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Introduction

In a Banach space X with the
Radon-Nikodým property the unit ball has
many denting points.
x ∈ SX is a denting point of BX if for
every ε > 0 one has

x /∈ co
(

BX \ (x + ε BX)
)
.

C[0, 1] and L1[0, 1] have an extremely
opposite property: for every x ∈ SX and
every ε > 0

co
(

BX \
(

x + (2− ε)BX
))

= BX .

This geometric property is equivalent to a
property of operators on the space.

x

BX \
(
x + (2− ε)BX

)
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The Daugavet equation
X Banach space, T ∈ L(X)

‖Id + T‖ = 1 + ‖T‖ (DE)

Classical examples
1 Daugavet, 1963:

Every compact operator on C[0, 1] satisfies (DE).
2 Lozanoskii, 1966:

Every compact operator on L1[0, 1] satisfies (DE).
3 Abramovich, Holub, and more, 80’s:

X = C(K), K perfect compact space
or X = L1(µ), µ atomless measure
=⇒ every weakly compact T ∈ L(X) satisfies (DE).
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The Daugavet property
A Banach space X is said to have the Daugavet property if every rank-one
operator on X satisfies (DE).
If X∗ has the Daugavet property, so does X. The converse is not true:

C[0, 1] has it but C[0, 1]∗ not.

(Kadets–Shvidkoy–Sirotkin–Werner, 1997 & 2000)

Prior versions of: Chauveheid, 1982; Abramovich–Aliprantis–Burkinshaw, 1991

Some examples...
1 K perfect, µ atomeless, E arbitrary Banach space

=⇒ C(K, E), L1(µ, E), and L∞(µ, E) have the Daugavet property.
(Kadets, 1996; Nazarenko, –; Shvidkoy, 2001)

2 A(D) and H∞ have the Daugavet property.
(Wojtaszczyk, 1992)
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More examples...
3 A function algebra whose Choquet boundary is perfect has the Daugavet

property.
(Werner, 1997)

4 “Large” subspaces of C[0, 1] and L1[0, 1] have the Daugavet property
(in particular, this happends for finite-codimensional subspaces).

(Kadets–Popov, 1997)
5 A C∗-algebra has the Daugavet property if and only if it is non-atomic.
6 The predual of a von Neumann algebra has the Daugavet property if and

only if the algebra is non-atomic.

(Oikhberg, 2002)

7 Lip(K) when K ⊆ Rn is compact and convex.

(Ivankhno, Kadets, Werner, 2007)
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Some propaganda. . .
Let X be a Banach space with the Daugavet property. Then

X does not have the Radon-Nikodým property.
(Wojtaszczyk, 1992)

Every slice of BX and every w∗-slice of BX∗ have diameter 2.
(Kadets–Shvidkoy–Sirotkin–Werner, 2000)

Actually, every weakly-open subset of BX has diameter 2.
(Shvidkoy, 2000)

X contains a copy of `1. X∗ contains a copy or L1[0, 1].
Actually, given x0 ∈ SX and slices {Sn : n > 1}, one may take xn ∈ Sn
∀n > 1 such that {xn : n > 0} is equivalent to the `1-basis.

(Kadets–Shvidkoy–Sirotkin–Werner, 2000)
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Geometric characterizations

Theorem [KSSW]. TFAE:
X has the Daugavet property.
For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y ∈ SX such that

Re x∗(y) > 1− ε and ‖x− y‖ > 2− ε.

For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y∗ ∈ SX∗ such that

Re y∗(x) > 1− ε and ‖x∗ − y∗‖ > 2− ε.

For every x ∈ SX and every ε > 0, we have
BX = co

(
{y ∈ BX : ‖x− y‖ > 2− ε}

)
.

x

{y ∈ BX : ‖x− y‖ > 2− ε}
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From rank-one to other classes of operators

Theorem
Let X be a Banach space with the Daugavet property.

Every weakly compact operator on X satisfies (DE).
(Kadets–Shvidkoy–Sirotkin–Werner, 2000)

Actually, every operator on X not fixing a copy of `1 satisfies (DE).
(Sirotkin, 2000)

Consequences
1 X does not have unconditional basis.

(Kadets, 1996)
2 Moreover, X does not embed into any space with unconditional basis.

(Kadets–Shvidkoy–Sirotkin–Werner, 2000)
3 Actually, X does not embed into an unconditional sum of Banach spaces

without a copy of `1.
(Shvidkoy, 2000)
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A sufficient condition

2 A sufficient condition
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A sufficient condition

Theorem
Let X be a Banach space such that

X∗ = Y⊕1 Z

with Y and Z norming subspaces. Then, X has the Daugavet property.

A closed subspace W ⊆ X∗ is norming if

‖x‖ = sup {|w∗(x)| : w∗ ∈W, ‖w∗‖ = 1}

or, equivalently, if BW is w∗-dense in BX∗ .
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Proof of the theorem

We have...
X∗ = Y⊕1 Z,

BY , BZ w∗-dense in BX∗ .

?⇒
We need...
fixed x0 ∈ SX , x∗0 ∈ SX∗ , ε > 0, find y∗ ∈ SX∗ such that

‖x∗0 + y∗‖ > 2− ε and Re y∗(x0) > 1− ε.

Write x∗0 = y∗0 + z∗0 with y∗0 ∈ Y, z∗0 ∈ Z, ‖x∗0‖ = ‖y∗0‖+ ‖z∗0‖, and write

U = {x∗ ∈ BX∗ : Re x∗(x0) > 1− ε/2}.

Take z∗ ∈ BZ ∩U and a net (y∗λ) in BY ∩U, such that (y∗λ) w∗−→ z∗.
(y∗λ + y∗0) −→ z∗ + y∗0 and the norm is w∗-lower semi-continuous, so

lim inf ‖y∗λ + y∗0‖ > ‖z∗ + y∗0‖ = ‖z∗‖+ ‖y∗0‖ > 1 + ‖y∗0‖ − ε/2.

Then we may find µ such that ‖y∗µ + y∗0‖ > 1 + ‖y∗0‖ − ε/2.
Finally, observe that

‖x∗0 + y∗µ‖ = ‖(y∗0 + y∗µ) + z∗0‖ =

= ‖y∗0 + y∗µ‖+ ‖z∗0‖>1 + ‖y∗0‖ − ε + ‖z∗0‖ = 2− ε,

and that Re y∗µ(x0) > 1− ε (since y∗µ ∈ U). X
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Some immediate consequences

Corollary
Let X be an L-embedded space with ext (BX) = ∅. Then, X∗ (and hence X)
has the Daugavet property.

Corollary
If Y is an L-embedded space which is a subspace of L1 ≡ L1[0, 1], then
(L1/Y)∗ has the Daugavet property.

It was already known that...
If Y ⊂ L1 is reflexive, then L1/Y has the Daugavet property.

(Kadets–Shvidkoy–Sirotkin–Werner, 2000)
If Y ⊂ L1 is L-embedded, then L1/Y does not have the RNP.

(Harmand–Werner–Werner, 1993)
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Application:
The Daugavet property of

C∗-algebras and von Neumann preduals

3 Application: C∗-algebras and von Neumann preduals
von Neumann preduals
C∗-algebras
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von Neumann preduals

von Neumann preduals
A C∗-algebra X is a von Neumann algebra if it is a dual space.
In such a case, X has a unique predual X∗.
X∗ is always L-embedded.
Therefore, if ext (BX∗ ) is empty, then X and X∗ have the Daugavet
property.
Example: L∞[0, 1] and L1[0, 1].

Actually, much more can be proved:
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Theorem
Let X∗ be the predual of the von Neumann algebra X. Then, TFAE:

X has the Daugavet property.
X∗ has the Daugavet property.
Every weakly open subset of BX∗ has diameter 2.
BX∗ has no strongly exposed points.
BX∗ has no extreme points.
X is non-atomic (i.e. it has no atomic projections).

An atomic projection is an element p ∈ X such that

p2 = p∗ = p and p X p = Cp.
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C∗-algebras

Let X be a C∗-algebra. Then, X∗∗ is a von Neumann algebra.
Write X∗ = (X∗∗)∗ = A⊕1 N, where

A is the atomic part,
N is the non-atomic part.

Every extreme point of BX∗ is in BA.
Therefore, A is norming.
What’s about N ?

Theorem
If X is non-atomic, then N is norming. So, X has the Daugavet property.
Example: C[0, 1]
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sketch of the proof of the theorem

We have...
X non-atomic C∗-algebra,

X∗ = A⊕1 N.

?⇒
We need...
N to be norming for X, i.e.
‖x‖ = sup{| f (x)| : f ∈ BN} (x ∈ X).

Write X∗∗ = A⊕∞ N and Y = A∩ X.
Y is an ideal of X, so Y has no atomic projections.
Therefore, the norm of Y has no point of Fréchet-smoothness.
But Y is an Asplund space, so Y = 0.
Now, the mapping

X ↪→ X∗∗ = A⊕∞ N � N
in injective. Since it is an homomorphism, it is an isometry.
But N∗ ≡ N , so N is norming for N and now, also for X. X
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Theorem
Let X be a C∗-algebra. Then, TFAE:

X has the Daugavet property.
The norm of X is extremely rough, i.e.

lim sup
‖h‖→0

‖x + h‖+ ‖x− h‖ − 2
‖h‖ = 2

for every x ∈ SX (equivalently, every w∗-slice of BX∗ has diameter 2).
The norm of X is not Fréchet-smooth at any point.
X is non-atomic.
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The Daugavet property of Lindenstrauss spaces

4 Lindenstrauss spaces
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Lindenstrauss spaces

Definition
X is a Lindenstrauss space if X∗ ≡ L1(µ) (isometrically) for some measure µ.

Examples
1 C(K) spaces, C0(L) spaces.
2 A(K) (affine continuous functions on a Choquet simplex).
3 G-spaces due to Grothendieck...

An equivalent relation
X Lindenstrauss space, f , g ∈ ext (BX∗ ),

f ∼ g ⇐⇒ dimK

(
{ f , g}) = 1.

Werner, 1997
X Lindenstrauss space.(
ext (BX∗ ) / ∼ , w∗

)
perfect =⇒ X has the Daugavet property.

But more can be said...
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The result

Theorem (Becerra-M., 2006)
X Lindenstrauss space. TFAE:

1 X has the Daugavet property.
2 The norm of X is extremely rough.
3 The norm of X is not Fréchet-smooth at any point.
4 ext (BX∗ ) / ∼ does not have any isolated point.

F Only (3) =⇒ (4) needs proof.

F We use the following result which is of independent interest:

Proposition
X Banach space, f ∈ ext (BX∗ ) which [ f ] isolated point of ext (BX∗ ) / ∼
=⇒ f w∗-strongly exposed point of BX∗ .

F It is a consequence of Choquet’s lemma.
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The alternative Daugavet equation

5 The alternative Daugavet equation
Definitions and basic results
Geometric characterizations
C∗-algebras and preduals
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The alternative Daugavet equation

The alternative Daugavet equation
X Banach space, T ∈ L(X)

max
|ω|=1

‖Id + ω T‖ = 1 + ‖T‖ (aDE)

(Duncan–McGregor–Pryce–White, 1970; Holub, Abramovich. . . , 80’s)

Two equivalent formulations
There exists ω ∈ T such that ω T satisfies (DE).
The numerical radius of T, v(T), coincides with ‖T‖, where

v(T) := sup{|x∗(Tx)| : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1}.
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Two possible properties
Let X be a Banach space.

X is said to have the alternative Daugavet property (ADP) iff every
rank-one operator on X satisfies (aDE).

Then, every weakly compact operator also satisfies (aDE).
If X∗ has the ADP, so does X. The converse is not true: C([0, 1], `2).

(M.–Oikhberg, 2004; briefly appearance: Abramovich, 1991)

X is said to have numerical index 1 iff v(T) = ‖T‖ for every operator
on X. Equivalently, if every operator on X satisfies (aDE).

(Lumer, 1968; Duncan–McGregor–Pryce–White, 1970)

The numerical index of a Banach space X is the greater constant k such that

v(T) > k ‖T‖

for every operator T ∈ L(X).
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Numerical index 1

C(K) and L1(µ) have numerical index 1.
(Duncan–McGregor–Pryce–White, 1970)

All function algebras have numerical index 1.
(Werner, 1997)

A C∗-algebra has numerical index 1 iff it is commutative.
(Huruya, 1977; Kaidi–Morales–Rodŕıguez-Palacios, 2000)

In case dim(X) < ∞, X has numerical index 1 iff

|x∗(x)| = 1 x∗ ∈ ext (BX∗ ) , x ∈ ext (BX) .

(McGregor, 1971)
If dim(X) = ∞ and X has numerical index 1, then X∗ ⊇ `1.

(Avilés–Kadets–M.–Meŕı–Shepelska, 2009)
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The alternative Daugavet property

Daugavet property ====6====-
�===6===== Numerical index 1

ADP
�==

==
==

==
==========-

c0 ⊕∞ C([0, 1], `2) has the ADP, but neither the Daugavet property, nor
numerical index 1.
For RNP or Asplund spaces, the ADP implies numerical index 1.
Every Banach space with the ADP can be renormed still having the ADP
but failing the Daugavet property.
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Geometric characterizations

Theorem. TFAE:
X has the ADP.
For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y ∈ SX such that

|x∗(y)| > 1− ε and ‖x− y‖ > 2− ε.

For every x ∈ SX , x∗ ∈ SX∗ , and ε > 0, there exists
y∗ ∈ SX∗ such that

|y∗(x)| > 1− ε and ‖x∗ − y∗‖ > 2− ε.

For every x ∈ SX and every ε > 0, we have
BX = co

(
T {y ∈ BX : ‖x− y‖ > 2− ε}

)
.

x

{y ∈ BX : ‖x− y‖ > 2− ε}

{y ∈ BX : ‖x + y‖ > 2− ε}
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Let V∗ be the predual of the von Neumann algebra V.

The Daugavet property of V∗ is equivalent to:
V has no atomic projections, or
the unit ball of V∗ has no extreme points.

V∗ has numerical index 1 iff:
V is commutative, or
|v∗(v)| = 1 for v ∈ ext (BV) and v∗ ∈ ext (BV∗ ).

The alternative Daugavet property of V∗ is equivalent to:
the atomic projections of V are central, or
|v(v∗)| = 1 for v ∈ ext (BV) and v∗ ∈ ext (BV∗ ), or
V = C⊕∞ N, where C is commutative and N has no atomic projections.
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Let X be a C∗-algebra.

The Daugavet property of X is equivalent to:
X does not have any atomic projection, or
the unit ball of X∗ does not have any w∗-strongly exposed point.

X has numerical index 1 iff:
X is commutative, or
|x∗∗(x∗)| = 1 for x∗∗ ∈ ext (BX∗∗ ) and x∗ ∈ ext (BX∗ ).

The alternative Daugavet property of X is equivalent to:
the atomic projections of X are central, or
|x∗∗(x∗)| = 1, for x∗∗ ∈ ext (BX∗∗ ), and x∗ ∈ BX∗ w∗-strongly exposed, or
∃ a commutative ideal Y such that X/Y has the Daugavet property.
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Norm equalities for operators

6 Norm equalities for operators
The equations
Extremely non-complex Banach spaces
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Norm equalities for operators

Motivating question
Are there other norm equalities like Daugavet equation which could define inter-
esting properties of Banach spaces ?

Concretely
We looked for non-trivial norm equalities of the forms

‖g(T)‖ = f (‖T‖) or ‖Id + g(T)‖ = f (‖g(T)‖)

(g analytic, f arbitrary) satisfied by all rank-one operators on a Banach space.

Solution
We proved that there are few possibilities. . .
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Equalities of the form ‖g(T)‖ = f (‖T‖)

Theorem
X real or complex with dim(X) > 2.
Suppose that the norm equality

‖g(T)‖ = f (‖T‖)

holds for every rank-one operator
T ∈ L(X), where

g : K −→ K is analytic,
f : R+

0 −→ R is arbitrary.
Then, there are a, b ∈ K such that

g(ζ) = a + b ζ
(
ζ ∈ K).

Corollary
Only three norm equalities of the form

‖g(T)‖ = f (‖T‖)

are possible:
b = 0 : ‖a Id‖ = |a|,
a = 0 : ‖b T‖ = |b| ‖T‖,

(trivial cases)
a 6= 0, b 6= 0 :
‖a Id + b T‖ = |a|+ |b| ‖T‖,

(Daugavet property)
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Equalities of the form ‖Id + g(T)‖ = f (‖g(T)‖)

Remark
If X has the Daugavet property and g is analytic, then

‖Id + g(T)‖ = |1 + g(0)| − |g(0)|+ ‖g(T)‖

for every rank-one T ∈ L(X).

Our aim here is not to show that g has a suitable form,
but it is to see that for every g another simpler equation can be found.
From now on, we have to separate the complex and the real case.
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Equalities of the form ‖Id + g(T)‖ = f (‖g(T)‖)

• Complex case:

Proposition
X complex, dim(X) > 2. Suppose that

‖Id + g(T)‖ = f (‖g(T)‖)

for every rank-one T ∈ L(X), where
g : C −→ C analytic non-constant,
f : R+

0 −→ R continuous.
Then

∥∥(1 + g(0))Id + T
∥∥

= |1 + g(0)| − |g(0)|+
∥∥g(0)Id + T

∥∥

for every rank-one T ∈ L(X).

We obtain two different cases:
|1 + g(0)| − |g(0)| 6= 0 or
|1 + g(0)| − |g(0)| = 0.

−1
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Equalities of the form ‖Id + g(T)‖ = f (‖g(T)‖). Complex case

Theorem
If Re g(0) 6= −1/2 and

‖Id + g(T)‖ = f (‖g(T)‖)

for every rank-one T, then X has
the Daugavet property.

Theorem
If Re g(0) = −1/2 and

‖Id + g(T)‖ = f (‖g(T)‖)

for every rank-one T, then exists θ0 ∈ R s.t.
∥∥Id + ei θ0 T

∥∥ = ‖Id + T‖

for every rank-one T ∈ L(X).

Example
If X = C[0, 1]⊕2 C[0, 1], then∥∥Id + ei θ T

∥∥ = ‖Id + T‖
for every θ ∈ R, rank-one T ∈ L(X).
X does not have the Daugavet property.
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Equalities of the form ‖Id + g(T)‖ = f (‖g(T)‖). Real case

• Real case:

Remarks
The proofs are not valid (we use
Picard’s Theorem).
They work when g is onto.
But we do not know what is the
situation when g is not onto, even
in the easiest examples:∥∥Id + T2

∥∥ = 1 + ‖T2‖,∥∥Id− T2
∥∥ = 1 + ‖T2‖.

g(0) = −1/2:

Example
If X = C[0, 1]⊕2 C[0, 1], then∥∥Id− T

∥∥ = ‖Id + T‖
for every rank-one T ∈ L(X).
X does not have the Daugavet
property.
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Extremely non-complex Banach spaces: the motivating question

Godefroy, private communication
Is there any real Banach space X (with dim(X) > 1) such that

‖Id + T2‖ = 1 + ‖T2‖

for every operator T ∈ L(X) ?

Definition

X is extremely non-complex if dist(T2,−Id) is the maximum possible, i.e.

‖Id + T2‖ = 1 + ‖T2‖
(
∀T ∈ L(X)

)
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The solution (Koszmider–M.–Meŕı, 2009)

Existence
There are infinitely many nonisomorphic extremely non-complex Banach spaces.

Examples
1 C(K) spaces with “few operators”.
2 A C(K1) containing a (1-complemented) isometric copy of `∞.
3 A C(K2) containing a complemented copy of c0.
4 Many spaces nonisomorphic to C(K) spaces

Main application
There exists a Banach space X such that

Iso(X ) = {−Id, +Id} and Iso(X ∗) ⊃ Iso(`2).
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