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Introduction:
notation, objectives and motivation
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Basic notation and main objectives

Notation
X real or complex Banach space.

SX unit sphere, BX closed unit ball.
X∗ dual space.
L(X) bounded linear operators.
W (X) weakly compact linear operators.
Iso(X) surjective isometries group.

Objective
Construct spaces X with small Iso(X) and big Iso(X∗).
To cases:

Iso(X) does not have uniformly continuous one-parameter semigroups
but Iso(X∗)⊃ Iso(`2).

Iso(X) = {±Id} but Iso(X∗)⊃ Iso(`2).
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Motivation

X Banach space.

Autonomous dynamic system

(♦)
{
x ′(t) =Ax(t)
x(0) = x0

x0 ∈X, A linear closed densely defined.

One-parameter semigroup of operators

Φ : R+
0 −→ L(X) such that Φ(t+s) = Φ(t)Φ(s) ∀t,s ∈ R+

0 , Φ(0) = Id.
Uniformly continuous: Φ : R+

0 −→ (L(X),‖ · ‖) continuous.
Strongly continuous: Φ : R+

0 −→ (L(X),SOT) continuous.

Relationship (Hille-Yoshida, 1950’s)
Bounded case:

If A ∈ L(X) =⇒ Φ(t) = exp(tA) solution of (♦) uniforly continuous.
Φ uniformly continuous =⇒ A= Φ′(0) ∈ L(X) and Φ solution of (♦).

Unbounded case:
Φ strongly continuous =⇒ A= Φ′(0) closed and Φ solution of (♦).
If (♦) has solution Φ strongly continuous =⇒ A= Φ′(0) and
Φ(t) = “exp(tA)”.
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Sketch of the talk

1 Introduction

2 Bounded or uniformly continuous case

3 Problems with the numerical range for unbounded operators

4 Extremely non-complex Banach spaces: motivation and first examples

5 Extremely non-complex Banach spaces: surjective isometries
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Bounded or uniformly continuous case

M. Mart́ın
The group of isometries of a Banach space and duality.
J. Funct. Anal. (2008).

1 Introduction

2 Bounded or uniformly continuous case

3 Problems with the numerical range for unbounded operators

4 Extremely non-complex Banach spaces: motivation and first examples

5 Extremely non-complex Banach spaces: surjective isometries
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Hilbert spaces

Hilbert space Numerical range (Toeplitz, 1918)
A n×n real or complex matrix

W (A) =
{

(Ax | x) : x ∈Kn, (x | x) = 1
}
.

H real or complex Hilbert space, T ∈ L(H),

W (T ) =
{

(Tx | x) : x ∈H, ‖x‖= 1
}
.

Some properties
H Hilbert space, T ∈ L(H):

W (T ) is convex.
In the complex case, W (T ) contains the spectrum of T .
If, moreover, T is normal, W (T ) = coSp(T ).
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Banach spaces

Banach space numerical range (Bauer 1962; Lumer, 1961)
X Banach space, T ∈ L(X),

V (T ) =
{
x∗(Tx) : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1

}
Some properties
X Banach space, T ∈ L(X):

V (T ) is connected (not necessarily convex).
In the complex case, V (T ) contains the spectrum of T .
Actually,

coSp(T ) =
⋂

coV (T ),

the intersection taken over all numerical ranges V (T ) corresponding to
equivalent norms on X.
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Numerical radius
X real or complex Banach space, T ∈ L(X),

v(T ) = sup
{
|λ| : λ ∈ V (T )

}
.

v is a seminorm with v(T ) 6 ‖T‖.
v(T ) = v(T ∗) for every T ∈ L(X).

Numerical index (Lumer, 1968)
X real or complex Banach space,

n(X) = inf
{
v(T ) : T ∈ L(X), ‖T‖= 1

}
= max{k > 0 : k‖T‖6 v(T ) ∀T ∈ L(X)

}
.

Remarks
n(X) = 1 iff v(T ) = ‖T‖ for every T ∈ L(X).
If there is T 6= 0 with v(T ) = 0, then n(X) = 0.
If X is complex, then n(X) > 1/e.
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Relationship with semigroups of operators

A motivating example
A real or complex n×n matrix. TFAE:

A is skew-adjoint (i.e. A∗ =−A).
Re(Ax | x) = 0 for every x ∈H.
B = exp(ρA) is unitary for every ρ ∈ R (i.e. B∗B = Id).

In term of Hilbert spaces
H (n-dimensional) Hilbert space, T ∈ L(H). TFAE:

ReW (T ) = {0}.
exp(ρT ) ∈ Iso(H) for every ρ ∈ R.

For general Banach spaces
X Banach space, T ∈ L(X). TFAE:

ReV (T ) = {0}.
exp(ρT ) ∈ Iso(X) for every ρ ∈ R.
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Characterizing uniformly continuous semigroups of operators

Theorem
X real or complex Banach space, T ∈ L(X). TFAE:

ReV (T ) = {0}.
‖exp(ρT )‖6 1 for every ρ ∈ R.{

exp(ρT ) : ρ ∈ R+
0
}
⊂ Iso(X).

T belongs to the tangent space of Iso(X) at Id, i.e. exists a function
f : [−1,1]−→ Iso(X) with f(0) = Id and f ′(0) = T .

lim
ρ→0

‖Id +ρT‖−1
ρ

= 0, i.e. the derivative or the norm of L(X) at Id in

the direction of T is null.

Consequences
For every T ∈ L(X) ∥∥exp(ρT )

∥∥6 ev(T )ρ (
ρ ∈ R

)
and v(T ) is the smaller possibility.
Then, n(X) = 1 is the worst possibility to find uniformly continuous
one-parameter semigroups of isometries.
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The main example

Spaces CE(K‖L)
K compact, L⊂K closed nowhere dense, E ⊂ C(L).

CE(K‖L) = {f ∈ C(K) : f |L ∈ E}.

Theorem
CE(K‖L)∗ ≡ E∗⊕1C0(K‖L)∗ & n

(
CE(K‖L)

)
= 1.

Consequence: the example
Take K = [0,1], L= ∆, E = `2 ⊂ C(∆).

Iso
(
C`2 ([0,1]‖∆)

)
has no uniformly continuous one-parameter

semigroups.
C`2 ([0,1]‖∆)∗ ≡ `2⊕1C0([0,1]‖∆)∗, so taken S ∈ Iso(`2)

=⇒ T =
(

S 0
0 Id

)
∈ Iso

(
C`2 ([0,1]‖∆)∗

)
Then, Iso

(
C`2 ([0,1]‖∆)∗

)
contains infinitely many uniformly continuous

one-parameter semigroups.
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Isometries in finite-dimensional spaces
Theorem
X finite-dimensional real space. TFAE:

Iso(X) is infinite.
n(X) = 0.
There is T ∈ L(X), T 6= 0, with v(T ) = 0.

Examples of spaces of this kind
1 Hilbert spaces.
2 XR, the real space subjacent to any complex space X.
3 An absolute sum of any real space and one of the above.
4 Moreover, if X =X0⊕X1 where X1 is complex and∥∥∥x0 + eiθ x1

∥∥∥= ‖x0 +x1‖
(
x0 ∈X0, x1 ∈X1, θ ∈ R

)
.

(Note that the other 3 cases are included here)

Question

Can every Banach space X with n(X) = 0 be decomposed as in ?
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Negative answer I

Infinite-dimensional case
There is an infinite-dimensional real Banach space X with n(X) = 0 but X is
polyhedral. In particular, X does not contain C isometrically.

An easy example is

X =

⊕
n>2

Xn


c0

Xn is the two-dimensional space whose unit ball is the regular polygon of 2n
vertices.

Note
Such an example is not possible in the finite-dimensional case.
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(Quasi affirmative) negative answer II

Finite-dimensional case
X finite-dimensional real space. TFAE:

n(X) = 0.

X =X0⊕X1⊕·· ·⊕Xn such that
X0 is a (possible null) real space,
X1, . . . ,Xn are non-null complex spaces,

there are ρ1, . . . ,ρn rational numbers, such that∥∥∥x0 + eiρ1 θ x1 + · · ·+ eiρn θ xn
∥∥∥=

∥∥x0 +x1 + · · ·+xn
∥∥

for every xi ∈Xi and every θ ∈ R.

Remark
The theorem is due to Rosenthal, but with real ρ’s.
The fact that the ρ’s may be chosen as rational numbers is due to
M.–Meŕı–Rodŕıguez-Palacios.
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Consequences

Corollary
X real space with n(X) = 0.

If dim(X) = 2, then X ≡ C.
If dim(X) = 3, then X ≡ R⊕C (absolute sum).

Natural question
Are all finite-dimensional X’s with n(X) = 0 of the form X =X0⊕X1 ?

Answer
No.

Example

X = (R4,‖ · ‖), ‖(a,b,c,d)‖= 1
4

∫ 2π

0

∣∣∣Re
(

e2it(a+ ib) +eit(c+ id)
)∣∣∣ dt.

Then n(X) = 0 but the unique possible decomposition is X = C⊕C with∥∥∥eitx1 + e2itx2

∥∥∥= ‖x1 +x2‖.



Introduction Bounded case Unbounded case Extremely non-complex (1) Extremely non-complex (2)

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, Z(X) =
{
T ∈ L(X) : v(T ) = 0

}
.

When X is finite-dimensional, Iso(X) is a Lie-group and Z(X) is the
tangent space (i.e. its Lie-algebra).

Remark
If dim(X) = n, then

0 6 dim(Z(X)) 6
n(n−1)

2 .

An open problem

Given n> 3, which are the possible dim
(
Z(X)

)
over all n-dimensional X’s?

Observation (Javier Meŕı, PhD)
When dim(X) = 3, dim(Z(X)) cannot be 2.
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Numerical index of Banach spaces

Numerical index (Lumer, 1968)
X real or complex Banach space,

n(X) = max{k > 0 : k‖T‖6 v(T ) ∀T ∈ L(X)
}
.

Some examples
1 C(K), L1(µ) have numerical index 1.
2 H Hilbert space, dim(H)> 1, then

n(H) = 0 real case n(H) = 1
2 complex case.

3 n(Lp[0,1]) = n(`p) but both are unknown.
4 If Xn is the two-dimensional space such that BXn is a 2n-polygon, then

n(Xn) = tan
(
π

2n

)
if n is even n(Xn) = sin

(
π

2n

)
if n is odd.

5 If X is a C∗-algebra or the predual of a von Neumann algebra, then
n(X) = 1 if the algebra is commutative and n(X) = 1/2 otherwise.
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Numerical index and duality

Proposition
X Banach space.

v(T ∗) = v(T ) for every T ∈ L(X).
Therefore, n(X∗) 6 n(X).

Question (1970)

Is it always n(X) = n(X∗) ?

Some positive partial answers
When X is reflexive (evident).
When X is a C∗-algebra or a von Neumann predual (1970’s – 2000’s).
When X is L-embedded in X∗∗ (2000’s).
If X has RNP and n(X) = 1, then n(X∗) = 1 (2000’s).
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Numerical index and duality. II

Answer
The answer is NO:

Example (Boyko-Kadets-M.-Werner, 2007)
X = {(x,y,z) ∈ c⊕∞ c⊕∞ c : limx+ limy+ limz = 0}.

With the previous construction it is easy to give examples:

Another example
It is known: if X or X∗ is a C∗-algebra, then n(X) = n(X∗).
Consider Y = CK(`2)([0,1]‖∆). Then

n(Y ) = 1 and Y ∗ ≡K(`2)∗⊕1C0([0,1]‖∆)∗.

So, Y ∗∗ ≡ L(`2)⊕∞C0([0,1]‖∆)∗∗ is a C∗-algebra but
n(Y ∗) 6n

(
K(`2)

)
= 1/2.
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Numerical index and duality. III

Remark
In all the examples there are another predual for which the numerical index
coincides with the numerical index of its dual.

Open problems
We look for sufficient conditions assuring the equality between the numerical
index of a Banach space and the one of its dual.

1 Asplundness is not such a property.
2 What’s about RNP ?
3 What’s about if X∗ has a unique predual ? (it’s true for L-embedded).
4 What’s about if X does not contains a copy of c0 ?

Theorem
X separable Banach space containing (an isomorphic copy of) c0, then there is
an equivalent norm | · | on X such that

n
(
(X, | · |)∗

)
= 0,1/e and n

(
(X, | · |)

)
= 1.
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Problems with the unbounded or strongly
continuous case
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Numerical range of unbounded operators

Numerical range of unbounded operators (1960’s)
X Banach space, T :D(T )−→X linear,

V (T ) =
{
x∗(Tx) : x∗ ∈X∗, x ∈D(T ), x∗(x) = ‖x∗‖= ‖x‖= 1

}
.

Teorema (Stone, 1932)
H Hilbert space, A densely defined operator. TFAE:

A generates an strongly continuous one-parameter semigroup of unitary
operators (onto isometries).
A∗ =−A.
Re(Ax | x) = 0 for every x ∈D(A).
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Numerical range of unbounded operators. II

Difficulty
Which Banach spaces have unbounded operators with numerical range zero?

Examples
In C0(R), Φ(t)(f)(s) = f(t+s) is an strongly continuous one-parameter
semigroup of isometries (generated by the derivative).
In CE([0,1]‖∆) there are also strongly continuous one-parameter
semigroup of isometries.

Consequence
We have to completely change our approach to the problem.
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Extremely non-complex Banach spaces:
motivation and first examples

P. Koszmider, M. Mart́ın, and J. Meŕı.
Extremely non-complex C(K) spaces.
J. Math. Anal. Appl. (2009).

1 Introduction

2 Bounded or uniformly continuous case

3 Problems with the numerical range for unbounded operators

4 Extremely non-complex Banach spaces: motivation and first examples

5 Extremely non-complex Banach spaces: surjective isometries
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Complex structures

Definition

X has complex structure if there is T ∈ L(X) such that T 2 =−Id.

Some remarks
This gives a structure of vector space over C:

(α+ iβ)x= αx+βT (x)
(
α+ iβ ∈ C, x ∈X

)
Defining

|||x|||= max
{
‖eiθx‖ : θ ∈ [0,2π]

}
(x ∈X)

one gets that (X, ||| · |||) is a complex Banach space.
If T is an isometry, then actually the given norm of X is complex.
Conversely, if X is a complex Banach space, then

T (x) = ix
(
x ∈X

)
satisfies T 2 =−Id and T is an isometry.
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Complex structures II

Some examples
1 If dim(X)<∞, X has complex structure iff dim(X) is even.
2 If X ' Z⊕Z (in particular, X 'X2), then X has complex structure.
3 There are infinite-dimensional Banach spaces without complex structure:

Dieudonné, 1952: the James’ space J (since J ∗∗ ≡ J ⊕R).
Szarek, 1986: uniformly convex examples.
Gowers-Maurey, 1993: their H.I. space.
Ferenczi-Medina Galego, 2007: there are odd and even
infinite-dimensional spaces X.

X is even if admits a complex structure but its hyperplanes does not.
X is odd if its hyperplanes are even (and so X does not admit a complex
structure).

Definition

X is extremely non-complex if dist(T 2,−Id) is the maximum possible, i.e.

‖Id +T 2‖= 1 +‖T 2‖
(
T ∈ L(X)

)
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The Daugavet equation

What Daugavet did in 1963
The norm equality

‖Id +T‖= 1 +‖T‖

holds for every compact T ∈ L
(
C[0,1]

)
.

The Daugavet equation
X Banach space, T ∈ L(X), ‖Id +T‖= 1 +‖T‖ (DE).

Classical examples
1 Daugavet, 1963:

Every compact operator on C[0,1] satisfies (DE).
2 Lozanoskii, 1966:

Every compact operator on L1[0,1] satisfies (DE).
3 Abramovich, Holub, and more, 80’s:
X = C(K), K perfect compact space
or X = L1(µ), µ atomless measure
=⇒ every weakly compact T ∈ L(X) satisfies (DE).
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The Daugavet property

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)
A Banach space X is said to have the Daugavet property iff every rank-one
operator on X satisfies (DE).

Some results
Let X be a Banach space with the Daugavet
property. Then

Every weakly compact operator on X
satisfies (DE).
X contains `1.
X does not embed into a Banach space
with unconditional basis.
Geometric characterization: X has the
Daugavet property iff for each x ∈ SX

co
(
BX \

(
x+ (2−ε)BX

))
=BX .

(Kadets–Shvidkoy–Sirotkin–Werner, 1997 & 2000)

x

BX \
(
x + (2− ε)BX

)
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The Daugavet property II

More examples
The following spaces have the Daugavet property.

Wojtaszczyk, 1992:
The disk algebra and H∞.
Werner, 1997:
“Nonatomic” function algebras.
Oikhberg, 2005:
Non-atomic C∗-algebras and preduals of non-atomic von Neumann
algebras.
Becerra–M., 2005:
Non-atomic JB∗-triples and their preduals.
Becerra–M., 2006:
Preduals of L1(µ) without Fréchet-smooth points.
Ivankhno, Kadets, Werner, 2007:
Lip(K) when K ⊆ Rn is compact and convex.
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Daugavet–type inequalities

Some examples
Benyamini–Lin, 1985:
For every 1< p <∞, p 6= 2, there exists ψp : (0,∞)−→ (0,∞)
such that

‖Id +T‖> 1 +ψp(‖T‖)
for every compact operator T on Lp[0,1].

If p= 2, then there is a non-null compact T on L2[0,1] such that

‖Id +T‖= 1.
Boyko–Kadets, 2004:
If ψp is the best possible function above, then

lim
p→1+

ψp(t) = t (t > 0).

Oikhberg, 2005:
If K(`2)⊆X ⊆ L(`2), then

‖Id +T‖> 1 + 1
8
√

2
‖T‖

for every compact T on X.
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Norm equalities for operators

Motivating question
Are there other norm equalities which could define interesting properties of
Banach spaces ?

Concretely
We looked for non-trivial norm equalities of the forms

‖g(T )‖= f(‖T‖) or ‖Id +g(T )‖= f(‖g(T )‖)

(g analytic, f arbitrary) satisfied by all rank-one operators on a Banach space.

Solution
We proved that there are few possibilities. . .
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Norm equalities for operators: Occlusive results

Theorem
X real or complex with dim(X) > 2.
Suppose that the norm equality

‖g(T )‖= f(‖T‖)

holds for every rank-one operator
T ∈ L(X), where

g : K−→K is analytic,
f : R+

0 −→ R is arbitrary.
Then, there are a,b ∈K such that

g(ζ) = a+ bζ
(
ζ ∈K).

Corollary
Only three norm equalities of the form

‖g(T )‖= f(‖T‖)

are possible:
b= 0 : ‖a Id‖= |a|,
a= 0 : ‖bT‖= |b|‖T‖,

(trivial cases)
a 6= 0, b 6= 0 :
‖a Id + bT‖= |a|+ |b|‖T‖,

(Daugavet property)
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Norm equalities for operators: Occlusive results II

Theorem
X complex with dim(X) > 2. Suppose
that the norm equality

‖Id +g(T )‖= f(‖g(T )‖)

holds for every rank-one operator
T ∈ L(X), where

g : C−→ C is analytic, non
constant and with g(0) = 0,
f : R+

0 −→ R is continuous.
Then, X has the Daugavet property

Remarks
We do not know if the result is true
in the real case.
It is true if g is onto.
Even the simplest case, g(t) = t2, is
not solved. The only known thing
is that, in this case, f(t) = 1+ t,
leading to the equation

‖Id +T 2‖= 1 +‖T 2‖
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The question

Godefroy, private communication
Is there any real Banach space X (with dim(X)> 1) such that

‖Id +T 2‖= 1 +‖T 2‖

for every operator T ∈ L(X) ?

In other words, are there extremely non-complex Banach spaces other than R ?
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The first attempts

The first idea
We may try to check whether the known spaces without complex structure are
actually extremely non-complex.

Some examples
1 If dim(X)<∞, X has complex structure iff dim(X) is even.
2 Dieudonné, 1952: the James’ space J (since J ∗∗ ≡ J ⊕R).
3 Szarek, 1986: uniformly convex examples.
4 Gowers-Maurey, 1993: their H.I. space.
5 Ferenczi-Medina Galego, 2007: there are odd and even

infinite-dimensional spaces X.
X is even if admits a complex structure but its hyperplanes does not.
X is odd if its hyperplanes are even (and so X does not admit a complex
structure).

(Un)fortunately. . .
This did not work and we moved to C(K) spaces.
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The first example: weak multiplications

Weak multiplication

Let K be a compact space. T ∈ L
(
C(K)

)
is a weak multiplication if

T = g Id +S

where g ∈ C(K) and S is weakly compact.

Theorem
K perfect, T = g Id +S ∈ L

(
C(K)

)
weak multiplication

=⇒ ‖Id +T 2‖= 1 +‖T 2‖
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Proof of the theorem

We have X = C(K), K perfect, T = gId +S

max‖Id±T‖= 1 +‖T‖ (true for every K and every T )
‖Id +S‖= 1 +‖S‖ (if S ∈W (X), K perfect)

We need
‖Id +T 2‖= 1 +‖T 2‖

If T = gId +S, then T 2 = g2 Id +S′ with S′ weakly compact.

We will prove that ‖Id +g2 Id +S‖= 1 +‖g2 Id +S‖
for g ∈ C(K) and S weakly compact.

Step 1: We assume ‖g2‖6 1 and ming2(K)> 0.
Step 2: We can avoid the assumption that ming2(K)> 0.

Step 3: Finally, for every g the above gives∥∥∥∥Id + 1
‖g2‖

(
g2 Id +S

)∥∥∥∥= 1 + 1
‖g2‖

‖g2 Id +S‖

which gives us the result.
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The first example: weak multiplications. II

Weak multiplication

Let K be a compact space. T ∈ L
(
C(K)

)
is a weak multiplication if

T = g Id +S

where g ∈ C(K) and S is weakly compact.

Theorem
K perfect, T = g Id +S ∈ L

(
C(K)

)
weak multiplication

=⇒ ‖Id +T 2‖= 1 +‖T 2‖

Example (Koszmider, 2004; Plebanek, 2004)
There are perfect compact spaces K such that all operators on C(K) are weak
multiplications.

Consequence
Therefore, there are extremely non-complex C(K) spaces.
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More examples: weak multipliers

Weak multiplier

Let K be a compact space. T ∈ L
(
C(K)

)
is a weak multiplier if

T ∗ = g Id +S

where g is a Borel function and S is weakly compact.

Theorem
If K is perfect and all operators on C(K) are weak multipliers, then C(K) is
extremely non-complex.

Example (Koszmider, 2004)
There are infinitely many different perfect compact spaces K such that all
operators on C(K) are weak multipliers.

Corollary
There are infinitely many non-isomorphic extremely non-complex Banach
spaces.
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Further examples

Proposition
There is a compact infinite totally disconnected and perfect space K such that
all operators on C(K) are weak multipliers.

Consequence
There is a family (Ki)i∈I of pairwise disjoint perfect and totally disconnected
compact spaces such that

every operator on C(Ki) is a weak multiplier,
for i 6= j, every T ∈ L(C(Ki),C(Kj)) is weakly compact.

Theorem
There are some compactifications K̃ of the above family (Ki)i∈I such that the
corresponding C(K̃)’s are extremely non-complex.
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Further examples II

Main consequence
There are perfect compact spaces K1, K2 such that:

C(K1) and C(K2) are extremely non-complex,
C(K1) contains a complemented copy of C(∆).
C(K2) contains a 1-complemented isometric copy of `∞.

Observation
C(K1) and C(K2) have operators which are not weak multipliers.
They are not indecomposable spaces.
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Related open questions

Question 1
Find topological characterization of the compact Hausdorff spaces K such that
the spaces C(K) are extremely non-complex.

Question 2
Find topological consequences on K when C(K) is extremely non-complex.
For instance:
If C(K) is extremely non-complex and ψ :K −→K is continuous, are there an
open subset U of K such that ψ|U = id and ψ(K \U) is finite ?

We will show latter than ϕ :K −→K homeomorphism =⇒ ϕ= id.
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Extremely non-complex Banach spaces

Definition

X is extremely non-complex if dist(T 2,−Id) is the maximum possible, i.e.

‖Id +T 2‖= 1 +‖T 2‖
(
T ∈ L(X)

)
Examples
There are several extremely non-complex C(K) spaces:

If T = gId +S for every T ∈ L(C(K)) (K Koszmider).
If T ∗ = gId +S for every T ∈ L(C(K)) (K weak Koszmider).
One C(K) containing a complemented copy of C(∆).
One C(K) containing an isometric (1-complemented) copy of `∞.
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Isometries on extremely non-complex spaces. I

Theorem
X extremely non-complex.

T ∈ Iso(X) =⇒ T 2 = Id.
T1,T2 ∈ Iso(X) =⇒ T1T2 = T2T1.
T1,T2 ∈ Iso(X) =⇒ ‖T1−T2‖ ∈ {0,2}.
Φ : R+

0 −→ Iso(X) one-parameter semigroup =⇒ Φ(R+
0 ) = {Id}.

Consequences
Iso(X) is a Boolean group for the composition operation.
Iso(X) identifies with the set Unc(X) of unconditional projections on X:

P ∈ Unc(X)⇐⇒ P 2 = P, 2P − Id ∈ Iso(X)

⇐⇒ P = 1
2(Id−T ), T ∈ Iso(X), T 2 = Id.

Iso(X)≡ Unc(X) is a Boolean algebra
⇐⇒ P1P2 ∈ Unc(X) when P1,P2 ∈ Unc(X)
⇐⇒

∥∥ 1
2 (Id +T1 +T2−T1T2)

∥∥= 1 for every T1,T2 ∈ Iso(X).
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Extremely non-complex CE(K‖L) spaces.

Theorem
K perfect weak Koszmider, L closed nowhere dense, E ⊂ C(L)
=⇒ CE(K‖L) is extremely non-complex.

Proposition
K perfect =⇒ ∃ L⊂K closed nowhere dense with C[0,1]⊂ C(L).

Example
Take K perfect weak Koszmider, L⊂K closed nowhere dense with
E = `2 ⊂ C[0,1]⊂ C(L):

C`2 (K‖L) has no non-trivial one-parameter semigroup of isometries.
C`2 (K‖L)∗ = `2⊕1C0(K‖L)∗, so Iso

(
C`2 (K‖L)∗

)
⊃ Iso(`2).

Observation

C`2 (K‖L) is not isomorphic to a C(K′) space since `2 ⊂comp- C`2 (K‖L)∗.

But we are able to give a better result...
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Isometries on extremely non-complex CE(K‖L) spaces

Theorem
CE(K‖L) extremely non-complex, T ∈ Iso(CE(K‖L))
=⇒ exists θ :K \L−→ {−1,1} continuous such that

[T (f)](x) = θ(x)f(x)
(
x ∈K \L, f ∈ CE(K‖L)

)

Consequence: connected case
If K and K \L are connected, then

Iso
(
CE(K‖L)

)
= {−Id,+Id}
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The main example

Koszmider, 2004
∃ K connected weak Koszmider space such that K\F is connected if |F |<∞.

Observation on the above construction
There is L ⊂K closed nowhere dense with
K\L connected
C[0,1]⊆ C(L)

The best example
Consider X = C`2 (K‖L). Then:

Iso(X) = {−Id,+Id} and Iso(X∗)⊃ Iso(`2)

Proof.
K weak Koszmider, L nowhere dense, `2 ⊂ C(L)
=⇒ X well-defined and extremely non-complex.
K\L connected =⇒ Iso(X) = {−Id,+Id}.
X∗ = `2⊕1C0(K‖L)∗, so Iso(`2)⊂ Iso(X∗).
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Open questions on extremely non-complex Banach spaces

Questions
X extremely non complex

Does X have the Daugavet property ?
Stronger: Does Y have the Daugavet property if

‖Id +T 2‖= 1 +‖T 2‖ for every rank-one T ∈ L(Y ) ?

Is it true that n(X) = 1 ?
We actually know that n(X) > C > 0.

Is Iso(X)≡ Unc(X) a Boolean algebra ?

If Y 6X is 1-codimensional, is Y extremely non complex ?

Is it possible that X ' Z⊕Z⊕Z ?
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Questions conducting to the results presented here
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T ∈ L(X)?
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Is there X with n(X)> 0 such that there is a non-null S ∈ L(X∗) with
v(S) = 0? Equivalently, is there X such that Iso(X) has no uniformly
continuous one-parameter semigroups of isometries but Iso(X∗) have?
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Is it possible that Iso(X) = {±Id} but Iso(X∗)⊃ Iso(`2)?
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