The numerical index of Banach spaces

Miguel Martín

http://www.ugr.es/local/mmartins

April 2nd, 2009 - Zaragoza

Schedule of the talk

(1) Basic notation
(2) Numerical range of operators
(3) Numerical index of Banach spaces

4 Banach spaces with numerical index one
(5) Two recent results

Basic notation

X Banach space.

- \mathbb{K} base field (it may be \mathbb{R} or \mathbb{C}),
- S_{X} unit sphere, B_{X} unit ball,
- X^{*} dual space,
- $L(X)$ bounded linear operators,
- Iso (X) surjective linear isometries,
- $T^{*} \in L\left(X^{*}\right)$ adjoint operator of $T \in L(X)$.

Numerical range of operators

(2) Numerical range of operators

- Definitions and first properties
- Relationship with semigroups of operators
- Finite-dimensional spaces
- Isometries and duality
F. F. Bonsall and J. Duncan

Numerical Ranges. Vol I and II.
London Math. Soc. Lecture Note Series, 1971 \& 1973.

Numerical range: Hilbert spaces

Hilbert space numerical range (Toeplitz, 1918)

- $A n \times n$ real or complex matrix

$$
W(A)=\left\{(A x \mid x): x \in \mathbb{K}^{n},(x \mid x)=1\right\} .
$$

- H real or complex Hilbert space, $T \in L(H)$,

$$
W(T)=\{(T x \mid x): x \in H,\|x\|=1\} .
$$

Some properties

H Hilbert space, $T \in L(H)$:

- $W(T)$ is convex.
- In the complex case, $\overline{W(T)}$ contains the spectrum of T.
- If T is normal, then $\overline{W(T)}=\overline{\operatorname{co}} \operatorname{Sp}(T)$.

Numerical range: Banach spaces

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$
V(T)=\left\{x^{*}(T x): x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Some properties

X Banach space, $T \in L(X)$:

- $V(T)$ is connected (not necessarily convex).
- In the complex case, $\overline{V(T)}$ contains the spectrum of T.
- In fact,

$$
\overline{\operatorname{co}} \operatorname{Sp}(T)=\bigcap \overline{\operatorname{co}} V(T),
$$

the intersection taken over all numerical ranges $V(T)$ corresponding to equivalent norms on X.

For Hilbert spaces

- It is a comfortable way to study the spectrum.
- It is useful to work with some concept like hermitian operator, skew-hermitian operator, dissipative operator. . .
- It is useful to estimate spectral radii of small perturbations of matrices.

For Banach spaces

- It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators. . .
- It gives a description of the Lie algebra corresponding to the Lie group of all onto isometries on the space.
- It gives an easy and quantitative proof of the fact that Id is an strongly extreme point of $B_{L(X)}$ (MLUR point).

Relationship with semigroups of operators

A motivating example

A real or complex $n \times n$ matrix. TFAE:

- A is skew-adjoint (i.e. $A^{*}=-A$).
- $\operatorname{Re}(A x \mid x)=0$ for every $x \in H$.
- $B=\exp (\rho A)$ is unitary for every $\rho \in \mathbb{R}$ (i.e. $B^{*} B=B B^{*}=\mathrm{Id}$).

In term of Hilbert spaces

H (n-dimensional) Hilbert space, $T \in L(H)$. TFAE:

- $\operatorname{Re} W(T)=\{0\}$.
- $\exp (\rho T) \in \operatorname{Iso}(H)$ for every $\rho \in \mathbb{R}$.

For general Banach spaces

X Banach space, $T \in L(X)$. TFAE:

- $\operatorname{Re} V(T)=\{0\}$.
- $\exp (\rho T) \in \operatorname{Iso}(X)$ for every $\rho \in \mathbb{R}$.

Characterizing uniformly continuous semigroups of operators

Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)

X real or complex Banach space, $T \in L(X)$. TFAE:

- $\operatorname{Re} V(T)=\{0\}$ (T is skew-hermitian).
- $\|\exp (\rho T)\| \leqslant 1$ for every $\rho \in \mathbb{R}$.
- $\left\{\exp (\rho T): \rho \in \mathbb{R}_{0}^{+}\right\} \subset \operatorname{Iso}(X)$.
- T belongs to the tangent space to $\operatorname{Iso}(X)$ at Id.
- $\lim _{\rho \rightarrow 0} \frac{\|\mathrm{Id}+\rho T\|-1}{\rho}=0$.

Main consequence

If X is a real Banach space such that

$$
V(T)=\{0\} \quad \Longrightarrow \quad T=0
$$

then $\operatorname{Iso}(X)$ is "small":

- it does not contain any uniformly continuous one-parameter semigroups,
- the tangent space of $\operatorname{Iso}(X)$ at Id is zero.

Isometries on finite-dimensional spaces

Theorem (Rosenthal, 1984)

X real finite-dimensional Banach space. TFAE:

- $\operatorname{Iso}(X)$ is infinite.
- There is $T \in L(X), T \neq 0$, with $V(T)=\{0\}$.

Theorem (Rosenthal, 1984; M.-Merí-Rodríguez-Palacios, 2004)

X finite-dimensional real space. TFAE:

- Iso (X) is infinite.
- $X=X_{0} \oplus X_{1} \oplus \cdots \oplus X_{n}$ such that
- X_{0} is a (possible null) real space,
- X_{1}, \ldots, X_{n} are non-null complex spaces,
there are $\rho_{1}, \ldots, \rho_{n}$ rational numbers, such that

$$
\left\|x_{0}+\mathrm{e}^{i \rho_{1} \theta} x_{1}+\cdots+\mathrm{e}^{i \rho_{n} \theta} x_{n}\right\|=\left\|x_{0}+x_{1}+\cdots+x_{n}\right\|
$$

for every $x_{i} \in X_{i}$ and every $\theta \in \mathbb{R}$.

Remark

- The theorem is due to Rosenthal, but with real ρ 's.
- The fact that the ρ 's may be chosen as rational numbers is due to M.-Merí-Rodríguez-Palacios.

Corollary

X real space with infinitely many isometries.

- If $\operatorname{dim}(X)=2$, then $X \equiv \mathbb{C}$.
- If $\operatorname{dim}(X)=3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum).

Example

$X=\left(\mathbb{R}^{4},\|\cdot\|\right),\|(a, b, c, d)\|=\frac{1}{4} \int_{0}^{2 \pi}\left|\operatorname{Re}\left(\mathrm{e}^{2 i t}(a+i b)+\mathrm{e}^{i t}(c+i d)\right)\right| d t$.
Then, $\operatorname{Iso}(X)$ is infinite but the unique possible decomposition is $X=\mathbb{C} \oplus \mathbb{C}$ with

$$
\left\|\mathrm{e}^{i t} x_{1}+\mathrm{e}^{2 i t} x_{2}\right\|=\left\|x_{1}+x_{2}\right\|
$$

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X)=\{T \in L(X): V(T)=\{0\}\}$.

- When X is finite-dimensional, $\operatorname{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Remark

If $\operatorname{dim}(X)=n$, then

$$
0 \leqslant \operatorname{dim}(\mathcal{Z}(X)) \leqslant \frac{n(n-1)}{2}
$$

An open problem

Given $n \geqslant 3$, which are the possible $\operatorname{dim}(\mathcal{Z}(X))$ over all n-dimensional X 's?

Observation (Javier Merí, PhD)

When $\operatorname{dim}(X)=3, \operatorname{dim}(\mathcal{Z}(X))$ cannot be 2 .

Semigroups of surjective isometries and duality

The construction (M., 2008)

$E \subset C(\Delta)$ separable Banach space. We consider the Banach space

$$
C_{E}([0,1] \| \Delta)=\left\{f \in C[0,1]:\left.f\right|_{\Delta} \in E\right\}
$$

Then, every $T \in L\left(C_{E}([0,1] \| \Delta)\right)$ satisfies $\sup |V(T)|=\|T\|$ and

$$
C_{E}([0,1] \| \Delta)^{*} \equiv E^{*} \oplus_{1} L_{1}(\mu)
$$

The main consequence

Take $E=\ell_{2}$ (real). Then

- Iso $\left(C_{\ell_{2}}([0,1] \| \Delta)\right)$ is "small" (there is no uniformly continuous semigroups).
- Since $C_{\ell_{2}}([0,1] \| \Delta)^{*} \equiv \ell_{2} \oplus_{1} L_{1}(\mu)$, given $S \in \operatorname{Iso}\left(\ell_{2}\right)$, the operator

$$
T=\left(\begin{array}{cc}
S & 0 \\
0 & \text { Id }
\end{array}\right) \in \operatorname{Iso}\left(C_{\ell_{2}}([0,1] \| \Delta)^{*}\right)
$$

- Therefore, Iso $\left(C_{\ell_{2}}([0,1] \| \Delta)^{*}\right)$ contains infinitely many uniformly continuous semigroups of isometries.

Numerical index of Banach spaces

(3) Numerical index of Banach spaces

- Basic definitions and examples
- Stability properties
- Duality
- The isomorphic point of view
V. Kadets, M. Martín, and R. Payá.

Recent progress and open questions on the numerical index of Banach spaces. RACSAM (2006)

Numerical index of Banach spaces: definitions

Numerical radius

X Banach space, $T \in L(X)$. The numerical radius of T is

$$
v(T)=\sup \left\{\left|x^{*}(T x)\right|: x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Remark

The numerical radius is a continuous seminorm in $L(X)$. Actually, $v(\cdot) \leqslant\|\cdot\|$

Numerical index (Lumer, 1968)

X Banach space, the numerical index of X is

$$
\begin{aligned}
n(X) & =\inf \{v(T): T \in L(X),\|T\|=1\} \\
& =\max \{k \geqslant 0: k\|T\| \leqslant v(T) \forall T \in L(X)\}
\end{aligned}
$$

Using exponentials

$$
n(X)=\inf \left\{M \geqslant 0: \exists T \in L(X),\|T\|=1,\|\exp (\rho T)\| \leqslant \mathrm{e}^{\rho M} \forall \rho \in \mathbb{R}\right\}
$$

Numerical index of Banach spaces: basic properties

Some basic properties

- $n(X)=1$ iff v and $\|\cdot\|$ coincide.
- $n(X)=0$ iff v is not an equivalent norm in $L(X)$
- X complex $\Rightarrow n(X) \geqslant 1 / \mathrm{e}$.
(Bohnenblust-Karlin, 1955; Glickfeld, 1970)
- Actually,

$$
\begin{gathered}
\{n(X): X \text { complex, } \operatorname{dim}(X)=2\}=\left[\mathrm{e}^{-1}, 1\right] \\
\{n(X): X \text { real, } \operatorname{dim}(X)=2\}=[0,1] \\
(\text { Duncan-McGregor-Pryce-White, } 1970)
\end{gathered}
$$

Numerical index of Banach spaces: some examples

Examples

- H Hilbert space, $\operatorname{dim}(H)>1$,

$$
\begin{array}{ll}
n(H)=0 & \text { if } H \text { is real } \\
n(H)=1 / 2 & \text { if } H \text { is complex }
\end{array}
$$

(2) $n\left(L_{1}(\mu)\right)=1 \quad \mu$ positive measure
$n(C(K))=1 \quad K$ compact Hausdorff space
(Duncan et al., 1970)

- If A is a C^{*}-algebra $\Rightarrow \begin{cases}n(A)=1 & A \text { commutative } \\ n(A)=1 / 2 & A \text { not commutative }\end{cases}$
(Huruya, 1977; Kaidi-Morales-Rodríguez, 2000)
(1) If A is a function algebra $\Rightarrow n(A)=1$
(Werner, 1997)

Numerical index of Banach spaces: some examples II

More examples

(6) For $n \geqslant 2$, the unit ball of X_{n} is a $2 n$ regular polygon:

$$
\begin{gathered}
n\left(X_{n}\right)= \begin{cases}\tan \left(\frac{\pi}{2 n}\right) & \text { if } n \text { is even, }, \\
\sin \left(\frac{\pi}{2 n}\right) & \text { if } n \text { is odd. }\end{cases} \\
\text { (M.-Merí, 2007) }
\end{gathered}
$$

- Every finite-codimensional subspace of $C[0,1]$ has numerical index 1 (Boyko-Kadets-M.-Werner, 2007)

Numerical index of Banach spaces: some examples III

Even more examples

(1) Numerical index of L_{p}-spaces, $1<p<\infty$:

- $n\left(L_{p}[0,1]\right)=n\left(\ell_{p}\right)=\lim _{m \rightarrow \infty} n\left(\ell_{p}^{(m)}\right)$.
(Ed-Dari, 2005 \& Ed-Dari-Khamsi, 2006)
- $n\left(\ell_{p}^{(2)}\right)$?
- In the real case,

$$
\begin{aligned}
& \quad \max \left\{\frac{1}{2^{1 / p}}, \frac{1}{2^{1 / q}}\right\} v\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \leqslant n\left(\ell_{p}^{(2)}\right) \leqslant v\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& \text { and } v\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\max _{t \in[0,1]} \frac{\left|t^{p-1}-t\right|}{1+t^{p}} \\
& \text { (M.-Merí, 2009) }
\end{aligned}
$$

Open problem

Compute $n\left(L_{p}[0,1]\right)$ for $1<p<\infty, p \neq 2$. Even more, compute $n\left(\ell_{p}^{(2)}\right)$.

More at the end of the talk.

Stability properties

Direct sums of Banach spaces (M.-Payá, 2000)

$$
n\left(\left[\oplus_{\lambda \in \Lambda} X_{\lambda}\right]_{c_{0}}\right)=n\left(\left[\oplus_{\lambda \in \Lambda} X_{\lambda}\right]_{\ell_{1}}\right)=n\left(\left[\oplus_{\lambda \in \Lambda} X_{\lambda}\right]_{\ell_{\infty}}\right)=\inf _{\lambda} n\left(X_{\lambda}\right)
$$

Consequences

- There is a real Banach space X such that

$$
v(T)>0 \quad \text { when } T \neq 0
$$

but $n(X)=0$
(i.e. $v(\cdot)$ is a norm on $L(X)$ which is not equivalent to the operator norm).

- For every $t \in[0,1]$, there exist a real X_{t} isomorphic to c_{0} (or ℓ_{1} or ℓ_{∞}) with $n\left(X_{t}\right)=t$.
- For every $t \in\left[\mathrm{e}^{-1}, 1\right]$, there exist a complex Y_{t} isomorphic to c_{0} (or ℓ_{1} or $\left.\ell_{\infty}\right)$ with $n\left(Y_{t}\right)=t$.

Stability properties II

Vector-valued function spaces (López-M.-Merí-Payá-Villena, 200's)

E Banach space, μ positive measure, K compact space. Then

$$
n(C(K, E))=n\left(C_{w}(K, E)\right)=n\left(L_{1}(\mu, E)\right)=n\left(L_{\infty}(\mu, E)\right)=n(E)
$$

and $n\left(C_{w^{*}}\left(K, E^{*}\right)\right) \leqslant n(E)$

Tensor products (Lima, 1980)

There is no general formula neither for $n\left(X \widetilde{\otimes}_{\varepsilon} Y\right)$ nor for $n\left(X \widetilde{\otimes}_{\pi} Y\right)$:

- $n\left(\ell_{1}^{(4)} \widetilde{\otimes}_{\pi} \ell_{1}^{(4)}\right)=n\left(\ell_{\infty}^{(4)} \widetilde{\otimes}_{\varepsilon} \ell_{\infty}^{(4)}\right)=1$.
- $n\left(\ell_{1}^{(4)} \widetilde{\otimes}_{\varepsilon} \ell_{1}^{(4)}\right)=n\left(\ell_{\infty}^{(4)} \widetilde{\otimes}_{\pi} \ell_{\infty}^{(4)}\right)<1$.

L_{p}-spaces (Askoy-Ed-Dari-Khamsi, 2007)

$$
n\left(L_{p}([0,1], E)\right)=n\left(\ell_{p}(E)\right)=\lim _{m \rightarrow \infty} n\left(E \oplus_{p} \stackrel{m}{\cdot} \oplus_{p} E\right) .
$$

Numerical index and duality

Proposition

X Banach space, $T \in L(X)$. Then

- $\sup \operatorname{Re} V(T)=\lim _{\alpha \rightarrow 0^{+}} \frac{\|\operatorname{Id}+\alpha T\|-1}{\alpha}$.
- $v\left(T^{*}\right)=v(T)$ for every $T \in L(X)$.
- Therefore, $n\left(X^{*}\right) \leqslant n(X)$.
(Duncan-McGregor-Pryce-White, 1970)

Question (From the 1970's)

$$
\text { Is } n(X)=n\left(X^{*}\right) \text { ? }
$$

Negative answer (Boyko-Kadets-M.-Werner, 2007)
Consider the space

$$
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\} .
$$

Then, $n(X)=1$ but $n\left(X^{*}\right)<1$.

Some positive partial answers

One has $n(X)=n\left(X^{*}\right)$ when

- X is reflexive (evident).
- X is a C^{*}-algebra or a von Neumann predual (1970's - 2000's).
- X is L-embedded in $X^{* *}$ (M., 20??).
- If X has RNP and $n(X)=1$, then $n\left(X^{*}\right)=1$ (M., 2002).

Open question

Find isometric or isomorphic properties assuring that $n(X)=n\left(X^{*}\right)$.

More examples (M. 20??)

- There is X with $n(X)>n\left(X^{*}\right)$ such that $X^{* *}$ is a von Neumann algebra. - If X is separable and $X \supset c_{0}$, then X can be renormed to fail the equality.

The isomorphic point of view

Renorming and numerical index (Finet-M.-Payá, 2003)

$(X,\|\cdot\|)$ (separable or reflexive) Banach space. Then

- Real case:

$$
[0,1[\subseteq\{n(X,|\cdot|):|\cdot| \simeq\|\cdot\|\}
$$

- Complex case:

$$
\left[\mathrm{e}^{-1}, 1[\subseteq\{n(X,|\cdot|):|\cdot| \simeq\|\cdot\|\}\right.
$$

Open question

The result is known to be true when X has a long biorthogonal system. Is it true in general ?

Banach spaces with numerical index one

(4) Banach spaces with numerical index one

- Isomorphic properties
- Isometric properties
- Asymptotic behavior
V. Kadets, M. Martín, and R. Payá.

Recent progress and open questions on the numerical index of Banach spaces. RACSAM (2006)

Banach spaces with numerical index 1

Definition

Numerical index 1 Recall that X has numerical index one $(n(X)=1)$ iff

$$
\|T\|=\sup \left\{\left|x^{*}(T x)\right|: x \in S_{X}, x^{*} \in S_{X^{*}}, x^{*}(x)=1\right\}
$$

(i.e. $v(T)=\|T\|$) for every $T \in L(X)$.

Observation

For Hilbert spaces, the above formula is equivalent to the classical formula

$$
\|T\|=\sup \left\{|\langle T x, x\rangle|: x \in S_{X}\right\}
$$

for the norm of a self-adjoint operator T.

Examples

$C(K), L_{1}(\mu), A(\mathbb{D}), H^{\infty}$, finite-codimensional subspaces of $C[0,1] \ldots$

Question

Does every Banach space admit an equivalent norm to have numerical index 1 ?

Negative answer (López-M.-Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1 .
Concretely:

- If X is real, reflexive, and $\operatorname{dim}(X)=\infty$, then $n(X)<1$.
- Actually, if X is real, $X^{* *} / X$ separable and $n(X)=1$, then X is finite-dimensional.
- Moreover, if X is real, RNP, $\operatorname{dim}(X)=\infty$, and $n(X)=1$, then $X \supset \ell_{1}$.

A very recent result (Avilés-Kadets-M.-Merí-Shepelska)
If X is real, $\operatorname{dim}(X)=\infty$ and $n(X)=1$, then $X^{*} \supset \ell_{1}$.

More details on this at the end of the talk.

A renorming result (Boyko-Kadets-M.-Merí, 2009)

If X is separable, $X \supset c_{0}$, then X can be renormed to have numerical index 1 .

Consequence

X separable containing $c_{0} \Longrightarrow$ there is $Z \simeq X$ such that

$$
n(Z)=1 \quad \text { and } \quad \begin{cases}n\left(Z^{*}\right)=0 & \text { real case } \\ n\left(Z^{*}\right)=\mathrm{e}^{-1} & \text { complex case }\end{cases}
$$

Open questions

- Find isomorphic properties which assures renorming with numerical index 1 - In particular, if $X \supset \ell_{1}$, can X be renormed to have numerical index 1 ?

Negative result (Bourgain-Delbaen, 1980)

There is X such that $X^{*} \simeq \ell_{1}$ and X has the RNP. Then, X can not be renormed with numerical index 1 (in such a case, $X \supset \ell_{1}!$)

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

- $n(X)=1$.
- $\left|x^{*}(x)\right|=1$ for every $x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), x \in \operatorname{ext}\left(B_{X}\right)$.
- $B_{X}=\operatorname{aconv}(F)$ for every maximal convex subset F of S_{X} (X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1 :

- The space is not smooth.
- The space is not strictly convex.

Question

What is the situation in the infinite-dimensional case ?

Theorem (Kadets-M.-Merí-Payá, 20??)

X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.

Consequence (real case)

$X \subseteq C[0,1]$ strictly convex or smooth $\Longrightarrow C[0,1] / X$ contains $C[0,1]$.

Example without completeness

There is a (non-complete) space X such that

- $X^{*} \equiv L_{1}(\mu)$ (so $n(X)=1$ and more),
- and X is strictly convex.

Open question

Is there X with $n(X)=1$ which is smooth or strictly convex ?

Asymptotic behavior of the set of spaces with numerical index one

Theorem (Oikhberg, 2005)

There is a universal constant c such that

$$
\operatorname{dist}\left(X, \ell_{2}^{(m)}\right) \geqslant c m^{\frac{1}{4}}
$$

for every $m \in \mathbb{N}$ and every m-dimensional X with $n(X)=1$.

Old examples

$$
\operatorname{dist}\left(\ell_{1}^{(m)}, \ell_{2}^{(m)}\right)=\operatorname{dist}\left(\ell_{\infty}^{(m)}, \ell_{2}^{(m)}\right)=m^{\frac{1}{2}}
$$

Open questions

- Is there a universal constant \widetilde{c} such that

$$
\operatorname{dist}\left(X, \ell_{2}^{(m)}\right) \geqslant \tilde{c} m^{\frac{1}{2}}
$$

for every $m \in \mathbb{N}$ and every m-dimensional X 's with $n(X)=1$?

- What is the diameter of the set of all m-dimensional X 's with $n(X)=1$?

Two recent results

(5) Two recent results

- Containment of c_{0} or ℓ_{1}
- On the numerical index of $L_{p}(\mu)$A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska. Slicely countably determined Banach spaces.
Trans. Amer. Math. Soc. (to appear).

V. Kadets, M. Martín, J. Merí, and R. Payá.

Smoothness and convexity for Banach spaces with numerical index 1.
Illinois J. Math. (to appear).
T
M. Martín, J. Merí, and M. Popov.

On the numerical index of real $L_{p}(\mu)$-spaces.
Preprint.

Containment of c_{0} or ℓ_{1}

Open question
X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

Theorem (2008)

X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X^{*} \supset \ell_{1}$.
Proof.

- If $X \supset \ell_{1}$ we use the "lifting" property of $\ell_{1} \checkmark$
- (AKMMS) If $X \nsupseteq \ell_{1} \Longrightarrow$ for $x \in S_{X}, \varepsilon>0$, there is $y^{*} \in S_{X^{*}}$:

$$
y^{*}(x)>1-\varepsilon \quad \text { and } \quad B_{X}=\overline{\operatorname{conv}}\left(\left\{z \in B_{X}:\left|y^{*}(z)\right|>1-\varepsilon\right\}\right) .
$$

- This property (called lushness) reduces to the separable case.
- (KMMP) In the separable case, lushness implies $\left|x^{* *}\left(x^{*}\right)\right|=1$ for every $x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$ and every $x^{*} \in G, G$ norming for X.
- (Lopez-M.-Payá, 1999) This gives $X^{*} \supseteq c_{0}$ or $X^{*} \supseteq \ell_{1} \Longrightarrow X^{*} \supseteq \ell_{1} \checkmark$

On the numerical index of $L_{p}(\mu)$. I

The numerical radius for $L_{p}(\mu)$

For $T \in L\left(L_{p}(\mu)\right), 1<p<\infty$, one has

$$
v(T)=\sup \left\{\left|\int_{\Omega} x^{\#} T x d \mu\right|: x \in L_{p}(\mu),\|x\|_{p}=1\right\} .
$$

where for $x \in L_{p}(\mu), x^{\#}=|x|^{p-1} \operatorname{sign}(x) \in L_{q}(\mu)$ satisfies (unique)

$$
\|x\|_{p}^{p}=\left\|x^{\#}\right\|_{q}^{q} \quad \text { and } \quad \int_{\Omega} x x^{\#} d \mu=\|x\|_{p}\left\|x^{\#}\right\|_{q}=\|x\|_{p}^{p}
$$

The absolute numerical radius

For $T \in L\left(L_{p}(\mu)\right)$ we write

$$
\begin{aligned}
|v|(T) & :=\sup \left\{\int_{\Omega}\left|x^{\#} T x\right| d \mu: x \in L_{p}(\mu),\|x\|_{p}=1\right\} \\
& =\sup \left\{\int_{\Omega}|x|^{p-1}|T x| d \mu: x \in L_{p}(\mu),\|x\|_{p}=1\right\}
\end{aligned}
$$

On the numerical index of $L_{p}(\mu)$. II

Theorem

For $T \in L\left(L_{p}(\mu)\right), 1<p<\infty$, one has

$$
v(T) \geqslant \frac{M_{p}}{4}|v|(T), \quad \text { where } \quad M_{p}=\max _{t \in[0,1]} \frac{\left|t^{p-1}-t\right|}{1+t^{p}} .
$$

Theorem

For $T \in L\left(L_{p}(\mu)\right), 1<p<\infty$, one has

$$
2|v|(T) \geqslant v\left(T_{\mathbb{C}}\right) \geqslant n\left(L_{p}^{\mathbb{C}}(\mu)\right)\|T\|
$$

- $T_{\mathbb{C}}$ complexification of $T, n\left(L_{p}^{\mathbb{C}}(\mu)\right)$ numerical index complex case.

Consequence

For $1<p<\infty, n\left(L_{p}(\mu)\right) \geqslant \frac{M_{p}}{8 \mathrm{e}}$.

- If $p \neq 2$, then $n\left(L_{p}(\mu)\right)>0$, so v and $\|\cdot\|$ are equivalent in $L\left(L_{p}(\mu)\right)$.

