A = \Phi'(0)$ closed and Φ solution of (\diamondsuit) .
 - If (\diamondsuit) has solution Φ strongly continuous $\Longrightarrow A = \Phi'(0)$ and $\Phi(t) = "\exp(t A)"$.

Introduction	
000000	

Extremely non-complex spaces 000000

Isometries on extremely non-complex spaces 00000

What we are going to show

The example

we will construct \boldsymbol{X} such that

 $\operatorname{Iso}(X) = \{\pm \operatorname{Id}\}$ but $\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2).$

The tools

- Extremely non-complex Banach spaces: spaces X such that $\|\operatorname{Id} + T^2\| = 1 + \|T^2\|$ for every $T \in L(X)$.
- Koszmider type compact spaces: topological compact spaces K such that C(K) has few operators.

Extremely non-complex spaces 000000

Isometries on extremely non-complex spaces 00000

The talk is based on the papers

- P. Koszmider, M. Martín, and J. Merí. Extremely non-complex C(K) spaces. J. Math. Anal. Appl. (2009).
- P. Koszmider, M. Martín, and J. Merí.
 Isometries on extremely non-complex Banach spaces.
 J. Inst. Math. Jussieu (2011).

M. Martín

The group of isometries of a Banach space and duality. *J. Funct. Anal.* (2008).

Extremely non-complex spaces 000000

Isometries on extremely non-complex spaces 00000

Sketch of the talk

Extremely non-complex Banach spaces: motivation and examples

3 Isometries on extremely non-complex spaces

Extremely non-complex spaces

Isometries on extremely non-complex spaces 00000

Extremely non-complex Banach spaces: motivation and examples

Introduction

Extremely non-complex Banach spaces: motivation and examples

- Complex structures
- The first examples: C(K) spaces with few operators
- More C(K)-type examples
- Further examples

Isometries on extremely non-complex spaces

Extremely non-complex spaces

Isometries on extremely non-complex spaces 00000

Complex structures

Definition

X has complex structure if there is $T \in L(X)$ such that $T^2 = -Id$.

Some remarks

 $\bullet\,$ This gives a structure of vector space over \mathbb{C} :

$$(\alpha + i\beta) x = \alpha x + \beta T(x)$$
 $(\alpha + i\beta \in \mathbb{C}, x \in X)$

Defining

$$|||x||| = \max\{||\mathbf{e}^{i\theta}x|| : \theta \in [0, 2\pi]\} \qquad (x \in X)$$

one gets that $(X, \|\cdot\|)$ is a complex Banach space.

- If T is an isometry, then actually the given norm of X is complex.
- \bullet Conversely, if X is a complex Banach space, then

$$T(x) = i x \qquad \left(x \in X\right)$$

satisfies $T^2 = -Id$ and T is an isometry.

Extremely non-complex spaces

Isometries on extremely non-complex spaces 00000

Complex structures II

Some examples

- If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.
- **(a)** If $X \simeq Z \oplus Z$ (in particular, $X \simeq X^2$), then X has complex structure.

③ There are infinite-dimensional Banach spaces without complex structure:

- Dieudonné, 1952: the James' space \mathcal{J} (since $\mathcal{J}^{**} \equiv \mathcal{J} \oplus \mathbb{R}$).
- Szarek, 1986: uniformly convex examples.
- Gowers-Maurey, 1993: their H.I. space.

Definition

X is extremely non-complex if $dist(T^2, -Id)$ is the maximum possible, i.e.

$$\|\mathrm{Id} + T^2\| = 1 + \|T^2\| \qquad (T \in L(X))$$

Question (Gilles Godefroy, private communication, 2005)

Is there any $X\neq \mathbb{R}$ such that $\|\mathrm{Id}+T^2\|=1+\|T^2\|$ for every $T\in L(X)$?

Extremely non-complex spaces

Isometries on extremely non-complex spaces 00000

Weak multipliers

Weak multipliers

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

 $T^* = g \operatorname{Id} + S$

where g is a Borel function and S is weakly compact.

Theorem

K perfect, $T \in L(C(K))$ weak multiplier $\implies \|\mathrm{Id} + T^2\| = 1 + \|T^2\|$

Examples (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all operators on ${\cal C}(K)$ are weak multipliers.

They are called weak Koszmider spaces.

Corollary

There are infinitely many non-isomorphic extremely non-complex spaces.

Extremely non-complex spaces

Isometries on extremely non-complex spaces 00000

More C(K)-type examples

More C(K) type examples

There are perfect compact spaces K_1 , K_2 such that:

- $C(K_1)$ and $C(K_2)$ are extremely non-complex,
- $C(K_1)$ contains a complemented copy of $C(\Delta)$.
- $C(K_2)$ contains a (1-complemented) isometric copy of ℓ_{∞} .

Observation

- $C(K_1)$ and $C(K_2)$ have operators which are not weak multipliers.
- They are not indecomposable spaces.

Introduction
000000

Extremely non-complex spaces

Isometries on extremely non-complex spaces 00000

Further examples

Spaces $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$. Define

$$C_E(K||L) := \{ f \in C(K) : f|_L \in E \}.$$

Observation

 $C_0(K\|L)$ is an M-ideal in $C_E(K\|L),$ meaning that

$$C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$$

Theorem

 $\begin{array}{l} K \text{ perfect weak Koszmider, } L \text{ closed nowhere dense, } E \subset C(L) \\ \Longrightarrow \ C_E(K \| L) \text{ is extremely non-complex.} \end{array}$

Extremely non-complex spaces 000000 Isometries on extremely non-complex spaces $\bullet{\circ}{\circ}{\circ}{\circ}{\circ}{\circ}$

Isometries on extremely non-complex spaces

Introduction

2 Extremely non-complex Banach spaces: motivation and examples

Isometries on extremely non-complex spaces

- Isometries on extremely non-complex spaces
- Isometries on extremely non-complex $C_E(K||L)$ spaces
- The main example

Extremely non-complex spaces 000000

Isometries on extremely non-complex spaces $\bigcirc \bullet \bigcirc \bigcirc \bigcirc$

Isometries on extremely non-complex spaces

Theorem

X extremely non-complex.

•
$$T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$$

•
$$T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$$

- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = {\operatorname{Id}}.$

Consequences

- $\operatorname{Iso}(X)$ is a Boolean group for the composition operation.
- Iso(X) identifies with the set Unc(X) of unconditional projections on X:

$$P \in \mathsf{Unc}(X) \iff P^2 = P, \ 2P - \mathrm{Id} \in \mathrm{Iso}(X)$$
$$\iff P = \frac{1}{2}(\mathrm{Id} - T), \ T \in \mathrm{Iso}(X), \ T^2 = \mathrm{Id}.$$

Extremely non-complex spaces 000000

Isometries on extremely non-complex spaces $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Extremely non-complex $C_E(K||L)$ spaces.

Remember

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$ $\implies C_E(K||L)$ is extremely non-complex and $C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$.

Proposition

K perfect $\implies \exists L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.

A good example

Take K perfect weak Koszmider, $L \subset K$ closed nowhere dense with $E = \ell_2 \subset C[0,1] \subset C(L)$:

- $C_{\ell_2}(K\|L)$ has no non-trivial one-parameter semigroup of isometries.
- $C_{\ell_2}(K\|L)^* \equiv \ell_2 \oplus_1 C_0(K\|L)^* \implies \operatorname{Iso}(C_{\ell_2}(K\|L)^*) \supset \operatorname{Iso}(\ell_2).$

But we are able to give a better result...

Extremely non-complex spaces

Isometries on extremely non-complex spaces $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Isometries on extremely non-complex $C_E(K||L)$ spaces

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1,1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \qquad \left(x \in K \setminus L, \ f \in C_E(K||L)\right)$$

Consequences: cases E = C(L) and E = 0

• C(K) extremely non-complex, $\varphi: K \longrightarrow K$ homeomorphism $\implies \varphi = \mathrm{id}$

• $C_0(K \setminus L) \equiv C_0(K \| L)$ extremely non-complex, $\varphi : K \setminus L \longrightarrow K \setminus L$ homeomorphism $\implies \varphi = id$

Consequence: connected case

If K and $K \,\backslash\, L$ are connected, then

$$\operatorname{Iso}(C_E(K||L)) = \{-\operatorname{Id}, +\operatorname{Id}\}$$

Extremely non-complex spaces 000000

Isometries on extremely non-complex spaces $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

The main example

Koszmider, 2004

 $\exists \ \mathcal{K} \text{ connected weak Koszmider space such that } \mathcal{K} \setminus F \text{ is connected if } |F| < \infty.$

Important observation on the construction above

There is $\mathcal{L} \subset \mathcal{K}$ closed and nowhere dense, with

- $\mathcal{K} \setminus \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

Consequence: the best example

Consider $X = C_{\ell_2}(\mathcal{K} \| \mathcal{L})$. Then:

 $\operatorname{Iso}(X) = \{-\operatorname{Id}, +\operatorname{Id}\}$ and $\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2)$

Proof.

- \mathcal{K} weak Koszmider, \mathcal{L} nowhere dense, $\ell_2 \subset C[0,1] \subset C(\mathcal{L})$ $\implies X$ well-defined and extremely non-complex.
- $\mathcal{K} \setminus \mathcal{L}$ connected \implies Iso $(X) = \{-\mathrm{Id}, +\mathrm{Id}\}.$
- $X^* \equiv \ell_2 \oplus_1 C_0(\mathcal{K} \| \mathcal{L})^* \implies \operatorname{Iso}(\ell_2) \subset \operatorname{Iso}(X^*).$