The Daugavet property

Miguel Martín

http://www.ugr.es/local/mmartins

June 2009 - Indian Statistical Institute, Kolkata (India)

Introdu 0000		Application 00000	Lindenstrauss spaces 00	The ADP 0000000	Norm equalities
The	talk is mainly bas	ed on these p	apers		
	_				

J. Becerra Guerrero and M. Martín,

The Daugavet Property of C^* -algebras, JB^* -triples, and of their isometric preduals.

Journal of Functional Analysis (2005)

J. Becerra Guerrero and M. Martín,

The Daugavet property for Lindenstrauss spaces

in: Methods in Banach space theory (Jesus M.F. Castillo and William B. Johnson Editors), London Mathematical Society Lecture Note Series 337, 2006.

V. Kadets, M. Martín, and J. Merí.

Norm equalities for operators on Banach spaces. Indiana U. Math. J. (2007).

M. Martín,

The alternative Daugavet property of C^* -algebras and JB^* -triples. *Mathematische Nachrichten* (2008)

M. Martín and T. Oikhberg,

An alternative Daugavet property.

Journal of Mathematical Analysis and Applications (2004)

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	00	0000000	00000000
Outline					

- Introduction and motivation
 - Definitions and examples
 - Propaganda
 - Geometric characterizations
 - From rank-one to other classes of operators
- A sufficient condition
- Application: C*-algebras and von Neumann preduals
 - von Neumann preduals
 - C*-algebras
- 4 Lindenstrauss spaces
- 5 The alternative Daugavet equation
 - Definitions and basic results
 - Geometric characterizations
 - C*-algebras and preduals
- 6 Norm equalities for operators
 - The equations
 - Extremely non-complex Banach spaces

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
000000	000	00000	00	0000000	0000000
Introducti	on				

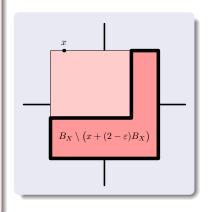
- In a Banach space X with the Radon-Nikodým property the unit ball has many denting points.
- $x \in S_X$ is a denting point of B_X if for every $\varepsilon > 0$ one has

 $x \notin \overline{\operatorname{co}} (B_X \setminus (x + \varepsilon B_X)).$

• C[0,1] and $L_1[0,1]$ have an extremely opposite property: for every $x \in S_X$ and every $\varepsilon > 0$

$$\overline{\operatorname{co}}\left(B_X\setminus \left(x+(2-\varepsilon)B_X\right)\right)=B_X.$$

• This geometric property is equivalent to a property of operators on the space.



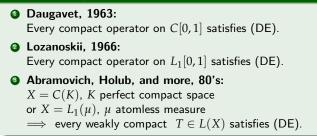
Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
000000	000	00000	00	000000	00000000

The Daugavet equation

X Banach space, $T \in L(X)$

$$\|Id + T\| = 1 + \|T\|$$
 (DE)

Classical examples



Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADI
000000	000	00000	00	00000

he ADP 000000 Norm equalities

The Daugavet property

- A Banach space X is said to have the Daugavet property if every rank-one operator on X satisfies (DE).
- If X^* has the Daugavet property, so does X. The converse is not true:

C[0,1] has it but $C[0,1]^*$ not.

(Kadets-Shvidkoy-Sirotkin-Werner, 1997 & 2000)

Prior versions of: Chauveheid, 1982; Abramovich-Aliprantis-Burkinshaw, 1991

Some examples...

• K perfect, μ atomeless, E arbitrary Banach space $\implies C(K, E), L_1(\mu, E), \text{ and } L_{\infty}(\mu, E)$ have the Daugavet property.

(Kadets, 1996; Nazarenko, –; Shvidkoy, 2001)

 $\ \ \textbf{0} \ \ A(\mathbb{D}) \ \text{and} \ H^{\infty} \ \text{have the Daugavet property.}$

(Wojtaszczyk, 1992)

roduction	A sufficient condition	Application
00000	000	00000

Lindenstrauss spaces

The ADP 0000000 Norm equalities

More examples...

Intr 00

A function algebra whose Choquet boundary is perfect has the Daugavet property.

(Werner, 1997)

 "Large" subspaces of C[0,1] and L₁[0,1] have the Daugavet property (in particular, this happends for finite-codimensional subspaces).

(Kadets-Popov, 1997)

- A C^* -algebra has the Daugavet property if and only if it is non-atomic.
- The predual of a von Neumann algebra has the Daugavet property if and only if the algebra is non-atomic.

(Oikhberg, 2002)

• Lip(K) when $K \subseteq \mathbb{R}^n$ is compact and convex.

(Ivankhno, Kadets, Werner, 2007)

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	00	0000000	00000000

Some propaganda...

Let \boldsymbol{X} be a Banach space with the Daugavet property. Then

• X does not have the Radon-Nikodým property.

(Wojtaszczyk, 1992)

• Every slice of B_X and every w^* -slice of B_{X^*} have diameter 2.

(Kadets-Shvidkoy-Sirotkin-Werner, 2000)

- Actually, every weakly-open subset of B_X has diameter 2. (Shvidkoy, 2000)
- X contains a copy of ℓ_1 . X^{*} contains a copy or $L_1[0,1]$.
- Actually, given $x_0 \in S_X$ and slices $\{S_n : n \ge 1\}$, one may take $x_n \in S_n$ $\forall n \ge 1$ such that $\{x_n : n \ge 0\}$ is equivalent to the ℓ_1 -basis.

(Kadets-Shvidkoy-Sirotkin-Werner, 2000)

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities			
00000000	000	00000	00	0000000	00000000			
Geometric	Geometric characterizations							

Theorem [KSSW]. TFAE:

- X has the Daugavet property.
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that

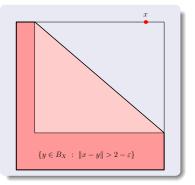
Re $x^*(y) > 1 - \varepsilon$ and $||x - y|| \ge 2 - \varepsilon$.

• For every $x\in S_X,\ x^*\in S_{X^*},$ and $\varepsilon>0,$ there exists $y^*\in S_{X^*}$ such that

 $\operatorname{Re} y^*(x) > 1 - \varepsilon \quad \text{ and } \quad \|x^* - y^*\| \geqslant 2 - \varepsilon.$

• For every $x \in S_X$ and every $\varepsilon > 0$, we have

 $B_X = \overline{\operatorname{co}} \left(\{ y \in B_X : \|x - y\| \ge 2 - \varepsilon \} \right).$



Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
000000	000	00000	00	0000000	00000000
From ran	k-one to other o	classes of o	perators		

Theorem

Let X be a Banach space with the Daugavet property.

• Every weakly compact operator on X satisfies (DE).

```
(Kadets-Shvidkoy-Sirotkin-Werner, 2000)
```

• Actually, every operator on X not fixing a copy of ℓ_1 satisfies (DE).

(Sirotkin, 2000)

Consequences

X does not have unconditional basis.

(Kadets, 1996)

 $\ensuremath{\textcircled{0}} \ensuremath{\textcircled{0}} \ensurema$

(Kadets-Shvidkoy-Sirotkin-Werner, 2000)

 $\textcircled{\sc 0}$ Actually, X does not embed into an unconditional sum of Banach spaces without a copy of $\ell_1.$

(Shvidkoy, 2000)

Introduction 0000000 A sufficient condition

Application 00000 Lindenstrauss spaces

The ADP 0000000 Norm equalities

A sufficient condition

2 A sufficient condition

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	● ○ ○	00000	00	0000000	0000000
A sufficie	ent condition				

Theorem

Let X be a Banach space such that

$$X^* = Y \oplus_1 Z$$

with Y and Z norming subspaces. Then, X has the Daugavet property.

A closed subspace $W \subseteq X^*$ is norming if

$$||x|| = \sup \{ |w^*(x)| : w^* \in W, ||w^*|| = 1 \}$$

or, equivalently, if B_W is w^* -dense in B_{X^*} .

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	00	0000000	0000000
Proof of	the theorem				

- Write $x_0^* = y_0^* + z_0^*$ with $y_0^* \in Y$, $z_0^* \in Z$, $||x_0^*|| = ||y_0^*|| + ||z_0^*||$, and write $U = \{x^* \in B_{X^*} : \operatorname{Re} x^*(x_0) > 1 - \varepsilon/2\}.$
- Take z* ∈ B_Z ∩ U and a net (y^{*}_λ) in B_Y ∩ U, such that (y^{*}_λ) → z*.
 (y^{*}_λ + y^{*}₀) → z* + y^{*}₀ and the norm is w*-lower semi-continuous, so lim inf ||y^{*}_λ + y^{*}₀|| ≥ ||z* + y^{*}₀|| = ||z*|| + ||y^{*}₀|| > 1 + ||y^{*}₀|| ε/2.
- Then we may find μ such that $\|y_{\mu}^* + y_0^*\| \ge 1 + \|y_0^*\| \varepsilon/2.$
- Finally, observe that

$$\begin{aligned} \|x_0^* + y_\mu^*\| &= \|(y_0^* + y_\mu^*) + z_0^*\| = \\ &= \|y_0^* + y_\mu^*\| + \|z_0^*\| > 1 + \|y_0^*\| - \varepsilon + \|z_0^*\| = 2 - \varepsilon, \end{aligned}$$

and that $\operatorname{Re} y^*_\mu(x_0) > 1 - \varepsilon$ (since $y^*_\mu \in U$). \checkmark

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities	
0000000	000	00000	00	0000000	0000000	
Some immediate consequences						

Corollary

Let X be an L-embedded space with $ext(B_X) = \emptyset$. Then, X^* (and hence X) has the Daugavet property.

Corollary

If Y is an L-embedded space which is a subspace of $L_1\equiv L_1[0,1],$ then $(L_1/Y)^*$ has the Daugavet property.

It was already known that...

• If $Y \subset L_1$ is reflexive, then L_1/Y has the Daugavet property.

(Kadets-Shvidkoy-Sirotkin-Werner, 2000)

• If $Y \subset L_1$ is L-embedded, then L_1/Y does not have the RNP.

(Harmand–Werner–Werner, 1993)

Introduction 0000000 A sufficient condition 000

Application

Lindenstrauss spaces 00

The ADP 0000000 Norm equalities

Application:

The Daugavet property of

 C^* -algebras and von Neumann preduals

3 Application: C^* -algebras and von Neumann preduals

- von Neumann preduals
- C*-algebras

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	• 0 000	00	0000000	0000000
von Neur	mann preduals				

von Neumann preduals

- A C^* -algebra X is a von Neumann algebra if it is a dual space.
- In such a case, X has a unique predual X_{*}.
- X_{*} is always L-embedded.
- Therefore, if $ext(B_{X_*})$ is empty, then X and X_* have the Daugavet property. Example: $L_{\infty}[0,1]$ and $L_1[0,1]$.

Actually, much more can be proved:

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	0000	00	0000000	0000000

Theorem

Let X_* be the predual of the von Neumann algebra X. Then, TFAE:

- X has the Daugavet property.
- X_{*} has the Daugavet property.
- Every weakly open subset of B_{X_*} has diameter 2.
- B_{X_*} has no strongly exposed points.
- B_{X_*} has no extreme points.
- X is non-atomic (i.e. it has no atomic projections).

An atomic projection is an element $p \in X$ such that

 $p^2 = p^* = p$ and $p X p = \mathbb{C}p$.

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	00	0000000	0000000
C^* -algebra	IS				

Let X be a C^* -algebra. Then, X^{**} is a von Neumann algebra. Write $X^*=(X^{**})_*=A\oplus_1 N,$ where

- A is the atomic part,
- N is the non-atomic part.
- Every extreme point of B_{X^*} is in B_A .
- Therefore, A is norming.
- What's about N ?

Theorem

If X is non-atomic, then N is norming. So, X has the Daugavet property. Example: $\mathbb{C}[0,1]$

- Write $X^{**} = \mathcal{A} \oplus_{\infty} \mathcal{N}$ and $Y = \mathcal{A} \cap X$.
- Y is an ideal of X, so Y has no atomic projections.
- Therefore, the norm of Y has no point of Fréchet-smoothness.
- But Y is an Asplund space, so Y = 0.
- Now, the mapping

$$X \hookrightarrow X^{**} = \mathcal{A} \oplus_{\infty} \mathcal{N} \twoheadrightarrow \mathcal{N}$$

in injective. Since it is an homomorphism, it is an isometry.

• But $N^* \equiv \mathcal{N}$, so N is norming for \mathcal{N} and now, also for X. \checkmark

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	00	0000000	00000000

Theorem

- Let X be a C^* -algebra. Then, TFAE:
 - X has the Daugavet property.
 - The norm of X is extremely rough, i.e.

$$\limsup_{\|h\|\to 0} \frac{\|x+h\| + \|x-h\| - 2}{\|h\|} = 2$$

for every $x \in S_X$ (equivalently, every w^* -slice of B_{X^*} has diameter 2).

- The norm of X is not Fréchet-smooth at any point.
- X is non-atomic.

Introduction 0000000 A sufficient condition 000

Application 00000 Lindenstrauss spaces $\bigcirc \bigcirc$

The ADP 0000000 Norm equalities

The Daugavet property of Lindenstrauss spaces

4 Lindenstrauss spaces

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	● 0	0000000	0000000
Linder	strauss spaces				

Definition

X is a Lindenstrauss space if $X^* \equiv L_1(\mu)$ (isometrically) for some measure μ .

Examples

- C(K) spaces, $C_0(L)$ spaces.
- **2** A(K) (affine continuous functions on a Choquet simplex).
- G-spaces due to Grothendieck...

An equivalent relation

X Lindenstrauss space, $f, g \in \text{ext}(B_{X^*})$,

$$f \sim g \qquad \Longleftrightarrow \qquad \dim_{\mathbb{K}}(\{f,g\}) = 1.$$

Werner, 1997

X Lindenstrauss space. $(\operatorname{ext}(B_{X^*}) / \sim, w^*)$ perfect \implies X has the Daugavet property.

But more can be said ...

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	0•	0000000	0000000
The result	I.				

Theorem (Becerra-M., 2006)

- X Lindenstrauss space. TFAE:
 - X has the Daugavet property.
 - **2** The norm of X is extremely rough.
 - **③** The norm of X is not Fréchet-smooth at any point.
 - $ext(B_{X^*}) / \sim does not have any isolated point.$

★ Only $(3) \Longrightarrow (4)$ needs proof.

★ We use the following result which is of independent interest:

Proposition

X Banach space, $f \in \text{ext}(B_{X^*})$ which [f] isolated point of $\text{ext}(B_{X^*}) / \sim \implies f w^*$ -strongly exposed point of B_{X^*} .

★ It is a consequence of Choquet's lemma.

Introduction 0000000 A sufficient condition 000

Application 00000 Lindenstrauss spaces 00 The ADP

Norm equalities

The alternative Daugavet equation

5 The alternative Daugavet equation

- Definitions and basic results
- Geometric characterizations
- C*-algebras and preduals

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	00	0000 000	00000000
The alter	native Daugave	t equation			

The alternative Daugavet equation

X Banach space, $T \in L(X)$

$$\max_{|\omega|=1} \| \mathrm{Id} + \omega T \| = 1 + \| T \|$$
 (aDE)

(Duncan-McGregor-Pryce-White, 1970; Holub, Abramovich..., 80's)

Two equivalent formulations

- There exists $\omega \in \mathbb{T}$ such that ωT satisfies (DE).
- The numerical radius of T, v(T), coincides with ||T||, where

$$v(T) := \sup\{|x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}.$$

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	00	000000	00000000
T	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				
IWO	possible propertie	es			

Let X be a Banach space.

- X is said to have the alternative Daugavet property (ADP) iff every rank-one operator on X satisfies (aDE).
 - Then, every weakly compact operator also satisfies (aDE).
 - If X^* has the ADP, so does X. The converse is not true: $C([0,1], \ell_2)$.

(M.–Oikhberg, 2004; briefly appearance: Abramovich, 1991)

 X is said to have numerical index 1 iff v(T) = ||T|| for every operator on X. Equivalently, if EVERY operator on X satisfies (aDE).

(Lumer, 1968; Duncan-McGregor-Pryce-White, 1970)

The numerical index of a Banach space X is the greater constant k such that

$$v(T) \geqslant \frac{k}{\|T\|}$$

for every operator $T \in L(X)$.

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	00	000000	00000000
Numerica	l index 1				

• C(K) and $L_1(\mu)$ have numerical index 1.

(Duncan–McGregor–Pryce–White, 1970)

• All function algebras have numerical index 1.

(Werner, 1997)

• A C^* -algebra has numerical index 1 iff it is commutative.

(Huruya, 1977; Kaidi–Morales–Rodríguez-Palacios, 2000)

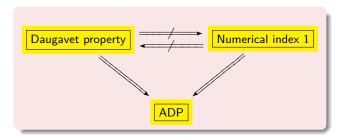
• In case $\dim(X) < \infty$, X has numerical index 1 iff

 $|x^*(x)| = 1$ $x^* \in ext(B_{X^*}), x \in ext(B_X).$

(*McGregor*, 1971)

If dim(X) = ∞ and X has numerical index 1, then X* ⊇ ℓ₁.
 (Avilés-Kadets-M.-Merí-Shepelska, 2009)

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	00	0000000	0000000
The alter	rnative Daugave	t property			



- $c_0 \oplus_{\infty} C([0,1], \ell_2)$ has the ADP, but neither the Daugavet property, nor numerical index 1.
- For RNP or Asplund spaces, the ADP implies numerical index 1.
- Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	00	0000000	00000000
Geometri	c characterizati	ons			

Theorem. TFAE:

- X has the ADP.
- For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that

 $|x^*(y)| > 1 - \varepsilon$ and $||x - y|| \ge 2 - \varepsilon$.

• For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that

 $|y^*(x)| > 1 - \varepsilon$ and $||x^* - y^*|| \ge 2 - \varepsilon$.

• For every $x \in S_X$ and every $\varepsilon > 0$, we have $B_X = \overline{co} \left(\mathbb{T} \left\{ y \in B_X : ||x - y|| \ge 2 - \varepsilon \right\} \right).$

$\{y \in B_X : x+y > 2 - \varepsilon\}$	x	
$\{y \in B_X : x - y > 2 - \varepsilon\}$		
$\{y \in B_X : x - y > 2 - \varepsilon\}$		

Introduction	
0000000	

A sufficient condition 000

Application 00000 Lindenstrauss spaces OO The ADP ○○○○○●○ Norm equalities

Let V_* be the predual of the von Neumann algebra V.

The Daugavet property of V_* is equivalent to:

- V has no atomic projections, or
- the unit ball of V_* has no extreme points.

V_* has numerical index 1 iff:

• V is commutative, or

•
$$|v^*(v)| = 1$$
 for $v \in \text{ext}(B_V)$ and $v^* \in \text{ext}(B_{V^*})$.

The alternative Daugavet property of V_* is equivalent to:

 ${\ensuremath{\, \bullet }}$ the atomic projections of V are central, or

•
$$|v(v_*)| = 1$$
 for $v \in \operatorname{ext}{(B_V)}$ and $v_* \in \operatorname{ext}{(B_{V_*})}$, or

• $V = C \oplus_{\infty} N$, where C is commutative and N has no atomic projections.

Introduction
0000000

A sufficient condition 000 Application 00000 Lindenstrauss spaces 00 The ADP ○○○○○○● Norm equalities

Let X be a C^* -algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^* does not have any w^* -strongly exposed point.

X has numerical index 1 iff:

• X is commutative, or

•
$$|x^{**}(x^*)| = 1$$
 for $x^{**} \in ext(B_{X^{**}})$ and $x^* \in ext(B_{X^*})$.

The alternative Daugavet property of X is equivalent to:

- ${\ensuremath{\, \bullet }}$ the atomic projections of X are central, or
- $|x^{**}(x^*)| = 1$, for $x^{**} \in \text{ext}(B_{X^{**}})$, and $x^* \in B_{X^*}$ w^* -strongly exposed, or
- \exists a commutative ideal Y such that X/Y has the Daugavet property.

Introduction 0000000 A sufficient condition 000

Application 00000 Lindenstrauss spaces 00

The ADP 0000000 Norm equalities

Norm equalities for operators

6 Norm equalities for operators

- The equations
- Extremely non-complex Banach spaces

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities		
0000000	000	00000	00	0000000	•0000000		
Norm equalities for operators							

Motivating question

Are there other norm equalities like Daugavet equation which could define interesting properties of Banach spaces ?

Concretely

We looked for non-trivial norm equalities of the forms

$$||g(T)|| = f(||T||)$$
 or $||Id + g(T)|| = f(||g(T)||)$

(g analytic, f arbitrary) satisfied by all rank-one operators on a Banach space.

Solution

We proved that there are few possibilities...

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	00	0000000	00000000
Equalities	of the form $ g() $	$T) \ = f(\ T)$	$\Gamma \parallel)$		

Theorem

X real or complex with $dim(X) \ge 2$. Suppose that the norm equality

||g(T)|| = f(||T||)

holds for every rank-one operator $T \in L(X)$, where

- $g: \mathbb{K} \longrightarrow \mathbb{K}$ is analytic,
- $f: \mathbb{R}^+_0 \longrightarrow \mathbb{R}$ is arbitrary.

Then, there are $a, b \in \mathbb{K}$ such that

 $g(\zeta) = a + b \zeta$ $(\zeta \in \mathbb{K}).$

Corollary

Only three norm equalities of the form

||g(T)|| = f(||T||)

are possible:

• b = 0: $||a \operatorname{Id}|| = |a|$,

$$a = 0: ||bT|| = |b| ||T||,$$

(trivial cases)

•
$$a \neq 0, b \neq 0$$
:
 $||a \operatorname{Id} + b T|| = |a| + |b| ||T||,$
(Daugavet property)

Remark

If \boldsymbol{X} has the Daugavet property and \boldsymbol{g} is analytic, then

$$\|\mathrm{Id} + g(T)\| = |1 + g(0)| - |g(0)| + \|g(T)\|$$

for every rank-one $T \in L(X)$.

- Our aim here is not to show that g has a suitable form,
- but it is to see that for every g another simpler equation can be found.
- From now on, we have to separate the complex and the real case.

• Complex case:

Proposition

X complex, $dim(X) \ge 2$. Suppose that

 $\|\mathrm{Id} + g(T)\| = f(\|g(T)\|)$

for every rank-one $T \in L(X)$, where

• $g: \mathbb{C} \longrightarrow \mathbb{C}$ analytic non-constant,

• $f : \mathbb{R}_0^+ \longrightarrow \mathbb{R}$ continuous.

Then

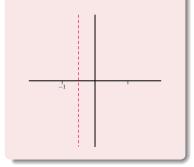
 $\| (1+g(0)) \mathrm{Id} + T \|$ = $|1+g(0)| - |g(0)| + \|g(0) \mathrm{Id} + T \|$

for every rank-one $T \in L(X)$.

We obtain two different cases:

 $\bullet \ |1+g(0)|-|g(0)| \neq 0 \text{ or }$

•
$$|1+g(0)| - |g(0)| = 0.$$



Theorem

If $\operatorname{Re} g(0) \neq -1/2$ and

 $\|\mathrm{Id} + g(T)\| = f(\|g(T)\|)$

for every rank-one T, then X has the Daugavet property.

Theorem

If $\text{Re}\,g(0) = -1/2$ and

 $\|\mathrm{Id} + g(T)\| = f(\|g(T)\|)$

for every rank-one T, then exists $heta_0 \in \mathbb{R}$ s.t.

 $\left\| \mathrm{Id} + \mathrm{e}^{i\,\theta_0}\,T \right\| = \left\| \mathrm{Id} + T \right\|$

for every rank-one $T \in L(X)$.

Example

If $X = C[0, 1] \oplus_2 C[0, 1]$, then • $||Id + e^{i\theta} T|| = ||Id + T||$

- $\| \Pi + \theta^{r_0} T \| = \| \Pi + T \|$ for every $\theta \in \mathbb{R}$, rank-one $T \in L(X)$.
- X does not have the Daugavet property.

• REAL CASE:

Remarks

- The proofs are not valid (we use Picard's Theorem).
- They work when g is onto.
- But we do not know what is the situation when g is not onto, even in the easiest examples:

•
$$||Id + T^2|| = 1 + ||T^2||$$
,

•
$$||Id - T^2|| = 1 + ||T^2||.$$

g(0) = -1/2:

Example

If
$$X = C[0,1] \oplus_2 C[0,1]$$
, then

- $\|\operatorname{Id} T\| = \|\operatorname{Id} + T\|$ for every rank-one $T \in L(X)$.
- X does not have the Daugavet property.

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities
0000000	000	00000	00	0000000	00000000
-					

Extremely non-complex Banach spaces: the motivating question

Godefroy, private communication

Is there any real Banach space X (with dim(X) > 1) such that

$$\|\mathrm{Id} + T^2\| = 1 + \|T^2\|$$

for every operator $T \in L(X)$?

Definition

X is extremely non-complex if $dist(T^2, -Id)$ is the maximum possible, i.e.

$$\|\mathrm{Id} + T^2\| = 1 + \|T^2\| \qquad (\forall T \in L(X))$$

Introduction	A sufficient condition	Application	Lindenstrauss spaces	The ADP	Norm equalities		
0000000	000	00000	00	0000000	0000000		
The solution (Koszmider–M.–Merí, 2009)							

Existence

There are infinitely many nonisomorphic extremely non-complex Banach spaces.

Examples

- C(K) spaces with "few operators".
- **a** A $C(K_1)$ containing a (1-complemented) isometric copy of ℓ_{∞} .
- **③** A $C(K_2)$ containing a complemented copy of c_0 .
- Many spaces nonisomorphic to C(K) spaces

Main application

There exists a Banach space \mathcal{X} such that $\operatorname{Iso}(\mathcal{X}) = \{-\operatorname{Id}, +\operatorname{Id}\}$ and $\operatorname{Iso}(\mathcal{X}^*) \supset \operatorname{Iso}(\ell_2).$