Numerical index theory

Miguel Martín

http://www.ugr.es/local/mmartins

Advanced Training School in Mathematics
Workshop on Geometry of Banach spaces and its Applications

$$
\text { June } 2009 \text { - Indian Statistical Institute, Bangalore (India) }
$$

Schedule of the talk

(1) Basic notation
(2) Numerical range of operators
(3) Two results on surjective isometries

4 Numerical index of Banach spaces
(5) The alternative Daugavet property
(6) Lush spaces
(7) Slicely countably determined spaces
(8) Remarks on two recent results
(9) Extremely non-complex Banach spaces

Notation

Basic notation I

- \mathbb{K} base field (\mathbb{R} or \mathbb{C}):
- \mathbb{T} modulus-one scalars,
- $\operatorname{Re} z$ real part of $z(\operatorname{Re} z=z$ if $\mathbb{K}=\mathbb{R})$.
- H Hilbert space: $(\cdot \mid \cdot)$ denotes the inner product.
- X Banach space:
- S_{X} unit sphere, B_{X} unit ball,
- X^{*} dual space,
- $L(X)$ bounded linear operators,
- $W(X)$ weakly compact linear operators,
- Iso (X) surjective linear isometries,
- X Banach space, $T \in L(X)$:
- $\operatorname{Sp}(T)$ spectrum of T.
- $T^{*} \in L\left(X^{*}\right)$ adjoint operator of T.

Notation

Basic notation (II)

X Banach space, $B \subset X, C$ convex subset of X :

- B is rounded if $\mathbb{T} B=B$,
- $\operatorname{co}(B)$ convex hull of B,
- $\overline{\mathrm{co}}(B)$ closed convex hull of B,
- $\operatorname{aconv}(B)=\operatorname{co}(\mathbb{T} B)$ absolutely convex hull of B,
- $\operatorname{ext}(C)$ extreme points of C,
- slice of C :

$$
S\left(C, x^{*}, \alpha\right)=\left\{x \in C: \operatorname{Re} x^{*}(x)>\sup \operatorname{Re} x^{*}(C)-\alpha\right\}
$$

where $x^{*} \in X^{*}$ and $0<\alpha<\sup \operatorname{Re} x^{*}(C)$.

Numerical range of operators

(2) Numerical range of operators

- Definitions and first properties
- The exponential function
- Numerical ranges and isometries
F. F. Bonsall and J. Duncan

Numerical Ranges. Vol I and II.
London Math. Soc. Lecture Note Series, 1971 \& 1973.

Numerical range: Hilbert spaces

Hibert space numerical range (Toeplitz, 1918)

- An $n \times n$ real or complex matrix

$$
W(A)=\left\{(A x \mid x): x \in \mathbb{K}^{n},(x \mid x)=1\right\} .
$$

- H real or complex Hilbert space, $T \in L(H)$,

$$
W(T)=\{(T x \mid x): x \in H,\|x\|=1\} .
$$

Numerical range: Hilbert spaces

Hibert space numerical range (Toeplitz, 1918)

- An $n \times n$ real or complex matrix

$$
W(A)=\left\{(A x \mid x): x \in \mathbb{K}^{n},(x \mid x)=1\right\}
$$

- H real or complex Hilbert space, $T \in L(H)$,

$$
W(T)=\{(T x \mid x): x \in H,\|x\|=1\} .
$$

Remark

Given $T \in L(H)$ we associate

- a sesquilinear form $\varphi_{T}(x, y)=(T x \mid y) \quad(x, y \in H)$,
- a quadratic form $\widehat{\varphi_{T}}(x)=\varphi_{T}(x, x)=(T x \mid x) \quad(x \in H)$.

Then, $W(T)=\widehat{\varphi_{T}}\left(S_{H}\right)$.

Numerical range: Hilbert spaces

Hibert space numerical range (Toeplitz, 1918)

- An $n \times n$ real or complex matrix

$$
W(A)=\left\{(A x \mid x): x \in \mathbb{K}^{n},(x \mid x)=1\right\}
$$

- H real or complex Hilbert space, $T \in L(H)$,

$$
W(T)=\{(T x \mid x): x \in H,\|x\|=1\} .
$$

Remark

Given $T \in L(H)$ we associate

- a sesquilinear form $\varphi_{T}(x, y)=(T x \mid y) \quad(x, y \in H)$,
- a quadratic form $\widehat{\varphi_{T}}(x)=\varphi_{T}(x, x)=(T x \mid x) \quad(x \in H)$.

Then, $W(T)=\widehat{\varphi_{T}}\left(S_{H}\right)$. Therefore:

- $\widehat{\varphi_{T}}\left(B_{H}\right)=[0,1] W(T)$,
- $\widehat{\varphi_{T}}(H)=\mathbb{R}^{+} W(T)$.
- But we cannot get $W(T)$ from $\widehat{\varphi_{T}}\left(B_{H}\right)$!

Numerical range: Hilbert spaces. Properties.

Numerical range: Hilbert spaces. Properties.

Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.

Numerical range: Hilbert spaces. Properties.

Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.
- $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:

Numerical range: Hilbert spaces. Properties.

Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.
- $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
- $W(\alpha T+\beta S) \subseteq \alpha W(T)+\beta W(S)$;

Numerical range: Hilbert spaces. Properties.

Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.
- $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
- $W(\alpha T+\beta S) \subseteq \alpha W(T)+\beta W(S)$;
- $W(\alpha \mathrm{Id}+S)=\alpha+W(S)$.

Numerical range: Hilbert spaces. Properties.

Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.
- $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
- $W(\alpha T+\beta S) \subseteq \alpha W(T)+\beta W(S)$;
- $W(\alpha \mathrm{Id}+S)=\alpha+W(S)$.
- $W\left(U^{*} T U\right)=W(T)$ for every $T \in L(H)$ and every U unitary.

Numerical range: Hilbert spaces. Properties.

Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.
- $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
- $W(\alpha T+\beta S) \subseteq \alpha W(T)+\beta W(S)$;
- $W(\alpha \mathrm{Id}+S)=\alpha+W(S)$.
- $W\left(U^{*} T U\right)=W(T)$ for every $T \in L(H)$ and every U unitary.
- $\operatorname{Sp}(T) \subseteq \overline{W(T)}$.

Numerical range: Hilbert spaces. Properties.

Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.
- $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
- $W(\alpha T+\beta S) \subseteq \alpha W(T)+\beta W(S)$;
- $W(\alpha \mathrm{Id}+S)=\alpha+W(S)$.
- $W\left(U^{*} T U\right)=W(T)$ for every $T \in L(H)$ and every U unitary.
- $\operatorname{Sp}(T) \subseteq \overline{W(T)}$.
- If T is normal, then $\overline{W(T)}=\overline{\operatorname{co} \operatorname{Sp}(T)}$.

Numerical range: Hilbert spaces. Properties.

Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.
- $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
- $W(\alpha T+\beta S) \subseteq \alpha W(T)+\beta W(S)$;
- $W(\alpha \mathrm{Id}+S)=\alpha+W(S)$.
- $W\left(U^{*} T U\right)=W(T)$ for every $T \in L(H)$ and every U unitary.
- $\operatorname{Sp}(T) \subseteq \overline{W(T)}$.
- If T is normal, then $\overline{W(T)}=\overline{\operatorname{co}} \operatorname{Sp}(T)$.
- In the real case $(\operatorname{dim}(H)>1)$, there is $T \in L(H), T \neq 0$ with $W(T)=\{0\}$.

Numerical range: Hilbert spaces. Properties.

Some properties

H Hilbert space, $T \in L(H)$:

- (Toeplitz-Hausdorff) $W(T)$ is convex.
- $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
- $W(\alpha T+\beta S) \subseteq \alpha W(T)+\beta W(S)$;
- $W(\alpha \mathrm{Id}+S)=\alpha+W(S)$.
- $W\left(U^{*} T U\right)=W(T)$ for every $T \in L(H)$ and every U unitary.
- $\operatorname{Sp}(T) \subseteq \overline{W(T)}$.
- If T is normal, then $\overline{W(T)}=\overline{\operatorname{co}} \operatorname{Sp}(T)$.
- In the real case $(\operatorname{dim}(H)>1)$, there is $T \in L(H), T \neq 0$ with $W(T)=\{0\}$.
- In the complex case,

$$
\sup \left\{|(T x \mid x)|: x \in S_{H}\right\} \geqslant \frac{1}{2}\|T\|
$$

If T is actually self-adjoint, then

$$
\sup \left\{|(T x \mid x)|: x \in S_{H}\right\}=\|T\|
$$

Proving a result

H complex Hilbert space, $T \in L(H)$, then

$$
M:=\sup \left\{|(T x \mid x)|: x \in S_{H}\right\} \geqslant \frac{1}{2}\|T\|
$$

Proving a result

H complex Hilbert space, $T \in L(H)$, then

$$
M:=\sup \left\{|(T x \mid x)|: x \in S_{H}\right\} \geqslant \frac{1}{2}\|T\| .
$$

- For $x, y \in S_{H}$ fixed, use the polarization formula:

$$
\begin{aligned}
(T x \mid y)=\frac{1}{4} & {[(T(x+y) \mid x+y)-(T(x-y) \mid x-y)} \\
& +i(T(x+i y) \mid x+i y)-i(T(x-i y) \mid x-i y)] .
\end{aligned}
$$

Proving a result

H complex Hilbert space, $T \in L(H)$, then

$$
M:=\sup \left\{|(T x \mid x)|: x \in S_{H}\right\} \geqslant \frac{1}{2}\|T\|
$$

- For $x, y \in S_{H}$ fixed, use the polarization formula:

$$
\begin{aligned}
(T x \mid y)=\frac{1}{4}[& (T(x+y) \mid x+y)-(T(x-y) \mid x-y) \\
& +i(T(x+i y) \mid x+i y)-i(T(x-i y) \mid x-i y)]
\end{aligned}
$$

- $|(T x \mid y)| \leqslant \frac{1}{4} M\left[\|x+y\|^{2}+\|x-y\|^{2}+\|x+i y\|^{2}+\|x-i y\|^{2}\right]$.

Proving a result

H complex Hilbert space, $T \in L(H)$, then

$$
M:=\sup \left\{|(T x \mid x)|: x \in S_{H}\right\} \geqslant \frac{1}{2}\|T\|
$$

- For $x, y \in S_{H}$ fixed, use the polarization formula:

$$
\begin{aligned}
(T x \mid y)=\frac{1}{4}[& (T(x+y) \mid x+y)-(T(x-y) \mid x-y) \\
& +i(T(x+i y) \mid x+i y)-i(T(x-i y) \mid x-i y)]
\end{aligned}
$$

- $|(T x \mid y)| \leqslant \frac{1}{4} M\left[\|x+y\|^{2}+\|x-y\|^{2}+\|x+i y\|^{2}+\|x-i y\|^{2}\right]$.
- By the parallelogram's law:

$$
|(T x \mid y)| \leqslant \frac{1}{4} M\left[2\|x\|^{2}+2\|y\|^{2}+2\|x\|^{2}+2\|i y\|^{2}\right]=2 M
$$

Proving a result

H complex Hilbert space, $T \in L(H)$, then

$$
M:=\sup \left\{|(T x \mid x)|: x \in S_{H}\right\} \geqslant \frac{1}{2}\|T\|
$$

- For $x, y \in S_{H}$ fixed, use the polarization formula:

$$
\begin{aligned}
(T x \mid y)=\frac{1}{4}[& (T(x+y) \mid x+y)-(T(x-y) \mid x-y) \\
& +i(T(x+i y) \mid x+i y)-i(T(x-i y) \mid x-i y)]
\end{aligned}
$$

- $|(T x \mid y)| \leqslant \frac{1}{4} M\left[\|x+y\|^{2}+\|x-y\|^{2}+\|x+i y\|^{2}+\|x-i y\|^{2}\right]$.
- By the parallelogram's law:

$$
|(T x \mid y)| \leqslant \frac{1}{4} M\left[2\|x\|^{2}+2\|y\|^{2}+2\|x\|^{2}+2\|i y\|^{2}\right]=2 M
$$

- We just take supremum on $x, y \in S_{H} \checkmark$

Numerical range: Hilbert spaces. Motivation.

Numerical range: Hilbert spaces. Motivation.

Some reasons to study numerical ranges

Numerical range: Hilbert spaces. Motivation.

Some reasons to study numerical ranges

- It gives a "picture" of the matrix/operator which allows to "see" many properties (algebraic or geometrical) of the matrix/operator.

Numerical range: Hilbert spaces. Motivation.

Some reasons to study numerical ranges

- It gives a "picture" of the matrix/operator which allows to "see" many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.

Numerical range: Hilbert spaces. Motivation.

Some reasons to study numerical ranges

- It gives a "picture" of the matrix/operator which allows to "see" many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.
- It is useful to estimate spectral radii of small perturbations of matrices.

Example

Consider $A=\left(\begin{array}{cc}0 & M \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ \varepsilon & 0\end{array}\right)$.

- $\operatorname{Sp}(A)=\{0\}, \operatorname{Sp}(B)=\{0\}$.
- $\operatorname{Sp}(A+B)=\{ \pm \sqrt{M \varepsilon}\} \subseteq W(A+B) \subseteq W(A)+W(B)$,
- so the spectral radius of $A+B$ is bounded above by $\frac{1}{2}(|M|+|\varepsilon|)$.

Numerical range: Hilbert spaces. Motivation.

Some reasons to study numerical ranges

- It gives a "picture" of the matrix/operator which allows to "see" many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.
- It is useful to estimate spectral radii of small perturbations of matrices.
- It is useful to work with some concepts like hermitian operator, skew-hermitian operator, dissipative operator. . .

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$
V(T)=\left\{x^{*}(T x): x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$
V(T)=\left\{x^{*}(T x): x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$
V(T)=\left\{x^{*}(T x): x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$
V(T)=\left\{x^{*}(T x): x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
- $V(\alpha T+\beta S) \subseteq \alpha V(T)+\beta V(S)$;

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$
V(T)=\left\{x^{*}(T x): x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
- $V(\alpha T+\beta S) \subseteq \alpha V(T)+\beta V(S)$;
- $V(\alpha \mathrm{Id}+S)=\alpha+V(S)$.

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$
V(T)=\left\{x^{*}(T x): x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
- $V(\alpha T+\beta S) \subseteq \alpha V(T)+\beta V(S)$;
- $V(\alpha \mathrm{Id}+S)=\alpha+V(S)$.
- $\operatorname{Sp}(T) \subseteq \overline{V(T)}$.

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$
V(T)=\left\{x^{*}(T x): x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
- $V(\alpha T+\beta S) \subseteq \alpha V(T)+\beta V(S)$;
- $V(\alpha \mathrm{Id}+S)=\alpha+V(S)$.
- $\mathrm{Sp}(T) \subseteq \overline{V(T)}$.
- (Zenger-Crabb) Actually, $\overline{\mathrm{co}}(\mathrm{Sp}(T)) \subseteq \overline{V(T)}$.

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$
V(T)=\left\{x^{*}(T x): x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
- $V(\alpha T+\beta S) \subseteq \alpha V(T)+\beta V(S)$;
- $V(\alpha \mathrm{Id}+S)=\alpha+V(S)$.
- $\mathrm{Sp}(T) \subseteq \overline{V(T)}$.
- (Zenger-Crabb) Actually, $\overline{\operatorname{co}}(\operatorname{Sp}(T)) \subseteq \overline{V(T)}$.
- $\overline{\cos } \operatorname{Sp}(T)=\bigcap\left\{V_{p}(T): p\right.$ equivalent norm $\}$ where $V_{p}(T)$ is the numerical range of T in the Banach space (X, p).

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$
V(T)=\left\{x^{*}(T x): x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
- $V(\alpha T+\beta S) \subseteq \alpha V(T)+\beta V(S)$;
- $V(\alpha \mathrm{Id}+S)=\alpha+V(S)$.
- $\mathrm{Sp}(T) \subseteq \overline{V(T)}$.
- (Zenger-Crabb) Actually, $\overline{\operatorname{co}}(\operatorname{Sp}(T)) \subseteq \overline{V(T)}$.
- $\overline{\cos } \operatorname{Sp}(T)=\bigcap\left\{V_{p}(T): p\right.$ equivalent norm $\}$ where $V_{p}(T)$ is the numerical range of T in the Banach space (X, p).
- $V\left(U^{-1} T U\right)=V(T)$ for every $T \in L(X)$ and every $U \in \operatorname{Iso}(X)$.

Numerical range: Banach spaces (I)

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$
V(T)=\left\{x^{*}(T x): x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Some properties

X Banach space, $T \in L(X)$.

- $V(T)$ is connected but not necessarily convex.
- $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
- $V(\alpha T+\beta S) \subseteq \alpha V(T)+\beta V(S)$;
- $V(\alpha \mathrm{Id}+S)=\alpha+V(S)$.
- $\mathrm{Sp}(T) \subseteq \overline{V(T)}$.
- (Zenger-Crabb) Actually, $\overline{\operatorname{co}}(\operatorname{Sp}(T)) \subseteq \overline{V(T)}$.
- $\overline{\cos } \operatorname{Sp}(T)=\bigcap\left\{V_{p}(T): p\right.$ equivalent norm $\}$ where $V_{p}(T)$ is the numerical range of T in the Banach space (X, p).
- $V\left(U^{-1} T U\right)=V(T)$ for every $T \in L(X)$ and every $U \in \operatorname{Iso}(X)$.
- $V(T) \subseteq V\left(T^{*}\right) \subseteq \overline{V(T)}$.

Numerical range of operators Definitions and first properties
Numerical range: Banach spaces (II)

Numerical range: Banach spaces (II)

Observation

The numerical range depends on the base field:

- X complex Banach space $\Longrightarrow X_{\mathbb{R}}$ real space underlying X.

Numerical range: Banach spaces (II)

Observation

The numerical range depends on the base field:

- X complex Banach space $\Longrightarrow X_{\mathbb{R}}$ real space underlying X.
- $T \in L(X) \Longrightarrow T_{\mathbb{R}} \in L\left(X_{\mathbb{R}}\right)$ is T view as a real operator.

Numerical range: Banach spaces (II)

Observation

The numerical range depends on the base field:

- X complex Banach space $\Longrightarrow X_{\mathbb{R}}$ real space underlying X.
- $T \in L(X) \Longrightarrow T_{\mathbb{R}} \in L\left(X_{\mathbb{R}}\right)$ is T view as a real operator.
- Then $V\left(T_{\mathbb{R}}\right)=\operatorname{Re} V(T)$.

Numerical range: Banach spaces (II)

Observation

The numerical range depends on the base field:

- X complex Banach space $\Longrightarrow X_{\mathbb{R}}$ real space underlying X.
- $T \in L(X) \Longrightarrow T_{\mathbb{R}} \in L\left(X_{\mathbb{R}}\right)$ is T view as a real operator.
- Then $V\left(T_{\mathbb{R}}\right)=\operatorname{Re} V(T)$.
- Consequence: X complex, then there is $S \in L\left(X_{\mathbb{R}}\right)$ with $\|S\|=1$ and $V(S)=\{0\}$.

Numerical range: Banach spaces (II)

Observation

The numerical range depends on the base field:

- X complex Banach space $\Longrightarrow X_{\mathbb{R}}$ real space underlying X.
- $T \in L(X) \Longrightarrow T_{\mathbb{R}} \in L\left(X_{\mathbb{R}}\right)$ is T view as a real operator.
- Then $V\left(T_{\mathbb{R}}\right)=\operatorname{Re} V(T)$.
- Consequence: X complex, then there is $S \in L\left(X_{\mathbb{R}}\right)$ with $\|S\|=1$ and $V(S)=\{0\}$.

Some motivation for the numerical range

Numerical range: Banach spaces (II)

Observation

The numerical range depends on the base field:

- X complex Banach space $\Longrightarrow X_{\mathbb{R}}$ real space underlying X.
- $T \in L(X) \Longrightarrow T_{\mathbb{R}} \in L\left(X_{\mathbb{R}}\right)$ is T view as a real operator.
- Then $V\left(T_{\mathbb{R}}\right)=\operatorname{Re} V(T)$.
- Consequence: X complex, then there is $S \in L\left(X_{\mathbb{R}}\right)$ with $\|S\|=1$ and $V(S)=\{0\}$.

Some motivation for the numerical range

- It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators. . .

Numerical range: Banach spaces (II)

Observation

The numerical range depends on the base field:

- X complex Banach space $\Longrightarrow X_{\mathbb{R}}$ real space underlying X.
- $T \in L(X) \Longrightarrow T_{\mathbb{R}} \in L\left(X_{\mathbb{R}}\right)$ is T view as a real operator.
- Then $V\left(T_{\mathbb{R}}\right)=\operatorname{Re} V(T)$.
- Consequence:
X complex, then there is $S \in L\left(X_{\mathbb{R}}\right)$ with $\|S\|=1$ and $V(S)=\{0\}$.

Some motivation for the numerical range

- It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators...
- It gives a description of the Lie algebra corresponding to the Lie group of all onto isometries on the space.

Numerical range: Banach spaces (II)

Observation

The numerical range depends on the base field:

- X complex Banach space $\Longrightarrow X_{\mathbb{R}}$ real space underlying X.
- $T \in L(X) \Longrightarrow T_{\mathbb{R}} \in L\left(X_{\mathbb{R}}\right)$ is T view as a real operator.
- Then $V\left(T_{\mathbb{R}}\right)=\operatorname{Re} V(T)$.
- Consequence:
X complex, then there is $S \in L\left(X_{\mathbb{R}}\right)$ with $\|S\|=1$ and $V(S)=\{0\}$.

Some motivation for the numerical range

- It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators. . .
- It gives a description of the Lie algebra corresponding to the Lie group of all onto isometries on the space.
- It gives an easy and quantitative proof of the fact that Id is an strongly extreme point of $B_{L(X)}$ (MLUR point).

Numerical range of operators Definitions and first properties

Numerical radius: definition and properties

Numerical radius: definition and properties

Numerical radius

X real or complex Banach space, $T \in L(X)$,

$$
\begin{aligned}
v(T) & =\sup \{|\lambda|: \lambda \in V(T)\} \\
& =\sup \left\{\left|x^{*}(T x)\right|: x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
\end{aligned}
$$

Numerical radius: definition and properties

Numerical radius

X real or complex Banach space, $T \in L(X)$,

$$
\begin{aligned}
v(T) & =\sup \{|\lambda|: \lambda \in V(T)\} \\
& =\sup \left\{\left|x^{*}(T x)\right|: x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
\end{aligned}
$$

Elementary properties

X Banach space, $T \in L(X)$

- $v(\cdot)$ is a seminorm, i.e.
- $v(T+S) \leqslant v(T)+v(S)$ for every $T, S \in L(X)$.

Numerical radius: definition and properties

Numerical radius

X real or complex Banach space, $T \in L(X)$,

$$
\begin{aligned}
v(T) & =\sup \{|\lambda|: \lambda \in V(T)\} \\
& =\sup \left\{\left|x^{*}(T x)\right|: x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
\end{aligned}
$$

Elementary properties

X Banach space, $T \in L(X)$

- $v(\cdot)$ is a seminorm, i.e.
- $v(T+S) \leqslant v(T)+v(S)$ for every $T, S \in L(X)$.
- $v(\lambda T)=|\lambda| v(T)$ for every $\lambda \in \mathbb{K}, T \in L(X)$.

Numerical radius: definition and properties

Numerical radius

X real or complex Banach space, $T \in L(X)$,

$$
\begin{aligned}
v(T) & =\sup \{|\lambda|: \lambda \in V(T)\} \\
& =\sup \left\{\left|x^{*}(T x)\right|: x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
\end{aligned}
$$

Elementary properties

X Banach space, $T \in L(X)$

- $v(\cdot)$ is a seminorm, i.e.
- $v(T+S) \leqslant v(T)+v(S)$ for every $T, S \in L(X)$.
- $v(\lambda T)=|\lambda| v(T)$ for every $\lambda \in \mathbb{K}, T \in L(X)$.
- $\sup |\operatorname{Sp}(T)| \leqslant v(T)$.

Numerical radius: definition and properties

Numerical radius

X real or complex Banach space, $T \in L(X)$,

$$
\begin{aligned}
v(T) & =\sup \{|\lambda|: \lambda \in V(T)\} \\
& =\sup \left\{\left|x^{*}(T x)\right|: x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
\end{aligned}
$$

Elementary properties

X Banach space, $T \in L(X)$

- $v(\cdot)$ is a seminorm, i.e.
- $v(T+S) \leqslant v(T)+v(S)$ for every $T, S \in L(X)$.
- $v(\lambda T)=|\lambda| v(T)$ for every $\lambda \in \mathbb{K}, T \in L(X)$.
- $\sup |\operatorname{Sp}(T)| \leqslant v(T)$.
- $v\left(U^{-1} T U\right)=v(T)$ for every $U \in \operatorname{Iso}(X)$.

Numerical radius: definition and properties

Numerical radius

X real or complex Banach space, $T \in L(X)$,

$$
\begin{aligned}
v(T) & =\sup \{|\lambda|: \lambda \in V(T)\} \\
& =\sup \left\{\left|x^{*}(T x)\right|: x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
\end{aligned}
$$

Elementary properties

X Banach space, $T \in L(X)$

- $v(\cdot)$ is a seminorm, i.e.
- $v(T+S) \leqslant v(T)+v(S)$ for every $T, S \in L(X)$.
- $v(\lambda T)=|\lambda| v(T)$ for every $\lambda \in \mathbb{K}, T \in L(X)$.
- $\sup |\operatorname{Sp}(T)| \leqslant v(T)$.
- $v\left(U^{-1} T U\right)=v(T)$ for every $U \in \operatorname{Iso}(X)$.
- $v\left(T^{*}\right)=v(T)$.

Numerical radius: examples

Numerical radius: examples

Some examples

(1) H real Hilbert space $\operatorname{dim}(H)>1$ \Longrightarrow exist $T \in L(X)$ with $v(T)=0$ and $\|T\|=1$.

Numerical radius: examples

Some examples

(1) H real Hilbert space $\operatorname{dim}(H)>1$ \Longrightarrow exist $T \in L(X)$ with $v(T)=0$ and $\|T\|=1$.
(2) H complex Hilbert space $\operatorname{dim}(H)>1$

Numerical radius: examples

Some examples

(1) H real Hilbert space $\operatorname{dim}(H)>1$ \Longrightarrow exist $T \in L(X)$ with $v(T)=0$ and $\|T\|=1$.
(2) H complex Hilbert space $\operatorname{dim}(H)>1$

- $v(T) \geqslant \frac{1}{2}\|T\|$.

Numerical radius: examples

Some examples

(1) H real Hilbert space $\operatorname{dim}(H)>1$ \Longrightarrow exist $T \in L(X)$ with $v(T)=0$ and $\|T\|=1$.
(2) H complex Hilbert space $\operatorname{dim}(H)>1$

- $v(T) \geqslant \frac{1}{2}\|T\|$,
- the constant $\frac{1}{2}$ is optimal.

Numerical radius: examples

Some examples

(1) H real Hilbert space $\operatorname{dim}(H)>1$ \Longrightarrow exist $T \in L(X)$ with $v(T)=0$ and $\|T\|=1$.
(2) H complex Hilbert space $\operatorname{dim}(H)>1$

- $v(T) \geqslant \frac{1}{2}\|T\|$,
- the constant $\frac{1}{2}$ is optimal.
(3) $X=L_{1}(\mu) \Longrightarrow v(T)=\|T\|$ for every $T \in L(X)$.

Numerical radius: examples

Some examples

(1) H real Hilbert space $\operatorname{dim}(H)>1$ \Longrightarrow exist $T \in L(X)$ with $v(T)=0$ and $\|T\|=1$.
(2) H complex Hilbert space $\operatorname{dim}(H)>1$

- $v(T) \geqslant \frac{1}{2}\|T\|$,
- the constant $\frac{1}{2}$ is optimal.
(3) $X=L_{1}(\mu) \Longrightarrow v(T)=\|T\|$ for every $T \in L(X)$.
(9) $X^{*} \equiv L_{1}(\mu) \Longrightarrow v(T)=\|T\|$ for every $T \in L(X)$.

Numerical radius: examples

Some examples

(1) H real Hilbert space $\operatorname{dim}(H)>1$ \Longrightarrow exist $T \in L(X)$ with $v(T)=0$ and $\|T\|=1$.
(2) H complex Hilbert space $\operatorname{dim}(H)>1$

- $v(T) \geqslant \frac{1}{2}\|T\|$,
- the constant $\frac{1}{2}$ is optimal.
(3) $X=L_{1}(\mu) \Longrightarrow v(T)=\|T\|$ for every $T \in L(X)$.
(9) $X^{*} \equiv L_{1}(\mu) \Longrightarrow v(T)=\|T\|$ for every $T \in L(X)$.
(5) In particular, this is the case for $X=C(K)$.

Proving a result

$$
X=C(K) \Longrightarrow v(T)=\|T\| \text { for every } T \in L(X)
$$

Proving a result

$$
X=C(K) \Longrightarrow v(T)=\|T\| \text { for every } T \in L(X)
$$

- Fix $T \in L(C(K))$. Find $f_{0} \in X(E)$ and $\xi_{0} \in K$ such that $\left|\left[T f_{0}\right]\left(\xi_{0}\right)\right| \sim\|T\|$.

Proving a result

$$
X=C(K) \Longrightarrow v(T)=\|T\| \text { for every } T \in L(X)
$$

- Fix $T \in L(C(K))$. Find $f_{0} \in X(E)$ and $\xi_{0} \in K$ such that $\left|\left[T f_{0}\right]\left(\xi_{0}\right)\right| \sim\|T\|$.

$$
\text { If } f_{0}\left(\xi_{0}\right) \sim 1 \text {, then we were done. This our goal. }
$$

Proving a result

$$
X=C(K) \Longrightarrow v(T)=\|T\| \text { for every } T \in L(X)
$$

- Fix $T \in L(C(K))$. Find $f_{0} \in X(E)$ and $\xi_{0} \in K$ such that $\left|\left[T f_{0}\right]\left(\xi_{0}\right)\right| \sim\|T\|$.
- Consider the non-empty open set

$$
\left.V=\{\xi \in] 0,1] \times[0,1]: f_{0}(\xi) \sim f_{0}\left(\xi_{0}\right)\right\}
$$

and find $\varphi:[0,1] \times[0,1] \longrightarrow[0,1]$ continuous with $\operatorname{supp}(\varphi) \subset V$ and $\varphi\left(\xi_{0}\right)=1$.

Proving a result

$$
X=C(K) \Longrightarrow v(T)=\|T\| \text { for every } T \in L(X)
$$

- Fix $T \in L(C(K))$. Find $f_{0} \in X(E)$ and $\xi_{0} \in K$ such that $\left|\left[T f_{0}\right]\left(\xi_{0}\right)\right| \sim\|T\|$.
- Consider the non-empty open set

$$
\left.V=\{\xi \in] 0,1] \times[0,1]: f_{0}(\xi) \sim f_{0}\left(\xi_{0}\right)\right\}
$$

and find $\varphi:[0,1] \times[0,1] \longrightarrow[0,1]$ continuous with $\operatorname{supp}(\varphi) \subset V$ and $\varphi\left(\xi_{0}\right)=1$.

- Write $f_{0}\left(\xi_{0}\right)=\lambda \omega_{1}+(1-\lambda) \omega_{2}$ with $\left|\omega_{i}\right|=1$, and consider the functions

$$
f_{i}=(1-\varphi) f_{0}+\varphi \omega_{i} \text { for } i=1,2
$$

Proving a result

$$
X=C(K) \Longrightarrow v(T)=\|T\| \text { for every } T \in L(X)
$$

- Fix $T \in L(C(K))$. Find $f_{0} \in X(E)$ and $\xi_{0} \in K$ such that $\left|\left[T f_{0}\right]\left(\xi_{0}\right)\right| \sim\|T\|$.
- Consider the non-empty open set

$$
\left.V=\{\xi \in] 0,1] \times[0,1]: f_{0}(\xi) \sim f_{0}\left(\xi_{0}\right)\right\}
$$

and find $\varphi:[0,1] \times[0,1] \longrightarrow[0,1]$ continuous with $\operatorname{supp}(\varphi) \subset V$ and $\varphi\left(\xi_{0}\right)=1$.

- Write $f_{0}\left(\xi_{0}\right)=\lambda \omega_{1}+(1-\lambda) \omega_{2}$ with $\left|\omega_{i}\right|=1$, and consider the functions

$$
f_{i}=(1-\varphi) f_{0}+\varphi \omega_{i} \text { for } i=1,2
$$

- Then, $f_{i} \in C(K),\left\|f_{i}\right\| \leqslant 1$, and

$$
\left\|f_{0}-\left(\lambda f_{1}+(1-\lambda) f_{2}\right)\right\|=\left\|\varphi f_{0}-\varphi f_{0}\left(\xi_{0}\right)\right\| \sim 0
$$

Proving a result

$$
X=C(K) \Longrightarrow v(T)=\|T\| \text { for every } T \in L(X)
$$

- Fix $T \in L(C(K))$. Find $f_{0} \in X(E)$ and $\xi_{0} \in K$ such that $\left|\left[T f_{0}\right]\left(\xi_{0}\right)\right| \sim\|T\|$.
- Consider the non-empty open set

$$
\left.V=\{\xi \in] 0,1] \times[0,1]: f_{0}(\xi) \sim f_{0}\left(\xi_{0}\right)\right\}
$$

and find $\varphi:[0,1] \times[0,1] \longrightarrow[0,1]$ continuous with $\operatorname{supp}(\varphi) \subset V$ and $\varphi\left(\xi_{0}\right)=1$.

- Write $f_{0}\left(\xi_{0}\right)=\lambda \omega_{1}+(1-\lambda) \omega_{2}$ with $\left|\omega_{i}\right|=1$, and consider the functions

$$
f_{i}=(1-\varphi) f_{0}+\varphi \omega_{i} \text { for } i=1,2
$$

- Then, $f_{i} \in C(K),\left\|f_{i}\right\| \leqslant 1$, and

$$
\left\|f_{0}-\left(\lambda f_{1}+(1-\lambda) f_{2}\right)\right\|=\left\|\varphi f_{0}-\varphi f_{0}\left(\xi_{0}\right)\right\| \sim 0
$$

- Therefore, there is $i \in\{1,2\}$ such that $\left|\left[T\left(f_{i}\right)\right]\left(\xi_{0}\right)\right| \sim\|T\|$, but now $\left|f_{i}\left(\xi_{0}\right)\right|=1$.

Proving a result

$$
X=C(K) \Longrightarrow v(T)=\|T\| \text { for every } T \in L(X)
$$

- Fix $T \in L(C(K))$. Find $f_{0} \in X(E)$ and $\xi_{0} \in K$ such that $\left|\left[T f_{0}\right]\left(\xi_{0}\right)\right| \sim\|T\|$.
- Consider the non-empty open set

$$
\left.V=\{\xi \in] 0,1] \times[0,1]: f_{0}(\xi) \sim f_{0}\left(\xi_{0}\right)\right\}
$$

and find $\varphi:[0,1] \times[0,1] \longrightarrow[0,1]$ continuous with $\operatorname{supp}(\varphi) \subset V$ and $\varphi\left(\xi_{0}\right)=1$.

- Write $f_{0}\left(\xi_{0}\right)=\lambda \omega_{1}+(1-\lambda) \omega_{2}$ with $\left|\omega_{i}\right|=1$, and consider the functions

$$
f_{i}=(1-\varphi) f_{0}+\varphi \omega_{i} \text { for } i=1,2
$$

- Then, $f_{i} \in C(K),\left\|f_{i}\right\| \leqslant 1$, and

$$
\left\|f_{0}-\left(\lambda f_{1}+(1-\lambda) f_{2}\right)\right\|=\left\|\varphi f_{0}-\varphi f_{0}\left(\xi_{0}\right)\right\| \sim 0
$$

- Therefore, there is $i \in\{1,2\}$ such that $\left|\left[T\left(f_{i}\right)\right]\left(\xi_{0}\right)\right| \sim\|T\|$, but now $\left|f_{i}\left(\xi_{0}\right)\right|=1$.
- Equivalently,

$$
\left|\delta_{\xi_{0}}\left(T\left(f_{i}\right)\right)\right| \sim\|T\| \quad \text { and } \quad\left|\delta_{\xi_{0}}\left(f_{i}\right)\right|=1
$$

meaning that $v(T) \sim\|T\| \cdot \checkmark$

Proving a result

$$
X=C(K) \Longrightarrow v(T)=\|T\| \text { for every } T \in L(X)
$$

- Fix $T \in L(C(K))$. Find $f_{0} \in X(E)$ and $\xi_{0} \in K$ such that $\left|\left[T f_{0}\right]\left(\xi_{0}\right)\right| \sim\|T\|$.
- Consider the non-empty open set

$$
\left.V=\{\xi \in] 0,1] \times[0,1]: f_{0}(\xi) \sim f_{0}\left(\xi_{0}\right)\right\}
$$

and find $\varphi:[0,1] \times[0,1] \longrightarrow[0,1]$ continuous with $\operatorname{supp}(\varphi) \subset V$ and $\varphi\left(\xi_{0}\right)=1$.

- Write $f_{0}\left(\xi_{0}\right)=\lambda \omega_{1}+(1-\lambda) \omega_{2}$ with $\left|\omega_{i}\right|=1$, and consider the functions

$$
f_{i}=(1-\varphi) f_{0}+\varphi \omega_{i} \text { for } i=1,2
$$

- Then, $f_{i} \in C(K),\left\|f_{i}\right\| \leqslant 1$, and

$$
\left\|f_{0}-\left(\lambda f_{1}+(1-\lambda) f_{2}\right)\right\|=\left\|\varphi f_{0}-\varphi f_{0}\left(\xi_{0}\right)\right\| \sim 0
$$

- Therefore, there is $i \in\{1,2\}$ such that $\left|\left[T\left(f_{i}\right)\right]\left(\xi_{0}\right)\right| \sim\|T\|$, but now $\left|f_{i}\left(\xi_{0}\right)\right|=1$.
- Equivalently,

$$
\left|\delta_{\xi_{0}}\left(T\left(f_{i}\right)\right)\right| \sim\|T\| \quad \text { and } \quad\left|\delta_{\xi_{0}}\left(f_{i}\right)\right|=1
$$

meaning that $v(T) \sim\|T\| \cdot \checkmark$

If $X=L_{1}(\mu)$, then $X^{*} \equiv C\left(K_{\mu}\right)$. Therefore, $v(T)=v\left(T^{*}\right)=\left\|T^{*}\right\|=\|T\| \checkmark$

Numerical radius: real and complex spaces

Numerical radius: real and complex spaces

Example

X complex Banach space, define $T \in L\left(X_{\mathbb{R}}\right)$ by

$$
T(x)=i x \quad(x \in X) .
$$

- $\|T\|=1$ and $v(T)=0$ if viewed in $X_{\mathbb{R}}$.
- $\|T\|=1$ and $V(T)=\{i\}$, so $v(T)=1$ if viewed in (complex) X.

Numerical radius: real and complex spaces

Example

X complex Banach space, define $T \in L\left(X_{\mathbb{R}}\right)$ by

$$
T(x)=i x \quad(x \in X)
$$

- $\|T\|=1$ and $v(T)=0$ if viewed in $X_{\mathbb{R}}$.
- $\|T\|=1$ and $V(T)=\{i\}$, so $v(T)=1$ if viewed in (complex) X.

Theorem (Bohnenblust-Karlin; Glickfeld)

X complex Banach space, $T \in L(X)$:

$$
v(T) \geqslant \frac{1}{\mathrm{e}}\|T\|
$$

The constant $\frac{1}{\mathrm{e}}$ is optimal:
$\exists X$ two-dimensional complex, $\exists T \in L(X)$ with $\|T\|=\mathrm{e}$ and $v(T)=1$.

Numerical index: definition and properties

Numerical index: definition and properties

Numerical index

X real or complex Banach space

$$
\begin{aligned}
n(X) & =\max \{k \geqslant 0: K\|T\| \leqslant v(T) \forall T \in L(X)\} \\
& =\inf \{v(T): T \in L(X),\|T\|=1\} .
\end{aligned}
$$

Numerical index: definition and properties

Numerical index

X real or complex Banach space

$$
\begin{aligned}
n(X) & =\max \{k \geqslant 0: K\|T\| \leqslant v(T) \forall T \in L(X)\} \\
& =\inf \{v(T): T \in L(X),\|T\|=1\} .
\end{aligned}
$$

Elementary properties

X Banach space.

- In the real case, $0 \leqslant n(X) \leqslant 1$.
- In the complex case, $1 / \mathrm{e} \leqslant n(X) \leqslant 1$.

Numerical index: definition and properties

Numerical index

X real or complex Banach space

$$
\begin{aligned}
n(X) & =\max \{k \geqslant 0: K\|T\| \leqslant v(T) \forall T \in L(X)\} \\
& =\inf \{v(T): T \in L(X),\|T\|=1\} .
\end{aligned}
$$

Elementary properties

X Banach space.

- In the real case, $0 \leqslant n(X) \leqslant 1$.
- In the complex case, $1 / \mathrm{e} \leqslant n(X) \leqslant 1$.
- Actually, the above inequalities are best possible:

$$
\begin{aligned}
\{n(X): X \text { complex Banach space }\} & =\left[\mathrm{e}^{-1}, 1\right] \\
\{n(X): X \text { real Banach space }\} & =[0,1]
\end{aligned}
$$

Numerical index: definition and properties

Numerical index

X real or complex Banach space

$$
\begin{aligned}
n(X) & =\max \{k \geqslant 0: K\|T\| \leqslant v(T) \forall T \in L(X)\} \\
& =\inf \{v(T): T \in L(X),\|T\|=1\} .
\end{aligned}
$$

Elementary properties

X Banach space.

- In the real case, $0 \leqslant n(X) \leqslant 1$.
- In the complex case, $1 / \mathrm{e} \leqslant n(X) \leqslant 1$.
- Actually, the above inequalities are best possible:

$$
\begin{aligned}
\{n(X): X \text { complex Banach space }\} & =\left[\mathrm{e}^{-1}, 1\right] \\
\{n(X): X \text { real Banach space }\} & =[0,1] .
\end{aligned}
$$

- v norm on $L(X)$ equivalent to the given norm $\Longleftrightarrow n(X)>0$.

Numerical index: definition and properties

Numerical index

X real or complex Banach space

$$
\begin{aligned}
n(X) & =\max \{k \geqslant 0: K\|T\| \leqslant v(T) \forall T \in L(X)\} \\
& =\inf \{v(T): T \in L(X),\|T\|=1\} .
\end{aligned}
$$

Elementary properties

X Banach space.

- In the real case, $0 \leqslant n(X) \leqslant 1$.
- In the complex case, $1 / \mathrm{e} \leqslant n(X) \leqslant 1$.
- Actually, the above inequalities are best possible:

$$
\begin{aligned}
\{n(X): X \text { complex Banach space }\} & =\left[\mathrm{e}^{-1}, 1\right] \\
\{n(X): X \text { real Banach space }\} & =[0,1] .
\end{aligned}
$$

- v norm on $L(X)$ equivalent to the given norm $\Longleftrightarrow n(X)>0$.
- $v(T)=\|T\|$ for every $T \in L(X) \Longleftrightarrow n(X)=1$.

Numerical index: definition and properties

Numerical index

X real or complex Banach space

$$
\begin{aligned}
n(X) & =\max \{k \geqslant 0: K\|T\| \leqslant v(T) \forall T \in L(X)\} \\
& =\inf \{v(T): T \in L(X),\|T\|=1\} .
\end{aligned}
$$

Elementary properties

X Banach space.

- In the real case, $0 \leqslant n(X) \leqslant 1$.
- In the complex case, $1 / \mathrm{e} \leqslant n(X) \leqslant 1$.
- Actually, the above inequalities are best possible:

$$
\begin{aligned}
\{n(X): X \text { complex Banach space }\} & =\left[\mathrm{e}^{-1}, 1\right] \\
\{n(X): X \text { real Banach space }\} & =[0,1] .
\end{aligned}
$$

- v norm on $L(X)$ equivalent to the given norm $\Longleftrightarrow n(X)>0$.
- $v(T)=\|T\|$ for every $T \in L(X) \Longleftrightarrow n(X)=1$.
- $n\left(X^{*}\right) \leqslant n(X)$.

Numerical index: examples

Numerical index: examples

Some examples

(1) H Hilbert, $\operatorname{dim}(H)>1$:

$$
n(H)= \begin{cases}0 & \text { real case } \\ \frac{1}{2} & \text { complex case }\end{cases}
$$

Numerical index: examples

Some examples

(1) H Hilbert, $\operatorname{dim}(H)>1$:

$$
n(H)= \begin{cases}0 & \text { real case } \\ \frac{1}{2} & \text { complex case }\end{cases}
$$

(2) X complex space $\Longrightarrow n\left(X_{\mathbb{R}}\right)=0$.

Numerical index: examples

Some examples

(1) H Hilbert, $\operatorname{dim}(H)>1$:

$$
n(H)= \begin{cases}0 & \text { real case } \\ \frac{1}{2} & \text { complex case }\end{cases}
$$

(2) X complex space $\Longrightarrow n\left(X_{\mathbb{R}}\right)=0$.
(3) $n\left(L_{1}(\mu)\right)=1, \mu$ positive measure.

Numerical index: examples

Some examples

(1) H Hilbert, $\operatorname{dim}(H)>1$:

$$
n(H)= \begin{cases}0 & \text { real case } \\ \frac{1}{2} & \text { complex case }\end{cases}
$$

(2) X complex space $\Longrightarrow n\left(X_{\mathbb{R}}\right)=0$.
(3) $n\left(L_{1}(\mu)\right)=1, \mu$ positive measure.
(9) $X^{*} \equiv L_{1}(\mu) \Longrightarrow n(X)=1$.

Numerical index: examples

Some examples

(1) H Hilbert, $\operatorname{dim}(H)>1$:

$$
n(H)= \begin{cases}0 & \text { real case } \\ \frac{1}{2} & \text { complex case }\end{cases}
$$

(2) X complex space $\Longrightarrow n\left(X_{\mathbb{R}}\right)=0$.
(3) $n\left(L_{1}(\mu)\right)=1, \mu$ positive measure.
(9) $X^{*} \equiv L_{1}(\mu) \Longrightarrow n(X)=1$.
(6) In particular,

$$
n(C(K))=1, \quad n\left(C_{0}(L)\right)=1, \quad n\left(L_{\infty}(\mu)\right)=1
$$

Numerical index: examples

Some examples

(1) H Hilbert, $\operatorname{dim}(H)>1$:

$$
n(H)= \begin{cases}0 & \text { real case } \\ \frac{1}{2} & \text { complex case }\end{cases}
$$

(2) X complex space $\Longrightarrow n\left(X_{\mathbb{R}}\right)=0$.
(3) $n\left(L_{1}(\mu)\right)=1, \mu$ positive measure.
(9) $X^{*} \equiv L_{1}(\mu) \Longrightarrow n(X)=1$.
(6) In particular,

$$
n(C(K))=1, \quad n\left(C_{0}(L)\right)=1, \quad n\left(L_{\infty}(\mu)\right)=1
$$

(0) $n(A(\mathbb{D}))=1$ and $n\left(H^{\infty}\right)=1$.

The exponential function. Definition

The exponential function. Definition

The exponential function

X Banach space, $T \in L(X)$:

$$
\exp (T)=\sum_{n=0}^{\infty} \frac{1}{n!} T^{n}
$$

where $T^{0}=\mathrm{Id}$ and $T^{n}=T \circ \stackrel{n}{\cdots} . \circ T$.

The exponential function. Definition

The exponential function

X Banach space, $T \in L(X)$:

$$
\exp (T)=\sum_{n=0}^{\infty} \frac{1}{n!} T^{n}
$$

where $T^{0}=\mathrm{Id}$ and $T^{n}=T \circ \stackrel{n}{n}$. $\circ T$.

- It is well-defined since the series is absolutely convergent.

The exponential function. Definition

The exponential function

X Banach space, $T \in L(X)$:

$$
\exp (T)=\sum_{n=0}^{\infty} \frac{1}{n!} T^{n}
$$

where $T^{0}=\mathrm{Id}$ and $T^{n}=T \circ \stackrel{n}{n}$. $\circ T$.

- It is well-defined since the series is absolutely convergent.
- $\|\exp (T)\| \leqslant \mathrm{e}^{\|T\|}$.

The exponential function. Definition

The exponential function

X Banach space, $T \in L(X)$:

$$
\exp (T)=\sum_{n=0}^{\infty} \frac{1}{n!} T^{n}
$$

where $T^{0}=\mathrm{Id}$ and $T^{n}=T \circ \stackrel{n}{n}$. $\circ T$.

- It is well-defined since the series is absolutely convergent.
- $\|\exp (T)\| \leqslant \mathrm{e}^{\|T\|}$.
- We will improve this inequality in the sequel

The exponential function: properties

The exponential function: properties

Properties

X Banach space, $T, S \in L(X)$.

- $T S=S T \Longrightarrow \exp (T+S)=\exp (T) \exp (S)$.

The exponential function: properties

Properties

X Banach space, $T, S \in L(X)$.

- $T S=S T \Longrightarrow \exp (T+S)=\exp (T) \exp (S)$.
- $\exp (T) \exp (-T)=\exp (0)=$ Id $\Longrightarrow \exp (T)$ surjective isomorphism.

The exponential function: properties

Properties

X Banach space, $T, S \in L(X)$.

- $T S=S T \Longrightarrow \exp (T+S)=\exp (T) \exp (S)$.
- $\exp (T) \exp (-T)=\exp (0)=$ Id $\Longrightarrow \exp (T)$ surjective isomorphism.
- $\left\{\exp (\rho T): \rho \in \mathbb{R}_{0}^{+}\right\}$exponential one-parameter semigroup generated by T.

The exponential function: properties

Properties

X Banach space, $T, S \in L(X)$.

- $T S=S T \Longrightarrow \exp (T+S)=\exp (T) \exp (S)$.
- $\exp (T) \exp (-T)=\exp (0)=$ Id $\Longrightarrow \exp (T)$ surjective isomorphism.
- $\left\{\exp (\rho T): \rho \in \mathbb{R}_{0}^{+}\right\}$exponential one-parameter semigroup generated by T.

The exponential formula

X Banach space, $T \in L(X)$:

$$
\sup \operatorname{Re} V(T)=\sup _{\alpha>0} \frac{\log \|\exp (\alpha T)\|}{\alpha}=\lim _{\alpha \downarrow 0} \frac{\log \|\exp (\alpha T)\|}{\alpha} .
$$

The exponential function: properties

Properties

X Banach space, $T, S \in L(X)$.

- $T S=S T \Longrightarrow \exp (T+S)=\exp (T) \exp (S)$.
- $\exp (T) \exp (-T)=\exp (0)=$ Id $\Longrightarrow \exp (T)$ surjective isomorphism.
- $\left\{\exp (\rho T): \rho \in \mathbb{R}_{0}^{+}\right\}$exponential one-parameter semigroup generated by T.

The exponential formula

X Banach space, $T \in L(X)$:

$$
\sup \operatorname{Re} V(T)=\sup _{\alpha>0} \frac{\log \|\exp (\alpha T)\|}{\alpha}=\lim _{\alpha \downarrow 0} \frac{\log \|\exp (\alpha T)\|}{\alpha} .
$$

Consequence

X Banach space, $T \in L(X)$:

- $\|\exp (\lambda T)\| \leqslant \mathrm{e}^{|\lambda| v(T)}(\lambda \in \mathbb{K})$.
- $v(T)$ is the best possible constant.

Semigroups of isometries: motivating example

A motivating example

A real or complex $n \times n$ matrix. TFAE:

- A is skew-adjoint (i.e. $A^{*}=-A$).
- $B=\exp (\rho A)$ is unitary for every $\rho \in \mathbb{R}$ (i.e. $B^{*} B=B B^{*}=\mathrm{Id}$).

Semigroups of isometries: motivating example

A motivating example

A real or complex $n \times n$ matrix. TFAE:

- A is skew-adjoint (i.e. $A^{*}=-A$).
- $\operatorname{Re}(A x \mid x)=0$ for every $x \in H$.
- $B=\exp (\rho A)$ is unitary for every $\rho \in \mathbb{R}$ (i.e. $B^{*} B=B B^{*}=\mathrm{Id}$).

In term of Hilbert spaces

H (n-dimensional) Hilbert space, $T \in L(H)$. TFAE:

- $\operatorname{Re} W(T)=\{0\}$.
- $\exp (\rho T) \in \operatorname{Iso}(H)$ for every $\rho \in \mathbb{R}$.

Semigroups of isometries: motivating example

A motivating example

A real or complex $n \times n$ matrix. TFAE:

- A is skew-adjoint (i.e. $A^{*}=-A$).
- $\operatorname{Re}(A x \mid x)=0$ for every $x \in H$.
- $B=\exp (\rho A)$ is unitary for every $\rho \in \mathbb{R}$ (i.e. $B^{*} B=B B^{*}=\mathrm{Id}$).

In term of Hilbert spaces

H (n-dimensional) Hilbert space, $T \in L(H)$. TFAE:

- $\operatorname{Re} W(T)=\{0\}$.
- $\exp (\rho T) \in \operatorname{Iso}(H)$ for every $\rho \in \mathbb{R}$.

For general Banach spaces

X Banach space, $T \in L(X)$. TFAE:

- $\operatorname{Re} V(T)=\{0\}$.
- $\exp (\rho T) \in \operatorname{Iso}(X)$ for every $\rho \in \mathbb{R}$.

Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)

X real or complex Banach space, $T \in L(X)$. TFAE:

- $\operatorname{Re} V(T)=\{0\}$ (T is skew-hermitian).
- $\|\exp (\rho T)\| \leqslant 1$ for every $\rho \in \mathbb{R}$.
- $\left\{\exp (\rho T): \rho \in \mathbb{R}_{0}^{+}\right\} \subset \operatorname{Iso}(X)$.
- T belongs to the tangent space to $\operatorname{Iso}(X)$ at Id.
- $\lim _{\rho \rightarrow 0} \frac{\|\operatorname{Id}+\rho T\|-1}{\rho}=0$.

Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)

X real or complex Banach space, $T \in L(X)$. TFAE:

- $\operatorname{Re} V(T)=\{0\}$ (T is skew-hermitian).
- $\|\exp (\rho T)\| \leqslant 1$ for every $\rho \in \mathbb{R}$.
- $\left\{\exp (\rho T): \rho \in \mathbb{R}_{0}^{+}\right\} \subset \operatorname{Iso}(X)$.
- T belongs to the tangent space to $\operatorname{Iso}(X)$ at Id.
- $\lim _{\rho \rightarrow 0} \frac{\|\operatorname{Id}+\rho T\|-1}{\rho}=0$.

This follows from the exponential formula

$$
\sup \operatorname{Re} V(T)=\lim _{\beta \downarrow 0} \frac{\|\operatorname{Id}+\beta T\|-1}{\beta}=\sup _{\alpha>0} \frac{\log \|\exp (\alpha T)\|}{\alpha}
$$

Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)

X real or complex Banach space, $T \in L(X)$. TFAE:

- $\operatorname{Re} V(T)=\{0\}$ (T is skew-hermitian).
- $\|\exp (\rho T)\| \leqslant 1$ for every $\rho \in \mathbb{R}$.
- $\left\{\exp (\rho T): \rho \in \mathbb{R}_{0}^{+}\right\} \subset \operatorname{Iso}(X)$.
- T belongs to the tangent space to $\operatorname{Iso}(X)$ at Id.
- $\lim _{\rho \rightarrow 0} \frac{\|\operatorname{Id}+\rho T\|-1}{\rho}=0$.

Remark

If X is complex, there always exists exponential one-parameter semigroups of surjective isometries:

$$
t \longmapsto \mathrm{e}^{i t} \mathrm{Id} \quad \text { generator: } i \text { Id. }
$$

Semigroups of isometries: characterization

Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)

X real or complex Banach space, $T \in L(X)$. TFAE:

- $\operatorname{Re} V(T)=\{0\}$ (T is skew-hermitian).
- $\|\exp (\rho T)\| \leqslant 1$ for every $\rho \in \mathbb{R}$.
- $\left\{\exp (\rho T): \rho \in \mathbb{R}_{0}^{+}\right\} \subset \operatorname{Iso}(X)$.
- T belongs to the tangent space to $\operatorname{Iso}(X)$ at Id.
- $\lim _{\rho \rightarrow 0} \frac{\|\operatorname{Id}+\rho T\|-1}{\rho}=0$.

Main consequence

If X is a real Banach space such that

$$
V(T)=\{0\} \quad \Longrightarrow \quad T=0,
$$

then $\operatorname{Iso}(X)$ is "small":

- it does not contain any exponential one-parameter semigroup,
- the tangent space of $\operatorname{Iso}(X)$ at Id is zero.

Surjective isometries

(3) Two results on surjective isometries

- Isometries on finite-dimensional spaces
- Isometries and duality

M. Martín

The group of isometries of a Banach space and duality.
J. Funct. Anal. (2008).

M. Martín, J. Merí, and A. Rodríguez-Palacios.

Finite-dimensional spaces with numerical index zero.
Indiana U. Math. J. (2004).
a
H. P. Rosenthal

The Lie algebra of a Banach space.
in: Banach spaces (Columbia, Mo., 1984), LNM, Springer, 1985.

Two results on surjective isometries
Isometries on finite-dimensional spaces

Isometries in finite-dimensional spaces

Isometries in finite-dimensional spaces

Theorem
X finite-dimensional real space. TFAE:

- Iso (X) is infinite.
- $n(X)=0$.
- There is $T \in L(X), T \neq 0$, with $v(T)=0$.

Isometries in finite-dimensional spaces

Theorem

X finite-dimensional real space. TFAE:

- Iso (X) is infinite.
- $n(X)=0$.
- There is $T \in L(X), T \neq 0$, with $v(T)=0$.

Examples of spaces of this kind

Isometries in finite-dimensional spaces

Theorem

X finite-dimensional real space. TFAE:

- Iso (X) is infinite.
- $n(X)=0$.
- There is $T \in L(X), T \neq 0$, with $v(T)=0$.

Examples of spaces of this kind

(1) Hilbert spaces.

Isometries in finite-dimensional spaces

Theorem

X finite-dimensional real space. TFAE:

- Iso (X) is infinite.
- $n(X)=0$.
- There is $T \in L(X), T \neq 0$, with $v(T)=0$.

Examples of spaces of this kind

(1) Hilbert spaces.
(2) $X_{\mathbb{R}}$, the real space subjacent to any complex space X.

Isometries in finite-dimensional spaces

Theorem

X finite-dimensional real space. TFAE:

- Iso (X) is infinite.
- $n(X)=0$.
- There is $T \in L(X), T \neq 0$, with $v(T)=0$.

Examples of spaces of this kind

(1) Hilbert spaces.
(2) $X_{\mathbb{R}}$, the real space subjacent to any complex space X.
(3) An absolute sum of any real space and one of the above.

Isometries in finite-dimensional spaces

Theorem

X finite-dimensional real space. TFAE:

- Iso (X) is infinite.
- $n(X)=0$.
- There is $T \in L(X), T \neq 0$, with $v(T)=0$.

Examples of spaces of this kind

(1) Hilbert spaces.
(2) $X_{\mathbb{R}}$, the real space subjacent to any complex space X.
(3) An absolute sum of any real space and one of the above.
(9) Moreover, if $X=X_{0} \oplus X_{1}$ where X_{1} is complex and

$$
\left\|x_{0}+\mathrm{e}^{i \theta} x_{1}\right\|=\left\|x_{0}+x_{1}\right\| \quad\left(x_{0} \in X_{0}, x_{1} \in X_{1}, \theta \in \mathbb{R}\right)
$$

(Note that the other 3 cases are included here)

Isometries in finite-dimensional spaces

Theorem

X finite-dimensional real space. TFAE:

- Iso (X) is infinite.
- $n(X)=0$.
- There is $T \in L(X), T \neq 0$, with $v(T)=0$.

Examples of spaces of this kind

(1) Hilbert spaces.
(2) $X_{\mathbb{R}}$, the real space subjacent to any complex space X.
(3) An absolute sum of any real space and one of the above.
(c) Moreover, if $X=X_{0} \oplus X_{1}$ where X_{1} is complex and

$$
\left\|x_{0}+\mathrm{e}^{i \theta} x_{1}\right\|=\left\|x_{0}+x_{1}\right\| \quad\left(x_{0} \in X_{0}, x_{1} \in X_{1}, \theta \in \mathbb{R}\right)
$$

(Note that the other 3 cases are included here)

Question

Can every Banach space X with $n(X)=0$ be decomposed as in ?

Negative answer

Negative answer

Infinite-dimensional case

There is an infinite-dimensional real Banach space X with $n(X)=0$ but X is polyhedral. In particular, X does not contain \mathbb{C} isometrically.

Negative answer

Infinite-dimensional case

There is an infinite-dimensional real Banach space X with $n(X)=0$ but X is polyhedral. In particular, X does not contain \mathbb{C} isometrically.

An easy example is

$$
X=\left[\bigoplus_{n \geqslant 2} X_{n}\right]_{c_{0}}
$$

X_{n} is the two-dimensional space whose unit ball is the regular polygon of $2 n$ vertices.

Negative answer

Infinite-dimensional case

There is an infinite-dimensional real Banach space X with $n(X)=0$ but X is polyhedral. In particular, X does not contain \mathbb{C} isometrically.

An easy example is

$$
X=\left[\bigoplus_{n \geqslant 2} X_{n}\right]_{c_{0}}
$$

X_{n} is the two-dimensional space whose unit ball is the regular polygon of $2 n$ vertices.

Note

Such an example is not possible in the finite-dimensional case.

Quasi affirmative answer

Quasi affirmative answer

Finite-dimensional case

X finite-dimensional real space. TFAE:

- $n(X)=0$.
- $X=X_{0} \oplus X_{1} \oplus \cdots \oplus X_{n}$ such that
- X_{0} is a (possible null) real space,
- X_{1}, \ldots, X_{n} are non-null complex spaces,
there are $\rho_{1}, \ldots, \rho_{n}$ rational numbers, such that

$$
\left\|x_{0}+\mathrm{e}^{i \rho_{1} \theta} x_{1}+\cdots+\mathrm{e}^{i \rho_{n} \theta} x_{n}\right\|=\left\|x_{0}+x_{1}+\cdots+x_{n}\right\|
$$

for every $x_{i} \in X_{i}$ and every $\theta \in \mathbb{R}$.

Quasi affirmative answer

Finite-dimensional case

X finite-dimensional real space. TFAE:

- $n(X)=0$.
- $X=X_{0} \oplus X_{1} \oplus \cdots \oplus X_{n}$ such that
- X_{0} is a (possible null) real space,
- X_{1}, \ldots, X_{n} are non-null complex spaces,
there are $\rho_{1}, \ldots, \rho_{n}$ rational numbers, such that

$$
\left\|x_{0}+\mathrm{e}^{i \rho_{1} \theta} x_{1}+\cdots+\mathrm{e}^{i \rho_{n} \theta} x_{n}\right\|=\left\|x_{0}+x_{1}+\cdots+x_{n}\right\|
$$

for every $x_{i} \in X_{i}$ and every $\theta \in \mathbb{R}$.

Remark

- The theorem is due to Rosenthal, but with real ρ 's.
- The fact that the ρ 's may be chosen as rational numbers is due to M.-Merí-Rodríguez-Palacios.

Sketch of the proof

Sketch of the proof

- Fix $T \in L(X)$ with $\|T\|=1$ and $v(T)=0$.

Sketch of the proof

- Fix $T \in L(X)$ with $\|T\|=1$ and $v(T)=0$.
- We get that $\|\exp (\rho T)\|=1$ for every $\rho \in \mathbb{R}$.

Sketch of the proof

- Fix $T \in L(X)$ with $\|T\|=1$ and $v(T)=0$.
- We get that $\|\exp (\rho T)\|=1$ for every $\rho \in \mathbb{R}$.
- A Theorem by Auerbach: there exists a Hilbert space H with $\operatorname{dim}(H)=\operatorname{dim}(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$.

Sketch of the proof

- Fix $T \in L(X)$ with $\|T\|=1$ and $v(T)=0$.
- We get that $\|\exp (\rho T)\|=1$ for every $\rho \in \mathbb{R}$.
- A Theorem by Auerbach: there exists a Hilbert space H with $\operatorname{dim}(H)=\operatorname{dim}(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$.
- Apply the above to $\exp (\rho T)$ for every $\rho \in \mathbb{R}$.

Sketch of the proof

- Fix $T \in L(X)$ with $\|T\|=1$ and $v(T)=0$.
- We get that $\|\exp (\rho T)\|=1$ for every $\rho \in \mathbb{R}$.
- A Theorem by Auerbach: there exists a Hilbert space H with $\operatorname{dim}(H)=\operatorname{dim}(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$.
- Apply the above to $\exp (\rho T)$ for every $\rho \in \mathbb{R}$.
- You get that T is skew-hermitian in $L(H)$, so $T^{*}=-T$ and T^{2} is self-adjoint. The X_{j} 's are the eigenspaces of T^{2}.

Sketch of the proof

- Fix $T \in L(X)$ with $\|T\|=1$ and $v(T)=0$.
- We get that $\|\exp (\rho T)\|=1$ for every $\rho \in \mathbb{R}$.
- A Theorem by Auerbach: there exists a Hilbert space H with $\operatorname{dim}(H)=\operatorname{dim}(X)$ such that every surjective isometry in $L(X)$ remains isometry in $L(H)$.
- Apply the above to $\exp (\rho T)$ for every $\rho \in \mathbb{R}$.
- You get that T is skew-hermitian in $L(H)$, so $T^{*}=-T$ and T^{2} is self-adjoint. The X_{j} 's are the eigenspaces of T^{2}.
- Use Kronecker's Approximation Theorem to change the eigenvalues of T^{2} by rational numbers. \checkmark

Two results on surjective isometries Isometries on finite-dimensional spaces

A simple case of getting rational numbers

A simple case of getting rational numbers

- Let $X=X_{0} \oplus X_{1} \oplus X_{2}$ and $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ s.t.

$$
\left\|x_{0}+\mathrm{e}^{i \rho} x_{1}+\mathrm{e}^{i \alpha \rho} x_{2}\right\|=\left\|x_{0}+x_{1}+x_{2}\right\| \quad \forall \rho, \forall x_{0}, x_{1}, x_{2} .
$$

A simple case of getting rational numbers

- Let $X=X_{0} \oplus X_{1} \oplus X_{2}$ and $\alpha \in \mathbb{R} \backslash Q$ s.t.

$$
\left\|x_{0}+\mathrm{e}^{i \rho} x_{1}+\mathrm{e}^{i \alpha \rho} x_{2}\right\|=\left\|x_{0}+x_{1}+x_{2}\right\| \quad \forall \rho, \forall x_{0}, x_{1}, x_{2} .
$$

- Then $\left\|x_{0}+x_{1}+x_{2}\right\|=\left\|x_{0}+\mathrm{e}^{i \rho}\left(x_{1}+\mathrm{e}^{i(\alpha-1) \rho} x_{2}\right)\right\| \quad \forall \rho$.

A simple case of getting rational numbers

- Let $X=X_{0} \oplus X_{1} \oplus X_{2}$ and $\alpha \in \mathbb{R} \backslash Q$ s.t.

$$
\left\|x_{0}+\mathrm{e}^{i \rho} x_{1}+\mathrm{e}^{i \alpha \rho} x_{2}\right\|=\left\|x_{0}+x_{1}+x_{2}\right\| \quad \forall \rho, \forall x_{0}, x_{1}, x_{2} .
$$

- Then $\left\|x_{0}+x_{1}+x_{2}\right\|=\left\|x_{0}+\mathrm{e}^{i \rho}\left(x_{1}+\mathrm{e}^{i(\alpha-1) \rho} x_{2}\right)\right\| \quad \forall \rho$.
- Take $\rho=\frac{2 \pi k}{\alpha-1}$ with $k \in \mathbb{Z}$.

A simple case of getting rational numbers

- Let $X=X_{0} \oplus X_{1} \oplus X_{2}$ and $\alpha \in \mathbb{R} \backslash Q$ s.t.

$$
\left\|x_{0}+\mathrm{e}^{i \rho} x_{1}+\mathrm{e}^{i \alpha \rho} x_{2}\right\|=\left\|x_{0}+x_{1}+x_{2}\right\| \quad \forall \rho, \forall x_{0}, x_{1}, x_{2} .
$$

- Then $\left\|x_{0}+x_{1}+x_{2}\right\|=\left\|x_{0}+\mathrm{e}^{i \rho}\left(x_{1}+\mathrm{e}^{i(\alpha-1) \rho} x_{2}\right)\right\| \quad \forall \rho$.
- Take $\rho=\frac{2 \pi k}{\alpha-1}$ with $k \in \mathbb{Z}$.
- Then $\left\|x_{0}+\left(x_{1}+x_{2}\right)\right\|=\left\|x_{0}+\mathrm{e}^{i \frac{2 \pi k}{\alpha-1}}\left(x_{1}+x_{2}\right)\right\| \quad \forall k \in \mathbb{Z}$

A simple case of getting rational numbers

- Let $X=X_{0} \oplus X_{1} \oplus X_{2}$ and $\alpha \in \mathbb{R} \backslash Q$ s.t.

$$
\left\|x_{0}+\mathrm{e}^{i \rho} x_{1}+\mathrm{e}^{i \alpha \rho} x_{2}\right\|=\left\|x_{0}+x_{1}+x_{2}\right\| \quad \forall \rho, \forall x_{0}, x_{1}, x_{2}
$$

- Then $\left\|x_{0}+x_{1}+x_{2}\right\|=\left\|x_{0}+\mathrm{e}^{i \rho}\left(x_{1}+\mathrm{e}^{i(\alpha-1) \rho} x_{2}\right)\right\| \quad \forall \rho$.
- Take $\rho=\frac{2 \pi k}{\alpha-1}$ with $k \in \mathbb{Z}$.
- Then $\left\|x_{0}+\left(x_{1}+x_{2}\right)\right\|=\left\|x_{0}+\mathrm{e}^{i \frac{2 \pi k}{\alpha-1}}\left(x_{1}+x_{2}\right)\right\| \quad \forall k \in \mathbb{Z}$
- But $\left\{\frac{2 \pi k}{\alpha-1}: k \in \mathbb{Z}\right\}$ is dense in \mathbb{T}, so

$$
\left\|x_{0}+\left(x_{1}+x_{2}\right)\right\|=\left\|x_{0}+\mathrm{e}^{i \rho}\left(x_{1}+x_{2}\right)\right\| \quad \forall \rho \in \mathbb{R}
$$

and $X=X_{0} \oplus Z$ where $Z=X_{1} \oplus X_{2}$ is a complex space

Consequences

Consequences

Corollary
X real space with $n(X)=0$.

- If $\operatorname{dim}(X)=2$, then $X \equiv \mathbb{C}$.
- If $\operatorname{dim}(X)=3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum).

Consequences

```
Corollary
\(X\) real space with \(n(X)=0\).
- If \(\operatorname{dim}(X)=2\), then \(X \equiv \mathbb{C}\).
- If \(\operatorname{dim}(X)=3\), then \(X \equiv \mathbb{R} \oplus \mathbb{C}\) (absolute sum).
```


Natural question

Are all finite-dimensional X 's with $n(X)=0$ of the form $X=X_{0} \oplus X_{1}$?

Consequences

```
Corollary
\(X\) real space with \(n(X)=0\).
    - If \(\operatorname{dim}(X)=2\), then \(X \equiv \mathbb{C}\).
    - If \(\operatorname{dim}(X)=3\), then \(X \equiv \mathbb{R} \oplus \mathbb{C}\) (absolute sum).
```


Natural question

Are all finite-dimensional X 's with $n(X)=0$ of the form $X=X_{0} \oplus X_{1}$?

Answer

No.

Consequences

Corollary

X real space with $n(X)=0$.

- If $\operatorname{dim}(X)=2$, then $X \equiv \mathbb{C}$.
- If $\operatorname{dim}(X)=3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum).

Natural question

Are all finite-dimensional X 's with $n(X)=0$ of the form $X=X_{0} \oplus X_{1}$?

Answer

No.

Example

$X=\left(\mathbb{R}^{4},\|\cdot\|\right),\|(a, b, c, d)\|=\frac{1}{4} \int_{0}^{2 \pi}\left|\operatorname{Re}\left(\mathrm{e}^{2 i t}(a+i b)+\mathrm{e}^{i t}(c+i d)\right)\right| d t$.
Then $n(X)=0$ but the unique possible decomposition is $X=\mathbb{C} \oplus \mathbb{C}$ with

$$
\left\|\mathrm{e}^{i t} x_{1}+\mathrm{e}^{2 i t} x_{2}\right\|=\left\|x_{1}+x_{2}\right\| .
$$

Two results on surjective isometries

The Lie-algebra of a Banach space

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X)=\{T \in L(X): v(T)=0\}$.

- When X is finite-dimensional, $\operatorname{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X)=\{T \in L(X): v(T)=0\}$.

- When X is finite-dimensional, $\operatorname{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Remark

- $\operatorname{dim}(X)=n \quad \Longrightarrow \quad \operatorname{dim}(\mathcal{Z}(X)) \leqslant \frac{n(n-1)}{2}$.
- Equality holds $\Longleftrightarrow H$ Hilbert space.

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X)=\{T \in L(X): v(T)=0\}$.

- When X is finite-dimensional, $\operatorname{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Remark

- $\operatorname{dim}(X)=n \quad \Longrightarrow \quad \operatorname{dim}(\mathcal{Z}(X)) \leqslant \frac{n(n-1)}{2}$.
- Equality holds $\Longleftrightarrow H$ Hilbert space.

An open problem

Given $n \geqslant 3$, which are the possible $\operatorname{dim}(\mathcal{Z}(X))$ over all n-dimensional X 's?

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X)=\{T \in L(X): v(T)=0\}$.

- When X is finite-dimensional, $\operatorname{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Remark

- $\operatorname{dim}(X)=n \quad \Longrightarrow \quad \operatorname{dim}(\mathcal{Z}(X)) \leqslant \frac{n(n-1)}{2}$.
- Equality holds $\Longleftrightarrow H$ Hilbert space.

An open problem

Given $n \geqslant 3$, which are the possible $\operatorname{dim}(\mathcal{Z}(X))$ over all n-dimensional X 's?

Observation (Javier Merí, PhD)

When $\operatorname{dim}(X)=3, \operatorname{dim}(\mathcal{Z}(X))$ cannot be 2 .

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X)=\{T \in L(X): v(T)=0\}$.

- When X is finite-dimensional, $\operatorname{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the

Rel If $\operatorname{dim}(X)=3, n(X)=0$, then $X=\mathbb{C} \oplus \mathbb{R}$ (absolute sum $)$.

An open problem

Given $n \geqslant 3$, which are the possible $\operatorname{dim}(\mathcal{Z}(X))$ over all n-dimensional X 's?

Observation (Javier Merí, PhD)

When $\operatorname{dim}(X)=3, \operatorname{dim}(\mathcal{Z}(X))$ cannot be 2 .

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X)=\{T \in L(X): v(T)=0\}$.

- When X is finite-dimensional, $\operatorname{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the

Re
If $\operatorname{dim}(X)=3, n(X)=0$, then $X=\mathbb{C} \oplus \mathbb{R}$ (absolute sum).

- If $\oplus=\oplus_{2}$, then X is a Hilbert space and $\operatorname{dim}(\mathcal{Z}(X))=3$. \checkmark

An open problem

Given $n \geqslant 3$, which are the possible $\operatorname{dim}(\mathcal{Z}(X))$ over all n-dimensional X 's?

Observation (Javier Merí, PhD)

When $\operatorname{dim}(X)=3, \operatorname{dim}(\mathcal{Z}(X))$ cannot be 2 .

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X)=\{T \in L(X): v(T)=0\}$.

- When X is finite-dimensional, $\operatorname{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the

If $\operatorname{dim}(X)=3, n(X)=0$, then $X=\mathbb{C} \oplus \mathbb{R}$ (absolute sum).

- If $\oplus=\oplus_{2}$, then X is a Hilbert space and $\operatorname{dim}(\mathcal{Z}(X))=3 . \checkmark$
- If $\oplus \neq \oplus_{2}$, then isometries respect summands and $\operatorname{dim}(\mathcal{Z}(X))=1 . \checkmark$

An open problem

Given $n \geqslant 3$, which are the possible $\operatorname{dim}(\mathcal{Z}(X))$ over all n-dimensional X 's?

Observation (Javier Merí, PhD)

When $\operatorname{dim}(X)=3, \operatorname{dim}(\mathcal{Z}(X))$ cannot be 2 .

Two results on surjective isometries Isometries and duality

Semigroups of surjective isometries and duality

Semigroups of surjective isometries and duality

Remark

X Banach space.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{*} \in \operatorname{Iso}\left(X^{*}\right)$.
- $\operatorname{Iso}\left(X^{*}\right)$ can be bigger than $\operatorname{Iso}(X)$.

Semigroups of surjective isometries and duality

Remark

X Banach space.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{*} \in \operatorname{Iso}\left(X^{*}\right)$.
- Iso $\left(X^{*}\right)$ can be bigger than $\operatorname{Iso}(X)$.

The problem

- How much bigger can be $\operatorname{Iso}\left(X^{*}\right)$ than $\operatorname{Iso}(X)$?
- Is it possible that $\mathcal{Z}\left(\operatorname{Iso}\left(X^{*}\right)\right)$ is big while $\mathcal{Z}(\operatorname{Iso}(X))$ is trivial?

Semigroups of surjective isometries and duality

Remark

X Banach space.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{*} \in \operatorname{Iso}\left(X^{*}\right)$.
- Iso $\left(X^{*}\right)$ can be bigger than $\operatorname{Iso}(X)$.

The problem

- How much bigger can be $\operatorname{Iso}\left(X^{*}\right)$ than $\operatorname{Iso}(X)$?
- Is it possible that $\mathcal{Z}\left(\operatorname{Iso}\left(X^{*}\right)\right)$ is big while $\mathcal{Z}(\operatorname{Iso}(X))$ is trivial?

The answer is yes. This is what we are going to present next.

Two results on surjective isometries Isometries and duality

Semigroups of surjective isometries and duality

Semigroups of surjective isometries and duality

Spaces $C_{E}(K \| L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$
C_{E}(K \| L)=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Semigroups of surjective isometries and duality

Spaces $C_{E}(K \| L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$
C_{E}(K \| L)=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Theorem

$$
C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*} \quad \& \quad n\left(C_{E}(K \| L)\right)=1
$$

Semigroups of surjective isometries and duality

Spaces $C_{E}(K \| L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$
C_{E}(K \| L)=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Theorem

$$
C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*} \quad \& \quad n\left(C_{E}(K \| L)\right)=1
$$

Proof.

Semigroups of surjective isometries and duality

Spaces $C_{E}(K \mid L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$
C_{E}(K \| L)=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Theorem

$$
C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*} \quad \& \quad n\left(C_{E}(K \| L)\right)=1
$$

Proof.

- $C_{0}(K \| L)$ is an M-ideal of $C(K)$ $\Longrightarrow C_{0}(K \| L)$ is an M-ideal of $C_{E}(K \| L)$.

Semigroups of surjective isometries and duality

Spaces $C_{E}(K \mid L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$
C_{E}(K \| L)=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Theorem

$$
C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*} \quad \& \quad n\left(C_{E}(K \| L)\right)=1
$$

Proof.

- $C_{0}(K \| L)$ is an M-ideal of $C(K)$ $\Longrightarrow C_{0}(K \| L)$ is an M-ideal of $C_{E}(K \| L)$.
- Meaning that $C_{E}(K \| L)^{*} \equiv C_{0}(K \| L)^{\perp} \oplus_{1} C_{0}(K \| L)^{*}$.

Semigroups of surjective isometries and duality

Spaces $C_{E}(K \mid L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$
C_{E}(K \| L)=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Theorem

$$
C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*} \quad \& \quad n\left(C_{E}(K \| L)\right)=1
$$

Proof.

- $C_{0}(K \| L)$ is an M-ideal of $C(K)$ $\Longrightarrow C_{0}(K \| L)$ is an M-ideal of $C_{E}(K \| L)$.
- Meaning that $C_{E}(K \| L)^{*} \equiv C_{0}(K \| L)^{\perp} \oplus_{1} C_{0}(K \| L)^{*}$.
- $C_{0}(K \| L)^{\perp} \equiv\left(C_{E}(K \| L) / C_{0}(K \| L)\right)^{*} \equiv E^{*}$:

Semigroups of surjective isometries and duality

Spaces $C_{E}(K \mid L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$
C_{E}(K \| L)=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Theorem

$$
C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*} \quad \& \quad n\left(C_{E}(K \| L)\right)=1
$$

Proof.

- $C_{0}(K \| L)$ is an M-ideal of $C(K)$ $\Longrightarrow C_{0}(K \| L)$ is an M-ideal of $C_{E}(K \| L)$.
- Meaning that $C_{E}(K \| L)^{*} \equiv C_{0}(K \| L)^{\perp} \oplus_{1} C_{0}(K \| L)^{*}$.
- $C_{0}(K \| L)^{\perp} \equiv\left(C_{E}(K \| L) / C_{0}(K \| L)\right)^{*} \equiv E^{*}$:
- $\Phi: C_{E}(K \| L) \longrightarrow E, \Phi(f)=\left.f\right|_{L}$.
- $\|\Phi\| \leqslant 1$ and $\operatorname{ker} \Phi=C_{0}(K \| L)$.
- $\widetilde{\Phi}: C_{E}(K \| L) / C_{0}(K \| E) \longrightarrow E$ onto isometry:
- $\{g \in E:\|g\|<1\} \subseteq \Phi\left(\left\{f \in C_{E}(K \| L):\|f\|<1\right\}\right)$. \checkmark

Semigroups of surjective isometries and duality

Spaces $C_{E}(K \mid L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$
C_{E}(K \| L)=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Theorem

$$
C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*} \quad \& \quad n\left(C_{E}(K \| L)\right)=1
$$

Proof.

- $C_{0}(K \| L)$ is an M-ideal of $C(K)$ $\Longrightarrow C_{0}(K \| L)$ is an M-ideal of $C_{E}(K \| L)$.
- Meaning that $C_{E}(K \| L)^{*} \equiv C_{0}(K \| L)^{\perp} \oplus_{1} C_{0}($
- $C_{0}(K \| L)^{\perp} \equiv\left(C_{E}(K \| L) / C_{0}(K \| L)\right)^{*} \equiv E^{*}$:
- $\Phi: C_{E}(K \| L) \longrightarrow E, \Phi(f)=\left.f\right|_{L}$.
- $\|\Phi\| \leqslant 1$ and $\operatorname{ker} \Phi=C_{0}(K \| L)$.
- $\widetilde{\Phi}: C_{E}(K \| L) / C_{0}(K \| E) \longrightarrow E$ onto isometry:

- $\{g \in E:\|g\|<1\} \subseteq \Phi\left(\left\{f \in C_{E}(K \| L):\|f\|\right.\right.$ - $\quad \|$.

Semigroups of surjective isometries and duality

Spaces $C_{E}(K \| L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$
C_{E}(K \| L)=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Theorem

$$
C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*} \quad \& \quad n\left(C_{E}(K \| L)\right)=1
$$

Proof.

Semigroups of surjective isometries and duality

Spaces $C_{E}(K \mid L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$
C_{E}(K \| L)=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Theorem

$$
C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*} \quad \& \quad n\left(C_{E}(K \| L)\right)=1
$$

Proof.

- $\mathcal{A}=\left\{\left(0, \delta_{t}\right): t \in K \backslash L\right\} \subset S_{C_{E}(K \| L)^{*}}$ is norming for $X=C_{E}(K \| L)$.

Semigroups of surjective isometries and duality

Spaces $C_{E}(K \mid L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$
C_{E}(K \| L)=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Theorem

$$
C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*} \quad \& \quad n\left(C_{E}(K \| L)\right)=1
$$

Proof.

- $\mathcal{A}=\left\{\left(0, \delta_{t}\right): t \in K \backslash L\right\} \subset S_{C_{E}(K \| L)^{*}}$ is norming for $X=C_{E}(K \| L)$.
- $\left|x^{* *}\left(a^{*}\right)\right|=1$ for every $x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$ and every $a^{*} \in \mathcal{A}$.

Semigroups of surjective isometries and duality

Spaces $C_{E}(K \mid L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$
C_{E}(K \| L)=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Theorem

$$
C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*} \quad \& \quad n\left(C_{E}(K \| L)\right)=1
$$

Proof.

- $\mathcal{A}=\left\{\left(0, \delta_{t}\right): t \in K \backslash L\right\} \subset S_{C_{E}(K \| L)^{*}}$ is norming for $X=C_{E}(K \| L)$.
- $\left|x^{* *}\left(a^{*}\right)\right|=1$ for every $x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$ and every $a^{*} \in \mathcal{A}$.
- This gives $n\left(C_{E}(K \| L)\right)=1$:
- $T \in L(X), \varepsilon>0$, take $a^{*} \in \mathcal{A}$ with $\left\|T^{*}\left(a^{*}\right)\right\|>\|T\|-\varepsilon$,
- Take $x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$ with $\left|x^{* *}\left(T^{*}\left(a^{*}\right)\right)\right|>\|T\|-\varepsilon$,
- Since $\left|x^{* *}\left(a^{*}\right)\right|=1$, we have

$$
v(T)=v\left(T^{*}\right) \geqslant\left|x^{* *}\left(T^{*}\left(a^{*}\right)\right)\right|>\|T\|-\varepsilon . \checkmark
$$

Semigroups of surjective isometries and duality

Spaces $C_{E}(K \mid L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$
C_{E}(K \| L)=\left\{f \in C(K):\left.f\right|_{L} \in E\right\}
$$

Theorem

$$
C_{E}(K \| L)^{*} \equiv E^{*} \oplus_{1} C_{0}(K \| L)^{*} \quad \& \quad n\left(C_{E}(K \| L)\right)=1
$$

Consequence: the example

Take $K=[0,1], L=\Delta$ (Cantor set), $E=\ell_{2} \subset C(\Delta)$.

- Iso $\left(C_{\ell_{2}}([0,1] \| \Delta)\right)$ has no exponential one-parameter semigroups.
- $C_{\ell_{2}}([0,1] \| \Delta)^{*} \equiv \ell_{2} \oplus_{1} C_{0}([0,1] \| \Delta)^{*}$, so taken $S \in \operatorname{Iso}\left(\ell_{2}\right)$

$$
\Longrightarrow \quad T=\left(\begin{array}{cc}
S & 0 \\
0 & \text { Id }
\end{array}\right) \in \operatorname{Iso}\left(C_{\ell_{2}}([0,1] \| \Delta)^{*}\right)
$$

Then, Iso $\left(C_{\ell_{2}}([0,1] \| \Delta)^{*}\right)$ contains infinitely many exponential one-parameter semigroups.

Some comments

Some comments

In terms of linear dynamical systems

Some comments

In terms of linear dynamical systems

- In $C_{\ell_{2}}([0,1] \| \Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

$$
x^{\prime}=A x \quad\left(x: \mathbb{R}_{0}^{+} \longrightarrow C_{\ell_{2}}([0,1] \| \Delta)\right)
$$

(which is $x(t)=\exp (t A)(x(0))$) is given by a semigroup of isometries.

Some comments

In terms of linear dynamical systems

- In $C_{\ell_{2}}([0,1] \| \Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

$$
x^{\prime}=A x \quad\left(x: \mathbb{R}_{0}^{+} \longrightarrow C_{\ell_{2}}([0,1] \| \Delta)\right)
$$

(which is $x(t)=\exp (t A)(x(0))$) is given by a semigroup of isometries.

- There are infinitely many such A 's in $C_{\ell_{2}}([0,1] \| \Delta)^{*}$, in $C_{\ell_{2}}([0,1] \| \Delta)^{* *} \ldots$

Some comments

In terms of linear dynamical systems

- In $C_{\ell_{2}}([0,1] \| \Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

$$
x^{\prime}=A x \quad\left(x: \mathbb{R}_{0}^{+} \longrightarrow C_{\ell_{2}}([0,1] \| \Delta)\right)
$$

(which is $x(t)=\exp (t A)(x(0))$) is given by a semigroup of isometries.

- There are infinitely many such A 's in $C_{\ell_{2}}([0,1] \| \Delta)^{*}$, in $C_{\ell_{2}}([0,1] \| \Delta)^{* *} \ldots$

Further results (Koszmider-M.-Merí., 2009)

Some comments

In terms of linear dynamical systems

- In $C_{\ell_{2}}([0,1] \| \Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

$$
x^{\prime}=A x \quad\left(x: \mathbb{R}_{0}^{+} \longrightarrow C_{\ell_{2}}([0,1] \| \Delta)\right)
$$

(which is $x(t)=\exp (t A)(x(0)))$ is given by a semigroup of isometries.

- There are infinitely many such A 's in $C_{\ell_{2}}([0,1] \| \Delta)^{*}$, in $C_{\ell_{2}}([0,1] \| \Delta)^{* *} \ldots$

Further results (Koszmider-M.-Merí., 2009)

- There are unbounded A s on $C_{\ell_{2}}([0,1] \| \Delta)$ such that the solution to the linear dynamical system

$$
x^{\prime}(t)=A x(t)
$$

is a one-parameter C_{0} semigroup of isometries.

Some comments

In terms of linear dynamical systems

- In $C_{\ell_{2}}([0,1] \| \Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

$$
x^{\prime}=A x \quad\left(x: \mathbb{R}_{0}^{+} \longrightarrow C_{\ell_{2}}([0,1] \| \Delta)\right)
$$

(which is $x(t)=\exp (t A)(x(0))$) is given by a semigroup of isometries.

- There are infinitely many such A 's in $C_{\ell_{2}}([0,1] \| \Delta)^{*}$, in $C_{\ell_{2}}([0,1] \| \Delta)^{* *} \ldots$

Further results (Koszmider-M.-Merí., 2009)

- There are unbounded A s on $C_{\ell_{2}}([0,1] \| \Delta)$ such that the solution to the linear dynamical system

$$
x^{\prime}(t)=A x(t)
$$

is a one-parameter C_{0} semigroup of isometries.

- There is X such that Iso $(X)=\{-\mathrm{Id}, \mathrm{Id}\} \quad$ and $\quad X^{*}=\ell_{2} \oplus_{1} L_{1}(v)$.

Some comments

In terms of linear dynamical systems

- In $C_{\ell_{2}}([0,1] \| \Delta)$ there is no $A \in L(X)$ such that the solution to the linear dynamical system

$$
x^{\prime}=A x \quad\left(x: \mathbb{R}_{0}^{+} \longrightarrow C_{\ell_{2}}([0,1] \| \Delta)\right)
$$

(which is $x(t)=\exp (t A)(x(0)))$ is given by a semigroup of isometries.

- There are infinitely many such A 's in $C_{\ell_{2}}([0,1] \| \Delta)^{*}$, in $C_{\ell_{2}}([0,1] \| \Delta)^{* *} \ldots$

Further results (Koszmider-M.-Merí., 2009)

- There are unbounded A s on $C_{\ell_{2}}([0,1] \| \Delta)$ such that the solution to the linear dynamical system

$$
x^{\prime}(t)=A x(t)
$$

is a one-parameter C_{0} semigroup of isometries.

- There is X such that

$$
\operatorname{Iso}(X)=\{-\mathrm{Id}, \mathrm{Id}\} \quad \text { and } \quad X^{*}=\ell_{2} \oplus_{1} L_{1}(v)
$$

- Therefore, there is no semigroups in Iso (X), but there are infinitely many exponential one-parameter semigroups in Iso $\left(X^{*}\right)$.

Numerical index of Banach spaces

(4) Numerical index of Banach spaces

- Basic definitions and examples
- Stability properties
- Duality
- The isomorphic point of view
- Banach spaces with numerical index one
- Isomorphic properties
- Isometric properties
- Asymptotic behavior
- How to deal with numerical index 1 property?

V. Kadets, M. Martín, and R. Payá.

Recent progress and open questions on the numerical index of Banach spaces. RACSAM (2006)

Numerical index of Banach spaces: definitions

Numerical radius

X Banach space, $T \in L(X)$. The numerical radius of T is

$$
v(T)=\sup \left\{\left|x^{*}(T x)\right|: x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Numerical index of Banach spaces: definitions

Numerical radius

X Banach space, $T \in L(X)$. The numerical radius of T is

$$
v(T)=\sup \left\{\left|x^{*}(T x)\right|: x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Remark

The numerical radius is a continuous seminorm in $L(X)$. Actually, $v(\cdot) \leqslant\|\cdot\|$

Numerical index of Banach spaces: definitions

Numerical radius

X Banach space, $T \in L(X)$. The numerical radius of T is

$$
v(T)=\sup \left\{\left|x^{*}(T x)\right|: x^{*} \in S_{X^{*}}, x \in S_{X}, x^{*}(x)=1\right\}
$$

Remark

The numerical radius is a continuous seminorm in $L(X)$. Actually, $v(\cdot) \leqslant\|\cdot\|$

Numerical index (Lumer, 1968)

X Banach space, the numerical index of X is

$$
\begin{aligned}
n(X) & =\inf \{v(T): T \in L(X),\|T\|=1\} \\
& =\max \{k \geqslant 0: k\|T\| \leqslant v(T) \forall T \in L(X)\} \\
& =\inf \left\{M \geqslant 0: \exists T \in L(X),\|T\|=1,\|\exp (\rho T)\| \leqslant \mathrm{e}^{\rho M} \forall \rho \in \mathbb{R}\right\}
\end{aligned}
$$

Numerical index of Banach spaces: basic properties

Recalling some basic properties

Numerical index of Banach spaces: basic properties

Recalling some basic properties

- $n(X)=1$ iff v and $\|\cdot\|$ coincide.
- $n(X)=0$ iff v is not an equivalent norm in $L(X)$

Numerical index of Banach spaces: basic properties

Recalling some basic properties

- $n(X)=1$ iff v and $\|\cdot\|$ coincide.
- $n(X)=0$ iff v is not an equivalent norm in $L(X)$
- X complex $\Rightarrow n(X) \geqslant 1 / \mathrm{e}$.
(Bohnenblust-Karlin, 1955; Glickfeld, 1970)

Numerical index of Banach spaces: basic properties

Recalling some basic properties

- $n(X)=1$ iff v and $\|\cdot\|$ coincide.
- $n(X)=0$ iff v is not an equivalent norm in $L(X)$
- X complex $\Rightarrow n(X) \geqslant 1 / e$.
(Bohnenblust-Karlin, 1955; Glickfeld, 1970)
- Actually,

$$
\begin{gathered}
\{n(X): X \text { complex, } \operatorname{dim}(X)=2\}=\left[\mathrm{e}^{-1}, 1\right] \\
\{n(X): X \text { real, } \operatorname{dim}(X)=2\}=[0,1] \\
(\text { Duncan-McGregor-Pryce-White, } 1970)
\end{gathered}
$$

Numerical index of Banach spaces: examples (I)

Some examples

(1) H Hilbert space, $\operatorname{dim}(H)>1$,

$$
\begin{array}{ll}
n(H)=0 & \text { if } H \text { is real } \\
n(H)=1 / 2 & \text { if } H \text { is complex }
\end{array}
$$

Numerical index of Banach spaces: examples (I)

Some examples

(1) H Hilbert space, $\operatorname{dim}(H)>1$,

$$
\begin{array}{ll}
n(H)=0 & \text { if } H \text { is real } \\
n(H)=1 / 2 & \text { if } H \text { is complex }
\end{array}
$$

(3) $n\left(L_{1}(\mu)\right)=1 \quad \mu$ positive measure $n(C(K))=1 \quad K$ compact Hausdorff space
(Duncan et al., 1970)

Numerical index of Banach spaces: examples (I)

Some examples

(1) H Hilbert space, $\operatorname{dim}(H)>1$,

$$
\begin{array}{ll}
n(H)=0 & \text { if } H \text { is real } \\
n(H)=1 / 2 & \text { if } H \text { is complex }
\end{array}
$$

(2) $n\left(L_{1}(\mu)\right)=1 \quad \mu$ positive measure $n(C(K))=1 \quad K$ compact Hausdorff space
(Duncan et al., 1970)
(3) If A is a C^{*}-algebra $\Rightarrow \begin{cases}n(A)=1 & A \text { commutative } \\ n(A)=1 / 2 & A \text { not commutative }\end{cases}$ (Huruya, 1977; Kaidi-Morales-Rodríguez, 2000)

Numerical index of Banach spaces: examples (I)

Some examples

(1) H Hilbert space, $\operatorname{dim}(H)>1$,

$$
\begin{array}{ll}
n(H)=0 & \text { if } H \text { is real } \\
n(H)=1 / 2 & \text { if } H \text { is complex }
\end{array}
$$

(2) $n\left(L_{1}(\mu)\right)=1 \quad \mu$ positive measure $n(C(K))=1 \quad K$ compact Hausdorff space
(Duncan et al., 1970)
(3) If A is a C^{*}-algebra $\Rightarrow \begin{cases}n(A)=1 & A \text { commutative } \\ n(A)=1 / 2 & A \text { not commutative }\end{cases}$ (Huruya, 1977; Kaidi-Morales-Rodríguez, 2000)
(9) If A is a function algebra $\Rightarrow n(A)=1$
(Werner, 1997)

Numerical index of Banach spaces: some examples (II)

More examples

(0) For $n \geqslant 2$, the unit ball of X_{n} is a $2 n$ regular polygon:

$$
\begin{gathered}
n\left(X_{n}\right)= \begin{cases}\tan \left(\frac{\pi}{2 n}\right) & \text { if } n \text { is even }, \\
\sin \left(\frac{\pi}{2 n}\right) & \text { if } n \text { is odd. }\end{cases} \\
\text { (M.-Merí, 2007) }
\end{gathered}
$$

Numerical index of Banach spaces: some examples (II)

More examples

(5) For $n \geqslant 2$, the unit ball of X_{n} is a $2 n$ regular polygon:

$$
\begin{aligned}
& n\left(X_{n}\right)= \begin{cases}\tan \left(\frac{\pi}{2 n}\right) & \text { if } n \text { is even, } \\
\sin \left(\frac{\pi}{2 n}\right) & \text { if } n \text { is odd. }\end{cases} \\
& \text { (M.-Merí, 2007) }
\end{aligned}
$$

(0) Every finite-codimensional subspace of $C[0,1]$ has numerical index 1
(Boyko-Kadets-M.-Werner, 2007)

Numerical index of Banach spaces: some examples (III)

Even more examples

(Numerical index of L_{p}-spaces, $1<p<\infty$:

Numerical index of Banach spaces: some examples (III)

Even more examples

(Numerical index of L_{p}-spaces, $1<p<\infty$:

- $n\left(L_{p}[0,1]\right)=n\left(\ell_{p}\right)=\lim _{m \rightarrow \infty} n\left(\ell_{p}^{(m)}\right)$.
(Ed-Dari, 2005 \& Ed-Dari-Khamsi, 2006)

Numerical index of Banach spaces: some examples (III)

Even more examples

(1) Numerical index of L_{p}-spaces, $1<p<\infty$:

- $n\left(L_{p}[0,1]\right)=n\left(\ell_{p}\right)=\lim _{m \rightarrow \infty} n\left(\ell_{p}^{(m)}\right)$.
(Ed-Dari, 2005 \& Ed-Dari-Khamsi, 2006)
- $n\left(\ell_{p}^{(2)}\right)$?

Numerical index of Banach spaces: some examples (III)

Even more examples

(Numerical index of L_{p}-spaces, $1<p<\infty$:

- $n\left(L_{p}[0,1]\right)=n\left(\ell_{p}\right)=\lim _{m \rightarrow \infty} n\left(\ell_{p}^{(m)}\right)$.
(Ed-Dari, 2005 \& Ed-Dari-Khamsi, 2006)
- $n\left(\ell_{p}^{(2)}\right)$?
- In the real case,

$$
\begin{gathered}
\max \left\{\frac{1}{2^{1 / p}}, \frac{1}{2^{1 / q}}\right\} M_{p} \leqslant n\left(\ell_{p}^{(2)}\right) \leqslant M_{p} \\
\text { and } M_{p}=v\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\max _{t \in[0,1]} \frac{\left|t^{p-1}-t\right|}{1+t^{p}} \\
(\text { M.-Merí, 2009) }
\end{gathered}
$$

Numerical index of Banach spaces: some examples (III)

Even more examples

(Numerical index of L_{p}-spaces, $1<p<\infty$:

- $n\left(L_{p}[0,1]\right)=n\left(\ell_{p}\right)=\lim _{m \rightarrow \infty} n\left(\ell_{p}^{(m)}\right)$.
(Ed-Dari, 2005 \& Ed-Dari-Khamsi, 2006)
- $n\left(\ell_{p}^{(2)}\right)$?
- In the real case,

$$
\left.\begin{array}{l}
\qquad \max \left\{\frac{1}{2^{1 / p}}, \frac{1}{2^{1 / q}}\right\} M_{p} \leqslant n\left(\ell_{p}^{(2)}\right) \leqslant M_{p} \\
\text { and } M_{p}=v\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\max _{t \in[0,1]} \frac{\left|t^{p-1}-t\right|}{1+t^{p}} \\
\quad(\mathrm{M} .- \text { Merí, 2009) }
\end{array}\right] \begin{aligned}
& \text { - In the real case, } n\left(L_{p}(\mu)\right) \geqslant \frac{M_{p}}{8 \mathrm{e}} .
\end{aligned}
$$

(M.-Merí-Popov, 2009)

Numerical index of Banach spaces: some examples (III)

Even more examples

(1) Numerical index of L_{p}-spaces, $1<p<\infty$:

- $n\left(L_{p}[0,1]\right)=n\left(\ell_{p}\right)=\lim _{m \rightarrow \infty} n\left(\ell_{p}^{(m)}\right)$.
(Ed-Dari, 2005 \& Ed-Dari-Khamsi, 2006)
- $n\left(\ell_{p}^{(2)}\right)$?
- In the real case,

$$
\begin{gathered}
\max \left\{\frac{1}{2^{1 / p}}, \frac{1}{2^{1 / q}}\right\} M_{p} \leqslant n\left(\ell_{p}^{(2)}\right) \leqslant M_{p} \\
\text { and } M_{p}=v\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\max _{t \in[0,1]} \frac{\left|t^{p-1}-t\right|}{1+t^{p}} \\
(\text { M.-Merí, 2009) }
\end{gathered}
$$

- In the real case, $n\left(L_{p}(\mu)\right) \geqslant \frac{M_{p}}{8 \mathrm{e}}$.
- In particular, $n\left(L_{p}(\mu)\right)>0$ for $p \neq 2$.
(M.-Merí-Popov, 2009)

Numerical index: open problems on computing

Numerical index: open problems on computing

Open problems

(1) Compute $n\left(L_{p}[0,1]\right)$ for $1<p<\infty, p \neq 2$.

Numerical index: open problems on computing

Open problems

(1) Compute $n\left(L_{p}[0,1]\right)$ for $1<p<\infty, p \neq 2$.
(2) Is $n\left(\ell_{p}^{(2)}\right)=M_{p}$ (real case) ?

Numerical index: open problems on computing

Open problems

(1) Compute $n\left(L_{p}[0,1]\right)$ for $1<p<\infty, p \neq 2$.
(2) Is $n\left(\ell_{p}^{(2)}\right)=M_{p}$ (real case) ?
(3) Is $n\left(\ell_{p}^{(2)}\right)=\left(p^{\frac{1}{p}} q^{\frac{1}{q}}\right)^{-1}$ (complex case) ?

Numerical index: open problems on computing

Open problems

(1) Compute $n\left(L_{p}[0,1]\right)$ for $1<p<\infty, p \neq 2$.
(2) Is $n\left(\ell_{p}^{(2)}\right)=M_{p}$ (real case) ?
(3) Is $n\left(\ell_{p}^{(2)}\right)=\left(p^{\frac{1}{p}} q^{\frac{1}{q}}\right)^{-1}$ (complex case) ?
(9) Compute the numerical index of real C^{*}-algebras.

Numerical index: open problems on computing

Open problems

(1) Compute $n\left(L_{p}[0,1]\right)$ for $1<p<\infty, p \neq 2$.
(2) Is $n\left(\ell_{p}^{(2)}\right)=M_{p}$ (real case) ?
(3) Is $n\left(\ell_{p}^{(2)}\right)=\left(p^{\frac{1}{p}} q^{\frac{1}{q}}\right)^{-1}$ (complex case) ?
(1) Compute the numerical index of real C^{*}-algebras.
(6) Compute the numerical index of more classical Banach spaces: $C^{m}[0,1]$, Lip (K), Lorentz spaces, Orlicz spaces. . .

Stability properties

Direct sums of Banach spaces (M.-Payá, 2000)

$$
n\left(\left[\oplus_{\lambda \in \Lambda} X_{\lambda}\right]_{c_{0}}\right)=n\left(\left[\oplus_{\lambda \in \Lambda} X_{\lambda}\right]_{\ell_{1}}\right)=n\left(\left[\oplus_{\lambda \in \Lambda} X_{\lambda}\right]_{\ell_{\infty}}\right)=\inf _{\lambda} n\left(X_{\lambda}\right)
$$

Stability properties

Direct sums of Banach spaces (M.-Payá, 2000)

$$
n\left(\left[\oplus_{\lambda \in \Lambda} X_{\lambda}\right]_{c_{0}}\right)=n\left(\left[\oplus_{\lambda \in \Lambda} X_{\lambda}\right]_{\ell_{1}}\right)=n\left(\left[\oplus_{\lambda \in \Lambda} X_{\lambda}\right]_{\ell_{\infty}}\right)=\inf _{\lambda} n\left(X_{\lambda}\right)
$$

Consequences

- There is a real Banach space X such that

$$
v(T)>0 \quad \text { when } T \neq 0
$$

but $n(X)=0$
(i.e. $v(\cdot)$ is a norm on $L(X)$ which is not equivalent to the operator norm).

Stability properties

Direct sums of Banach spaces (M.-Payá, 2000)

$n\left(\left[\oplus_{\lambda \in \Lambda} X_{\lambda}\right]_{c_{0}}\right)=n\left(\left[\oplus_{\lambda \in \Lambda} X_{\lambda}\right]_{\ell_{1}}\right)=n\left(\left[\oplus_{\lambda \in \Lambda} X_{\lambda}\right]_{\ell_{\infty}}\right)=\inf _{\lambda} n\left(X_{\lambda}\right)$

Consequences

- There is a real Banach space X such that

$$
v(T)>0 \quad \text { when } T \neq 0
$$

but $n(X)=0$
(i.e. $v(\cdot)$ is a norm on $L(X)$ which is not equivalent to the operator norm).

- For every $t \in[0,1]$, there exist a real X_{t} isomorphic to c_{0} (or ℓ_{1} or ℓ_{∞}) with $n\left(X_{t}\right)=t$.
- For every $t \in\left[\mathrm{e}^{-1}, 1\right]$, there exist a complex Y_{t} isomorphic to c_{0} (or ℓ_{1} or $\left.\ell_{\infty}\right)$ with $n\left(Y_{t}\right)=t$.

Stability properties (II)

Vector-valued function spaces (López-M.-Merí-Payá-Villena, 2000's)

E Banach space, μ positive σ-finite measure, K compact space. Then

$$
n(C(K, E))=n\left(C_{w}(K, E)\right)=n\left(L_{1}(\mu, E)\right)=n\left(L_{\infty}(\mu, E)\right)=n(E)
$$

and $n\left(C_{w^{*}}\left(K, E^{*}\right)\right) \leqslant n(E)$

Stability properties (II)

Vector-valued function spaces (López-M.-Merí-Payá-Villena, 2000's)

E Banach space, μ positive σ-finite measure, K compact space. Then

$$
n(C(K, E))=n\left(C_{w}(K, E)\right)=n\left(L_{1}(\mu, E)\right)=n\left(L_{\infty}(\mu, E)\right)=n(E)
$$

and $n\left(C_{w^{*}}\left(K, E^{*}\right)\right) \leqslant n(E)$

Tensor products (Lima, 1980)

There is no general formula for $n\left(X \widetilde{\otimes}_{\mathcal{\varepsilon}} Y\right)$ nor for $n\left(X \widetilde{\otimes}_{\pi} Y\right)$:

- $n\left(\ell_{1}^{(4)} \widetilde{\otimes}_{\pi} \ell_{1}^{(4)}\right)=n\left(\ell_{\infty}^{(4)} \widetilde{\otimes}_{\varepsilon} \ell_{\infty}^{(4)}\right)=1$.
- $n\left(\ell_{1}^{(4)} \widetilde{\otimes}_{\varepsilon} \ell_{1}^{(4)}\right)=n\left(\ell_{\infty}^{(4)} \widetilde{\otimes}_{\pi} \ell_{\infty}^{(4)}\right)<1$.

Stability properties (II)

Vector-valued function spaces (López-M.-Merí-Payá-Villena, 2000's)

E Banach space, μ positive σ-finite measure, K compact space. Then

$$
n(C(K, E))=n\left(C_{w}(K, E)\right)=n\left(L_{1}(\mu, E)\right)=n\left(L_{\infty}(\mu, E)\right)=n(E)
$$

and $n\left(C_{w^{*}}\left(K, E^{*}\right)\right) \leqslant n(E)$

Tensor products (Lima, 1980)

There is no general formula for $n\left(X \widetilde{\otimes}_{\varepsilon} Y\right)$ nor for $n\left(X \widetilde{\otimes}_{\pi} Y\right)$:

- $n\left(\ell_{1}^{(4)} \widetilde{\otimes}_{\pi} \ell_{1}^{(4)}\right)=n\left(\ell_{\infty}^{(4)} \widetilde{\otimes}_{\varepsilon} \ell_{\infty}^{(4)}\right)=1$
- $n\left(\ell_{1}^{(4)} \widetilde{\otimes}_{\varepsilon} \ell_{1}^{(4)}\right)=n\left(\ell_{\infty}^{(4)} \widetilde{\otimes}_{\pi} \ell_{\infty}^{(4)}\right)<1$.

L_{p}-spaces (Askoy-Ed-Dari-Khamsi, 2007)

$$
n\left(L_{p}([0,1], E)\right)=n\left(\ell_{p}(E)\right)=\lim _{m \rightarrow \infty} n\left(E \oplus_{p}{ }^{m} \cdot \oplus_{p} E\right)
$$

Numerical index Duality

Numerical index and duality

Numerical index and duality

Proposition

X Banach space, $T \in L(X)$. Then

- $\sup \operatorname{Re} V(T)=\lim _{\alpha \rightarrow 0^{+}} \frac{\|\operatorname{Id}+\alpha T\|-1}{\alpha}$.
(Duncan-McGregor-Pryce-White, 1970)

Numerical index and duality

Proposition

X Banach space, $T \in L(X)$. Then

- $\sup \operatorname{Re} V(T)=\lim _{\alpha \rightarrow 0^{+}} \frac{\|\operatorname{Id}+\alpha T\|-1}{\alpha}$.
- Then, $v\left(T^{*}\right)=v(T)$ for every $T \in L(X)$.
(Duncan-McGregor-Pryce-White, 1970)

Numerical index and duality

Proposition

X Banach space, $T \in L(X)$. Then

- $\sup \operatorname{Re} V(T)=\lim _{\alpha \rightarrow 0^{+}} \frac{\|\operatorname{Id}+\alpha T\|-1}{\alpha}$.
- Then, $v\left(T^{*}\right)=v(T)$ for every $T \in L(X)$.
- Therefore, $n\left(X^{*}\right) \leqslant n(X)$.
(Duncan-McGregor-Pryce-White, 1970)

Numerical index and duality

Proposition

X Banach space, $T \in L(X)$. Then

- $\sup \operatorname{Re} V(T)=\lim _{\alpha \rightarrow 0^{+}} \frac{\|\operatorname{Id}+\alpha T\|-1}{\alpha}$.
- Then, $v\left(T^{*}\right)=v(T)$ for every $T \in L(X)$.
- Therefore, $n\left(X^{*}\right) \leqslant n(X)$.
(Duncan-McGregor-Pryce-White, 1970)

Question (From the 1970's)

Is $n(X)=n\left(X^{*}\right)$?

Numerical index and duality

Proposition

X Banach space, $T \in L(X)$. Then

- $\sup \operatorname{Re} V(T)=\lim _{\alpha \rightarrow 0^{+}} \frac{\|\operatorname{Id}+\alpha T\|-1}{\alpha}$.
- Then, $v\left(T^{*}\right)=v(T)$ for every $T \in L(X)$.
- Therefore, $n\left(X^{*}\right) \leqslant n(X)$.
(Duncan-McGregor-Pryce-White, 1970)

Question (From the 1970's)

Is $n(X)=n\left(X^{*}\right)$?

Negative answer (Boyko-Kadets-M.-Werner, 2007)

Consider the space

$$
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\} .
$$

Then, $n(X)=1$ but $n\left(X^{*}\right)<1$.

Numerical index and duality. Proof of main example

$$
\begin{array}{r}
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}: \\
n(X)=1 \quad \text { but } \quad n\left(X^{*}\right)<1 .
\end{array}
$$

Numerical index and duality. Proof of main example

$$
\begin{array}{r}
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}: \\
n(X)=1 \quad \text { but } \quad n\left(X^{*}\right)<1 .
\end{array}
$$

Proof

Numerical index and duality. Proof of main example

$$
\begin{array}{r}
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}: \\
n(X)=1 \quad \text { but } \quad n\left(X^{*}\right)<1 .
\end{array}
$$

Proof

- $c^{*}=\ell_{1} \oplus_{1} \mathbb{K} \lim \Longrightarrow X^{*}=\left[c^{*} \oplus_{1} c^{*} \oplus_{1} c^{*}\right] /(\lim , \lim , \lim)$.

Numerical index and duality. Proof of main example

$$
\begin{array}{r}
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}: \\
n(X)=1 \quad \text { but } \quad n\left(X^{*}\right)<1 .
\end{array}
$$

Proof

- $c^{*}=\ell_{1} \oplus_{1} \mathbb{K} \lim \Longrightarrow X^{*}=\left[c^{*} \oplus_{1} c^{*} \oplus_{1} c^{*}\right] /(\lim , \lim , \lim)$.
- Then, writing $Z=\ell_{1}^{(3)} /(1,1,1)$, we can identify

$$
X^{*} \equiv \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} Z, \quad X^{* *} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^{*}
$$

Numerical index and duality. Proof of main example

$$
\begin{array}{r}
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}: \\
n(X)=1 \quad \text { but } \quad n\left(X^{*}\right)<1 .
\end{array}
$$

Proof

- $c^{*}=\ell_{1} \oplus_{1} \mathbb{K} \lim \Longrightarrow X^{*}=\left[c^{*} \oplus_{1} c^{*} \oplus_{1} c^{*}\right] /(\lim , \lim , \lim)$.
- Then, writing $Z=\ell_{1}^{(3)} /(1,1,1)$, we can identify

$$
X^{*} \equiv \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} Z, \quad X^{* *} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^{*}
$$

- $A=\left\{\left(e_{n}, 0,0,0\right): n \in \mathbb{N}\right\} \cup\left\{\left(0, e_{n}, 0,0\right): n \in \mathbb{N}\right\} \cup\left\{\left(0,0, e_{n}, 0\right): n \in \mathbb{N}\right\} \subset X^{*}$.

Numerical index and duality. Proof of main example

$$
\begin{array}{r}
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}: \\
n(X)=1 \quad \text { but } \quad n\left(X^{*}\right)<1 .
\end{array}
$$

Proof

- $c^{*}=\ell_{1} \oplus_{1} \mathbb{K} \lim \Longrightarrow X^{*}=\left[c^{*} \oplus_{1} c^{*} \oplus_{1} c^{*}\right] /(\lim , \lim , \lim)$.
- Then, writing $Z=\ell_{1}^{(3)} /(1,1,1)$, we can identify

$$
X^{*} \equiv \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} Z, \quad X^{* *} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^{*}
$$

- $A=\left\{\left(e_{n}, 0,0,0\right): n \in \mathbb{N}\right\} \cup\left\{\left(0, e_{n}, 0,0\right): n \in \mathbb{N}\right\} \cup\left\{\left(0,0, e_{n}, 0\right): n \in \mathbb{N}\right\} \subset X^{*}$.
- Then $B_{X^{*}}=\overline{\operatorname{aco}^{w^{*}}}(A)$ and

$$
\left|x^{* *}(a)\right|=1 \quad \forall x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right) \forall a \in A .
$$

Numerical index and duality. Proof of main example

$$
\begin{array}{r}
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}: \\
n(X)=1 \quad \text { but } \quad n\left(X^{*}\right)<1 .
\end{array}
$$

Proof

- $c^{*}=\ell_{1} \oplus_{1} \mathbb{K} \lim \Longrightarrow X^{*}=\left[c^{*} \oplus_{1} c^{*} \oplus_{1} c^{*}\right] /(\lim , \lim , \lim)$.
- Then, writing $Z=\ell_{1}^{(3)} /(1,1,1)$, we can identify

$$
X^{*} \equiv \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} Z, \quad X^{* *} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^{*}
$$

- $A=\left\{\left(e_{n}, 0,0,0\right): n \in \mathbb{N}\right\} \cup\left\{\left(0, e_{n}, 0,0\right): n \in \mathbb{N}\right\} \cup\left\{\left(0,0, e_{n}, 0\right): n \in \mathbb{N}\right\} \subset X^{*}$.
- Then $B_{X^{*}}=\overline{\operatorname{aco}^{w}}(A)$ and

$$
\left|x^{* *}(a)\right|=1 \quad \forall x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right) \forall a \in A .
$$

- Fix $T \in L(X), \varepsilon>0$. Find $a \in A$ with $\left\|T^{*}(a)\right\|>\left\|T^{*}\right\|-\varepsilon$.

Numerical index and duality. Proof of main example

$$
\begin{array}{r}
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}: \\
n(X)=1 \quad \text { but } \quad n\left(X^{*}\right)<1 .
\end{array}
$$

Proof

- $c^{*}=\ell_{1} \oplus_{1} \mathbb{K} \lim \Longrightarrow X^{*}=\left[c^{*} \oplus_{1} c^{*} \oplus_{1} c^{*}\right] /(\lim , \lim , \lim)$.
- Then, writing $Z=\ell_{1}^{(3)} /(1,1,1)$, we can identify

$$
X^{*} \equiv \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} Z, \quad X^{* *} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^{*}
$$

- $A=\left\{\left(e_{n}, 0,0,0\right): n \in \mathbb{N}\right\} \cup\left\{\left(0, e_{n}, 0,0\right): n \in \mathbb{N}\right\} \cup\left\{\left(0,0, e_{n}, 0\right): n \in \mathbb{N}\right\} \subset X^{*}$.
- Then $B_{X^{*}}=\overline{\operatorname{aco}^{w^{*}}}(A)$ and

$$
\left|x^{* *}(a)\right|=1 \quad \forall x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right) \forall a \in A .
$$

- Fix $T \in L(X), \varepsilon>0$. Find $a \in A$ with $\left\|T^{*}(a)\right\|>\left\|T^{*}\right\|-\varepsilon$.
- Then we find $x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$ such that

$$
\left|x^{* *}\left(T^{*}(a)\right)\right|=\left\|T^{*}(a)\right\|>\left\|T^{*}\right\|-\varepsilon .
$$

Numerical index and duality. Proof of main example

$$
\begin{array}{r}
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}: \\
n(X)=1 \quad \text { but } \quad n\left(X^{*}\right)<1 .
\end{array}
$$

Proof

- $c^{*}=\ell_{1} \oplus_{1} \mathbb{K} \lim \Longrightarrow X^{*}=\left[c^{*} \oplus_{1} c^{*} \oplus_{1} c^{*}\right] /(\lim , \lim , \lim)$.
- Then, writing $Z=\ell_{1}^{(3)} /(1,1,1)$, we can identify

$$
X^{*} \equiv \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} Z, \quad X^{* *} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^{*}
$$

- $A=\left\{\left(e_{n}, 0,0,0\right): n \in \mathbb{N}\right\} \cup\left\{\left(0, e_{n}, 0,0\right): n \in \mathbb{N}\right\} \cup\left\{\left(0,0, e_{n}, 0\right): n \in \mathbb{N}\right\} \subset X^{*}$.
- Then $B_{X^{*}}=\overline{\operatorname{aco}^{w^{*}}}(A)$ and

$$
\left|x^{* *}(a)\right|=1 \quad \forall x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right) \forall a \in A .
$$

- Fix $T \in L(X), \varepsilon>0$. Find $a \in A$ with $\left\|T^{*}(a)\right\|>\left\|T^{*}\right\|-\varepsilon$.
- Then we find $x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$ such that

$$
\left|x^{* *}\left(T^{*}(a)\right)\right|=\left\|T^{*}(a)\right\|>\left\|T^{*}\right\|-\varepsilon .
$$

- Since $\left|x^{* *}(a)\right|=1$, this gives that $v\left(T^{*}\right)>\left\|T^{*}\right\|-\varepsilon$, so $v(T)=\|T\|$ and $n(X)=1 . \checkmark$

Numerical index and duality. Proof of main example

$$
\begin{array}{r}
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}: \\
n(X)=1 \quad \text { but } \quad n\left(X^{*}\right)<1 .
\end{array}
$$

Proof

- $c^{*}=\ell_{1} \oplus_{1} \mathbb{K} \lim \Longrightarrow X^{*}=\left[c^{*} \oplus_{1} c^{*} \oplus_{1} c^{*}\right] /(\lim , \lim , \lim)$.
- Then, writing $Z=\ell_{1}^{(3)} /(1,1,1)$, we can identify

$$
X^{*} \equiv \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} Z, \quad X^{* *} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^{*}
$$

- Z is an L-summand of X^{*} so

$$
n\left(X^{*}\right)=n(Z)
$$

Numerical index and duality. Proof of main example

$$
\begin{array}{r}
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}: \\
n(X)=1 \quad \text { but } \quad n\left(X^{*}\right)<1 .
\end{array}
$$

Proof

- $c^{*}=\ell_{1} \oplus_{1} \mathbb{K} \lim \Longrightarrow X^{*}=\left[c^{*} \oplus_{1} c^{*} \oplus_{1} c^{*}\right] /(\lim , \lim , \lim)$.
- Then, writing $Z=\ell_{1}^{(3)} /(1,1,1)$, we can identify

$$
X^{*} \equiv \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} Z, \quad X^{* *} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^{*}
$$

- Z is an L-summand of X^{*} so

$$
n\left(X^{*}\right)=n(Z)
$$

- But $n(Z)<1$! \checkmark

Numerical index and duality. Proof of main example

$$
\begin{array}{r}
X=\left\{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c: \lim x+\lim y+\lim z=0\right\}: \\
n(X)=1 \quad \text { but } \quad n\left(X^{*}\right)<1 .
\end{array}
$$

Proof

- $c^{*}=\ell_{1} \oplus_{1} \mathbb{K} \lim \Longrightarrow X^{*}=\left[c^{*} \oplus_{1} c^{*} \oplus_{1} c^{*}\right] /(\lim , \lim , \lim)$.
- Then, writing $Z=\ell_{1}^{(3)} /(1,1,1)$, we can identify

$$
X^{*} \equiv \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} \ell_{1} \oplus_{1} Z, \quad X^{* *} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^{*}
$$

- Z is an L-summand of X^{*} so

$$
n\left(X^{*}\right)=n(Z)
$$

- But $n(Z)<1$! \checkmark

Figure: B_{Z}

Numerical index and duality (II)

The above example can be squeezed to get more counterexamples.

Numerical index and duality (II)

The above example can be squeezed to get more counterexamples.

Example 1

- Exists X real with $n(X)=1$ and $n\left(X^{*}\right)=0$.
- Exists X complex with $n(X)=1$ and $n\left(X^{*}\right)=1 / e$.

Numerical index and duality (II)

The above example can be squeezed to get more counterexamples.

Example 1

- Exists X real with $n(X)=1$ and $n\left(X^{*}\right)=0$.
- Exists X complex with $n(X)=1$ and $n\left(X^{*}\right)=1 / e$.

Example 2

- Given $t \in] 0,1]$, exists X real with $n(X)=t$ and $n\left(X^{*}\right)=0$.
- Given $t \in] 1 / \mathrm{e}, 1]$, exists X complex with $n(X)=1$ and $n\left(X^{*}\right)=1 / e$.

Numerical index Duality

Numerical index and duality (III)

Numerical index and duality (III)

Some positive partial answers

One has $n(X)=n\left(X^{*}\right)$ when

- X is reflexive (evident).

Numerical index and duality (III)

Some positive partial answers

One has $n(X)=n\left(X^{*}\right)$ when

- X is reflexive (evident).
- X is a C*-algebra or a von Neumann predual (1970's - 2000's).

Numerical index and duality (III)

Some positive partial answers

One has $n(X)=n\left(X^{*}\right)$ when

- X is reflexive (evident).
- X is a C^{*}-algebra or a von Neumann predual (1970's - 2000's).
- X is L-embedded in $X^{* *}$ (M., 2009).

Numerical index and duality (III)

Some positive partial answers

One has $n(X)=n\left(X^{*}\right)$ when

- X is reflexive (evident).
- X is a C*-algebra or a von Neumann predual (1970's - 2000's).
- X is L-embedded in $X^{* *}$ (M., 2009).
- If X has RNP and $n(X)=1$, then $n\left(X^{*}\right)=1$ (M., 2002).

Numerical index and duality (III)

Some positive partial answers

One has $n(X)=n\left(X^{*}\right)$ when

- X is reflexive (evident).
- X is a C^{*}-algebra or a von Neumann predual (1970's - 2000's).
- X is L-embedded in $X^{* *}$ (M., 2009).
- If X has RNP and $n(X)=1$, then $n\left(X^{*}\right)=1$ (M., 2002).
- If X is M-embedded in $X^{* *}$ and $n(X)=1$ $\Longrightarrow n(Y)=1$ for $X \subseteq Y \subseteq X^{* *}$.

Numerical index and duality (III)

Some positive partial answers

One has $n(X)=n\left(X^{*}\right)$ when

- X is reflexive (evident).
- X is a C*-algebra or a von Neumann predual (1970's - 2000's).
- X is L-embedded in $X^{* *}$ (M., 2009).
- If X has RNP and $n(X)=1$, then $n\left(X^{*}\right)=1$ (M., 2002).
- If X is M-embedded in $X^{* *}$ and $n(X)=1$ $\Longrightarrow n(Y)=1$ for $X \subseteq Y \subseteq X^{* *}$.

Example

$$
\begin{aligned}
X= & C_{K\left(\ell_{2}\right)}([0,1] \| \Delta) . \text { Then } n(X)=1 \text { and } \\
& X^{*} \equiv K\left(\ell_{2}\right)^{*} \oplus_{1} C_{0}(K \| \Delta)^{*} \quad \text { and } \quad X^{* *} \equiv L\left(\ell_{2}\right) \oplus_{\infty} C_{0}(K \| \Delta)^{* *} .
\end{aligned}
$$

Therefore, $X^{* *}$ is a C^{*}-algebra, but $n\left(X^{*}\right)=1 / 2<n(X)=1$.

Numerical index Duality

Numerical index and duality: open problems

Numerical index and duality: open problems

Main question

Find isometric or isomorphic properties assuring that $n(X)=n\left(X^{*}\right)$.

Numerical index and duality: open problems

Main question

Find isometric or isomorphic properties assuring that $n(X)=n\left(X^{*}\right)$.

Question 1

If Z has a unique predual X, does $n(X)=n\left(X^{*}\right)$?

Numerical index and duality: open problems

Main question

Find isometric or isomorphic properties assuring that $n(X)=n\left(X^{*}\right)$.

Question 1

If Z has a unique predual X, does $n(X)=n\left(X^{*}\right)$?

Question 2

Z dual space, does there exists a predual X such that $n(X)=n\left(X^{*}\right)$?

Numerical index and duality: open problems

Main question

Find isometric or isomorphic properties assuring that $n(X)=n\left(X^{*}\right)$.

Question 1

If Z has a unique predual X, does $n(X)=n\left(X^{*}\right)$?

Question 2

Z dual space, does there exists a predual X such that $n(X)=n\left(X^{*}\right)$?

Question 4

If X has the RNP, does $n(X)=n\left(X^{*}\right) ?$

Numerical index The isomorphic point of view

The isomorphic point of view

The isomorphic point of view

Renorming and numerical index (Finet-M.-Payá, 2003)
 $(X,\|\cdot\|)$ (separable or reflexive) Banach space. Then

The isomorphic point of view

Renorming and numerical index (Finet-M.-Payá, 2003)

$(X,\|\cdot\|)$ (separable or reflexive) Banach space. Then

- Real case:

$$
[0,1[\subseteq\{n(X,|\cdot|):|\cdot| \simeq\|\cdot\|\}
$$

- Complex case:

$$
\left[\mathrm{e}^{-1}, 1[\subseteq\{n(X,|\cdot|):|\cdot| \simeq\|\cdot\|\}\right.
$$

The isomorphic point of view

Renorming and numerical index (Finet-M.-Payá, 2003)

$(X,\|\cdot\|)$ (separable or reflexive) Banach space. Then

- Real case:

$$
[0,1[\subseteq\{n(X,|\cdot|):|\cdot| \simeq\|\cdot\|\}
$$

- Complex case:

$$
\left[\mathrm{e}^{-1}, 1[\subseteq\{n(X,|\cdot|):|\cdot| \simeq\|\cdot\|\}\right.
$$

Open question

The result is known to be true when X has a long biorthogonal system. Is it true in general ?

The isomorphic point of view

Renorming and numerical index (Finet-M.-Payá, 2003)

$(X,\|\cdot\|)$ (separable or reflexive) Banach space. Then

- Real case:

$$
[0,1[\subseteq\{n(X,|\cdot|):|\cdot| \simeq\|\cdot\|\}
$$

- Complex case:

$$
\left[\mathrm{e}^{-1}, 1[\subseteq\{n(X,|\cdot|):|\cdot| \simeq\|\cdot\|\}\right.
$$

Open question

The result is known to be true when X has a long biorthogonal system. Is it true in general ?

Remark

In some sense, any other value of $n(X)$ but $\mathbf{1}$ is isomorphically trivial.

The isomorphic point of view

Renorming and numerical index (Finet-M.-Payá, 2003)

$(X,\|\cdot\|)$ (separable or reflexive) Banach space. Then

- Real case:

$$
[0,1[\subseteq\{n(X,|\cdot|):|\cdot| \simeq\|\cdot\|\}
$$

- Complex case:

$$
\left[\mathrm{e}^{-1}, 1[\subseteq\{n(X,|\cdot|):|\cdot| \simeq\|\cdot\|\}\right.
$$

Open question

The result is known to be true when X has a long biorthogonal system. Is it true in general ?

Remark

In some sense, any other value of $n(X)$ but $\mathbf{1}$ is isomorphically trivial. \star What about the value $\mathbf{1}$?

Banach spaces with numerical index one

Numerical index 1

Recall that X has numerical index one $(n(X)=1)$ iff

$$
\|T\|=\sup \left\{\left|x^{*}(T x)\right|: x \in S_{X}, x^{*} \in S_{X^{*}}, x^{*}(x)=1\right\}
$$

(i.e. $v(T)=\|T\|$) for every $T \in L(X)$.

Banach spaces with numerical index one

Numerical index 1

Recall that X has numerical index one $(n(X)=1)$ iff

$$
\|T\|=\sup \left\{\left|x^{*}(T x)\right|: x \in S_{X}, x^{*} \in S_{X^{*}}, x^{*}(x)=1\right\}
$$

(i.e. $v(T)=\|T\|$) for every $T \in L(X)$.

Observation

For Hilbert spaces, the above formula is equivalent to

$$
\|T\|=\sup \left\{|\langle T x, x\rangle|: x \in S_{X}\right\}
$$

which is known to be valid for every self-adjoint operator T.

Banach spaces with numerical index one

Numerical index 1

Recall that X has numerical index one ($n(X)=1$) iff

$$
\|T\|=\sup \left\{\left|x^{*}(T x)\right|: x \in S_{X}, x^{*} \in S_{X^{*}}, x^{*}(x)=1\right\}
$$

(i.e. $v(T)=\|T\|$) for every $T \in L(X)$.

Observation

For Hilbert spaces, the above formula is equivalent to

$$
\|T\|=\sup \left\{|\langle T x, x\rangle|: x \in S_{X}\right\}
$$

which is known to be valid for every self-adjoint operator T.

Examples

$C(K), L_{1}(\mu), A(\mathbb{D}), H^{\infty}$, finite-codimensional subspaces of $C[0,1] \ldots$

Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1 ?

Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1 ?

Negative answer (López-M.-Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1 .

Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1 ?

Negative answer (López-M.-Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1 . Concretely:

- If X is real, reflexive, and $\operatorname{dim}(X)=\infty$, then $n(X)<1$.

Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1 ?

Negative answer (López-M.-Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1 . Concretely:

- If X is real, reflexive, and $\operatorname{dim}(X)=\infty$, then $n(X)<1$.
- Actually, if X is real, $X^{* *} / X$ separable and $n(X)=1$, then X is finite-dimensional.

Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1 ?

Negative answer (López-M.-Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1 . Concretely:

- If X is real, reflexive, and $\operatorname{dim}(X)=\infty$, then $n(X)<1$.
- Actually, if X is real, $X^{* *} / X$ separable and $n(X)=1$, then X is finite-dimensional.
- Moreover, if X is real, RNP, $\operatorname{dim}(X)=\infty$, and $n(X)=1$, then $X \supset \ell_{1}$.

Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1 ?

Negative answer (López-M.-Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1 . Concretely:

- If X is real, reflexive, and $\operatorname{dim}(X)=\infty$, then $n(X)<1$.
- Actually, if X is real, $X^{* *} / X$ separable and $n(X)=1$, then X is finite-dimensional.
- Moreover, if X is real, RNP, $\operatorname{dim}(X)=\infty$, and $n(X)=1$, then $X \supset \ell_{1}$.

> A very recent result (Avilés-Kadets-M.-Merí-Shepelska)
> If X is real, $\operatorname{dim}(X)=\infty$ and $n(X)=1$, then $X^{*} \supset \ell_{1}$.

More details on this later on.

Numerical index Banach spaces with numerical index one
Proving the 1999 results (I)

Proving the 1999 results (I)

Lemma
X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.

Proving the 1999 results (I)

```
Lemma
    \(X\) Banach space, \(n(X)=1\)
    \(\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1\) for all \(x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)\) and all denting point \(x_{0}\) of \(B_{X}\).
```

Proof:

Proving the 1999 results (I)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.
Proof:

- Fix $\varepsilon>0$. AS x_{0} denting point, $\exists y^{*} \in S_{X^{*}}$ and $\alpha>0$ such that

$$
\left\|z-x_{0}\right\|<\varepsilon \quad \text { whenever } z \in B_{X^{*}} \text { satisfies } \operatorname{Re} y^{*}(z)>1-\alpha
$$

Proving the 1999 results (I)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.
Proof:

- Fix $\varepsilon>0$. AS x_{0} denting point, $\exists y^{*} \in S_{X^{*}}$ and $\alpha>0$ such that

$$
\left\|z-x_{0}\right\|<\varepsilon \quad \text { whenever } z \in B_{X^{*}} \text { satisfies } \operatorname{Re} y^{*}(z)>1-\alpha
$$

- (Choquet's lemma): $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \exists y \in S_{X}$ and $\beta>0$ such that

$$
\left|z^{*}\left(x_{0}\right)-x_{0}^{*}\left(x_{0}\right)\right|<\varepsilon \quad \text { whenever } z^{*} \in B_{X^{*}} \text { satisfies } \operatorname{Re} z^{*}(y)>1-\beta
$$

Proving the 1999 results (I)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.
Proof:

- Fix $\varepsilon>0$. AS x_{0} denting point, $\exists y^{*} \in S_{X^{*}}$ and $\alpha>0$ such that

$$
\left\|z-x_{0}\right\|<\varepsilon \quad \text { whenever } z \in B_{X^{*}} \text { satisfies } \operatorname{Re} y^{*}(z)>1-\alpha
$$

- (Choquet's lemma): $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \exists y \in S_{X}$ and $\beta>0$ such that

$$
\left|z^{*}\left(x_{0}\right)-x_{0}^{*}\left(x_{0}\right)\right|<\varepsilon \quad \text { whenever } z^{*} \in B_{X^{*}} \text { satisfies } \operatorname{Re} z^{*}(y)>1-\beta
$$

- Let $T=y^{*} \otimes y \in L(X) .\|T\|=1 \Longrightarrow v(T)=1$.

Proving the 1999 results (I)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.
Proof:

- Fix $\varepsilon>0$. AS x_{0} denting point, $\exists y^{*} \in S_{X^{*}}$ and $\alpha>0$ such that

$$
\left\|z-x_{0}\right\|<\varepsilon \quad \text { whenever } z \in B_{X^{*}} \text { satisfies } \operatorname{Re} y^{*}(z)>1-\alpha
$$

- (Choquet's lemma): $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \exists y \in S_{X}$ and $\beta>0$ such that

$$
\left|z^{*}\left(x_{0}\right)-x_{0}^{*}\left(x_{0}\right)\right|<\varepsilon \quad \text { whenever } z^{*} \in B_{X^{*}} \text { satisfies } \operatorname{Re} z^{*}(y)>1-\beta
$$

- Let $T=y^{*} \otimes y \in L(X) .\|T\|=1 \Longrightarrow v(T)=1$.
- We may find $x \in S_{X}, x^{*} \in S_{X^{*}}$, such that

$$
x^{*}(x)=1 \quad \text { and } \quad\left|x^{*}(T x)\right|=\left|y^{*}(x)\right|\left|x^{*}(y)\right|>1-\min \{\alpha, \beta\}
$$

Proving the 1999 results (I)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.
Proof:

- Fix $\varepsilon>0$. AS x_{0} denting point, $\exists y^{*} \in S_{X^{*}}$ and $\alpha>0$ such that

$$
\left\|z-x_{0}\right\|<\varepsilon \quad \text { whenever } z \in B_{X^{*}} \text { satisfies } \operatorname{Re} y^{*}(z)>1-\alpha
$$

- (Choquet's lemma): $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \exists y \in S_{X}$ and $\beta>0$ such that

$$
\left|z^{*}\left(x_{0}\right)-x_{0}^{*}\left(x_{0}\right)\right|<\varepsilon \quad \text { whenever } z^{*} \in B_{X^{*}} \text { satisfies } \operatorname{Re} z^{*}(y)>1-\beta
$$

- Let $T=y^{*} \otimes y \in L(X) .\|T\|=1 \Longrightarrow v(T)=1$.
- We may find $x \in S_{X}, x^{*} \in S_{X^{*}}$, such that

$$
x^{*}(x)=1 \quad \text { and } \quad\left|x^{*}(T x)\right|=\left|y^{*}(x)\right|\left|x^{*}(y)\right|>1-\min \{\alpha, \beta\}
$$

- By choosing suitable $s, t \in \mathbb{T}$ we have

$$
\operatorname{Re} y^{*}(s x)=\left|y^{*}(x)\right|>1-\alpha \quad \& \quad \operatorname{Re} t x^{*}(y)=\left|x^{*}(y)\right|>1-\beta
$$

Proving the 1999 results (I)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.
Proof:

- Fix $\varepsilon>0$. AS x_{0} denting point, $\exists y^{*} \in S_{X^{*}}$ and $\alpha>0$ such that

$$
\left\|z-x_{0}\right\|<\varepsilon \quad \text { whenever } z \in B_{X^{*}} \text { satisfies } \operatorname{Re} y^{*}(z)>1-\alpha
$$

- (Choquet's lemma): $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \exists y \in S_{X}$ and $\beta>0$ such that

$$
\left|z^{*}\left(x_{0}\right)-x_{0}^{*}\left(x_{0}\right)\right|<\varepsilon \quad \text { whenever } z^{*} \in B_{X^{*}} \text { satisfies } \operatorname{Re} z^{*}(y)>1-\beta
$$

- Let $T=y^{*} \otimes y \in L(X) .\|T\|=1 \Longrightarrow v(T)=1$.
- We may find $x \in S_{X}, x^{*} \in S_{X^{*}}$, such that

$$
x^{*}(x)=1 \quad \text { and } \quad\left|x^{*}(T x)\right|=\left|y^{*}(x)\right|\left|x^{*}(y)\right|>1-\min \{\alpha, \beta\}
$$

- By choosing suitable $s, t \in \mathbb{T}$ we have

$$
\operatorname{Re} y^{*}(s x)=\left|y^{*}(x)\right|>1-\alpha \quad \& \quad \operatorname{Re} t x^{*}(y)=\left|x^{*}(y)\right|>1-\beta
$$

- It follows that $\left\|s x-x_{0}\right\|<\varepsilon$ and $\left|t x^{*}\left(x_{0}\right)-x_{0}^{*}\left(x_{0}\right)\right|<\varepsilon$,

Proving the 1999 results (I)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.
Proof:

- Fix $\varepsilon>0$. AS x_{0} denting point, $\exists y^{*} \in S_{X^{*}}$ and $\alpha>0$ such that

$$
\left\|z-x_{0}\right\|<\varepsilon \quad \text { whenever } z \in B_{X^{*}} \text { satisfies } \operatorname{Re} y^{*}(z)>1-\alpha \text {. }
$$

- (Choquet's lemma): $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \exists y \in S_{X}$ and $\beta>0$ such that

$$
\left|z^{*}\left(x_{0}\right)-x_{0}^{*}\left(x_{0}\right)\right|<\varepsilon \quad \text { whenever } z^{*} \in B_{X^{*}} \text { satisfies } \operatorname{Re} z^{*}(y)>1-\beta \text {. }
$$

- Let $T=y^{*} \otimes y \in L(X) .\|T\|=1 \Longrightarrow v(T)=1$.
- We may find $x \in S_{X}, x^{*} \in S_{X^{*}}$, such that

$$
x^{*}(x)=1 \quad \text { and } \quad\left|x^{*}(T x)\right|=\left|y^{*}(x)\right|\left|x^{*}(y)\right|>1-\min \{\alpha, \beta\} .
$$

- By choosing suitable $s, t \in \mathbb{T}$ we have

$$
\operatorname{Re} y^{*}(s x)=\left|y^{*}(x)\right|>1-\alpha \quad \& \quad \operatorname{Re} t x^{*}(y)=\left|x^{*}(y)\right|>1-\beta .
$$

- It follows that $\left\|s x-x_{0}\right\|<\varepsilon$ and $\left|t x^{*}\left(x_{0}\right)-x_{0}^{*}\left(x_{0}\right)\right|<\varepsilon$, and so

$$
\begin{aligned}
1-\left|x_{0}^{*}\left(x_{0}\right)\right| & \leqslant\left|t x^{*}(s x)-x_{0}^{*}\left(x_{0}\right)\right| \leqslant \\
& \leqslant\left|t x^{*}(s x)-t x^{*}\left(x_{0}\right)\right|+\left|t x^{*}\left(x_{0}\right)-x_{0}^{*}\left(x_{0}\right)\right|<2 \varepsilon . \checkmark
\end{aligned}
$$

Numerical index Banach spaces with numerical index one

Proving the 1999 results (II)

Proving the 1999 results (II)

Proposition

X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Proving the 1999 results (II)

Proposition
X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Proof:

Proving the 1999 results (II)

Proposition

X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Proof:

- $X \supseteq \ell_{1} \checkmark$

Proving the 1999 results (II)

Proposition
X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Proof:

- $X \supseteq \ell_{1} \checkmark$
- (Rosenthal ℓ_{1}-theorem): Otherwise, $\exists\left\{a_{n}\right\} \subseteq A$ non-trivial weak Cauchy.

Proving the 1999 results (II)

Proposition
 X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Proof:

- $X \supseteq \ell_{1} \checkmark$
- (Rosenthal ℓ_{1}-theorem): Otherwise, $\exists\left\{a_{n}\right\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\left\{a_{n}: n \in \mathbb{N}\right\}$.

Proving the 1999 results (II)

Proposition
 X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Proof:

- $X \supseteq \ell_{1} \checkmark$
- (Rosenthal ℓ_{1}-theorem): Otherwise, $\exists\left\{a_{n}\right\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\left\{a_{n}: n \in \mathbb{N}\right\}$.
- $\left\|a_{n}-a_{m}\right\|=2$ if $n \neq m \Longrightarrow \operatorname{dim}(Y)=\infty$.

Proving the 1999 results (II)

Proposition
 X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Proof:

- $X \supseteq \ell_{1} \checkmark$
- (Rosenthal ℓ_{1}-theorem): Otherwise, $\exists\left\{a_{n}\right\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\left\{a_{n}: n \in \mathbb{N}\right\}$.
- $\left\|a_{n}-a_{m}\right\|=2$ if $n \neq m \Longrightarrow \operatorname{dim}(Y)=\infty$.
- (Krein-Milman theorem): every $y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right)$ has an extension which belongs to ext $\left(B_{X^{*}}\right)$.

Proving the 1999 results (II)

Proposition
 X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$.
 $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Proof:

- $X \supseteq \ell_{1} \checkmark$
- (Rosenthal ℓ_{1}-theorem): Otherwise, $\exists\left\{a_{n}\right\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\left\{a_{n}: n \in \mathbb{N}\right\}$.
- $\left\|a_{n}-a_{m}\right\|=2$ if $n \neq m \Longrightarrow \operatorname{dim}(Y)=\infty$.
- (Krein-Milman theorem): every $y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right)$ has an extension which belongs to $\operatorname{ext}\left(B_{X^{*}}\right)$.
- So, $\left|y^{*}\left(a_{n}\right)\right|=1 \forall y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right), \forall n \in \mathbb{N}$.

Proving the 1999 results (II)

Proposition
 X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$.
 $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Proof:

- $X \supseteq \ell_{1} \checkmark$
- (Rosenthal ℓ_{1}-theorem): Otherwise, $\exists\left\{a_{n}\right\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\left\{a_{n}: n \in \mathbb{N}\right\}$.
- $\left\|a_{n}-a_{m}\right\|=2$ if $n \neq m \Longrightarrow \operatorname{dim}(Y)=\infty$.
- (Krein-Milman theorem): every $y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right)$ has an extension which belongs to $\operatorname{ext}\left(B_{X^{*}}\right)$.
- So, $\left|y^{*}\left(a_{n}\right)\right|=1 \forall y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right), \forall n \in \mathbb{N}$.
- $\left\{a_{n}\right\}$ weak Cauchy $\Longrightarrow\left\{y^{*}\left(a_{n}\right)\right\}$ is eventually 1 or -1 .

Proving the 1999 results (II)

Proposition
 X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$.
 $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Proof:

- $X \supseteq \ell_{1} \checkmark$
- (Rosenthal ℓ_{1}-theorem): Otherwise, $\exists\left\{a_{n}\right\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\left\{a_{n}: n \in \mathbb{N}\right\}$.
- $\left\|a_{n}-a_{m}\right\|=2$ if $n \neq m \Longrightarrow \operatorname{dim}(Y)=\infty$.
- (Krein-Milman theorem): every $y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right)$ has an extension which belongs to $\operatorname{ext}\left(B_{X^{*}}\right)$.
- So, $\left|y^{*}\left(a_{n}\right)\right|=1 \forall y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right), \forall n \in \mathbb{N}$.
- $\left\{a_{n}\right\}$ weak Cauchy $\Longrightarrow\left\{y^{*}\left(a_{n}\right)\right\}$ is eventually 1 or -1 .
- Then $\operatorname{ext}\left(B_{Y^{*}}\right)=\bigcup_{k \in \mathbb{N}}\left(E_{k} \cup-E_{k}\right)$ where

$$
E_{k}=\left\{y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right): y^{*}\left(a_{n}\right)=1 \text { for } n \geqslant k\right\}
$$

Proving the 1999 results (II)

Proposition
 X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$.
 $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Proof:

- $X \supseteq \ell_{1} \checkmark$
- (Rosenthal ℓ_{1}-theorem): Otherwise, $\exists\left\{a_{n}\right\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\left\{a_{n}: n \in \mathbb{N}\right\}$.
- $\left\|a_{n}-a_{m}\right\|=2$ if $n \neq m \Longrightarrow \operatorname{dim}(Y)=\infty$.
- (Krein-Milman theorem): every $y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right)$ has an extension which belongs to $\operatorname{ext}\left(B_{X^{*}}\right)$.
- So, $\left|y^{*}\left(a_{n}\right)\right|=1 \forall y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right), \forall n \in \mathbb{N}$.
- $\left\{a_{n}\right\}$ weak Cauchy $\Longrightarrow\left\{y^{*}\left(a_{n}\right)\right\}$ is eventually 1 or -1 .
- Then $\operatorname{ext}\left(B_{Y^{*}}\right)=\bigcup_{k \in \mathbb{N}}\left(E_{k} \cup-E_{k}\right)$ where

$$
E_{k}=\left\{y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right): y^{*}\left(a_{n}\right)=1 \text { for } n \geqslant k\right\}
$$

- $\left\{a_{n}\right\}$ separates points of $Y^{*} \Longrightarrow E_{k}$ finite, so $\operatorname{ext}\left(B_{Y^{*}}\right)$ countable.

Proving the 1999 results (II)

Proposition

X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$.
$\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.
Proof:

- $X \supseteq \ell_{1} \checkmark$
- (Rosenthal ℓ_{1}-theorem): Otherwise, $\exists\left\{a_{n}\right\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\left\{a_{n}: n \in \mathbb{N}\right\}$.
- $\left\|a_{n}-a_{m}\right\|=2$ if $n \neq m \Longrightarrow \operatorname{dim}(Y)=\infty$.
- (Krein-Milman theorem): every $y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right)$ has an extension which belongs to $\operatorname{ext}\left(B_{X^{*}}\right)$.
- So, $\left|y^{*}\left(a_{n}\right)\right|=1 \forall y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right), \forall n \in \mathbb{N}$.
- $\left\{a_{n}\right\}$ weak Cauchy $\Longrightarrow\left\{y^{*}\left(a_{n}\right)\right\}$ is eventually 1 or -1 .
- Then $\operatorname{ext}\left(B_{Y^{*}}\right)=\bigcup_{k \in \mathbb{N}}\left(E_{k} \cup-E_{k}\right)$ where

$$
E_{k}=\left\{y^{*} \in \operatorname{ext}\left(B_{Y^{*}}\right): y^{*}\left(a_{n}\right)=1 \text { for } n \geqslant k\right\}
$$

- $\left\{a_{n}\right\}$ separates points of $Y^{*} \Longrightarrow E_{k}$ finite, so ext $\left(B_{Y^{*}}\right)$ countable.
- (Fonf): $Y \supseteq c_{0}$. So, $X \supseteq c_{0} \cdot \checkmark$

Proving the 1999 results (III)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.

Proposition

X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Proving the 1999 results (III)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.

Proposition

X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real, RNP, $\operatorname{dim}(X)=\infty$, and $n(X)=1 \Longrightarrow X \supseteq \ell_{1}$.

Proving the 1999 results (III)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.

Proposition

X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real, RNP, $\operatorname{dim}(X)=\infty$, and $n(X)=1 \Longrightarrow X \supseteq \ell_{1}$.
Proof.

Proving the 1999 results (III)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.

Proposition

X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real, RNP, $\operatorname{dim}(X)=\infty$, and $n(X)=1 \Longrightarrow X \supseteq \ell_{1}$.
Proof.

- X RNP, $\operatorname{dim}(X)=\infty \Longrightarrow \exists$ infinitely many denting points of B_{X}.

Proving the 1999 results (III)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.

Proposition

X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real, RNP, $\operatorname{dim}(X)=\infty$, and $n(X)=1 \Longrightarrow X \supseteq \ell_{1}$.
Proof.

- X RNP, $\operatorname{dim}(X)=\infty \Longrightarrow \exists$ infinitely many denting points of B_{X}.
- Therefore, $X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Proving the 1999 results (III)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.

Proposition

X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real, RNP, $\operatorname{dim}(X)=\infty$, and $n(X)=1 \Longrightarrow X \supseteq \ell_{1}$.
Proof.

- X RNP, $\operatorname{dim}(X)=\infty \Longrightarrow \exists$ infinitely many denting points of B_{X}.
- Therefore, $X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.
- If X RNP, then $X \nsupseteq c_{0}$. \checkmark

Proving the 1999 results (III)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.

Proposition

X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real, RNP, $\operatorname{dim}(X)=\infty$, and $n(X)=1 \Longrightarrow X \supseteq \ell_{1}$.

Corollary

X real, $\operatorname{dim}(X)=\infty, n(X)=1$.

- X is not reflexive.
- $X^{* *} / X$ is non-separable.

Proving the 1999 results (III)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.

Proposition

X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real, RNP, $\operatorname{dim}(X)=\infty$, and $n(X)=1 \Longrightarrow X \supseteq \ell_{1}$.

Corollary

X real, $\operatorname{dim}(X)=\infty, n(X)=1$.

- X is not reflexive.
- $X^{* *} / X$ is non-separable.

Proving the 1999 results (III)

Lemma

X Banach space, $n(X)=1$
$\Longrightarrow\left|x_{0}^{*}\left(x_{0}\right)\right|=1$ for all $x_{0}^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$ and all denting point x_{0} of B_{X}.

Proposition

X real, $A \subset S_{X}$ infinite with $\left|x^{*}(a)\right|=1 \forall x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), \forall a \in A$. $\Longrightarrow \quad X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real, RNP, $\operatorname{dim}(X)=\infty$, and $n(X)=1 \Longrightarrow X \supseteq \ell_{1}$.

Corollary

X real, $\operatorname{dim}(X)=\infty, n(X)=1$.

- X is not reflexive.
- $X^{* *} / X$ is non-separable.

Numerical index Banach spaces with numerical index one

Isomorphic properties (positive results)

Isomorphic properties (positive results)

A renorming result (Boyko-Kadets-M.-Merí, 2009)
 If X is separable, $X \supset c_{0}$, then X can be renormed to have numerical index 1 .

Isomorphic properties (positive results)

A renorming result (Boyko-Kadets-M.-Merí, 2009)

If X is separable, $X \supset c_{0}$, then X can be renormed to have numerical index 1 .

Consequence

X separable containing $c_{0} \Longrightarrow$ there is $Z \simeq X$ such that

$$
n(Z)=1 \quad \text { and } \quad \begin{cases}n\left(Z^{*}\right)=0 & \text { real case } \\ n\left(Z^{*}\right)=\mathrm{e}^{-1} & \text { complex case }\end{cases}
$$

Isomorphic properties (positive results)

A renorming result (Boyko-Kadets-M.-Merí, 2009)

If X is separable, $X \supset c_{0}$, then X can be renormed to have numerical index 1 .

Consequence

X separable containing $c_{0} \Longrightarrow$ there is $Z \simeq X$ such that

$$
n(Z)=1 \quad \text { and } \quad \begin{cases}n\left(Z^{*}\right)=0 & \text { real case } \\ n\left(Z^{*}\right)=\mathrm{e}^{-1} & \text { complex case }\end{cases}
$$

Open questions

Isomorphic properties (positive results)

A renorming result (Boyko-Kadets-M.-Merí, 2009)

If X is separable, $X \supset c_{0}$, then X can be renormed to have numerical index 1 .

Consequence

X separable containing $c_{0} \Longrightarrow$ there is $Z \simeq X$ such that

$$
n(Z)=1 \quad \text { and } \quad \begin{cases}n\left(Z^{*}\right)=0 & \text { real case } \\ n\left(Z^{*}\right)=\mathrm{e}^{-1} & \text { complex case }\end{cases}
$$

Open questions

- Find isomorphic properties which assures renorming with numerical index 1

Isomorphic properties (positive results)

A renorming result (Boyko-Kadets-M.-Merí, 2009)

If X is separable, $X \supset c_{0}$, then X can be renormed to have numerical index 1 .

Consequence

X separable containing $c_{0} \Longrightarrow$ there is $Z \simeq X$ such that

$$
n(Z)=1 \quad \text { and } \quad \begin{cases}n\left(Z^{*}\right)=0 & \text { real case } \\ n\left(Z^{*}\right)=\mathrm{e}^{-1} & \text { complex case }\end{cases}
$$

Open questions

- Find isomorphic properties which assures renorming with numerical index 1
- In particular, if $X \supset \ell_{1}$, can X be renormed to have numerical index 1 ?

Isomorphic properties (positive results)

A renorming result (Boyko-Kadets-M.-Merí, 2009)

If X is separable, $X \supset c_{0}$, then X can be renormed to have numerical index 1 .

Consequence

X separable containing $c_{0} \Longrightarrow$ there is $Z \simeq X$ such that

$$
n(Z)=1 \quad \text { and } \quad \begin{cases}n\left(Z^{*}\right)=0 & \text { real case } \\ n\left(Z^{*}\right)=\mathrm{e}^{-1} & \text { complex case }\end{cases}
$$

Open questions

- Find isomorphic properties which assures renorming with numerical index 1
- In particular, if $X \supset \ell_{1}$, can X be renormed to have numerical index 1 ?

Negative result (Bourgain-Delbaen, 1980)

There is X such that $X^{*} \simeq \ell_{1}$ and X has the RNP. Then, X can not be renormed with numerical index 1 (in such a case, $X \supset \ell_{1}!$)

Isometric properties: finite-dimensional spaces

Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)
X real or complex finite-dimensional space. TFAE:

- $n(X)=1$.

Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)
X real or complex finite-dimensional space. TFAE:

- $n(X)=1$.
- $\left|x^{*}(x)\right|=1$ for every $x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), x \in \operatorname{ext}\left(B_{X}\right)$.

Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

- $n(X)=1$.
- $\left|x^{*}(x)\right|=1$ for every $x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), x \in \operatorname{ext}\left(B_{X}\right)$.
- $B_{X}=\operatorname{aconv}(F)$ for every maximal convex subset F of S_{X} (X is a CL-space).

Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

- $n(X)=1$.
- $\left|x^{*}(x)\right|=1$ for every $x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), x \in \operatorname{ext}\left(B_{X}\right)$.
- $B_{X}=\operatorname{aconv}(F)$ for every maximal convex subset F of S_{X} (X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1 :

Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

- $n(X)=1$.
- $\left|x^{*}(x)\right|=1$ for every $x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), x \in \operatorname{ext}\left(B_{X}\right)$.
- $B_{X}=\operatorname{aconv}(F)$ for every maximal convex subset F of S_{X} (X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1 :

- The space is not smooth.
- The space is not strictly convex.

Isometric properties: finite-dimensional spaces

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

- $n(X)=1$.
- $\left|x^{*}(x)\right|=1$ for every $x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), x \in \operatorname{ext}\left(B_{X}\right)$.
- $B_{X}=\operatorname{aconv}(F)$ for every maximal convex subset F of S_{X} (X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index 1 :

- The space is not smooth.
- The space is not strictly convex.

Question

What is the situation in the infinite-dimensional case ?

Isometric properties: infinite-dimensional spaces

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)
X infinite-dimensional Banach space, $n(X)=1$. Then

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)
X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)
X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)
X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)
X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Proving that X^{*} is not smooth:

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)
X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Proving that X^{*} is not smooth:

- $\operatorname{dim}(X)>1$, exists $x_{0} \in S_{X}$ and $x_{0}^{*} \in S_{X^{*}}$ such that $x_{0}^{*}\left(x_{0}\right)=0$. Then, consider $T=x_{0}^{*} \otimes x_{0}$ which satisfies $T^{2}=0,\|T\|=1$.

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Proving that X^{*} is not smooth:

- $\operatorname{dim}(X)>1$, exists $x_{0} \in S_{X}$ and $x_{0}^{*} \in S_{X^{*}}$ such that $x_{0}^{*}\left(x_{0}\right)=0$. Then, consider $T=x_{0}^{*} \otimes x_{0}$ which satisfies $T^{2}=0,\|T\|=1$.
- (AcostaPayá1993): exists $\left\{T_{n}\right\} \longrightarrow T$ such that $\left\|T_{n}\right\|=1, T_{n}^{*}$ attains its numerical radius $v\left(T_{n}^{*}\right)=v\left(T_{n}\right)=\left\|T_{n}\right\|=1$.

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Proving that X^{*} is not smooth:

- $\operatorname{dim}(X)>1$, exists $x_{0} \in S_{X}$ and $x_{0}^{*} \in S_{X^{*}}$ such that $x_{0}^{*}\left(x_{0}\right)=0$. Then, consider $T=x_{0}^{*} \otimes x_{0}$ which satisfies $T^{2}=0,\|T\|=1$.
- (AcostaPayá1993): exists $\left\{T_{n}\right\} \longrightarrow T$ such that $\left\|T_{n}\right\|=1, T_{n}^{*}$ attains its numerical radius $v\left(T_{n}^{*}\right)=v\left(T_{n}\right)=\left\|T_{n}\right\|=1$.
- We may find $\lambda_{n} \in \mathbb{T}$ and $\left(x_{n}^{*}, x_{n}^{* *}\right) \in S_{X^{*}} \times S_{X^{* *}}$ such that

$$
\lambda_{n} x_{n}^{* *}\left(x_{n}^{*}\right)=1 \quad \text { and } \quad\left[T_{n}^{* *}\left(x_{n}^{* *}\right)\right]\left(x_{n}^{*}\right)=x_{n}^{* *}\left(T_{n}^{*}\left(x_{n}^{*}\right)\right)=1
$$

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Proving that X^{*} is not smooth:

- $\operatorname{dim}(X)>1$, exists $x_{0} \in S_{X}$ and $x_{0}^{*} \in S_{X^{*}}$ such that $x_{0}^{*}\left(x_{0}\right)=0$. Then, consider $T=x_{0}^{*} \otimes x_{0}$ which satisfies $T^{2}=0,\|T\|=1$.
- (AcostaPayá1993): exists $\left\{T_{n}\right\} \longrightarrow T$ such that $\left\|T_{n}\right\|=1, T_{n}^{*}$ attains its numerical radius $v\left(T_{n}^{*}\right)=v\left(T_{n}\right)=\left\|T_{n}\right\|=1$.
- We may find $\lambda_{n} \in \mathbb{T}$ and $\left(x_{n}^{*}, x_{n}^{* *}\right) \in S_{X^{*}} \times S_{X^{* *}}$ such that

$$
\lambda_{n} x_{n}^{* *}\left(x_{n}^{*}\right)=1 \quad \text { and } \quad\left[T_{n}^{* *}\left(x_{n}^{* *}\right)\right]\left(x_{n}^{*}\right)=x_{n}^{* *}\left(T_{n}^{*}\left(x_{n}^{*}\right)\right)=1
$$

- If X^{*} is smooth: $T_{n}^{* *}\left(x_{n}^{* *}\right)=\lambda_{n} x_{n}^{* *}$. Thus,

$$
\left\|\left[T_{n}^{* *}\right]^{2}\left(x_{n}^{* *}\right)\right\|=\left\|\lambda_{n}^{2} x_{n}^{* *}\right\|=1
$$

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Proving that X^{*} is not smooth:

- $\operatorname{dim}(X)>1$, exists $x_{0} \in S_{X}$ and $x_{0}^{*} \in S_{X^{*}}$ such that $x_{0}^{*}\left(x_{0}\right)=0$. Then, consider $T=x_{0}^{*} \otimes x_{0}$ which satisfies $T^{2}=0,\|T\|=1$.
- (AcostaPayá1993): exists $\left\{T_{n}\right\} \longrightarrow T$ such that $\left\|T_{n}\right\|=1, T_{n}^{*}$ attains its numerical radius $v\left(T_{n}^{*}\right)=v\left(T_{n}\right)=\left\|T_{n}\right\|=1$.
- We may find $\lambda_{n} \in \mathbb{T}$ and $\left(x_{n}^{*}, x_{n}^{* *}\right) \in S_{X^{*}} \times S_{X^{* *}}$ such that

$$
\lambda_{n} x_{n}^{* *}\left(x_{n}^{*}\right)=1 \quad \text { and } \quad\left[T_{n}^{* *}\left(x_{n}^{* *}\right)\right]\left(x_{n}^{*}\right)=x_{n}^{* *}\left(T_{n}^{*}\left(x_{n}^{*}\right)\right)=1
$$

- If X^{*} is smooth: $T_{n}^{* *}\left(x_{n}^{* *}\right)=\lambda_{n} x_{n}^{* *}$. Thus,

$$
\left\|\left[T_{n}^{* *}\right]^{2}\left(x_{n}^{* *}\right)\right\|=\left\|\lambda_{n}^{2} x_{n}^{* *}\right\|=1
$$

- But, since $T_{n} \longrightarrow T$ and $T^{2}=0$, then $\left[T_{n}^{* *}\right]^{2} \longrightarrow 0!!\checkmark$

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)
X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Corollary

$$
X=C(\mathbb{T}) / A(\mathbb{D}) . X^{*}=H^{1} \text { is smooth } \Longrightarrow n(X)<1 \& n\left(H^{1}\right)<1 .
$$

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Corollary

$$
X=C(\mathbb{T}) / A(\mathbb{D}) . X^{*}=H^{1} \text { is smooth } \Longrightarrow n(X)<1 \& n\left(H^{1}\right)<1
$$

Example without completeness

- There is X (non-complete) strictly convex with $X^{*} \equiv L_{1}(\mu)$, so $n(X)=1$.
- \widetilde{X} completion of X. For $F \subseteq S_{\widetilde{X}}$ maximal face, $B_{\widetilde{X}}=\overline{\operatorname{aconv}}(F)$.

Isometric properties: infinite-dimensional spaces

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional Banach space, $n(X)=1$. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Corollary

$$
X=C(\mathbb{T}) / A(\mathbb{D}) . X^{*}=H^{1} \text { is smooth } \Longrightarrow n(X)<1 \& n\left(H^{1}\right)<1 .
$$

Example without completeness

- There is X (non-complete) strictly convex with $X^{*} \equiv L_{1}(\mu)$, so $n(X)=1$.
- \widetilde{X} completion of X. For $F \subseteq S_{\widetilde{X}}$ maximal face, $B_{\widetilde{X}}=\overline{\operatorname{aconv}}(F)$.

Open question

Is there X with $n(X)=1$ which is smooth or strictly convex ?

Numerical index Banach spaces with numerical index one

Asymptotic behavior of the set of spaces with numerical index one

Asymptotic behavior of the set of spaces with numerical index one

Theorem (Oikhberg, 2005)

There is a universal constant c such that

$$
\operatorname{dist}\left(X, \ell_{2}^{(m)}\right) \geqslant c m^{\frac{1}{4}}
$$

for every $m \in \mathbb{N}$ and every m-dimensional X with $n(X)=1$.

Asymptotic behavior of the set of spaces with numerical index one

Theorem (Oikhberg, 2005)

There is a universal constant c such that

$$
\operatorname{dist}\left(X, \ell_{2}^{(m)}\right) \geqslant c m^{\frac{1}{4}}
$$

for every $m \in \mathbb{N}$ and every m-dimensional X with $n(X)=1$.

Old examples

$$
\operatorname{dist}\left(\ell_{1}^{(m)}, \ell_{2}^{(m)}\right)=\operatorname{dist}\left(\ell_{\infty}^{(m)}, \ell_{2}^{(m)}\right)=m^{\frac{1}{2}}
$$

Asymptotic behavior of the set of spaces with numerical index one

Theorem (Oikhberg, 2005)

There is a universal constant c such that

$$
\operatorname{dist}\left(X, \ell_{2}^{(m)}\right) \geqslant c m^{\frac{1}{4}}
$$

for every $m \in \mathbb{N}$ and every m-dimensional X with $n(X)=1$.

Old examples

$$
\operatorname{dist}\left(\ell_{1}^{(m)}, \ell_{2}^{(m)}\right)=\operatorname{dist}\left(\ell_{\infty}^{(m)}, \ell_{2}^{(m)}\right)=m^{\frac{1}{2}}
$$

Open questions

- Is there a universal constant \widetilde{c} such that

$$
\operatorname{dist}\left(X, \ell_{2}^{(m)}\right) \geqslant \widetilde{c} m^{\frac{1}{2}}
$$

for every $m \in \mathbb{N}$ and every m-dimensional X 's with $n(X)=1$?

- What is the diameter of the set of all m-dimensional X 's with $n(X)=1$?

Numerical index How to deal with numerical index 1 property?

How to deal with numerical index 1 property?

How to deal with numerical index 1 property?

One the one hand: weaker properties

How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.

How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.

How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need

$$
v(T)=\|T\| \text { for every rank-one operator } T .
$$

How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need

$$
v(T)=\|T\| \text { for every rank-one operator } T .
$$

- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need

$$
v(T)=\|T\| \text { for every rank-one operator } T .
$$

- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need

$$
v(T)=\|T\| \text { for every rank-one operator } T .
$$

- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

- We do not know any operator-free characterization of Banach spaces with numerical index 1.

How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need

$$
v(T)=\|T\| \text { for every rank-one operator } T
$$

- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
- When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more.

How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need

$$
v(T)=\|T\| \text { for every rank-one operator } T
$$

- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
- When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more.
- Later we will study sufficient geometrical conditions.

How to deal with numerical index 1 property?

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need

$$
v(T)=\|T\| \text { for every rank-one operator } T
$$

- This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
- When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more.
- Later we will study sufficient geometrical conditions.
- The weakest property is called lushness.

Numerical index How to deal with numerical index 1 property?

How to deal with numerical index 1 property?

How to deal with numerical index 1 property?

Relationship between the properties

- One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent.

$$
\text { lushness } \Longrightarrow \text { Numerical index } 1 \Longrightarrow \text { ADP }
$$

How to deal with numerical index 1 property?

Relationship between the properties

- One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent.
- A very interesting property appears: the slicely countably determination.

$$
\text { lushness } \Longrightarrow \text { Numerical index } 1 \Longrightarrow \text { ADP }
$$

How to deal with numerical index 1 property?

Relationship between the properties

- One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent.
- A very interesting property appears: the slicely countably determination.
- We will study this property later on.

$$
\text { lushness } \Longrightarrow \text { Numerical index } 1 \Longrightarrow \text { ADP }
$$

The alternative Daugavet property

(5) The alternative Daugavet property

- The Daugavet property
- The alternative Daugavet property
- Geometric characterizations
- C^{*}-algebras and preduals
- Some results

M. Martín and T. Oikberg

An alternative Daugavet property
J. Math. Anal. Appl. (2004)
M. Martín

The alternative Daugavet property of C^{*}-algebras and JB*-triples
Math. Nachr. (2008)

The Daugavet property: motivation

- In a Banach space X with the Radon-Nikodým property the unit ball has many denting points.

The Daugavet property: motivation

- In a Banach space X with the Radon-Nikodým property the unit ball has many denting points.
- $x \in S_{X}$ is a denting point of B_{X} if for every $\varepsilon>0$ one has

$$
x \notin \overline{\mathrm{co}}\left(B_{X} \backslash\left(x+\varepsilon B_{X}\right)\right) .
$$

The Daugavet property: motivation

- In a Banach space X with the Radon-Nikodým property the unit ball has many denting points.
- $x \in S_{X}$ is a denting point of B_{X} if for every $\varepsilon>0$ one has

$$
x \notin \overline{\mathrm{co}}\left(B_{X} \backslash\left(x+\varepsilon B_{X}\right)\right)
$$

- $C[0,1]$ and $L_{1}[0,1]$ have an extremely opposite property: for every $x \in S_{X}$ and every $\varepsilon>0$

$$
\overline{\mathrm{co}}\left(B_{X} \backslash\left(x+(2-\varepsilon) B_{X}\right)\right)=B_{X}
$$

The Daugavet property: motivation

- In a Banach space X with the Radon-Nikodým property the unit ball has many denting points.
- $x \in S_{X}$ is a denting point of B_{X} if for every $\varepsilon>0$ one has

$$
x \notin \overline{\mathrm{co}}\left(B_{X} \backslash\left(x+\varepsilon B_{X}\right)\right)
$$

- $C[0,1]$ and $L_{1}[0,1]$ have an extremely opposite property: for every $x \in S_{X}$ and every $\varepsilon>0$

$$
\overline{\mathrm{co}}\left(B_{X} \backslash\left(x+(2-\varepsilon) B_{X}\right)\right)=B_{X}
$$

- This geometric property is equivalent to a property of operators on the space.

The Daugavet property: definition

The Daugavet equation

X Banach space, $T \in L(X)$

$$
\begin{equation*}
\|\operatorname{Id}+T\|=1+\|T\| \tag{DE}
\end{equation*}
$$

The Daugavet property: definition

The Daugavet equation

X Banach space, $T \in L(X)$

$$
\begin{equation*}
\|\operatorname{Id}+T\|=1+\|T\| \tag{DE}
\end{equation*}
$$

Classical examples

(1) Daugavet, 1963:

Every compact operator on C $[0,1]$ satisfies (DE).
(2) Lozanoskii, 1966:

Every compact operator on $L_{1}[0,1]$ satisfies (DE).
(3) Abramovich, Holub, and more, 80's:
$X=C(K), K$ perfect compact space
or $X=L_{1}(\mu), \mu$ atomless measure
\Longrightarrow every weakly compact $T \in L(X)$ satisfies (DE).

The Daugavet property: definition

The Daugavet equation

X Banach space, $T \in L(X)$

$$
\begin{equation*}
\|\operatorname{Id}+T\|=1+\|T\| \tag{DE}
\end{equation*}
$$

The Daugavet property

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

* Then, every weakly compact operator on X satisfies (DE).
(Kadets-Shvidkoy-Sirotkin-Werner, 1997 \& 2000)

The Daugavet property: geometric characterizations

Theorem [KSSW]

X Banach space. TFAE:

- X has the Daugavet property.

Every rank-one operator
 $T \in L(X)$ satisfies
 $\|\operatorname{Id}+T\|=1+\|T\|$.

The Daugavet property: geometric characterizations

Theorem [KSSW]

X Banach space. TFAE:

- X has the Daugavet property.
- For every $x \in S_{X}, x^{*} \in S_{X^{*}}$, and $\varepsilon>0$, there exists $y \in S_{X}$ such that

$$
\operatorname{Re} x^{*}(y)>1-\varepsilon \quad \text { and } \quad\|x-y\| \geqslant 2-\varepsilon .
$$

- For every $x \in S_{X}, x^{*} \in S_{X^{*}}$, and $\varepsilon>0$, there exists $y^{*} \in S_{X^{*}}$ such that
$\operatorname{Re} y^{*}(x)>1-\varepsilon \quad$ and $\quad\left\|x^{*}-y^{*}\right\| \geqslant 2-\varepsilon$.

The Daugavet property: geometric characterizations

Theorem [KSSW]

X Banach space. TFAE:

- X has the Daugavet property.
- For every $x \in S_{X}, x^{*} \in S_{X^{*}}$, and $\varepsilon>0$, there exists $y \in S_{X}$ such that

$$
\operatorname{Re} x^{*}(y)>1-\varepsilon \quad \text { and } \quad\|x-y\| \geqslant 2-\varepsilon .
$$

- For every $x \in S_{X}, x^{*} \in S_{X^{*}}$, and $\varepsilon>0$, there exists $y^{*} \in S_{X^{*}}$ such that
$\operatorname{Re} y^{*}(x)>1-\varepsilon \quad$ and $\quad\left\|x^{*}-y^{*}\right\| \geqslant 2-\varepsilon$.

The Daugavet property: geometric characterizations

Theorem [KSSW]

X Banach space. TFAE:

- X has the Daugavet property.
- For every $x \in S_{X}, x^{*} \in S_{X^{*}}$, and $\varepsilon>0$, there exists $y \in S_{X}$ such that

$$
\operatorname{Re} x^{*}(y)>1-\varepsilon \quad \text { and } \quad\|x-y\| \geqslant 2-\varepsilon
$$

- For every $x \in S_{X}, x^{*} \in S_{X^{*}}$, and $\varepsilon>0$, there exists $y^{*} \in S_{X^{*}}$ such that

$$
\operatorname{Re} y^{*}(x)>1-\varepsilon \quad \text { and } \quad\left\|x^{*}-y^{*}\right\| \geqslant 2-\varepsilon
$$

- For every $x \in S_{X}$ and every $\varepsilon>0$, we have

$$
\overline{\mathrm{co}}\left(B_{X} \backslash\left(x+(2-\varepsilon) B_{X}\right)\right)=B_{X} .
$$

The Daugavet property: some results

Some propaganda

X with the Daugavet property. Then:

- X does not have the Radon-Nikodým property.
(Wojtaszczyk, 1992)

The Daugavet property: some results

Some propaganda

X with the Daugavet property. Then:

- X does not have the Radon-Nikodým property.
(Wojtaszczyk, 1992)
- Every weakly-open subset of B_{X} has diameter 2 .
(Shvidkoy, 2000)

The Daugavet property: some results

Some propaganda

X with the Daugavet property. Then:

- X does not have the Radon-Nikodým property.
(Wojtaszczyk, 1992)
- Every weakly-open subset of B_{X} has diameter 2 .
(Shvidkoy, 2000)
- X contains a copy of ℓ_{1}. X^{*} contains a copy of $L_{1}[0,1]$.
(Kadets-Shvidkoy-Sirotkin-Werner, 2000)

The Daugavet property: some results

Some propaganda

X with the Daugavet property. Then:

- X does not have the Radon-Nikodým property.
(Wojtaszczyk, 1992)
- Every weakly-open subset of B_{X} has diameter 2 .
(Shvidkoy, 2000)
- X contains a copy of $\ell_{1} . X^{*}$ contains a copy of $L_{1}[0,1]$.
(Kadets-Shvidkoy-Sirotkin-Werner, 2000)
- X does not have unconditional basis.
(Kadets, 1996)

The Daugavet property: some results

Some propaganda

X with the Daugavet property. Then:

- X does not have the Radon-Nikodým property.
(Wojtaszczyk, 1992)
- Every weakly-open subset of B_{X} has diameter 2 .
(Shvidkoy, 2000)
- X contains a copy of ℓ_{1}. X^{*} contains a copy of $L_{1}[0,1]$.
(Kadets-Shvidkoy-Sirotkin-Werner, 2000)
- X does not have unconditional basis.
(Kadets, 1996)
- X does not embed into a unconditional sum of Banach spaces without a copy of ℓ_{1}.
(Shvidkoy, 2000)

The DPr, the ADP and numerical index 1

The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

 X Banach space, $T \in L(X)$:
The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

 X Banach space, $T \in L(X)$:- $\sup \operatorname{Re} V(T)=\|T\| \Longleftrightarrow\|\mathrm{Id}+T\|=1+\|T\|$.

The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

 X Banach space, $T \in L(X)$:- $\sup \operatorname{Re} V(T)=\|T\| \Longleftrightarrow\|\mathrm{Id}+T\|=1+\|T\|$.
- $v(T)=\|T\| \Longleftrightarrow \max _{\theta \in \mathbb{T}}\|\operatorname{Id}+\theta T\|=1+\|T\|$.

The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, $T \in L(X)$:

- $\sup \operatorname{Re} V(T)=\|T\| \Longleftrightarrow\|\mathrm{Id}+T\|=1+\|T\|$.
- $v(T)=\|T\| \Longleftrightarrow \max _{\theta \in \mathbb{T}}\|\operatorname{Id}+\theta T\|=1+\|T\|$.

X Banach space:

- Daugavet property (DPr): every rank-one T satisfies

$$
\begin{equation*}
\|\operatorname{Id}+T\|=1+\|T\| \tag{DE}
\end{equation*}
$$

The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, $T \in L(X)$:

- $\sup \operatorname{Re} V(T)=\|T\| \Longleftrightarrow\|\mathrm{Id}+T\|=1+\|T\|$.
- $v(T)=\|T\| \Longleftrightarrow \max _{\theta \in \mathbb{T}}\|\operatorname{Id}+\theta T\|=1+\|T\|$.

X Banach space:

- Daugavet property (DPr): every rank-one T satisfies

$$
\begin{equation*}
\|\operatorname{Id}+T\|=1+\|T\| \tag{DE}
\end{equation*}
$$

- numerical index 1: EVERY T satisfies

$$
\begin{equation*}
\max _{\theta \in \mathbb{T}}\|\mathrm{Id}+\theta T\|=1+\|T\| \tag{aDE}
\end{equation*}
$$

The DPr, the ADP and numerical index 1

Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, $T \in L(X)$:

- $\sup \operatorname{Re} V(T)=\|T\| \Longleftrightarrow\|\mathrm{Id}+T\|=1+\|T\|$.
- $v(T)=\|T\| \Longleftrightarrow \max _{\theta \in \mathbb{T}}\|\operatorname{Id}+\theta T\|=1+\|T\|$.

X Banach space:

- Daugavet property (DPr): every rank-one T satisfies

$$
\begin{equation*}
\|\operatorname{Id}+T\|=1+\|T\| \tag{DE}
\end{equation*}
$$

- numerical index 1: EVERY T satisfies

$$
\begin{equation*}
\max _{\theta \in \mathbb{T}}\|\mathrm{Id}+\theta T\|=1+\|T\| \tag{aDE}
\end{equation*}
$$

The alternative Daugavet property (M.-Oikhberg, 2004)

 alternative Daugavet property (ADP): every rank-one $T \in L(X)$ satisfies (aDE). * Then, every weakly compact operator satisfies (aDE).
Relations between the properties

Relations between the properties

Examples

- $C\left([0,1], K\left(\ell_{2}\right)\right)$ has DPr, but has not numerical index 1
- c_{0} has numerical index 1 , but has not DPr
- $c_{0} \oplus_{\infty} C\left([0,1], K\left(\ell_{2}\right)\right)$ has ADP, neither DPr nor numerical index 1

Relations between the properties

Examples

- $C\left([0,1], K\left(\ell_{2}\right)\right)$ has DPr, but has not numerical index 1
- c_{0} has numerical index 1 , but has not DPr
- $c_{0} \oplus_{\infty} C\left([0,1], K\left(\ell_{2}\right)\right)$ has ADP, neither DPr nor numerical index 1

Remarks

- For RNP or Asplund spaces, ADP \Longrightarrow numerical index 1 .
- Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.

Geometric characterizations of the ADP

Theorem

X Banach space. TFAE:

- X has the ADP.

Every rank-one operator

 $T \in L(X)$ (equivalently, every weakly compact operator) satisfies$\max _{|\omega|=1}\|\operatorname{Id}+\omega T\|=1+\|T\|$. $|\omega|=1$

Geometric characterizations of the ADP

Theorem

X Banach space. TFAE:

- X has the ADP.
- For every $x \in S_{X}, x^{*} \in S_{X^{*}}$, and $\varepsilon>0$, there exists $y \in S_{X}$ such that

$$
\left|x^{*}(y)\right|>1-\varepsilon \quad \text { and } \quad\|x-y\| \geqslant 2-\varepsilon .
$$

- For every $x \in S_{X}, x^{*} \in S_{X^{*}}$, and $\varepsilon>0$, there exists $y^{*} \in S_{X^{*}}$ such that

$$
\left|y^{*}(x)\right|>1-\varepsilon \quad \text { and } \quad\left\|x^{*}-y^{*}\right\| \geqslant 2-\varepsilon .
$$

Geometric characterizations of the ADP

Theorem

X Banach space. TFAE:

- X has the ADP.
- For every $x \in S_{X}, x^{*} \in S_{X^{*}}$, and $\varepsilon>0$, there exists $y \in S_{X}$ such that

$$
\left|x^{*}(y)\right|>1-\varepsilon \quad \text { and } \quad\|x-y\| \geqslant 2-\varepsilon .
$$

- For every $x \in S_{X}, x^{*} \in S_{X^{*}}$, and $\varepsilon>0$, there exists $y^{*} \in S_{X^{*}}$ such that

$$
\left|y^{*}(x)\right|>1-\varepsilon \quad \text { and } \quad\left\|x^{*}-y^{*}\right\| \geqslant 2-\varepsilon .
$$

Geometric characterizations of the ADP

Theorem

X Banach space. TFAE:

- X has the ADP.
- For every $x \in S_{X}, x^{*} \in S_{X^{*}}$, and $\varepsilon>0$, there exists $y \in S_{X}$ such that

$$
\left|x^{*}(y)\right|>1-\varepsilon \quad \text { and } \quad\|x-y\| \geqslant 2-\varepsilon .
$$

- For every $x \in S_{X}, x^{*} \in S_{X^{*}}$, and $\varepsilon>0$, there exists $y^{*} \in S_{X^{*}}$ such that

$$
\left|y^{*}(x)\right|>1-\varepsilon \quad \text { and } \quad\left\|x^{*}-y^{*}\right\| \geqslant 2-\varepsilon .
$$

- For every $x \in S_{X}$ and every $\varepsilon>0$, we have

$$
B_{X}=\overline{\mathrm{co}}\left(\mathbb{T}\left\{y \in B_{X}:\|x-y\| \geqslant 2-\varepsilon\right\}\right)
$$

Let V_{*} be the predual of the von Neumann algebra V.

C^{*}-algebras and preduals (I)

Let V_{*} be the predual of the von Neumann algebra V.

The Daugavet property of V_{*} is equivalent to:

- V has no atomic projections, or
- the unit ball of V_{*} has no extreme points.

C^{*}-algebras and preduals (I)

Let V_{*} be the predual of the von Neumann algebra V.

The Daugavet property of V_{*} is equivalent to:

- V has no atomic projections, or
- the unit ball of V_{*} has no extreme points.

V_{*} has numerical index 1 iff:

- V is commutative, or
- $\left|v^{*}(v)\right|=1$ for $v \in \operatorname{ext}\left(B_{V}\right)$ and $v^{*} \in \operatorname{ext}\left(B_{V^{*}}\right)$.

C^{*}-algebras and preduals (I)

Let V_{*} be the predual of the von Neumann algebra V.

The Daugavet property of V_{*} is equivalent to:

- V has no atomic projections, or
- the unit ball of V_{*} has no extreme points.

V_{*} has numerical index 1 iff:

- V is commutative, or
- $\left|v^{*}(v)\right|=1$ for $v \in \operatorname{ext}\left(B_{V}\right)$ and $v^{*} \in \operatorname{ext}\left(B_{V^{*}}\right)$.

The alternative Daugavet property of V_{*} is equivalent to:

- the atomic projections of V are central, or
- $\left|v\left(v_{*}\right)\right|=1$ for $v \in \operatorname{ext}\left(B_{V}\right)$ and $v_{*} \in \operatorname{ext}\left(B_{V_{*}}\right)$, or
- $V=C \oplus_{\infty} N$, where C is commutative and N has no atomic projections.

C*-algebras and preduals (II)

Let X be a C^{*}-algebra.

C*-algebras and preduals (II)

Let X be a C^{*}-algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^{*} does not have any w^{*}-strongly exposed point.

C*-algebras and preduals (II)

Let X be a C^{*}-algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^{*} does not have any w^{*}-strongly exposed point.

X has numerical index 1 iff:

- X is commutative, or
- $\left|x^{* *}\left(x^{*}\right)\right|=1$ for $x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$ and $x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$.

Let X be a C^{*}-algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^{*} does not have any w^{*}-strongly exposed point.

X has numerical index 1 iff:

- X is commutative, or
- $\left|x^{* *}\left(x^{*}\right)\right|=1$ for $x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$ and $x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right)$.

The alternative Daugavet property of X is equivalent to:

- the atomic projections of X are central, or
- $\left|x^{* *}\left(x^{*}\right)\right|=1$, for $x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$, and $x^{*} \in B_{X^{*}} w^{*}$-strongly exposed, or
- \exists a commutative ideal Y such that X / Y has the Daugavet property.

The alternative Daugavet property The alternative Daugavet property
Some results on the ADP: isomorphic properties

Some results on the ADP: isomorphic properties

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Some results on the ADP: isomorphic properties

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López-M.-Payá, 1999)

Not every real Banach space can be renormed with the ADP.

Some results on the ADP: isomorphic properties

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López-M.-Payá, 1999)
Not every real Banach space can be renormed with the ADP.

- X real reflexive with $A D P \Longrightarrow X$ finite-dimensional.

Some results on the ADP: isomorphic properties

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López-M.-Payá, 1999)
Not every real Banach space can be renormed with the ADP.

- X real reflexive with $A D P \Longrightarrow X$ finite-dimensional.
- Moreover, X real, RNP, $\operatorname{dim}(X)=\infty$, and ADP, then $X \supset \ell_{1}$.

Some results on the ADP: isomorphic properties

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López-M.-Payá, 1999)

Not every real Banach space can be renormed with the ADP.

- X real reflexive with $A D P \Longrightarrow X$ finite-dimensional.
- Moreover, X real, RNP, $\operatorname{dim}(X)=\infty$, and ADP, then $X \supset \ell_{1}$.

A very recent result (Avilés-Kadets-M.-Merí-Shepelska)
If X is real, $\operatorname{dim}(X)=\infty$ and X has the ADP, then $X^{*} \supset \ell_{1}$.

Some results on the ADP: isomorphic properties

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López-M.-Payá, 1999)

Not every real Banach space can be renormed with the ADP.

- X real reflexive with ADP $\Longrightarrow X$ finite-dimensional.
- Moreover, X real, RNP, $\operatorname{dim}(X)=\infty$, and ADP, then $X \supset \ell_{1}$.

A very recent result (Avilés-Kadets-M.-Merí-Shepelska)

If X is real, $\operatorname{dim}(X)=\infty$ and X has the ADP, then $X^{*} \supset \ell_{1}$.

A renorming result (Boyko-Kadets-M.-Merí, 2009)
If X is separable, $X \supset c_{0}$, then X can be renormed with the ADP.

The alternative Daugavet property The alternative Daugavet property

Some results on the ADP: isometric properties

Some results on the ADP: isometric properties

Remark

Also some isometric properties of Banach spaces with numerical index 1 are actually true for ADP.

Some results on the ADP: isometric properties

Remark

Also some isometric properties of Banach spaces with numerical index 1 are actually true for ADP.

Theorem (Kadets-M.-Merí-Payá, 2009)
X infinite-dimensional with the ADP. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Some results on the ADP: isometric properties

Remark

Also some isometric properties of Banach spaces with numerical index 1 are actually true for ADP.

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional with the ADP. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Corollary

$X=C(\mathbb{T}) / A(\mathbb{D})$. Since $X^{*}=H^{1}$ is smooth \Longrightarrow nor X nor H^{1} have the ADP.

Some results on the ADP: isometric properties

Remark

Also some isometric properties of Banach spaces with numerical index 1 are actually true for ADP.

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional with the ADP. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_{X}.

Corollary

$X=C(\mathbb{T}) / A(\mathbb{D})$. Since $X^{*}=H^{1}$ is smooth \Longrightarrow nor X nor H^{1} have the
ADP.

Open question

Is there X with the ADP which is smooth or strictly convex ?

Lush spaces

6 Lush spaces

- Definition and examples
- Lush renorming
- Reformulations of lushness and applications
- Lushness is not equivalent to numerical index one


```
K. Boyko, V. Kadets, M. Martín, and J. Merí.
Properties of lush spaces and applications to Banach spaces with numerical index 1.
Studia Math. (2009).
K. Boyko, V. Kadets, M. Martín, and D. Werner.
Numerical index of Banach spaces and duality.
Math. Proc. Cambridge Philos. Soc. (2007).
V. Kadets, M. Martín, J. Merí, and R. Payá.
Convexity and smoothnes of Banach spaces with numerical index one.
Illinois J. Math. (to appear).
V. Kadets, M. Martín, J. Merí, and V. Shepelska.
Lushness, numerical index one and duality.
J. Math. Anal. Appl. (2009).
```


Motivation

Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.

Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.

Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1 , we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1 , we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:
(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.

Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1 , we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:
(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.
(b) Fullerton, 1961: X is a CL-space if B_{X} is the absolutely convex hull of every maximal face of S_{X}.

Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1 , we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:
(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.
(b) Fullerton, 1961: X is a CL-space if B_{X} is the absolutely convex hull of every maximal face of S_{X}.
(c) Lima, 1978: X is an almost-CL-space if B_{X} is the closed absolutely convex hull of every maximal face of S_{X}.

Motivation

Remark

- Usually, when we show that a Banach space has numerical index 1 , we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:
(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.
(b) Fullerton, 1961: X is a CL-space if B_{X} is the absolutely convex hull of every maximal face of S_{X}.
(c) Lima, 1978: X is an almost-CL-space if B_{X} is the closed absolutely convex hull of every maximal face of S_{X}.

Motivation

Some sufficient conditions

Let X be a Banach space. Consider:
(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.
(b) Fullerton, 1961: X is a CL-space if B_{X} is the absolutely convex hull of every maximal face of S_{X}.
(c) Lima, 1978: X is an almost-CL-space if B_{X} is the closed absolutely convex hull of every maximal face of S_{X}.

Motivation

Some sufficient conditions

Let X be a Banach space. Consider:
(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.
(b) Fullerton, 1961: X is a CL-space if B_{X} is the absolutely convex hull of every maximal face of S_{X}.
(c) Lima, 1978: X is an almost-CL-space if B_{X} is the closed absolutely convex hull of every maximal face of S_{X}.

Observation

Showing that $(c) \Longrightarrow n(X)=1$, one realizes that (c) is too much.

Motivation

Some sufficient conditions

Let X be a Banach space. Consider:
(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.
(b) Fullerton, 1961: X is a CL-space if B_{X} is the absolutely convex hull of every maximal face of S_{X}.
(c) Lima, 1978: X is an almost-CL-space if B_{X} is the closed absolutely convex hull of every maximal face of S_{X}.

Observation

Showing that $(c) \Longrightarrow n(X)=1$, one realizes that (c) is too much.

Lushness (Boyko-Kadets-M.-Werner, 2007)

X is lush if given $x, y \in S_{X}, \varepsilon>0$, there is $x^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad \operatorname{dist}\left(y, \operatorname{aconv}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right)\right)<\varepsilon
$$

Definition and first property

Lushness (Boyko-Kadets-M.-Werner, 2007)

X is lush if given $x, y \in S_{X}, \varepsilon>0$, there is $x^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad \operatorname{dist}\left(y, \operatorname{aconv}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right)\right)<\varepsilon .
$$

Definition and first property

Lushness (Boyko-Kadets-M.-Werner, 2007)

X is lush if given $x, y \in S_{X}, \varepsilon>0$, there is $x^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad \operatorname{dist}\left(y, \operatorname{aconv}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right)\right)<\varepsilon .
$$

Theorem
 X lush $\Longrightarrow n(X)=1$.

Definition and first property

Lushness (Boyko-Kadets-M.-Werner, 2007)

X is lush if given $x, y \in S_{X}, \varepsilon>0$, there is $x^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad \operatorname{dist}\left(y, \operatorname{aconv}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right)\right)<\varepsilon .
$$

Theorem
 X lush $\Longrightarrow n(X)=1$.

Proof.

Definition and first property

Lushness (Boyko-Kadets-M.-Werner, 2007)

X is lush if given $x, y \in S_{X}, \varepsilon>0$, there is $x^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad \operatorname{dist}\left(y, \operatorname{aconv}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right)\right)<\varepsilon
$$

Theorem
 X lush $\Longrightarrow n(X)=1$.

Proof.

- $T \in L(X)$ with $\|T\|=1, \varepsilon>0$. Find $y_{0} \in S_{X}$ which $\left\|T y_{0}\right\|>1-\varepsilon$.

Definition and first property

Lushness (Boyko-Kadets-M.-Werner, 2007)

X is lush if given $x, y \in S_{X}, \varepsilon>0$, there is $x^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad \operatorname{dist}\left(y, \operatorname{aconv}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right)\right)<\varepsilon .
$$

Theorem

X lush $\Longrightarrow n(X)=1$.
Proof.

- $T \in L(X)$ with $\|T\|=1, \varepsilon>0$. Find $y_{0} \in S_{X}$ which $\left\|T y_{0}\right\|>1-\varepsilon$.
- Use lushness for $x_{0}=T y_{0} /\left\|T y_{0}\right\|$ and y_{0} to get $x^{*} \in S_{X^{*}}$ and

$$
\begin{aligned}
& v=\sum_{i=1}^{n} \lambda_{i} \theta_{i} x_{i} \quad \text { where } x_{i} \in S\left(B_{X}, x^{*}, \varepsilon\right), \lambda_{i} \in[0,1], \sum \lambda_{i}=1, \theta_{i} \in \mathbb{T} \text {, } \\
& \text { with } \quad \operatorname{Re} x^{*}\left(x_{0}\right)>1-\varepsilon \quad \text { and }\left\|v-y_{0}\right\|<\varepsilon .
\end{aligned}
$$

Definition and first property

Lushness (Boyko-Kadets-M.-Werner, 2007)

X is lush if given $x, y \in S_{X}, \varepsilon>0$, there is $x^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad \operatorname{dist}\left(y, \operatorname{aconv}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right)\right)<\varepsilon .
$$

Theorem

X lush $\Longrightarrow n(X)=1$.
Proof.

- $T \in L(X)$ with $\|T\|=1, \varepsilon>0$. Find $y_{0} \in S_{X}$ which $\left\|T y_{0}\right\|>1-\varepsilon$.
- Use lushness for $x_{0}=T y_{0} /\left\|T y_{0}\right\|$ and y_{0} to get $x^{*} \in S_{X^{*}}$ and

$$
\begin{aligned}
& v=\sum_{i=1}^{n} \lambda_{i} \theta_{i} x_{i} \quad \text { where } x_{i} \in S\left(B_{X}, x^{*}, \varepsilon\right), \lambda_{i} \in[0,1], \sum \lambda_{i}=1, \theta_{i} \in \mathbb{T} \text {, } \\
& \text { with } \quad \operatorname{Re} x^{*}\left(x_{0}\right)>1-\varepsilon \quad \text { and }\left\|v-y_{0}\right\|<\varepsilon .
\end{aligned}
$$

- Then $\left|x^{*}(T v)\right|=\left|x^{*}\left(x_{0}\right)-x^{*}\left(T\left(\frac{y_{0}}{\left\|T y_{0}\right\|}-v\right)\right)\right| \sim\|T\|$.

Definition and first property

Lushness (Boyko-Kadets-M.-Werner, 2007)

X is lush if given $x, y \in S_{X}, \varepsilon>0$, there is $x^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad \operatorname{dist}\left(y, \operatorname{aconv}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right)\right)<\varepsilon .
$$

Theorem

X lush $\Longrightarrow n(X)=1$.
Proof.

- $T \in L(X)$ with $\|T\|=1, \varepsilon>0$. Find $y_{0} \in S_{X}$ which $\left\|T y_{0}\right\|>1-\varepsilon$.
- Use lushness for $x_{0}=T y_{0} /\left\|T y_{0}\right\|$ and y_{0} to get $x^{*} \in S_{X^{*}}$ and

$$
\begin{aligned}
& v=\sum_{i=1}^{n} \lambda_{i} \theta_{i} x_{i} \quad \text { where } x_{i} \in S\left(B_{X}, x^{*}, \varepsilon\right), \lambda_{i} \in[0,1], \sum \lambda_{i}=1, \theta_{i} \in \mathbb{T} \text {, } \\
& \text { with } \quad \operatorname{Re} x^{*}\left(x_{0}\right)>1-\varepsilon \quad \text { and } \quad\left\|v-y_{0}\right\|<\varepsilon .
\end{aligned}
$$

- Then $\left|x^{*}(T v)\right|=\left|x^{*}\left(x_{0}\right)-x^{*}\left(T\left(\frac{y_{0}}{\left\|T y_{0}\right\|}-v\right)\right)\right| \sim\|T\|$.
- By a convexity argument, $\exists i$ such that $\left|x^{*}\left(T x_{i}\right)\right| \sim\|T\|$ and $\operatorname{Re} x^{*}\left(x_{i}\right) \sim 1$.

Definition and first property

Lushness (Boyko-Kadets-M.-Werner, 2007)

X is lush if given $x, y \in S_{X}, \varepsilon>0$, there is $x^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad \operatorname{dist}\left(y, \operatorname{aconv}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right)\right)<\varepsilon .
$$

Theorem

X lush $\Longrightarrow n(X)=1$.
Proof.

- $T \in L(X)$ with $\|T\|=1, \varepsilon>0$. Find $y_{0} \in S_{X}$ which $\left\|T y_{0}\right\|>1-\varepsilon$.
- Use lushness for $x_{0}=T y_{0} /\left\|T y_{0}\right\|$ and y_{0} to get $x^{*} \in S_{X^{*}}$ and

$$
\begin{aligned}
& v=\sum_{i=1}^{n} \lambda_{i} \theta_{i} x_{i} \quad \text { where } x_{i} \in S\left(B_{X}, x^{*}, \varepsilon\right), \lambda_{i} \in[0,1], \sum \lambda_{i}=1, \theta_{i} \in \mathbb{T} \text {, } \\
& \text { with } \quad \operatorname{Re} x^{*}\left(x_{0}\right)>1-\varepsilon \quad \text { and } \quad\left\|v-y_{0}\right\|<\varepsilon .
\end{aligned}
$$

- Then $\left|x^{*}(T v)\right|=\left|x^{*}\left(x_{0}\right)-x^{*}\left(T\left(\frac{y_{0}}{\left\|T y_{0}\right\|}-v\right)\right)\right| \sim\|T\|$.
- By a convexity argument, $\exists i$ such that $\left|x^{*}\left(T x_{i}\right)\right| \sim\|T\|$ and $\operatorname{Re} x^{*}\left(x_{i}\right) \sim 1$.
- Then $\max _{\omega \in \mathbb{T}}\|\operatorname{Id}+\omega T\| \sim 1+\|T\| \Longrightarrow v(T) \sim\|T\|$. \checkmark

Examples of lush spaces

Examples of lush spaces

Examples of lush spaces

(1) Almost-CL-spaces.

Examples of lush spaces

Examples of lush spaces

(1) Almost-CL-spaces.
(2) In particular, $C(K), L_{1}(\mu), C_{0}(L) \ldots$

Examples of lush spaces

Examples of lush spaces

(1) Almost-CL-spaces.
(2) In particular, $C(K), L_{1}(\mu), C_{0}(L) \ldots$
(3) Preduals of $L_{1}(\mu)$-spaces.

Examples of lush spaces

Examples of lush spaces

(1) Almost-CL-spaces.
(2) In particular, $C(K), L_{1}(\mu), C_{0}(L) \ldots$
(0) Preduals of $L_{1}(\mu)$-spaces.

C-rich subspaces

K compact, X subspace of $C(K)$ is C-rich iff $\forall U$ open nonempty and $\forall \varepsilon>0$ exists $h: K \longrightarrow[0,1]$ continuous, $\operatorname{supp}(h) \subseteq U$ such that $\operatorname{dist}(h, X)<\varepsilon$.

Examples of lush spaces

Examples of lush spaces

(1) Almost-CL-spaces.
(2) In particular, $C(K), L_{1}(\mu), C_{0}(L) \ldots$
(0) Preduals of $L_{1}(\mu)$-spaces.

C-rich subspaces

K compact, X subspace of $C(K)$ is C-rich iff $\forall U$ open nonempty and $\forall \varepsilon>0$ exists $\quad h: K \longrightarrow[0,1]$ continuous, $\operatorname{supp}(h) \subseteq U$ such that $\operatorname{dist}(h, X)<\varepsilon$.

More examples of lush spaces

(0) C-rich subspaces of $C(K)$.

Examples of lush spaces

Examples of lush spaces

(1) Almost-CL-spaces.
(2) In particular, $C(K), L_{1}(\mu), C_{0}(L) \ldots$
(0) Preduals of $L_{1}(\mu)$-spaces.

C-rich subspaces

K compact, X subspace of $C(K)$ is C-rich iff $\forall U$ open nonempty and $\forall \varepsilon>0$ exists $h: K \longrightarrow[0,1]$ continuous, $\operatorname{supp}(h) \subseteq U$ such that $\operatorname{dist}(h, X)<\varepsilon$.

More examples of lush spaces

(0) C-rich subspaces of $C(K)$.
(5) In particular, finite-codimensional subspaces of $C[0,1]$.

Examples of lush spaces

Examples of lush spaces

(1) Almost-CL-spaces.
(2) In particular, $C(K), L_{1}(\mu), C_{0}(L) \ldots$
(0) Preduals of $L_{1}(\mu)$-spaces.

C-rich subspaces

K compact, X subspace of $C(K)$ is C-rich iff $\forall U$ open nonempty and $\forall \varepsilon>0$ exists $h: K \longrightarrow[0,1]$ continuous, $\operatorname{supp}(h) \subseteq U$ such that $\operatorname{dist}(h, X)<\varepsilon$.

More examples of lush spaces

- C-rich subspaces of $C(K)$.
- In particular, finite-codimensional subspaces of $C[0,1]$.
- $C_{E}(K \| L)$, where L nowhere dense in K and $E \subseteq C(L)$.

Examples of lush spaces

Examples of lush spaces

(1) Almost-CL-spaces.
(2) In particular, $C(K), L_{1}(\mu), C_{0}(L) \ldots$
(3) Preduals of $L_{1}(\mu)$-spaces.

C-rich subspaces

K compact, X subspace of $C(K)$ is C-rich iff $\forall U$ open nonempty and $\forall \varepsilon>0$ exists $h: K \longrightarrow[0,1]$ continuous, $\operatorname{supp}(h) \subseteq U$ such that $\operatorname{dist}(h, X)<\varepsilon$.

More examples of lush spaces

(0) C-rich subspaces of $C(K)$.
(9) In particular, finite-codimensional subspaces of $C[0,1]$.
(-) $C_{E}(K \| L)$, where L nowhere dense in K and $E \subseteq C(L)$.
(1) Y if $c_{0} \subseteq Y \subseteq \ell_{\infty}$ (canonical copies).

Lush rernoming

The goal

When we may get a lush equivalent norm?

Lush rernoming

The goal

When we may get a lush equivalent norm?

Proposition
X separable, $X \supseteq c_{0} \Longrightarrow$ exists $\|\cdot\| \simeq\|\cdot\|$ and $T:(X,\|\cdot\| \|) \longrightarrow \ell_{\infty}$ with T isometric embedding $\& c_{0} \subseteq T(X)$ (canonical copy).

Lush rernoming

The goal

When we may get a lush equivalent norm?
Proposition
X separable, $X \supseteq c_{0} \Longrightarrow$ exists $\|\cdot\|\left\|\|\cdot\|\right.$ and $T:(X,\|\cdot\|) \longrightarrow \ell_{\infty}$ with T isometric embedding $\& c_{0} \subseteq T(X)$ (canonical copy).

Recall this family of examples of lush spaces
(-) Y if $c_{0} \subseteq Y \subseteq \ell_{\infty}$ (canonical copies).

Lush rernoming

The goal

When we may get a lush equivalent norm?
Proposition
X separable, $X \supseteq c_{0} \Longrightarrow$ exists $\|\cdot\| \simeq\|\cdot\|$ and $T:(X,\|\cdot\| \|) \longrightarrow \ell_{\infty}$ with T isometric embedding $\& c_{0} \subseteq T(X)$ (canonical copy).

Recall this family of examples of lush spaces
(1) Y if $c_{0} \subseteq Y \subseteq \ell_{\infty}$ (canonical copies).

Theorem

X separable, $X \supseteq c_{0} \Longrightarrow X$ admits an equivalent lush norm.

Lush rernoming

The goal

When we may get a lush equivalent norm?

Proposition

X separable, $X \supseteq c_{0} \Longrightarrow$ exists $\|\cdot\| \simeq\|\cdot\|$ and $T:(X,\|\cdot\| \|) \longrightarrow \ell_{\infty}$ with T isometric embedding \& $c_{0} \subseteq T(X)$ (canonical copy).

Recall this family of examples of lush spaces

(1) Y if $c_{0} \subseteq Y \subseteq \ell_{\infty}$ (canonical copies).

Theorem

X separable, $X \supseteq c_{0} \Longrightarrow X$ admits an equivalent lush norm.

Corollary

Every closed subspace of c_{0} admits an equivalent lush norm.

Lush rernoming

The goal

When we may get a lush equivalent norm?
Proposition
X s Open problems
T is

Red
(1) Y it $\mathcal{c}_{0} \subseteq Y \subseteq \ell_{\infty}$ (canonical copies).

Theorem

X separable, $X \supseteq c_{0} \Longrightarrow X$ admits an equivalent lush norm.

Corollary

Every closed subspace of c_{0} admits an equivalent lush norm.

Lush rernoming

The goal

When we may get a lush equivalent norm?
Proposition
X s Open problems
T is - Find more sufficient conditions to get equivalent lush norms.
(1) Y it $c_{0} \subseteq Y \subseteq \ell_{\infty}$ (canonical copies).

Theorem

X separable, $X \supseteq c_{0} \Longrightarrow X$ admits an equivalent lush norm.

Corollary

Every closed subspace of c_{0} admits an equivalent lush norm.

Lush rernoming

The goal

When we may get a lush equivalent norm?
Proposition
X s Open problems
T is - Find more sufficient conditions to get equivalent lush norms.

- When $X \supseteq \ell_{1}$?

Red
(3) Y it $\mathcal{c}_{0} \leq Y \leq \ell_{\infty}$ (canonical copies).

Theorem

X separable, $X \supseteq c_{0} \Longrightarrow X$ admits an equivalent lush norm.

Corollary

Every closed subspace of c_{0} admits an equivalent lush norm.

Lush rernoming

The goal

When we may get a lush equivalent norm?
Proposition
X s Open problems
T is - Find more sufficient conditions to get equivalent lush norms.
= When $X \supseteq \ell_{1}$?
Red - When $X \supseteq \ell_{\infty}$?
(1) Y it $\mathcal{c}_{0} \leq Y \leq \ell_{\infty}$ (canonical copies).

Theorem

X separable, $X \supseteq c_{0} \Longrightarrow X$ admits an equivalent lush norm.

Corollary

Every closed subspace of c_{0} admits an equivalent lush norm.

Even more examples of lush spaces

Even more examples of lush spaces

Observation

X Banach space. Consider the following assertions.
(a) Exists $A \subset B_{X^{*}}$ norming, $\left|x^{* *}\left(a^{*}\right)\right|=1 \forall a^{*} \in A$ and $\forall x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$.
(b) For $x \in S_{X}$ and $\varepsilon>0$, exists $x^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad B_{X}=\overline{\operatorname{aconv}}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right) .
$$

$$
(\mathrm{a}) \Longrightarrow(\mathrm{b}) \Longrightarrow \text { lushness }
$$

Even more examples of lush spaces

Observation

X Banach space. Consider the following assertions.
(a) Exists $A \subset B_{X^{*}}$ norming, $\left|x^{* *}\left(a^{*}\right)\right|=1 \forall a^{*} \in A$ and $\forall x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$.
(b) For $x \in S_{X}$ and $\varepsilon>0$, exists $x^{*} \in S_{X^{*}}$ such that

$$
\begin{gathered}
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad B_{X}=\overline{\operatorname{aconv}}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right) . \\
(\mathrm{a}) \Longrightarrow \text { (b) } \Longrightarrow \quad \text { lushness }
\end{gathered}
$$

Definition (Werner, 1997)

X is nicely embedded in $C_{b}(\Omega)$ if exists $J: X \longrightarrow C_{b}(\Omega)$ linear isometry with $(\mathrm{N} 1)\left\|J^{*} \delta_{s}\right\|=1 \forall s \in \Omega$,
(N2) $\operatorname{span}\left(J^{*} \delta_{s}\right) L$-summand in $X^{*} \forall s \in \Omega$.

Even more examples of lush spaces

Observation

X Banach space. Consider the following assertions.
(a) Exists $A \subset B_{X^{*}}$ norming, $\left|x^{* *}\left(a^{*}\right)\right|=1 \forall a^{*} \in A$ and $\forall x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$.
(b) For $x \in S_{X}$ and $\varepsilon>0$, exists $x^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad B_{X}=\overline{\operatorname{aconv}}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right) .
$$

$$
(a) \Longrightarrow(b) \Longrightarrow \text { lushness }
$$

Definition (Werner, 1997)

X is nicely embedded in $C_{b}(\Omega)$ if exists $J: X \longrightarrow C_{b}(\Omega)$ linear isometry with $(\mathrm{N} 1)\left\|J^{*} \delta_{s}\right\|=1 \forall s \in \Omega$,
(N2) $\operatorname{span}\left(J^{*} \delta_{s}\right) L$-summand in $X^{*} \forall s \in \Omega$.

Even more examples of lush spaces

Even more examples of lush spaces

Observation

X Banach space. Consider the following assertions.
(a) Exists $A \subset B_{X^{*}}$ norming, $\left|x^{* *}\left(a^{*}\right)\right|=1 \forall a^{*} \in A$ and $\forall x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$.
(b) For $x \in S_{X}$ and $\varepsilon>0$, exists $x^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad B_{X}=\overline{\operatorname{aconv}}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right) .
$$

$$
(a) \Longrightarrow(b) \Longrightarrow \text { lushness }
$$

Definition (Werner, 1997)

X is nicely embedded in $C_{b}(\Omega)$ if exists $J: X \longrightarrow C_{b}(\Omega)$ linear isometry with $(\mathrm{N} 1)\left\|J^{*} \delta_{s}\right\|=1 \forall s \in \Omega$,
(N2) $\operatorname{span}\left(J^{*} \delta_{s}\right) L$-summand in $X^{*} \forall s \in \Omega$.

Even more examples of lush spaces

(8) Nicely embedded Banach spaces (they fulfil (a)).

Even more examples of lush spaces

Observation

X Banach space. Consider the following assertions.
(a) Exists $A \subset B_{X^{*}}$ norming, $\left|x^{* *}\left(a^{*}\right)\right|=1 \forall a^{*} \in A$ and $\forall x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$.
(b) For $x \in S_{X}$ and $\varepsilon>0$, exists $x^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, x^{*}, \varepsilon\right) \quad \text { and } \quad B_{X}=\overline{\operatorname{aconv}}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right) .
$$

Definition (Werner, 1997)

X is nicely embedded in $C_{b}(\Omega)$ if exists $J: X \longrightarrow C_{b}(\Omega)$ linear isometry with $(\mathrm{N} 1)\left\|J^{*} \delta_{s}\right\|=1 \forall s \in \Omega$,
(N2) $\operatorname{span}\left(J^{*} \delta_{s}\right) L$-summand in $X^{*} \forall s \in \Omega$.

Even more examples of lush spaces

(8) Nicely embedded Banach spaces (they fulfil (a)).
(9) In particular, function algebras (as $A(\mathbb{D})$ and $\left.H^{\infty}\right)$.

Some reformulations of lushness

Some reformulations of lushness

Proposition

X Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Some reformulations of lushness

Proposition

X Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Separable lush spaces

X separable. TFAE:

- X is lush.
- There is $G \subseteq S_{X^{*}}$ norming such that

$$
B_{X}=\overline{\operatorname{aconv}\left(S\left(B_{X}, x^{*}, \varepsilon\right)\right)}
$$

for every $\varepsilon>0$ and every $x^{*} \in G$.

- There is $G \subseteq \operatorname{ext}\left(B_{X^{*}}\right)$ norming such that

$$
\left|x^{* *}\left(x^{*}\right)\right|=1 \quad\left(x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right), x^{*} \in G\right)
$$

Some reformulations of lushness

Proposition

X Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Separable lush spaces (real case)

X real separable. TFAE:

- X is lush.
- There is $G \subseteq S_{X^{*}}$ norming such that

$$
B_{X}=\overline{\operatorname{aconv}}\left(\left\{x \in B_{X}: x^{*}(x)=1\right\}\right) \quad\left(x^{*} \in G\right)
$$

Therefore, $\left|x^{* *}\left(x^{*}\right)\right|=1 \forall x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right) \forall x^{*} \in G$.

Some reformulations of lushness

Proposition

X Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Separable lush spaces (real case)

X real separable. TFAE:

- X is lush.
- There is $G \subseteq S_{X^{*}}$ norming such that

$$
B_{X}=\overline{\operatorname{aconv}}\left(\left\{x \in B_{X}: x^{*}(x)=1\right\}\right) \quad\left(x^{*} \in G\right)
$$

Therefore, $\left|x^{* *}\left(x^{*}\right)\right|=1 \forall x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right) \forall x^{*} \in G$.

We almost returned to the almost-CL-space definition !!

Some reformulations of lushness

Proposition

X Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Separable lush spaces (real case)

X real separable. TFAE:

- X is lush.
- There is $G \subseteq S_{X^{*}}$ norming such that

$$
B_{X}=\overline{\operatorname{aconv}}\left(\left\{x \in B_{X}: x^{*}(x)=1\right\}\right) \quad\left(x^{*} \in G\right)
$$

Therefore, $\left|x^{* *}\left(x^{*}\right)\right|=1 \forall x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right) \forall x^{*} \in G$.

Consequence (real case)

$X \subseteq C[0,1]$ strictly convex or smooth $\Longrightarrow C[0,1] / X$ contains $C[0,1]$.

An important consequence

An important consequence

Remark

X lush separable, $\operatorname{dim}(X)=\infty \Longrightarrow$ there is $G \in S_{X^{*}}$ infinite such that

$$
\left|x^{* *}\left(x^{*}\right)\right|=1 \quad\left(x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right), x^{*} \in G\right)
$$

An important consequence

Remark

X lush separable, $\operatorname{dim}(X)=\infty \Longrightarrow$ there is $G \in S_{X^{*}}$ infinite such that

$$
\left|x^{* *}\left(x^{*}\right)\right|=1 \quad\left(x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right), x^{*} \in G\right)
$$

Proposition (López-M.-Payá, 1999)

X real, $A \subset S_{X}$ infinite such that

$$
\left|x^{*}(a)\right|=1 \quad\left(x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), a \in A\right) .
$$

Then, $X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

An important consequence

Remark

X lush separable, $\operatorname{dim}(X)=\infty \Longrightarrow$ there is $G \in S_{X^{*}}$ infinite such that

$$
\left|x^{* *}\left(x^{*}\right)\right|=1 \quad\left(x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right), x^{*} \in G\right)
$$

Proposition (López-M.-Payá, 1999)

X real, $A \subset S_{X}$ infinite such that

$$
\left|x^{*}(a)\right|=1 \quad\left(x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), a \in A\right)
$$

Then, $X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supseteq \ell_{1}$.

An important consequence

Remark

X lush separable, $\operatorname{dim}(X)=\infty \Longrightarrow$ there is $G \in S_{X^{*}}$ infinite such that

$$
\left|x^{* *}\left(x^{*}\right)\right|=1 \quad\left(x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right), x^{*} \in G\right)
$$

Proposition (López-M.-Payá, 1999)

X real, $A \subset S_{X}$ infinite such that

$$
\left|x^{*}(a)\right|=1 \quad\left(x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), a \in A\right)
$$

Then, $X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supseteq \ell_{1}$.

Proof.

An important consequence

Remark

X lush separable, $\operatorname{dim}(X)=\infty \Longrightarrow$ there is $G \in S_{X^{*}}$ infinite such that

$$
\left|x^{* *}\left(x^{*}\right)\right|=1 \quad\left(x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right), x^{*} \in G\right)
$$

Proposition (López-M.-Payá, 1999)

X real, $A \subset S_{X}$ infinite such that

$$
\left|x^{*}(a)\right|=1 \quad\left(x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), a \in A\right)
$$

Then, $X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supseteq \ell_{1}$.

Proof.

- There is $E \subseteq X$ separable and lush.

An important consequence

Remark

X lush separable, $\operatorname{dim}(X)=\infty \Longrightarrow$ there is $G \in S_{X^{*}}$ infinite such that

$$
\left|x^{* *}\left(x^{*}\right)\right|=1 \quad\left(x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right), x^{*} \in G\right)
$$

Proposition (López-M.-Payá, 1999)

X real, $A \subset S_{X}$ infinite such that

$$
\left|x^{*}(a)\right|=1 \quad\left(x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), a \in A\right)
$$

Then, $X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supseteq \ell_{1}$.

Proof.

- There is $E \subseteq X$ separable and lush.
- Then $E^{*} \supseteq c_{0}$ or $E^{*} \supseteq \ell_{1} \Longrightarrow E^{*} \supseteq \ell_{1}$.

An important consequence

Remark

X lush separable, $\operatorname{dim}(X)=\infty \Longrightarrow$ there is $G \in S_{X^{*}}$ infinite such that

$$
\left|x^{* *}\left(x^{*}\right)\right|=1 \quad\left(x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right), x^{*} \in G\right)
$$

Proposition (López-M.-Payá, 1999)

X real, $A \subset S_{X}$ infinite such that

$$
\left|x^{*}(a)\right|=1 \quad\left(x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), a \in A\right)
$$

Then, $X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supseteq \ell_{1}$.

Proof.

- There is $E \subseteq X$ separable and lush.
- Then $E^{*} \supseteq c_{0}$ or $E^{*} \supseteq \ell_{1} \Longrightarrow E^{*} \supseteq \ell_{1}$.
- By "lifting" property of $\ell_{1} \Longrightarrow X^{*} \supseteq \ell_{1} . \checkmark$

An important consequence

Remark

X lush separable, $\operatorname{dim}(X)=\infty \Longrightarrow$ there is $G \in S_{X^{*}}$ infinite such that

$$
\left|x^{* *}\left(x^{*}\right)\right|=1 \quad\left(x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right), x^{*} \in G\right)
$$

Proposition (López-M.-Payá, 1999)

X real, $A \subset S_{X}$ infinite such that

$$
\left|x^{*}(a)\right|=1 \quad\left(x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), a \in A\right)
$$

Then, $X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real lush, $\operatorname{dim}(X)=\infty \quad \Longrightarrow X^{*} \supseteq \ell_{1}$.

Question

What happens if just $n(X)=1$?

An important consequence

Remark

X lush separable, $\operatorname{dim}(X)=\infty \Longrightarrow$ there is $G \in S_{X^{*}}$ infinite such that

$$
\left|x^{* *}\left(x^{*}\right)\right|=1 \quad\left(x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right), x^{*} \in G\right)
$$

Proposition (López-M.-Payá, 1999)

X real, $A \subset S_{X}$ infinite such that

$$
\left|x^{*}(a)\right|=1 \quad\left(x^{*} \in \operatorname{ext}\left(B_{X^{*}}\right), a \in A\right)
$$

Then, $X \supseteq c_{0}$ or $X \supseteq \ell_{1}$.

Main consequence

X real lush, $\operatorname{dim}(X)=\infty \quad \Longrightarrow X^{*} \supseteq \ell_{1}$.

Question

What happens if just $n(X)=1$? The same, we will prove later.

Lush spaces Lushness is not equivalent to numerical index one

Lushness is not equivalent to numerical index one

Lushness is not equivalent to numerical index one

Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^{*} is lush but \mathcal{X} is not lush.

Lushness is not equivalent to numerical index one

Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^{*} is lush but \mathcal{X} is not lush.
- Since $n\left(\mathcal{X}^{*}\right)=1$, also $n(\mathcal{X})=1$.

Lushness is not equivalent to numerical index one

Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^{*} is lush but \mathcal{X} is not lush.
- Since $n\left(\mathcal{X}^{*}\right)=1$, also $n(\mathcal{X})=1$.
- The set

$$
\left\{x^{*} \in S_{\mathcal{X}^{*}}:\left|x^{* *}\left(x^{*}\right)\right|=1 \text { for every } x^{* *} \in \operatorname{ext}\left(B_{\mathcal{X}^{* *}}\right)\right\}
$$

is empty.

Lushness is not equivalent to numerical index one

Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^{*} is lush but \mathcal{X} is not lush.
- Since $n\left(\mathcal{X}^{*}\right)=1$, also $n(\mathcal{X})=1$.
- The set

$$
\left\{x^{*} \in S_{\mathcal{X}^{*}}:\left|x^{* *}\left(x^{*}\right)\right|=1 \text { for every } x^{* *} \in \operatorname{ext}\left(B_{\mathcal{X}^{* *}}\right)\right\}
$$

is empty.

Consequence

$$
X \text { lush } \underset{ }{\neq} \underset{X^{*} \text { lush }}{ }
$$

Lushness is not equivalent to numerical index one

Example

There is a separable Banach space \mathcal{X} such that

- \mathcal{X}^{*} is lush but \mathcal{X} is not lush.
- Since $n\left(\mathcal{X}^{*}\right)=1$, also $n(\mathcal{X})=1$.
- The set

$$
\left\{x^{*} \in S_{\mathcal{X}^{*}}:\left|x^{* *}\left(x^{*}\right)\right|=1 \text { for every } x^{* *} \in \operatorname{ext}\left(B_{\mathcal{X}^{* *}}\right)\right\}
$$

is empty.

Consequence

$$
X \text { lush } \underset{\sim}{\underset{\sim}{\rightleftharpoons}} \underset{X^{*} \text { lush }}{\neq}
$$

Proposition

$$
X^{* *} \text { lush } \rightleftharpoons \neq X \text { lush }
$$

Slicely countably determined spaces

(7) Slicely countably determined spaces

- Slicely Countably Determined sets and spaces
- Applications to numerical index 1 spaces
- SCD operators
- Open questions
A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska Slicely Countably Determined Banach spaces
Trans. Amer. Math. Soc. (to appear)

Slicely countably determined spaces SCD sets \& spaces

SCD sets: Definitions and preliminary remarks

SCD sets: Definitions and preliminary remarks

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is Slicely Countably Determined (SCD) if there is a sequence $\left\{S_{n}: n \in \mathbb{N}\right\}$ of slices of A satisfying one of the following equivalent conditions:

SCD sets: Definitions and preliminary remarks

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is Slicely Countably Determined (SCD) if there is a sequence $\left\{S_{n}: n \in \mathbb{N}\right\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_{n} 's,

SCD sets: Definitions and preliminary remarks

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is Slicely Countably Determined (SCD) if there is a sequence $\left\{S_{n}: n \in \mathbb{N}\right\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_{n} 's,
- $A \subseteq \overline{\operatorname{conv}}(B)$ if $B \subseteq A$ satisfies $B \cap S_{n} \neq \varnothing \forall n$,

SCD sets: Definitions and preliminary remarks

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is Slicely Countably Determined (SCD) if there is a sequence $\left\{S_{n}: n \in \mathbb{N}\right\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_{n} 's,
- $A \subseteq \overline{\operatorname{conv}}(B)$ if $B \subseteq A$ satisfies $B \cap S_{n} \neq \varnothing \forall n$,
- given $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with $x_{n} \in S_{n} \forall n \in \mathbb{N}, A \subseteq \overline{\operatorname{conv}}\left(\left\{x_{n}: n \in \mathbb{N}\right\}\right)$.

SCD sets: Definitions and preliminary remarks

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is Slicely Countably Determined (SCD) if there is a sequence $\left\{S_{n}: n \in \mathbb{N}\right\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_{n} 's,
- $A \subseteq \overline{\operatorname{conv}}(B)$ if $B \subseteq A$ satisfies $B \cap S_{n} \neq \varnothing \forall n$,
- given $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with $x_{n} \in S_{n} \forall n \in \mathbb{N}, A \subseteq \overline{\operatorname{conv}}\left(\left\{x_{n}: n \in \mathbb{N}\right\}\right)$.

Remarks

- A is SCD iff \bar{A} is SCD.
- If A is SCD, then it is separable.

SCD sets: Elementary examples I

SCD sets: Elementary examples I

Example
 A separable and $A=\overline{\operatorname{conv}}(\operatorname{dent}(A)) \Longrightarrow A$ is SCD.

SCD sets: Elementary examples I

Example
 A separable and $A=\overline{\operatorname{conv}}(\operatorname{dent}(A)) \Longrightarrow A$ is SCD.

Proof.

SCD sets: Elementary examples I

Example

A separable and $A=\overline{\operatorname{conv}}(\operatorname{dent}(A)) \Longrightarrow A$ is SCD.
Proof.

- Take $\left\{a_{n}: n \in \mathbb{N}\right\}$ denting points with $A=\overline{\operatorname{conv}}\left(\left\{a_{n}: n \in \mathbb{N}\right\}\right)$.

SCD sets: Elementary examples I

Example

A separable and $A=\overline{\operatorname{conv}}(\operatorname{dent}(A)) \Longrightarrow A$ is SCD.
Proof.

- Take $\left\{a_{n}: n \in \mathbb{N}\right\}$ denting points with $A=\overline{\operatorname{conv}}\left(\left\{a_{n}: n \in \mathbb{N}\right\}\right)$.
- For every $n, m \in \mathbb{N}$, take a slice $S_{n, m}$ containing a_{n} and of diameter $1 / m$.

SCD sets: Elementary examples I

Example

A separable and $A=\overline{\operatorname{conv}}(\operatorname{dent}(A)) \Longrightarrow A$ is SCD.
Proof.

- Take $\left\{a_{n}: n \in \mathbb{N}\right\}$ denting points with $A=\overline{\operatorname{conv}}\left(\left\{a_{n}: n \in \mathbb{N}\right\}\right)$.
- For every $n, m \in \mathbb{N}$, take a slice $S_{n, m}$ containing a_{n} and of diameter $1 / m$.
- If $B \cap S_{n, m} \neq \varnothing \forall n, m \in \mathbb{N} \Longrightarrow a_{n} \in \bar{B} \forall n \in \mathbb{N}$.

SCD sets: Elementary examples I

Example

A separable and $A=\overline{\operatorname{conv}}(\operatorname{dent}(A)) \Longrightarrow A$ is SCD.

Proof.

- Take $\left\{a_{n}: n \in \mathbb{N}\right\}$ denting points with $A=\overline{\operatorname{conv}}\left(\left\{a_{n}: n \in \mathbb{N}\right\}\right)$.
- For every $n, m \in \mathbb{N}$, take a slice $S_{n, m}$ containing a_{n} and of diameter $1 / m$.
- If $B \cap S_{n, m} \neq \varnothing \forall n, m \in \mathbb{N} \Longrightarrow a_{n} \in \bar{B} \forall n \in \mathbb{N}$.
- Therefore, $A=\overline{\operatorname{conv}}\left(\left\{a_{n}: n \in \mathbb{N}\right\}\right) \subseteq \overline{\operatorname{conv}}(\bar{B})=\overline{\operatorname{conv}}(B)$.

SCD sets: Elementary examples I

Example

A separable and $A=\overline{\operatorname{conv}}(\operatorname{dent}(A)) \Longrightarrow A$ is SCD.

Proof.

- Take $\left\{a_{n}: n \in \mathbb{N}\right\}$ denting points with $A=\overline{\operatorname{conv}}\left(\left\{a_{n}: n \in \mathbb{N}\right\}\right)$.
- For every $n, m \in \mathbb{N}$, take a slice $S_{n, m}$ containing a_{n} and of diameter $1 / m$.
- If $B \cap S_{n, m} \neq \varnothing \forall n, m \in \mathbb{N} \Longrightarrow a_{n} \in \bar{B} \forall n \in \mathbb{N}$.
- Therefore, $A=\overline{\operatorname{conv}}\left(\left\{a_{n}: n \in \mathbb{N}\right\}\right) \subseteq \overline{\operatorname{conv}}(\bar{B})=\overline{\operatorname{conv}}(B)$.

Example

In particular, A RNP separable $\Longrightarrow A$ SCD.

SCD sets: Elementary examples I

Example

A separable and $A=\overline{\operatorname{conv}}(\operatorname{dent}(A)) \Longrightarrow A$ is SCD.

Proof.

- Take $\left\{a_{n}: n \in \mathbb{N}\right\}$ denting points with $A=\overline{\operatorname{conv}}\left(\left\{a_{n}: n \in \mathbb{N}\right\}\right)$.
- For every $n, m \in \mathbb{N}$, take a slice $S_{n, m}$ containing a_{n} and of diameter $1 / m$.
- If $B \cap S_{n, m} \neq \varnothing \forall n, m \in \mathbb{N} \Longrightarrow a_{n} \in \bar{B} \forall n \in \mathbb{N}$.
- Therefore, $A=\overline{\operatorname{conv}}\left(\left\{a_{n}: n \in \mathbb{N}\right\}\right) \subseteq \overline{\operatorname{conv}}(\bar{B})=\overline{\operatorname{conv}}(B)$.

Example

In particular, A RNP separable $\Longrightarrow A$ SCD.

Corollary

- If X is separable LUR $\Longrightarrow B_{X}$ is SCD.
- So, every separable space can be renormed such that $B_{(X,|\cdot|)}$ is SCD.

SCD sets: Elementary examples II

Example
 If X^{*} is separable $\Longrightarrow A$ is SCD.

SCD sets: Elementary examples II

Example
 If X^{*} is separable $\Longrightarrow A$ is SCD.

Proof.

SCD sets: Elementary examples II

Example
 If X^{*} is separable $\Longrightarrow A$ is SCD.
 Proof.
 - Take $\left\{x_{n}^{*}: n \in \mathbb{N}\right\}$ dense in $S_{X^{*}}$.

SCD sets: Elementary examples II

Example

If X^{*} is separable $\Longrightarrow A$ is SCD.
Proof.

- Take $\left\{x_{n}^{*}: n \in \mathbb{N}\right\}$ dense in $S_{X^{*}}$.
- For every $n, m \in \mathbb{N}$, consider $S_{n, m}=S\left(A, x_{n}^{*}, 1 / m\right)$.

SCD sets: Elementary examples II

Example

If X^{*} is separable $\Longrightarrow A$ is SCD.
Proof.

- Take $\left\{x_{n}^{*}: n \in \mathbb{N}\right\}$ dense in $S_{X^{*}}$.
- For every $n, m \in \mathbb{N}$, consider $S_{n, m}=S\left(A, x_{n}^{*}, 1 / m\right)$.
- It is easy to show that any slice of A contains one of the $S_{n, m}$. \checkmark

SCD sets: Elementary examples II

Example

If X^{*} is separable $\Longrightarrow A$ is $S C D$.
Proof.

- Take $\left\{x_{n}^{*}: n \in \mathbb{N}\right\}$ dense in $S_{X^{*}}$.
- For every $n, m \in \mathbb{N}$, consider $S_{n, m}=S\left(A, x_{n}^{*}, 1 / m\right)$.
- It is easy to show that any slice of A contains one of the $S_{n, m}$. \checkmark

Negative example

If X has the Daugavet property $\Longrightarrow B_{X}$ is not SCD.
Therefore, $B_{C[0,1]}, B_{L_{1}[0,1]}$ are not SCD.

SCD sets: Elementary examples II

Example

If X^{*} is separable $\Longrightarrow A$ is $S C D$.
Proof.

- Take $\left\{x_{n}^{*}: n \in \mathbb{N}\right\}$ dense in $S_{X^{*}}$.
- For every $n, m \in \mathbb{N}$, consider $S_{n, m}=S\left(A, x_{n}^{*}, 1 / m\right)$.
- It is easy to show that any slice of A contains one of the $S_{n, m}$. \checkmark

Negative example

If X has the Daugavet property $\Longrightarrow B_{X}$ is not SCD.
Therefore, $B_{C[0,1]}, B_{L_{1}[0,1]}$ are not SCD.
Proof.

SCD sets: Elementary examples II

Example

If X^{*} is separable $\Longrightarrow A$ is $S C D$.
Proof.

- Take $\left\{x_{n}^{*}: n \in \mathbb{N}\right\}$ dense in $S_{X^{*}}$.
- For every $n, m \in \mathbb{N}$, consider $S_{n, m}=S\left(A, x_{n}^{*}, 1 / m\right)$.
- It is easy to show that any slice of A contains one of the $S_{n, m}$. \checkmark

Negative example

If X has the Daugavet property $\Longrightarrow B_{X}$ is not SCD.
Therefore, $B_{C[0,1]}, B_{L_{1}[0,1]}$ are not SCD.
Proof.

- Fix $x_{0} \in B_{X}$ and $\left\{S_{n}\right\}$ sequence of slices of B_{X}.

SCD sets: Elementary examples II

Example

If X^{*} is separable $\Longrightarrow A$ is $S C D$.
Proof.

- Take $\left\{x_{n}^{*}: n \in \mathbb{N}\right\}$ dense in $S_{X^{*}}$.
- For every $n, m \in \mathbb{N}$, consider $S_{n, m}=S\left(A, x_{n}^{*}, 1 / m\right)$.
- It is easy to show that any slice of A contains one of the $S_{n, m}$. \checkmark

Negative example

If X has the Daugavet property $\Longrightarrow B_{X}$ is not SCD.
Therefore, $B_{C[0,1]}, B_{L_{1}[0,1]}$ are not SCD.
Proof.

- Fix $x_{0} \in B_{X}$ and $\left\{S_{n}\right\}$ sequence of slices of B_{X}.
- By $[\mathrm{KSSW}]$ there is a sequence $\left(x_{n}\right) \subset B_{X}$ such that
- $x_{n} \in S_{n}$ for every $n \in \mathbb{N}$,
- $\left(x_{n}\right)_{n \geqslant 0}$ is equivalent to the basis of ℓ_{1},
- so $x_{0} \notin \overline{\operatorname{lin}}\left\{x_{n}: n \in \mathbb{N}\right\}$. \checkmark

SCD sets: Further examples I

Convex combination of slices

$W=\sum_{k=1}^{m} \lambda_{k} S_{k} \subset A$ where $\lambda_{k} \geqslant 0, \sum \lambda_{k}=1, S_{k}$ slices.

SCD sets: Further examples I

Convex combination of slices

$W=\sum_{k=1}^{m} \lambda_{k} S_{k} \subset A$ where $\lambda_{k} \geqslant 0, \sum \lambda_{k}=1, S_{k}$ slices.

Proposition

In the definition of SCD we can use a sequence $\left\{S_{n}: n \in \mathbb{N}\right\}$ of convex combination of slices.

SCD sets: Further examples I

Convex combination of slices

$W=\sum_{k=1}^{m} \lambda_{k} S_{k} \subset A$ where $\lambda_{k} \geqslant 0, \sum \lambda_{k}=1, S_{k}$ slices.

Proposition

In the definition of SCD we can use a sequence $\left\{S_{n}: n \in \mathbb{N}\right\}$ of convex combination of slices.

Small combinations of slices

A has small combinations of slices iff every slice of A contains convex combinations of slices of A with arbitrary small diameter.

SCD sets: Further examples I

Convex combination of slices

$$
W=\sum_{k=1}^{m} \lambda_{k} S_{k} \subset A \text { where } \lambda_{k} \geqslant 0, \sum \lambda_{k}=1, S_{k} \text { slices. }
$$

Proposition

In the definition of SCD we can use a sequence $\left\{S_{n}: n \in \mathbb{N}\right\}$ of convex combination of slices.

Small combinations of slices

A has small combinations of slices iff every slice of A contains convex combinations of slices of A with arbitrary small diameter.

Example

If A has small combinations of slices + separable $\Longrightarrow A$ is SCD.

SCD sets: Further examples I

Convex combination of slices

$$
W=\sum_{k=1}^{m} \lambda_{k} S_{k} \subset A \text { where } \lambda_{k} \geqslant 0, \sum \lambda_{k}=1, S_{k} \text { slices. }
$$

Proposition

In the definition of SCD we can use a sequence $\left\{S_{n}: n \in \mathbb{N}\right\}$ of convex combination of slices.

Small combinations of slices

A has small combinations of slices iff every slice of A contains convex combinations of slices of A with arbitrary small diameter.

Example

If A has small combinations of slices + separable $\Longrightarrow A$ is SCD.

Particular case

A strongly regular + separable $\Longrightarrow A$ is SCD.

SCD sets: Further examples II

Bourgain's lemma

Every relative weak open subset of A contains a convex combination of slices.

SCD sets: Further examples II

Bourgain's lemma

Every relative weak open subset of A contains a convex combination of slices.

Corollary
In the definition of SCD we can use a sequence $\left\{S_{n}: n \in \mathbb{N}\right\}$ of relative weak open subsets.

SCD sets: Further examples II

Bourgain's lemma

Every relative weak open subset of A contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence $\left\{S_{n}: n \in \mathbb{N}\right\}$ of relative weak open subsets.

π-bases

A π-base of the weak topology of A is a family $\left\{V_{i}: i \in I\right\}$ of weak open sets of A such that every weak open subset of A contains one of the V_{i} 's.

Bourgain's lemma

Every relative weak open subset of A contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence $\left\{S_{n}: n \in \mathbb{N}\right\}$ of relative weak open subsets.

π-bases

A π-base of the weak topology of A is a family $\left\{V_{i}: i \in I\right\}$ of weak open sets of A such that every weak open subset of A contains one of the V_{i} 's.

Proposition

If $\left(A, \sigma\left(X, X^{*}\right)\right)$ has a countable π-base $\Longrightarrow A$ is SCD.

SCD sets: Further examples III

Theorem
 A separable without ℓ_{1}-sequences $\Longrightarrow\left(A, \sigma\left(X, X^{*}\right)\right)$ has a countable π-base.

SCD sets: Further examples III

Theorem
 A separable without ℓ_{1}-sequences $\Longrightarrow\left(A, \sigma\left(X, X^{*}\right)\right)$ has a countable π-base.

Proof.

SCD sets: Further examples III

Theorem
A separable without ℓ_{1}-sequences $\Longrightarrow\left(A, \sigma\left(X, X^{*}\right)\right)$ has a countable π-base.
Proof.

- We see $\left(A, \sigma\left(X, X^{*}\right)\right) \subset C(T)$ where $T=\left(B_{X^{*}}, \sigma\left(X^{*}, X\right)\right)$.

SCD sets: Further examples III

Theorem

A separable without ℓ_{1}-sequences $\Longrightarrow\left(A, \sigma\left(X, X^{*}\right)\right)$ has a countable π-base.

Proof.

- We see $\left(A, \sigma\left(X, X^{*}\right)\right) \subset C(T)$ where $T=\left(B_{X^{*}}, \sigma\left(X^{*}, X\right)\right)$.
- By Rosenthal ℓ_{1} theorem, $\left(A, \sigma\left(X, X^{*}\right)\right)$ is a relatively compact subset of the space of first Baire class functions on T.

SCD sets: Further examples III

Theorem

A separable without ℓ_{1}-sequences $\Longrightarrow\left(A, \sigma\left(X, X^{*}\right)\right)$ has a countable π-base.

Proof.

- We see $\left(A, \sigma\left(X, X^{*}\right)\right) \subset C(T)$ where $T=\left(B_{X^{*}}, \sigma\left(X^{*}, X\right)\right)$.
- By Rosenthal ℓ_{1} theorem, $\left(A, \sigma\left(X, X^{*}\right)\right)$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $\left(A, \sigma\left(X, X^{*}\right)\right)$ has a σ-disjoint π-base.

SCD sets: Further examples III

Theorem

A separable without ℓ_{1}-sequences $\Longrightarrow\left(A, \sigma\left(X, X^{*}\right)\right)$ has a countable π-base.

Proof.

- We see $\left(A, \sigma\left(X, X^{*}\right)\right) \subset C(T)$ where $T=\left(B_{X^{*}}, \sigma\left(X^{*}, X\right)\right)$.
- By Rosenthal ℓ_{1} theorem, $\left(A, \sigma\left(X, X^{*}\right)\right)$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $\left(A, \sigma\left(X, X^{*}\right)\right)$ has a σ-disjoint π-base.
- $\left\{V_{i}: i \in I\right\}$ is σ-disjoint if $I=\bigcup_{n \in \mathbb{N}} I_{n}$ and each $\left\{V_{i}: i \in I_{n}\right\}$ is pairwise disjoint.

SCD sets: Further examples III

Theorem

A separable without ℓ_{1}-sequences $\Longrightarrow\left(A, \sigma\left(X, X^{*}\right)\right)$ has a countable π-base.
Proof.

- We see $\left(A, \sigma\left(X, X^{*}\right)\right) \subset C(T)$ where $T=\left(B_{X^{*}}, \sigma\left(X^{*}, X\right)\right)$.
- By Rosenthal ℓ_{1} theorem, $\left(A, \sigma\left(X, X^{*}\right)\right)$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $\left(A, \sigma\left(X, X^{*}\right)\right)$ has a σ-disjoint π-base.
- $\left\{V_{i}: i \in I\right\}$ is σ-disjoint if $I=\bigcup_{n \in \mathbb{N}} I_{n}$ and each $\left\{V_{i}: i \in I_{n}\right\}$ is pairwise disjoint.
- A σ-disjoint family of open subsets in a separable space is countable.

Theorem

A separable without ℓ_{1}-sequences $\Longrightarrow\left(A, \sigma\left(X, X^{*}\right)\right)$ has a countable π-base.
Proof.

- We see $\left(A, \sigma\left(X, X^{*}\right)\right) \subset C(T)$ where $T=\left(B_{X^{*}}, \sigma\left(X^{*}, X\right)\right)$.
- By Rosenthal ℓ_{1} theorem, $\left(A, \sigma\left(X, X^{*}\right)\right)$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $\left(A, \sigma\left(X, X^{*}\right)\right)$ has a σ-disjoint π-base.
- $\left\{V_{i}: i \in I\right\}$ is σ-disjoint if $I=\bigcup_{n \in \mathbb{N}} I_{n}$ and each $\left\{V_{i}: i \in I_{n}\right\}$ is pairwise disjoint.
- A σ-disjoint family of open subsets in a separable space is countable.

Example

A separable without ℓ_{1}-sequences $\Longrightarrow A$ is SCD.

SCD spaces: definition and examples

SCD spaces: definition and examples

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

SCD spaces: definition and examples

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

SCD spaces: definition and examples

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

© X separable strongly regular. In particular, RNP, CPCP spaces.

SCD spaces: definition and examples

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

(1) X separable strongly regular. In particular, RNP, CPCP spaces.
(X separable $X \nsupseteq \ell_{1}$. In particular, if X^{*} is separable.

SCD spaces: definition and examples

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

(1) X separable strongly regular. In particular, RNP, CPCP spaces.
(X separable $X \nsupseteq \ell_{1}$. In particular, if X^{*} is separable.

Examples of NOT SCD spaces

SCD spaces: definition and examples

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

(1) X separable strongly regular. In particular, RNP, CPCP spaces.
(2) X separable $X \nsupseteq \ell_{1}$. In particular, if X^{*} is separable.

Examples of NOT SCD spaces

(1) X having the Daugavet property.
(2) In particular, $C[0,1], L_{1}[0,1]$

SCD spaces: definition and examples

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

(1) X separable strongly regular. In particular, RNP, CPCP spaces.
(2) X separable $X \nsupseteq \ell_{1}$. In particular, if X^{*} is separable.

Examples of NOT SCD spaces

(1) X having the Daugavet property.
(2) In particular, $C[0,1], L_{1}[0,1]$
(3) There is X with the Schur property which is not SCD.

SCD spaces: definition and examples

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

(1) X separable strongly regular. In particular, RNP, CPCP spaces.
(2) X separable $X \nsupseteq \ell_{1}$. In particular, if X^{*} is separable.

Examples of NOT SCD spaces

(1) X having the Daugavet property.
(2) In particular, $C[0,1], L_{1}[0,1]$
(3) There is X with the Schur property which is not SCD.

Remark

- Every subspace of a SCD space is SCD.
- This is false for quotients.

SCD spaces: stability properties

SCD spaces: stability properties

Theorem
 $Z \subset X$. If Z and X / Z are $S C D \Longrightarrow X$ is $S C D$.

SCD spaces: stability properties

Theorem
 $Z \subset X$. If Z and X / Z are $S C D \Longrightarrow X$ is $S C D$.

Corollary
 X separable NOT SCD

SCD spaces: stability properties

```
Theorem
Z\subsetX. If Z and }X/Z\mathrm{ are SCD }\LongrightarrowX\mathrm{ is SCD.
Corollary
X separable NOT SCD
    - If }\mp@subsup{\ell}{1}{}\simeqY\subsetX\LongrightarrowX/Y contains a copy of \ell . .
```


SCD spaces: stability properties

Theorem
$Z \subset X$. If Z and X / Z are $S C D \Longrightarrow X$ is $S C D$.

Corollary

X separable NOT SCD

- If $\ell_{1} \simeq Y \subset X \Longrightarrow X / Y$ contains a copy of ℓ_{1}.
- If $\ell_{1} \simeq Y_{1} \subset X \Longrightarrow$ there is $\ell_{1} \simeq Y_{2} \subset X$ with $Y_{1} \cap Y_{2}=0$.

SCD spaces: stability properties

Theorem
 $Z \subset X$. If Z and X / Z are $S C D \Longrightarrow X$ is $S C D$.

Corollary

X separable NOT SCD

- If $\ell_{1} \simeq Y \subset X \Longrightarrow X / Y$ contains a copy of ℓ_{1}.
- If $\ell_{1} \simeq Y_{1} \subset X \Longrightarrow$ there is $\ell_{1} \simeq Y_{2} \subset X$ with $Y_{1} \cap Y_{2}=0$.

```
Corollary
\(X_{1}, \ldots, X_{m} \mathrm{SCD} \Longrightarrow X_{1} \oplus \cdots \oplus X_{m}\) SCD.
```


SCD spaces: stability properties II

SCD spaces: stability properties II

Theorem X_{1}, X_{2}, \ldots SCD, E with unconditional basis.
 - $E \nsupseteq c_{0} \Longrightarrow\left[\bigoplus_{n \in \mathbb{N}} X_{n}\right]_{E}$ SCD.
 - $E \nsupseteq \ell_{1} \Longrightarrow\left[\bigoplus_{n \in \mathbb{N}} X_{n}\right]_{E}$ SCD.

SCD spaces: stability properties II

Theorem

X_{1}, X_{2}, \ldots SCD,E with unconditional basis.

- $E \nsupseteq c_{0} \Longrightarrow\left[\bigoplus_{n \in \mathbb{N}} X_{n}\right]_{E}$ SCD.
- $E \nsupseteq \ell_{1} \Longrightarrow\left[\bigoplus_{n \in \mathbb{N}} X_{n}\right]_{E}$ SCD.

Examples

(1) $c_{0}\left(\ell_{1}\right)$ and $\ell_{1}\left(c_{0}\right)$ are SCD.
(2) $c_{0} \otimes_{\varepsilon} c_{0}, c_{0} \otimes_{\pi} c_{0}, c_{0} \otimes_{\varepsilon} \ell_{1}, c_{0} \otimes_{\pi} \ell_{1}, \ell_{1} \otimes_{\varepsilon} \ell_{1}$, and $\ell_{1} \otimes_{\pi} \ell_{1}$ are SCD.
(3) $K\left(c_{0}\right)$ and $K\left(c_{0}, \ell_{1}\right)$ are SCD.
(9) $\ell_{2} \otimes_{\varepsilon} \ell_{2} \equiv K\left(\ell_{2}\right)$ and $\ell_{2} \oplus_{\pi} \ell_{2} \equiv \mathcal{L}_{1}\left(\ell_{2}\right)$ are SCD

The DPr, the ADP and numerical index 1

Recalling the properties

(1) Kadets-Shvidkoy-Sirotkin-Werner, 1997: X has the Daugavet property (DPr) if

$$
\begin{equation*}
\|\operatorname{Id}+T\|=1+\|T\| \tag{DE}
\end{equation*}
$$

for every rank-one $T \in L(X)$.
\star Then every weakly compact T also satisfies (DE).

The DPr, the ADP and numerical index 1

Recalling the properties

(1) Kadets-Shvidkoy-Sirotkin-Werner, 1997: X has the Daugavet property (DPr) if

$$
\begin{equation*}
\|\operatorname{Id}+T\|=1+\|T\| \tag{DE}
\end{equation*}
$$

for every rank-one $T \in L(X)$.
\star Then every weakly compact T also satisfies (DE).
(2) Lumer, 1968: X has numerical index 1 if EVERY operator on X satisfies

$$
\begin{equation*}
\max _{\theta \in \mathbb{T}}\|\operatorname{Id}+\theta T\|=1+\|T\| \tag{aDE}
\end{equation*}
$$

\star Equivalently, $v(T)=\|T\|$ for EVERY $T \in L(X)$.

The DPr, the ADP and numerical index 1

Recalling the properties

(1) Kadets-Shvidkoy-Sirotkin-Werner, 1997:
X has the Daugavet property (DPr) if

$$
\begin{equation*}
\|\operatorname{Id}+T\|=1+\|T\| \tag{DE}
\end{equation*}
$$

for every rank-one $T \in L(X)$.
\star Then every weakly compact T also satisfies (DE).
(2) Lumer, 1968: X has numerical index 1 if EVERY operator on X satisfies

$$
\begin{equation*}
\max _{\theta \in \mathbb{T}}\|\operatorname{Id}+\theta T\|=1+\|T\| \tag{aDE}
\end{equation*}
$$

\star Equivalently, $v(T)=\|T\|$ for EVERY $T \in L(X)$.
(3) M.-Oikhberg, 2004: X has the alternative Daugavet property (ADP) if every rank-one $T \in L(X)$ satisfies (aDE).
\star Then every weakly compact T also satisfies (aDE).

Relations between these properties

Relations between these properties

Examples

- $C\left([0,1], K\left(\ell_{2}\right)\right)$ has DPr, but has not numerical index 1
- c_{0} has numerical index 1 , but has not DPr
- $c_{0} \oplus_{\infty} C\left([0,1], K\left(\ell_{2}\right)\right)$ has ADP, neither DPr nor numerical index 1

Relations between these properties

Examples

- $C\left([0,1], K\left(\ell_{2}\right)\right)$ has DPr, but has not numerical index 1
- c_{0} has numerical index 1 , but has not DPr
- $c_{0} \oplus_{\infty} C\left([0,1], K\left(\ell_{2}\right)\right)$ has ADP, neither DPr nor numerical index 1

Remarks

- For RNP or Asplund spaces, ADP \Longrightarrow numerical index 1 .
- Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.

ADP + SCD \Longrightarrow numerical index 1

$A D P+S C D \Longrightarrow$ numerical index 1

Characterizations of the ADP

X Banach space. TFAE:

- X has ADP (i.e. $\max _{\theta \in \mathbb{T}}\|\operatorname{Id}+\theta T\|=1+\|T\|$ for all T rank-one).

ADP + SCD \Longrightarrow numerical index 1

Characterizations of the ADP

X Banach space. TFAE:

- X has ADP (i.e. $\max _{\theta \in \mathbb{T}}\|\operatorname{Id}+\theta T\|=1+\|T\|$ for all T rank-one).
- Given $x \in S_{X}$, a slice S of B_{X} and $\varepsilon>0$, there is $y \in S$ with

$$
\max _{\theta \in \mathbb{T}}\|x+\theta y\|>2-\varepsilon
$$

ADP $+S C D \Longrightarrow$ numerical index 1

Characterizations of the ADP

X Banach space. TFAE:

- X has ADP (i.e. $\max _{\theta \in \mathbb{T}}\|\operatorname{Id}+\theta T\|=1+\|T\|$ for all T rank-one).
- Given $x \in S_{X}$, a slice S of B_{X} and $\varepsilon>0$, there is $y \in S$ with

$$
\max _{\theta \in \mathbb{T}}\|x+\theta y\|>2-\varepsilon
$$

- Given $x \in S_{X}$, a sequence $\left\{S_{n}\right\}$ of slices of B_{X}, and $\varepsilon>0$, there is $y^{*} \in S_{X^{*}}$ such that $x \in S\left(B_{X}, y^{*}, \varepsilon\right)$ and

$$
\overline{\operatorname{conv}}\left(\mathbb{T} S\left(B_{X}, y^{*}, \varepsilon\right)\right) \bigcap S_{n} \neq \varnothing \quad(n \in \mathbb{N})
$$

ADP $+\mathrm{SCD} \Longrightarrow$ numerical index 1

Characterizations of the ADP

X Banach space. TFAE:

- X has ADP (i.e. $\max _{\theta \in \mathbb{T}}\|\operatorname{Id}+\theta T\|=1+\|T\|$ for all T rank-one).
- Given $x \in S_{X}$, a slice S of B_{X} and $\varepsilon>0$, there is $y \in S$ with

$$
\max _{\theta \in \mathbb{T}}\|x+\theta y\|>2-\varepsilon
$$

- Given $x \in S_{X}$, a sequence $\left\{S_{n}\right\}$ of slices of B_{X}, and $\varepsilon>0$, there is $y^{*} \in S_{X^{*}}$ such that $x \in S\left(B_{X}, y^{*}, \varepsilon\right)$ and

$$
\overline{\operatorname{conv}}\left(\mathbb{T} S\left(B_{X}, y^{*}, \varepsilon\right)\right) \bigcap S_{n} \neq \varnothing \quad(n \in \mathbb{N})
$$

Theorem

$X \mathrm{ADP}+B_{X} \mathrm{SCD} \Longrightarrow$ given $x \in S_{X}$ and $\varepsilon>0$, there is $y^{*} \in S_{X^{*}}$ such that

$$
x \in S\left(B_{X}, y^{*}, \varepsilon\right) \quad \text { and } \quad B_{X}=\overline{\operatorname{conv}}\left(\mathbb{T} S\left(B_{X}, y^{*}, \varepsilon\right)\right)
$$

This implies lushness and so, numerical index 1 .

Some consequences

Some consequences

Corollary

- ADP + strongly regular \Longrightarrow numerical index 1 (actually, lushness).
- ADP $+X \nsupseteq \ell_{1} \Longrightarrow$ numerical index 1 (actually, lushness).

Some consequences

Corollary

- ADP + strongly regular \Longrightarrow numerical index 1 (actually, lushness).
- ADP $+X \nsupseteq \ell_{1} \Longrightarrow$ numerical index 1 (actually, lushness).

```
Corollary
X real }+\operatorname{dim}(X)=\infty+ADP\Longrightarrow\mp@subsup{X}{}{*}\supseteq\mp@subsup{\ell}{1}{}
```


Some consequences

Corollary

- ADP + strongly regular \Longrightarrow numerical index 1 (actually, lushness).
- ADP $+X \nsupseteq \ell_{1} \Longrightarrow$ numerical index 1 (actually, lushness).

Corollary

$$
X \text { real }+\operatorname{dim}(X)=\infty+A D P \Longrightarrow X^{*} \supseteq \ell_{1} .
$$

Proof.

Some consequences

Corollary

- ADP + strongly regular \Longrightarrow numerical index 1 (actually, lushness).
- ADP $+X \nsupseteq \ell_{1} \Longrightarrow$ numerical index 1 (actually, lushness).

Corollary

$$
X \text { real }+\operatorname{dim}(X)=\infty+A D P \Longrightarrow X^{*} \supseteq \ell_{1} .
$$

Proof.

- If $X \supseteq \ell_{1} \Longrightarrow X^{*}$ contains ℓ_{∞} as a quotient, so X^{*} contains ℓ_{1} as a quotient, and the lifting property gives $X^{*} \supseteq \ell_{1} \checkmark$

Some consequences

Corollary

- ADP + strongly regular \Longrightarrow numerical index 1 (actually, lushness).
- ADP $+X \nsupseteq \ell_{1} \Longrightarrow$ numerical index 1 (actually, lushness).

Corollary

$$
X \text { real }+\operatorname{dim}(X)=\infty+A D P \Longrightarrow X^{*} \supseteq \ell_{1} .
$$

Proof.

- If $X \supseteq \ell_{1} \Longrightarrow X^{*}$ contains ℓ_{∞} as a quotient, so X^{*} contains ℓ_{1} as a quotient, and the lifting property gives $X^{*} \supseteq \ell_{1} \checkmark$
- If $X \nsupseteq \ell_{1} \Longrightarrow X$ is SCD + ADP, so X is lush.

Some consequences

Corollary

- ADP + strongly regular \Longrightarrow numerical index 1 (actually, lushness).
- ADP $+X \nsupseteq \ell_{1} \Longrightarrow$ numerical index 1 (actually, lushness).

Corollary

$$
X \text { real }+\operatorname{dim}(X)=\infty+A D P \Longrightarrow X^{*} \supseteq \ell_{1} .
$$

Proof.

- If $X \supseteq \ell_{1} \Longrightarrow X^{*}$ contains ℓ_{∞} as a quotient, so X^{*} contains ℓ_{1} as a quotient, and the lifting property gives $X^{*} \supseteq \ell_{1} \checkmark$
- If $X \nsupseteq \ell_{1} \Longrightarrow X$ is SCD + ADP, so X is lush.
- Lush $+\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supseteq \ell_{1} \checkmark$

Some consequences

Corollary

- ADP + strongly regular \Longrightarrow numerical index 1 (actually, lushness).
- ADP $+X \nsupseteq \ell_{1} \Longrightarrow$ numerical index 1 (actually, lushness).

```
Corollary
X real }+\operatorname{dim}(X)=\infty+ADP\Longrightarrow\mp@subsup{X}{}{*}\supseteq\mp@subsup{\ell}{1}{}
```

In particular,

Some consequences

Corollary

- ADP + strongly regular \Longrightarrow numerical index 1 (actually, lushness).
- ADP $+X \nsupseteq \ell_{1} \Longrightarrow$ numerical index 1 (actually, lushness).

Corollary

$$
X \text { real }+\operatorname{dim}(X)=\infty+A D P \Longrightarrow X^{*} \supseteq \ell_{1} .
$$

In particular,

Corollary

$$
X \text { real }+\operatorname{dim}(X)=\infty+\text { numerical index } 1 \Longrightarrow X^{*} \supseteq \ell_{1}
$$

Some consequences

Corollary

- ADP + strongly regular \Longrightarrow numerical index 1 (actually, lushness).
- ADP $+X \nsupseteq \ell_{1} \Longrightarrow$ numerical index 1 (actually, lushness).

Corollary

$$
X \text { real }+\operatorname{dim}(X)=\infty+A D P \Longrightarrow X^{*} \supseteq \ell_{1} .
$$

In particular,

Corollary

$$
X \text { real }+\operatorname{dim}(X)=\infty+\text { numerical index } 1 \Longrightarrow X^{*} \supseteq \ell_{1}
$$

Open question

X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

SCD operators

SCD operators

SCD operator
 $T \in L(X)$ is an SCD-operator if $T\left(B_{X}\right)$ is an SCD-set.

SCD operators

SCD operator

$T \in L(X)$ is an SCD-operator if $T\left(B_{X}\right)$ is an SCD-set.

Examples

T is an SCD-operator when $T\left(B_{X}\right)$ is separable and
(1) $T\left(B_{X}\right)$ is RPN,
(2) $T\left(B_{X}\right)$ has no ℓ_{1} sequences,
(3) T does not fix copies of ℓ_{1}

SCD operators

SCD operator

$T \in L(X)$ is an SCD-operator if $T\left(B_{X}\right)$ is an SCD-set.

Examples

T is an SCD-operator when $T\left(B_{X}\right)$ is separable and
(1) $T\left(B_{X}\right)$ is RPN,
(2) $T\left(B_{X}\right)$ has no ℓ_{1} sequences,
(3) T does not fix copies of ℓ_{1}

Theorem

- X ADP $+T$ SCD-operator $\Longrightarrow \max _{\theta \in \mathbb{T}}\|\operatorname{Id}+\theta T\|=1+\|T\|$.
- $X \operatorname{DPr}+T$ SCD-operator $\Longrightarrow\|\operatorname{Id}+T\|=1+\|T\|$.

SCD operators

SCD operator

$T \in L(X)$ is an SCD-operator if $T\left(B_{X}\right)$ is an SCD-set.

Examples

T is an SCD-operator when $T\left(B_{X}\right)$ is separable and
(1) $T\left(B_{X}\right)$ is RPN,
(2) $T\left(B_{X}\right)$ has no ℓ_{1} sequences,
(3) T does not fix copies of ℓ_{1}

Theorem

- X ADP $+T$ SCD-operator $\Longrightarrow \max _{\theta \in \mathbb{T}}\|\operatorname{Id}+\theta T\|=1+\|T\|$.
- $X \operatorname{DPr}+T$ SCD-operator $\Longrightarrow\|\mathrm{Id}+T\|=1+\|T\|$.

Main corollary

X ADP $+T$ does not fix copies of $\ell_{1} \Longrightarrow \max _{\theta \in \mathbb{T}}\|\mathrm{Id}+\theta T\|=1+\|T\|$.

SCD operators

SCD operator

$T \in L(X)$ is an SCD-operator if $T\left(B_{X}\right)$ is an SCD-set.

Examples

T is an SCD-operator when $T\left(B_{X}\right)$ is separable and
(1) $T\left(B_{X}\right)$ is RPN,
(2) $T\left(B_{X}\right)$ has no ℓ_{1} sequences,
(3) T does not fix copies of ℓ_{1}

Theorem

- X ADP $+T$ SCD-operator $\Longrightarrow \max _{\theta \in T}\|\mathrm{Id}+\theta T\|=1+\|T\|$.
- $X \operatorname{DPr}+T$ Remark

Separability is not needed !

Main corollary

X ADP $+T$ does not fix copies of $\ell_{1} \Longrightarrow \max _{\theta \in \mathbb{T}}\|\operatorname{Id}+\theta T\|=1+\|T\|$.

Open questions

On SCD-sets

- Find more sufficient conditions for a set to be SCD.
- For instance, if X has 1 -symmetric basis, is B_{X} an SCD-set ?
- Is SCD equivalent to the existence of a countable π-base for the weak topology ?

Open questions

On SCD-sets

- Find more sufficient conditions for a set to be SCD.
- For instance, if X has 1 -symmetric basis, is B_{X} an SCD-set ?
- Is SCD equivalent to the existence of a countable π-base for the weak topology ?

On SCD-spaces

- E with unconditional basis. Is E SCD ?
- X, Y SCD. Are $X \otimes_{\varepsilon} Y$ and $X \otimes_{\pi} Y$ SCD ?

Open questions

On SCD-sets

- Find more sufficient conditions for a set to be SCD.
- For instance, if X has 1 -symmetric basis, is B_{X} an SCD-set ?
- Is SCD equivalent to the existence of a countable π-base for the weak topology ?

On SCD-spaces

- E with unconditional basis. Is E SCD ?
- X, Y SCD. Are $X \otimes_{\varepsilon} Y$ and $X \otimes_{\pi} Y$ SCD ?

On SCD-operators

- T_{1}, T_{2} SCD-operators, is $T_{1}+T_{2}$ an SCD-operator ?
- $T: X \longrightarrow Y$ hereditary SCD, is there Z SCD-space such that T factor through Z ?

Remarks on two recent results

(8) Remarks on two recent results

- Containment of c_{0} or ℓ_{1}
- On the numerical index of $L_{p}(\mu)$A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska. Slicely countably determined Banach spaces.
Trans. Amer. Math. Soc. (to appear).

V. Kadets, M. Martín, J. Merí, and R. Payá.

Smoothness and convexity for Banach spaces with numerical index 1 . Illinois J. Math. (to appear).

庿 M. Martín, J. Merí, and M. Popov.
On the numerical index of real $L_{p}(\mu)$-spaces.
Preprint.

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)
X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)
X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

* Old approaches to this problem:

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)

X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

* Old approaches to this problem:
- López-M.-Payá, 1999:
X real, RNP, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset \ell_{1}$.

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)

X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

* Old approaches to this problem:
- López-M.-Payá, 1999:
X real, RNP, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset \ell_{1}$.
- Kadets-M.-Merí-Payá, 2009: X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)

X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

* Old approaches to this problem:
- López-M.-Payá, 1999:
X real, RNP, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset \ell_{1}$.
- Kadets-M.-Merí-Payá, 2009:
X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.
- Avilés-Kadets-M.-Merí-Shepelska, 2010: X real, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)

X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

* Old approaches to this problem:
- López-M.-Payá, 1999:
X real, RNP, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset \ell_{1}$.
- Kadets-M.-Merí-Payá, 2009:
X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.
- Avilés-Kadets-M.-Merí-Shepelska, 2010: X real, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.

Proof of the last statement:

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)

X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

* Old approaches to this problem:
- López-M.-Payá, 1999:
X real, RNP, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset \ell_{1}$.
- Kadets-M.-Merí-Payá, 2009: X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.
- Avilés-Kadets-M.-Merí-Shepelska, 2010: X real, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.

Proof of the last statement:

- If $X \supseteq \ell_{1}$ we use the "lifting" property of $\ell_{1} \checkmark$

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)

X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1} ?$

* Old approaches to this problem:
- López-M.-Payá, 1999: X real, RNP, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset \ell_{1}$.
- Kadets-M.-Merí-Payá, 2009: X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.
- Avilés-Kadets-M.-Merí-Shepelska, 2010: X real, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.

Proof of the last statement:

- If $X \supseteq \ell_{1}$ we use the "lifting" property of $\ell_{1} \checkmark$
- (AKMMS 2010): If $X \nsupseteq \ell_{1} \Longrightarrow X$ is lush.

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)
X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

* Old approaches to this problem:
- López-M.-Payá, 1999: X real, RNP, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset \ell_{1}$.
- Kadets-M.-Merí-Payá, 2009: X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.
- Avilés-Kadets-M.-Merí-Shepelska, 2010: X real, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.

Proof of the last statement:

- If $X \supseteq \ell_{1}$ we use the "lifting" property of $\ell_{1} \checkmark$
- (AKMMS 2010): If $X \nsupseteq \ell_{1} \Longrightarrow X$ is lush.
- (BKMM 2009): Lushness reduces to the separable case.

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)
X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

* Old approaches to this problem:
- López-M.-Payá, 1999: X real, RNP, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset \ell_{1}$.
- Kadets-M.-Merí-Payá, 2009: X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.
- Avilés-Kadets-M.-Merí-Shepelska, 2010: X real, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.

Proof of the last statement:

- If $X \supseteq \ell_{1}$ we use the "lifting" property of $\ell_{1} \checkmark$
- (AKMMS 2010): If $X \nsupseteq \ell_{1} \Longrightarrow X$ is lush.
- (BKMM 2009): Lushness reduces to the separable case.
- (KMMP 2009): In the separable case, lushness implies $\left|x^{* *}\left(x^{*}\right)\right|=1$ for every $x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$ and every $x^{*} \in G, G$ norming for X.

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)

X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

* Old approaches to this problem:
- López-M.-Payá, 1999: X real, RNP, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset \ell_{1}$.
- Kadets-M.-Merí-Payá, 2009: X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.
- Avilés-Kadets-M.-Merí-Shepelska, 2010: X real, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.

Proof of the last statement:

- If $X \supseteq \ell_{1}$ we use the "lifting" property of $\ell_{1} \checkmark$
- (AKMMS 2010): If $X \nsupseteq \ell_{1} \Longrightarrow X$ is lush.
- (BKMM 2009): Lushness reduces to the separable case.
- (KMMP 2009): In the separable case, lushness implies $\left|x^{* *}\left(x^{*}\right)\right|=1$ for every $x^{* *} \in \operatorname{ext}\left(B_{X^{* *}}\right)$ and every $x^{*} \in G, G$ norming for X.
- (LMP 1999): This gives $X^{*} \supseteq c_{0}$ or $X^{*} \supseteq \ell_{1} \Longrightarrow X^{*} \supseteq \ell_{1} \checkmark$

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)

X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

* Old approaches to this problem:
- López-M.-Payá, 1999:
X real, RNP, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset \ell_{1}$.
- Kadets-M.-Merí-Payá, 2009:
X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.
- Avilés-Kadets-M.-Merí-Shepelska, 2010: X real, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)

X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1}$?

* Old approaches to this problem:
- López-M.-Payá, 1999:
X real, RNP, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset \ell_{1}$.
- Kadets-M.-Merí-Payá, 2009:
X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.
- Avilés-Kadets-M.-Merí-Shepelska, 2010: X real, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.

Equivalent reformulation of the problem:

Containment of c_{0} or ℓ_{1}

Open question (Godefroy, private communication)

X real, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset c_{0}$ or $X \supset \ell_{1} ?$

* Old approaches to this problem:
- López-M.-Payá, 1999:
X real, RNP, $\operatorname{dim}(X)=\infty, n(X)=1 \Longrightarrow X \supset \ell_{1}$.
- Kadets-M.-Merí-Payá, 2009:
X real lush, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.
- Avilés-Kadets-M.-Merí-Shepelska, 2010: X real, $\operatorname{dim}(X)=\infty \Longrightarrow X^{*} \supset \ell_{1}$.

Equivalent reformulation of the problem:

Equivalent open problem

X real separable, $X \nsupseteq \ell_{1}$, exists $G \subseteq S_{X^{*}}$ norming with

$$
B_{X}=\overline{\operatorname{aconv}}\left(\left\{x \in B_{X}: x^{*}(x)=1\right\}\right) \quad\left(x^{*} \in G\right)
$$

Does $X \supseteq c_{0}$?

Remarks on two recent results On the numerical index of $L p(\mu)$

On the numerical index of $L_{p}(\mu)$. I

On the numerical index of $L_{p}(\mu)$. I

The numerical radius for $L_{p}(\mu)$

For $T \in L\left(L_{p}(\mu)\right), 1<p<\infty$, one has

$$
v(T)=\sup \left\{\left|\int_{\Omega} x^{\#} T x d \mu\right|: x \in L_{p}(\mu),\|x\|_{p}=1\right\} .
$$

where for $x \in L_{p}(\mu), x^{\#}=|x|^{p-1} \operatorname{sign}(x) \in L_{q}(\mu)$ satisfies (unique)

$$
\|x\|_{p}^{p}=\left\|x^{*}\right\|_{q}^{q} \quad \text { and } \quad \int_{\Omega} x x^{\#} d \mu=\|x\|_{p}\left\|x^{*}\right\|_{G}=\|x\|_{p}^{p} .
$$

On the numerical index of $L_{p}(\mu)$. I

The numerical radius for $L_{p}(\mu)$

For $T \in L\left(L_{p}(\mu)\right), 1<p<\infty$, one has

$$
v(T)=\sup \left\{\left|\int_{\Omega} x^{\#} T x d \mu\right|: x \in L_{p}(\mu),\|x\|_{p}=1\right\}
$$

where for $x \in L_{p}(\mu), x^{\#}=|x|^{p-1} \operatorname{sign}(x) \in L_{q}(\mu)$ satisfies (unique)

$$
\|x\|_{p}^{p}=\left\|x^{\#}\right\|_{q}^{q} \quad \text { and } \quad \int_{\Omega} x x^{\#} d \mu=\|x\|_{p}\left\|x^{\#}\right\|_{q}=\|x\|_{p}^{p}
$$

The absolute numerical radius

For $T \in L\left(L_{p}(\mu)\right)$ we write

$$
\begin{aligned}
|v|(T) & :=\sup \left\{\int_{\Omega}\left|x^{\#} T x\right| d \mu: x \in L_{p}(\mu),\|x\|_{p}=1\right\} \\
& =\sup \left\{\int_{\Omega}|x|^{p-1}|T x| d \mu: x \in L_{p}(\mu),\|x\|_{p}=1\right\}
\end{aligned}
$$

Remarks on two recent results On the numerical index of $L p(\mu)$

On the numerical index of $L_{p}(\mu)$ (II)

On the numerical index of $L_{p}(\mu)$ (II)

Theorem
For $T \in L\left(L_{p}(\mu)\right), 1<p<\infty$, one has

$$
v(T) \geqslant \frac{M_{p}}{4}|v|(T), \quad \text { where } \quad M_{p}=\max _{t \in[0,1]} \frac{\left|t^{p-1}-t\right|}{1+t^{p}}
$$

On the numerical index of $L_{p}(\mu)$ (II)

Theorem
For $T \in L\left(L_{p}(\mu)\right), 1<p<\infty$, one has

$$
v(T) \geqslant \frac{M_{p}}{4}|v|(T), \quad \text { where } \quad M_{p}=\max _{t \in[0,1]} \frac{\left|t^{p-1}-t\right|}{1+t^{p}}
$$

Theorem

For $T \in L\left(L_{p}(\mu)\right), 1<p<\infty$, one has

$$
2|v|(T) \geqslant v\left(T_{\mathrm{C}}\right) \geqslant n\left(L_{p}^{\mathrm{C}}(\mu)\right)\|T\|,
$$

- T_{C} complexification of $T, n\left(L_{p}^{\mathrm{C}}(\mu)\right)$ numerical index complex case.

On the numerical index of $L_{p}(\mu)$ (II)

Theorem

For $T \in L\left(L_{p}(\mu)\right), 1<p<\infty$, one has

$$
v(T) \geqslant \frac{M_{p}}{4}|v|(T), \quad \text { where } \quad M_{p}=\max _{t \in[0,1]} \frac{\left|t^{p-1}-t\right|}{1+t^{p}}
$$

Theorem

For $T \in L\left(L_{p}(\mu)\right), 1<p<\infty$, one has

$$
2|v|(T) \geqslant v\left(T_{\mathrm{C}}\right) \geqslant n\left(L_{p}^{\mathrm{C}}(\mu)\right)\|T\|,
$$

- T_{C} complexification of $T, n\left(L_{p}^{\mathrm{C}}(\mu)\right)$ numerical index complex case.

Consequence

For $1<p<\infty, n\left(L_{p}(\mu)\right) \geqslant \frac{M_{p}}{8 \mathrm{e}}$.

- If $p \neq 2$, then $n\left(L_{p}(\mu)\right)>0$, so v and $\|\cdot\|$ are equivalent in $L\left(L_{p}(\mu)\right)$.

Extremely non-complex Banach spaces

(9) Extremely non-complex Banach spaces

- Motivation
- Extremely non-complex Banach spaces
- Surjective isometries

囯 V. Kadets, M. Martín, and J. Merí.
Norm equalities for operators on Banach spaces.
Indiana U. Math. J. (2007).
圊
P. Koszmider, M. Martín, and J. Merí.

Extremely non-complex $C(K)$ spaces.
J. Math. Anal. Appl. (2009).
P. Koszmider, M. Martín, and J. Merí.

Isometries on extremely non-complex Banach spaces.
Preprint (2008).

Isometries and duality. Reminder

Isometries and duality. Reminder

Example (produced with numerical ranges)

There is a Banach space X such that

- Iso (X) has no exponential one-parameter semigroups.
- Iso $\left(X^{*}\right)$ contains infinitely many exponential one-parameter semigroups.

Isometries and duality. Reminder

Example (produced with numerical ranges)

There is a Banach space X such that

- Iso (X) has no exponential one-parameter semigroups.
- Iso $\left(X^{*}\right)$ contains infinitely many exponential one-parameter semigroups.

In terms of linear dynamical systems:

- There is no $A \in L(X)$ such that

$$
x^{\prime}=A x \quad\left(x: \mathbb{R}_{0}^{+} \longrightarrow X\right)
$$

is given by a semigroup of isometries.

- There are infinitely many such A 's on X^{*}

Isometries and duality. Reminder

Example (produced with numerical ranges)

There is a Banach space X such that

- Iso (X) has no exponential one-parameter semigroups.
- Iso $\left(X^{*}\right)$ contains infinitely many exponential one-parameter semigroups.

In terms of linear dynamical systems:

- There is no $A \in L(X)$ such that

$$
x^{\prime}=A x \quad\left(x: \mathbb{R}_{0}^{+} \longrightarrow X\right)
$$

is given by a semigroup of isometries.

- There are infinitely many such A 's on X^{*}
- But there are unbounded A s on X such that the solution of the linear dynamical system is a one-parameter C_{0} semigroup of isometries.

Isometries and duality. Reminder

Example (produced with numerical ranges)

There is a Banach space X such that

- Iso (X) has no exponential one-parameter semigroups.
- Iso $\left(X^{*}\right)$ contains infinitely many exponential one-parameter semigroups.

In terms of linear dynamical systems:

- There is no $A \in L(X)$ such that

$$
x^{\prime}=A x \quad\left(x: \mathbb{R}_{0}^{+} \longrightarrow X\right)
$$

is given by a semigroup of isometries.

- There are infinitely many such A 's on X^{*}
- But there are unbounded A s on X such that the solution of the linear dynamical system is a one-parameter C_{0} semigroup of isometries.

We would like to find \mathcal{X} such that

- Iso (\mathcal{X}) has no C_{0} semigroup of isometries.
- Iso $\left(\mathcal{X}^{*}\right)$ has exponential semigroup of isometries

Numerical range of unbounded operators

Numerical range of unbounded operators (1960's)

X Banach space, $T: D(T) \longrightarrow X$ linear,

$$
V(T)=\left\{x^{*}(T x): x^{*} \in X^{*}, x \in D(T), x^{*}(x)=\left\|x^{*}\right\|=\|x\|=1\right\} .
$$

Numerical range of unbounded operators

Numerical range of unbounded operators (1960's)

X Banach space, $T: D(T) \longrightarrow X$ linear,

$$
V(T)=\left\{x^{*}(T x): x^{*} \in X^{*}, x \in D(T), x^{*}(x)=\left\|x^{*}\right\|=\|x\|=1\right\}
$$

Teorema (Stone, 1932)

H Hilbert space, A densely defined operator. TFAE:

- A generates an strongly continuous one-parameter semigroup of unitary operators (onto isometries).
- $A^{*}=-A$.
- $\operatorname{Re}(A x \mid x)=0$ for every $x \in D(A)$.

Numerical range of unbounded operators. II

Numerical range of unbounded operators. II

Difficulty

Which Banach spaces have unbounded operators with numerical range zero?

Numerical range of unbounded operators. II

Difficulty

Which Banach spaces have unbounded operators with numerical range zero?

Examples

- In $C_{0}(\mathbb{R}), \Phi(t)(f)(s)=f(t+s)$ is an strongly continuous one-parameter semigroup of isometries (generated by the derivative).
- In $C_{E}([0,1] \| \Delta)$ there are also strongly continuous one-parameter semigroup of isometries.

Numerical range of unbounded operators. II

Difficulty

Which Banach spaces have unbounded operators with numerical range zero?

Examples

- In $C_{0}(\mathbb{R}), \Phi(t)(f)(s)=f(t+s)$ is an strongly continuous one-parameter semigroup of isometries (generated by the derivative).
- In $C_{E}([0,1] \| \Delta)$ there are also strongly continuous one-parameter semigroup of isometries.

Consequence

We have to completely change our approach to the problem.

Complex structures

Definition

X has complex structure if there is $T \in L(X)$ such that $T^{2}=-$ Id.

Complex structures

Definition

X has complex structure if there is $T \in L(X)$ such that $T^{2}=-\mathrm{Id}$.

Some remarks

- This gives a structure of vector space over \mathbb{C} :

$$
(\alpha+i \beta) x=\alpha x+\beta T(x) \quad(\alpha+i \beta \in \mathbb{C}, x \in X)
$$

Complex structures

Definition

X has complex structure if there is $T \in L(X)$ such that $T^{2}=-\mathrm{Id}$.

Some remarks

- This gives a structure of vector space over \mathbb{C} :

$$
(\alpha+i \beta) x=\alpha x+\beta T(x) \quad(\alpha+i \beta \in \mathbb{C}, x \in X)
$$

- Defining

$$
\|x\|=\max \left\{\left\|\mathrm{e}^{i \theta} x\right\|: \theta \in[0,2 \pi]\right\} \quad(x \in X)
$$

one gets that $(X,\| \| \cdot \|)$ is a complex Banach space.

Complex structures

Definition

X has complex structure if there is $T \in L(X)$ such that $T^{2}=-\mathrm{Id}$.

Some remarks

- This gives a structure of vector space over \mathbb{C} :

$$
(\alpha+i \beta) x=\alpha x+\beta T(x) \quad(\alpha+i \beta \in \mathbb{C}, x \in X)
$$

- Defining

$$
\|x\|=\max \left\{\left\|\mathrm{e}^{i \theta} x\right\|: \theta \in[0,2 \pi]\right\} \quad(x \in X)
$$

one gets that $(X,\| \| \cdot\| \|)$ is a complex Banach space.

- If T is an isometry, then actually the given norm of X is complex.

Complex structures

Definition

X has complex structure if there is $T \in L(X)$ such that $T^{2}=-\mathrm{Id}$.

Some remarks

- This gives a structure of vector space over \mathbb{C} :

$$
(\alpha+i \beta) x=\alpha x+\beta T(x) \quad(\alpha+i \beta \in \mathbb{C}, x \in X)
$$

- Defining

$$
\|x\|=\max \left\{\left\|\mathrm{e}^{i \theta} x\right\|: \theta \in[0,2 \pi]\right\} \quad(x \in X)
$$

one gets that $(X,\| \| \cdot\| \|)$ is a complex Banach space.

- If T is an isometry, then actually the given norm of X is complex.
- Conversely, if X is a complex Banach space, then

$$
T(x)=i x \quad(x \in X)
$$

satisfies $T^{2}=-\mathrm{Id}$ and T is an isometry.

Complex structures II

Some examples

Complex structures II

Some examples

(1) If $\operatorname{dim}(X)<\infty, X$ has complex structure iff $\operatorname{dim}(X)$ is even.

Complex structures II

Some examples

(1) If $\operatorname{dim}(X)<\infty, X$ has complex structure iff $\operatorname{dim}(X)$ is even.
(2) If $X \simeq Z \oplus Z$ (in particular, $X \simeq X^{2}$), then X has complex structure.

Complex structures II

Some examples

(1) If $\operatorname{dim}(X)<\infty, X$ has complex structure iff $\operatorname{dim}(X)$ is even.
(2) If $X \simeq Z \oplus Z$ (in particular, $X \simeq X^{2}$), then X has complex structure.

- There are infinite-dimensional Banach spaces without complex structure:
- Dieudonné, 1952: the James' space \mathcal{J} (since $\left.\mathcal{J}^{* *} \equiv \mathcal{J} \oplus \mathbb{R}\right)$.
- Szarek, 1986: uniformly convex examples.
- Gowers-Maurey, 1993: their H.I. space.
- Ferenczi-Medina Galego, 2007: there are odd and even infinite-dimensional spaces X.
- X is even if admits a complex structure but its hyperplanes does not.
- X is odd if its hyperplanes are even (and so X does not admit a complex structure).

Complex structures II

Some examples

(1) If $\operatorname{dim}(X)<\infty, X$ has complex structure iff $\operatorname{dim}(X)$ is even.
(2) If $X \simeq Z \oplus Z$ (in particular, $X \simeq X^{2}$), then X has complex structure.

- There are infinite-dimensional Banach spaces without complex structure:
- Dieudonné, 1952: the James' space \mathcal{J} (since $\left.\mathcal{J}^{* *} \equiv \mathcal{J} \oplus \mathbb{R}\right)$.
- Szarek, 1986: uniformly convex examples.
- Gowers-Maurey, 1993: their H.I. space.
- Ferenczi-Medina Galego, 2007: there are odd and even infinite-dimensional spaces X.
- X is even if admits a complex structure but its hyperplanes does not.
- X is odd if its hyperplanes are even (and so X does not admit a complex structure).

Definition

X is extremely non-complex if $\operatorname{dist}\left(T^{2},-\mathrm{Id}\right)$ is the maximum possible, i.e.

$$
\left\|\mathrm{Id}+T^{2}\right\|=1+\left\|T^{2}\right\| \quad(T \in L(X))
$$

The Daugavet equation

$$
\begin{aligned}
& \text { What Daugavet did in } 1963 \\
& \text { The norm equality } \\
& \qquad\|\operatorname{Id}+T\|=1+\|T\| \\
& \text { holds for every compact } T \in L(C[0,1])
\end{aligned}
$$

The Daugavet equation

What Daugavet did in 1963

The norm equality

$$
\|\operatorname{Id}+T\|=1+\|T\|
$$

holds for every compact $T \in L(C[0,1])$.
The Daugavet equation
X Banach space, $T \in L(X), \|$ Id $+T\|=1+\| T \|$
(DE).

The Daugavet equation

What Daugavet did in 1963

The norm equality

$$
\|\operatorname{Id}+T\|=1+\|T\|
$$

holds for every compact $T \in L(C[0,1])$.

The Daugavet equation

X Banach space, $T \in L(X),\|\operatorname{Id}+T\|=1+\|T\|$

Classical examples

(1) Daugavet, 1963:

Every compact operator on $C[0,1]$ satisfies (DE).
(2) Lozanoskii, 1966:

Every compact operator on $L_{1}[0,1]$ satisfies (DE).
(3) Abramovich, Holub, and more, 80's:
$X=C(K), K$ perfect compact space
or $X=L_{1}(\mu), \mu$ atomless measure
\Longrightarrow every weakly compact $T \in L(X)$ satisfies (DE).

The Daugavet property

The Daugavet property (Kadets-Shvidkoy-Sirotkin-Werner, 1997)
A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

The Daugavet property

The Daugavet property (Kadets-Shvidkoy-Sirotkin-Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results
Let X be a Banach space with the Daugavet property. Then

(Kadets-Shvidkoy-Sirotkin-Werner, 1997 \& 2000)

The Daugavet property

The Daugavet property (Kadets-Shvidkoy-Sirotkin-Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).
(Kadets-Shvidkoy-Sirotkin-Werner, 1997 \& 2000)

The Daugavet property

The Daugavet property (Kadets-Shvidkoy-Sirotkin-Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).
- X contains ℓ_{1}.
(Kadets-Shvidkoy-Sirotkin-Werner, 1997 \& 2000)

The Daugavet property

The Daugavet property (Kadets-Shvidkoy-Sirotkin-Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).
- X contains ℓ_{1}.
- X does not embed into a Banach space with unconditional basis.
(Kadets-Shvidkoy-Sirotkin-Werner, 1997 \& 2000)

The Daugavet property

The Daugavet property (Kadets-Shvidkoy-Sirotkin-Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).
- X contains ℓ_{1}.
- X does not embed into a Banach space with unconditional basis.
- Geometric characterization: X has the Daugavet property iff for each $x \in S_{X}$

$$
\overline{\mathrm{co}}\left(B_{X} \backslash\left(x+(2-\varepsilon) B_{X}\right)\right)=B_{X}
$$

(Kadets-Shvidkoy-Sirotkin-Werner, 1997 \& 2000)

The Daugavet property II

The Daugavet property II

More examples

The following spaces have the Daugavet property.

- Wojtaszczyk, 1992:

The disk algebra and H^{∞}.

- Werner, 1997:
"Nonatomic" function algebras.
- Oikhberg, 2005:

Non-atomic C^{*}-algebras and preduals of non-atomic von Neumann algebras.

- Becerra-M., 2005:

Non-atomic $J B^{*}$-triples and their preduals.

- Becerra-M., 2006:

Preduals of $L_{1}(\mu)$ without Fréchet-smooth points.

- Ivankhno, Kadets, Werner, 2007:
$\operatorname{Lip}(K)$ when $K \subseteq \mathbb{R}^{n}$ is compact and convex.

Daugavet-type inequalities

Daugavet-type inequalities

Some examples

- Benyamini-Lin, 1985:

For every $1<p<\infty, p \neq 2$, there exists $\psi_{p}:(0, \infty) \longrightarrow(0, \infty)$ such that

$$
\|\operatorname{Id}+T\| \geqslant 1+\psi_{p}(\|T\|)
$$

for every compact operator T on $L_{p}[0,1]$.

Daugavet-type inequalities

Some examples

- Benyamini-Lin, 1985:

For every $1<p<\infty, p \neq 2$, there exists $\psi_{p}:(0, \infty) \longrightarrow(0, \infty)$ such that

$$
\|\operatorname{Id}+T\| \geqslant 1+\psi_{p}(\|T\|)
$$

for every compact operator T on $L_{p}[0,1]$.

- If $p=2$, then there is a non-null compact T on $L_{2}[0,1]$ such that

$$
\|\operatorname{Id}+T\|=1
$$

Daugavet-type inequalities

Some examples

- Benyamini-Lin, 1985:

For every $1<p<\infty, p \neq 2$, there exists $\psi_{p}:(0, \infty) \longrightarrow(0, \infty)$ such that

$$
\|\operatorname{Id}+T\| \geqslant 1+\psi_{p}(\|T\|)
$$

for every compact operator T on $L_{p}[0,1]$.

- If $p=2$, then there is a non-null compact T on $L_{2}[0,1]$ such that

$$
\|\mathrm{Id}+T\|=1
$$

- Boyko-Kadets, 2004:

If ψ_{p} is the best possible function above, then

$$
\lim _{p \rightarrow 1^{+}} \psi_{p}(t)=t \quad(t>0)
$$

Daugavet-type inequalities

Some examples

- Benyamini-Lin, 1985:

For every $1<p<\infty, p \neq 2$, there exists $\psi_{p}:(0, \infty) \longrightarrow(0, \infty)$
such that

$$
\|\operatorname{Id}+T\| \geqslant 1+\psi_{p}(\|T\|)
$$

for every compact operator T on $L_{p}[0,1]$.

- If $p=2$, then there is a non-null compact T on $L_{2}[0,1]$ such that

$$
\|\operatorname{Id}+T\|=1
$$

- Boyko-Kadets, 2004:

If ψ_{p} is the best possible function above, then

$$
\lim _{p \rightarrow 1^{+}} \psi_{p}(t)=t \quad(t>0)
$$

- Oikhberg, 2005:

If $K\left(\ell_{2}\right) \subseteq X \subseteq L\left(\ell_{2}\right)$, then

$$
\|\operatorname{Id}+T\| \geqslant 1+\frac{1}{8 \sqrt{2}}\|T\|
$$

for every compact T on X.

Norm equalities for operators

Norm equalities for operators

Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces ?

Norm equalities for operators

Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces ?

Concretely

We looked for non-trivial norm equalities of the forms

$$
\|\operatorname{Id}+T\|=f(\|T\|) \quad \text { or } \quad\|g(T)\|=f(\|T\|) \quad \text { or } \quad\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

(g analytic, f arbitrary) satisfied by all rank-one operators on a Banach space.

Norm equalities for operators

Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces ?

Concretely

We looked for non-trivial norm equalities of the forms

$$
\|\operatorname{Id}+T\|=f(\|T\|) \quad \text { or } \quad\|g(T)\|=f(\|T\|) \quad \text { or } \quad\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

(g analytic, f arbitrary) satisfied by all rank-one operators on a Banach space.

Solution

We proved that there are few possibilities...

Extremely non-complex Motivation
Equalities of the form $\|\mathrm{Id}+T\|=f(\|T\|)$

Equalities of the form $\|\mathrm{Id}+T\|=f(\|T\|)$

Proposition

X real or complex, $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ arbitrary, $a, b \in \mathbb{K}$. If the norm equality

$$
\|a \operatorname{Id}+b T\|=f(\|T\|)
$$

holds for every rank-one operator $T \in L(X)$, then

$$
f(t)=|a|+|b| t \quad\left(t \in \mathbb{R}_{0}^{+}\right) .
$$

If $a \neq 0, b \neq 0$, then X has the Daugavet property.

Equalities of the form $\|\mathrm{Id}+T\|=f(\|T\|)$

Proposition

X real or complex, $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ arbitrary, $a, b \in \mathbb{K}$. If the norm equality

$$
\|a \operatorname{Id}+b T\|=f(\|T\|)
$$

holds for every rank-one operator $T \in L(X)$, then

$$
f(t)=|a|+|b| t \quad\left(t \in \mathbb{R}_{0}^{+}\right)
$$

If $a \neq 0, b \neq 0$, then X has the Daugavet property.

Then, we have to look for Daugavet-type equalities in which Id $+T$ is replaced by something different.

Proof

We have...
$\|a \mathrm{Id}+b T\|=f(\|T\|) \forall T \in L(X)$ rank-one

Proof

We have. . .

$\|a \mathrm{Id}+b T\|=f(\|T\|) \forall T \in L(X)$ rank-one
We want. . .

$$
f(t)=|a|+|b| t \quad\left(t \in \mathbb{R}_{0}^{+}\right) .
$$

- Trivial if $a \cdot b=0$. Suppose $a \neq 0$ and $b \neq 0$ and write $\omega_{0}=\frac{\bar{b}}{|b|} \frac{a}{|a|} \in \mathbb{T}$.

Proof

We have. . .

$$
\|a \mathrm{Id}+b T\|=f(\|T\|) \forall T \in L(X) \text { rank-one }
$$

We want. . .

$$
f(t)=|a|+|b| t \quad\left(t \in \mathbb{R}_{0}^{+}\right) .
$$

- Trivial if $a \cdot b=0$. Suppose $a \neq 0$ and $b \neq 0$ and write $\omega_{0}=\frac{\bar{b}}{|b|} \frac{a}{|a|} \in \mathbb{T}$.
- Fix $x_{0} \in S_{X}, x_{0}^{*} \in S_{X^{*}}$ with $x_{0}^{*}\left(x_{0}\right)=\omega_{0}$ and consider

$$
T_{t}=t x_{0}^{*} \otimes x_{0} \in L(X) \quad\left(t \in \mathbb{R}_{0}^{+}\right)
$$

Proof

We have. . .

$$
\|a \mathrm{Id}+b T\|=f(\|T\|) \forall T \in L(X) \text { rank-one }
$$

We want. . .

$$
f(t)=|a|+|b| t \quad\left(t \in \mathbb{R}_{0}^{+}\right) .
$$

- Trivial if $a \cdot b=0$. Suppose $a \neq 0$ and $b \neq 0$ and write $\omega_{0}=\frac{\bar{b}}{|b|} \frac{a}{|a|} \in \mathbb{T}$.
- Fix $x_{0} \in S_{X}, x_{0}^{*} \in S_{X^{*}}$ with $x_{0}^{*}\left(x_{0}\right)=\omega_{0}$ and consider

$$
T_{t}=t x_{0}^{*} \otimes x_{0} \in L(X) \quad\left(t \in \mathbb{R}_{0}^{+}\right)
$$

- Since $\left\|T_{t}\right\|=t$, we have

$$
f(t)=\left\|a \mathrm{Id}+b T_{t}\right\| \quad\left(t \in \mathbb{R}_{0}^{+}\right)
$$

Proof

We have. . .

$\|a \mathrm{Id}+b T\|=f(\|T\|) \forall T \in L(X)$ rank-one

We want. . .

$$
f(t)=|a|+|b| t \quad\left(t \in \mathbb{R}_{0}^{+}\right) .
$$

- Trivial if $a \cdot b=0$. Suppose $a \neq 0$ and $b \neq 0$ and write $\omega_{0}=\frac{\bar{b}}{|b|} \frac{a}{|a|} \in \mathbb{T}$.
- Fix $x_{0} \in S_{X}, x_{0}^{*} \in S_{X^{*}}$ with $x_{0}^{*}\left(x_{0}\right)=\omega_{0}$ and consider

$$
T_{t}=t x_{0}^{*} \otimes x_{0} \in L(X) \quad\left(t \in \mathbb{R}_{0}^{+}\right)
$$

- Since $\left\|T_{t}\right\|=t$, we have

$$
f(t)=\left\|a \mathrm{Id}+b T_{t}\right\| \quad\left(t \in \mathbb{R}_{0}^{+}\right)
$$

- It follows that

$$
\begin{aligned}
|a|+|b| t \geqslant f(t) & =\left\|a \mathrm{Id}+b T_{t}\right\| \geqslant\left\|\left[a \mathrm{Id}+b T_{t}\right]\left(x_{0}\right)\right\| \\
& =\left\|a x_{0}+b \omega_{0} t x_{0}\right\|=\left|a+b \omega_{0} t\right|\left\|x_{0}\right\|=\left|a+b \frac{\bar{b}}{|b|} \frac{a}{|a|} t\right|=|a|+
\end{aligned}
$$

Proof

We have. . .

$\|a \mathrm{Id}+b T\|=f(\|T\|) \forall T \in L(X)$ rank-one

We want. . .

$$
f(t)=|a|+|b| t \quad\left(t \in \mathbb{R}_{0}^{+}\right) .
$$

- Trivial if $a \cdot b=0$. Suppose $a \neq 0$ and $b \neq 0$ and write $\omega_{0}=\frac{\bar{b}}{|b|} \frac{a}{|a|} \in \mathbb{T}$.
- Fix $x_{0} \in S_{X}, x_{0}^{*} \in S_{X^{*}}$ with $x_{0}^{*}\left(x_{0}\right)=\omega_{0}$ and consider

$$
T_{t}=t x_{0}^{*} \otimes x_{0} \in L(X) \quad\left(t \in \mathbb{R}_{0}^{+}\right)
$$

- Since $\left\|T_{t}\right\|=t$, we have

$$
f(t)=\left\|a \mathrm{Id}+b T_{t}\right\| \quad\left(t \in \mathbb{R}_{0}^{+}\right)
$$

- It follows that

$$
\begin{aligned}
|a|+|b| t \geqslant f(t) & =\left\|a \mathrm{Id}+b T_{t}\right\| \geqslant\left\|\left[a \mathrm{Id}+b T_{t}\right]\left(x_{0}\right)\right\| \\
& =\left\|a x_{0}+b \omega_{0} t x_{0}\right\|=\left|a+b \omega_{0} t\right|\left\|x_{0}\right\|=\left|a+b \frac{\bar{b}}{|b|} \frac{a}{|a|} t\right|=|a|+
\end{aligned}
$$

- Finally, for rank-one $T \in L(X)$, write $S=\frac{a}{b} T$ and observe

$$
|a|(1+\|T\|)=|a|+|b|\|S\|=\|a \mathrm{Id}+b S\|=|a|\|\operatorname{Id}+T\| \cdot \checkmark
$$

Equalities of the form $\|g(T)\|=f(\|T\|)$

Equalities of the form $\|g(T)\|=f(\|T\|)$

Theorem

X real or complex with $\operatorname{dim}(X) \geqslant 2$.
Suppose that the norm equality

$$
\|g(T)\|=f(\|T\|)
$$

holds for every rank-one operator $T \in L(X)$, where

- $g: \mathbb{K} \longrightarrow \mathbb{K}$ is analytic,
- $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ is arbitrary.

Then, there are $a, b \in \mathbb{K}$ such that

$$
g(\zeta)=a+b \zeta \quad(\zeta \in \mathbb{K})
$$

Equalities of the form $\|g(T)\|=f(\|T\|)$

Theorem

X real or complex with $\operatorname{dim}(X) \geqslant 2$.
Suppose that the norm equality

$$
\|g(T)\|=f(\|T\|)
$$

holds for every rank-one operator $T \in L(X)$, where

- $g: \mathbb{K} \longrightarrow \mathbb{K}$ is analytic,
- $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ is arbitrary.

Then, there are $a, b \in \mathbb{K}$ such that

$$
g(\zeta)=a+b \zeta \quad(\zeta \in \mathbb{K})
$$

Corollary

Only three norm equalities of the form

$$
\|g(T)\|=f(\|T\|)
$$

are possible:

- $b=0: \quad\|a \mathrm{Id}\|=|a|$,
- $a=0: \quad\|b T\|=|b|\|T\|$,
(trivial cases)
- $a \neq 0, b \neq 0$:
$\|a \operatorname{Id}+b T\|=|a|+|b|\|T\|$,
(Daugavet property)

Proof (complex case)

We have...

$\|g(T)\|=f(\|T\|) \forall T \in L(X)$ rank-one

We want. . .
 g is affine

Proof (complex case)

We have. . .

$\|g(T)\|=f(\|T\|) \forall T \in L(X)$ rank-one

We want. . .
 g is affine

- Write $g(\zeta)=\sum_{k=0}^{\infty} a_{k} \zeta^{k}$ y $\widetilde{g}=g-a_{0}$.

Proof (complex case)

We have. . .

$\|g(T)\|=f(\|T\|) \forall T \in L(X)$ rank-one

$$
\xrightarrow{?}
$$

We want. . .

g is affine

- Write $g(\zeta)=\sum_{k=0}^{\infty} a_{k} \zeta^{k}$ y $\widetilde{g}=g-a_{0}$.
- Take $x_{0}, x_{1} \in S_{X}$ and $x_{0}^{*}, x_{1}^{*} \in S_{X^{*}}$ such that

$$
x_{0}^{*}\left(x_{0}\right)=0 \quad \text { and } \quad x_{1}^{*}\left(x_{1}\right)=1
$$

and define the operators $T_{0}=x_{0}^{*} \otimes x_{0}$ and $T_{1}=x_{1}^{*} \otimes x_{1}$.

Proof (complex case)

We have...

$\|g(T)\|=f(\|T\|) \forall T \in L(X)$ rank-one

$$
\xrightarrow{?}
$$

We want. . .

g is affine

- Write $g(\zeta)=\sum_{k=0}^{\infty} a_{k} \zeta^{k}$ y $\widetilde{g}=g-a_{0}$.
- Take $x_{0}, x_{1} \in S_{X}$ and $x_{0}^{*}, x_{1}^{*} \in S_{X^{*}}$ such that

$$
x_{0}^{*}\left(x_{0}\right)=0 \quad \text { and } \quad x_{1}^{*}\left(x_{1}\right)=1
$$

and define the operators $T_{0}=x_{0}^{*} \otimes x_{0}$ and $T_{1}=x_{1}^{*} \otimes x_{1}$.

- Then $g\left(\lambda T_{0}\right)=a_{0} \operatorname{Id}+a_{1} \lambda T_{0} \quad$ and $\quad g\left(\lambda T_{1}\right)=a_{0} \operatorname{Id}+\widetilde{g}(\lambda) T_{1}$ $(\lambda \in \mathbb{C})$.

Proof (complex case)

We have. . .

$$
\|g(T)\|=f(\|T\|) \forall T \in L(X) \text { rank-one }
$$

$$
\stackrel{?}{?}
$$

We want. . .

g is affine

- Write $g(\zeta)=\sum_{k=0}^{\infty} a_{k} \zeta^{k}$ y $\widetilde{g}=g-a_{0}$.
- Take $x_{0}, x_{1} \in S_{X}$ and $x_{0}^{*}, x_{1}^{*} \in S_{X^{*}}$ such that

$$
x_{0}^{*}\left(x_{0}\right)=0 \quad \text { and } \quad x_{1}^{*}\left(x_{1}\right)=1
$$

and define the operators $T_{0}=x_{0}^{*} \otimes x_{0}$ and $T_{1}=x_{1}^{*} \otimes x_{1}$.

- Then $g\left(\lambda T_{0}\right)=a_{0} \operatorname{Id}+a_{1} \lambda T_{0} \quad$ and $\quad g\left(\lambda T_{1}\right)=a_{0} \operatorname{Id}+\widetilde{g}(\lambda) T_{1}$ $(\lambda \in \mathbb{C})$.
- Therefore, for $\lambda \in \mathbb{C}$ we have

$$
\left\|a_{0} \operatorname{Id}+\widetilde{g}(\lambda) T_{1}\right\|=\left\|g\left(\lambda T_{1}\right)\right\|=f(|\lambda|)=\left\|g\left(\lambda T_{0}\right)\right\|=\left\|a_{0} \operatorname{Id}+a_{1} \lambda T_{0}\right\|
$$

Proof (complex case)

We have...

$$
\|g(T)\|=f(\|T\|) \forall T \in L(X) \text { rank-one }
$$

$$
\stackrel{?}{?}
$$

We want. . .

g is affine

- Write $g(\zeta)=\sum_{k=0}^{\infty} a_{k} \zeta^{k}$ y $\widetilde{g}=g-a_{0}$.
- Take $x_{0}, x_{1} \in S_{X}$ and $x_{0}^{*}, x_{1}^{*} \in S_{X^{*}}$ such that

$$
x_{0}^{*}\left(x_{0}\right)=0 \quad \text { and } \quad x_{1}^{*}\left(x_{1}\right)=1
$$

and define the operators $T_{0}=x_{0}^{*} \otimes x_{0}$ and $T_{1}=x_{1}^{*} \otimes x_{1}$.

- Then $g\left(\lambda T_{0}\right)=a_{0} \operatorname{Id}+a_{1} \lambda T_{0} \quad$ and $\quad g\left(\lambda T_{1}\right)=a_{0} \operatorname{Id}+\widetilde{g}(\lambda) T_{1}$ $(\lambda \in \mathbb{C})$.
- Therefore, for $\lambda \in \mathbb{C}$ we have

$$
\left\|a_{0} \operatorname{Id}+\widetilde{g}(\lambda) T_{1}\right\|=\left\|g\left(\lambda T_{1}\right)\right\|=f(|\lambda|)=\left\|g\left(\lambda T_{0}\right)\right\|=\left\|a_{0} \operatorname{Id}+a_{1} \lambda T_{0}\right\|
$$

- We use the triangle inequality to get

$$
|\widetilde{g}(\lambda)| \leqslant 2\left|a_{0}\right|+\left|a_{1}\right||\lambda| \quad(\lambda \in \mathbb{C})
$$

Proof (complex case)

We have. .

$$
\|g(T)\|=f(\|T\|) \forall T \in L(X) \text { rank-one }
$$

$$
\stackrel{?}{?}
$$

We want. . .

g is affine

- Write $g(\zeta)=\sum_{k=0}^{\infty} a_{k} \zeta^{k}$ y $\widetilde{g}=g-a_{0}$.
- Take $x_{0}, x_{1} \in S_{X}$ and $x_{0}^{*}, x_{1}^{*} \in S_{X^{*}}$ such that

$$
x_{0}^{*}\left(x_{0}\right)=0 \quad \text { and } \quad x_{1}^{*}\left(x_{1}\right)=1
$$

and define the operators $T_{0}=x_{0}^{*} \otimes x_{0}$ and $T_{1}=x_{1}^{*} \otimes x_{1}$.

- Then $g\left(\lambda T_{0}\right)=a_{0} \operatorname{Id}+a_{1} \lambda T_{0} \quad$ and $\quad g\left(\lambda T_{1}\right)=a_{0} \operatorname{Id}+\widetilde{g}(\lambda) T_{1}$ $(\lambda \in \mathbb{C})$.
- Therefore, for $\lambda \in \mathbb{C}$ we have

$$
\left\|a_{0} \operatorname{Id}+\widetilde{g}(\lambda) T_{1}\right\|=\left\|g\left(\lambda T_{1}\right)\right\|=f(|\lambda|)=\left\|g\left(\lambda T_{0}\right)\right\|=\left\|a_{0} \operatorname{Id}+a_{1} \lambda T_{0}\right\|
$$

- We use the triangle inequality to get

$$
|\widetilde{g}(\lambda)| \leqslant 2\left|a_{0}\right|+\left|a_{1}\right||\lambda| \quad(\lambda \in \mathbb{C})
$$

- and so \widetilde{g} is a degree-one polynomial by Cauchy inequalities.

Extremely non-complex Motivation

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$

Remark

If X has the Daugavet property and g is analytic, then

$$
\|\operatorname{Id}+g(T)\|=|1+g(0)|-|g(0)|+\|g(T)\|
$$

for every rank-one $T \in L(X)$.

Equalities of the form $\|\mathrm{Id}+g(T)\|=f(\|g(T)\|)$

Remark

If X has the Daugavet property and g is analytic, then

$$
\|\operatorname{Id}+g(T)\|=|1+g(0)|-|g(0)|+\|g(T)\|
$$

for every rank-one $T \in L(X)$.

- Our aim here is not to show that g has a suitable form,

Equalities of the form $\|\mathrm{Id}+g(T)\|=f(\|g(T)\|)$

Remark

If X has the Daugavet property and g is analytic, then

$$
\|\operatorname{Id}+g(T)\|=|1+g(0)|-|g(0)|+\|g(T)\|
$$

for every rank-one $T \in L(X)$.

- Our aim here is not to show that g has a suitable form,
- but it is to see that for every g another simpler equation can be found.

Equalities of the form $\|\mathrm{Id}+g(T)\|=f(\|g(T)\|)$

Remark

If X has the Daugavet property and g is analytic, then

$$
\|\operatorname{Id}+g(T)\|=|1+g(0)|-|g(0)|+\|g(T)\|
$$

for every rank-one $T \in L(X)$.

- Our aim here is not to show that g has a suitable form,
- but it is to see that for every g another simpler equation can be found.
- From now on, we have to separate the complex and the real case.

Extremely non-complex Motivation

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$

- Complex case:

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$

- Complex case:

Proposition

X complex, $\operatorname{dim}(X) \geqslant 2$. Suppose that

$$
\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

for every rank-one $T \in L(X)$, where

- $g: C \longrightarrow C$ analytic non-constant,
- $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ continuous.

Then

$$
\begin{aligned}
& \|(1+g(0)) \mathrm{Id}+T\| \\
& \quad=|1+g(0)|-|g(0)|+\|g(0) \mathrm{Id}+T\|
\end{aligned}
$$

for every rank-one $T \in L(X)$.

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$

- Complex case:

Proposition

X complex, $\operatorname{dim}(X) \geqslant 2$. Suppose that

$$
\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

for every rank-one $T \in L(X)$, where

- $g: \mathbb{C} \longrightarrow \mathbb{C}$ analytic non-constant,
- $f: \mathbb{R}_{0}^{+} \longrightarrow \mathbb{R}$ continuous.

Then

$$
\begin{aligned}
& \|(1+g(0)) \mathrm{Id}+T\| \\
& \quad=|1+g(0)|-|g(0)|+\|g(0) \operatorname{Id}+T\|
\end{aligned}
$$

for every rank-one $T \in L(X)$.

We obtain two different cases:

- $|1+g(0)|-|g(0)| \neq 0$ or
- $|1+g(0)|-|g(0)|=0$.

Theorem

If $\operatorname{Re} g(0) \neq-1 / 2$ and

$$
\|\mathrm{Id}+g(T)\|=f(\|g(T)\|)
$$

for every rank-one T, then X has the Daugavet property.

Equalities of the form $\|\mathrm{Id}+g(T)\|=f(\|g(T)\|)$. Complex case

Theorem

If $\operatorname{Re} g(0) \neq-1 / 2$ and

$$
\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

for every rank-one T, then X has the Daugavet property.

Theorem
If $\operatorname{Re} g(0)=-1 / 2$ and

$$
\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

for every rank-one T, then exists $\theta_{0} \in \mathbb{R}$ s.t.

$$
\left\|\operatorname{Id}+\mathrm{e}^{i \theta_{0}} T\right\|=\|\operatorname{Id}+T\|
$$

for every rank-one $T \in L(X)$.

Equalities of the form $\|\mathrm{Id}+g(T)\|=f(\|g(T)\|)$. Complex case

Theorem

If $\operatorname{Re} g(0) \neq-1 / 2$ and

$$
\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

for every rank-one T, then X has the Daugavet property.

Theorem

If $\operatorname{Re} g(0)=-1 / 2$ and

$$
\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)
$$

for every rank-one T, then exists $\theta_{0} \in \mathbb{R}$ s.t.

$$
\left\|\mathrm{Id}+\mathrm{e}^{i \theta_{0}} T\right\|=\|\mathrm{Id}+T\|
$$

for every rank-one $T \in L(X)$.

Example

If $X=C[0,1] \oplus_{2} C[0,1]$, then

- $\left\|\mathrm{Id}+\mathrm{e}^{i \theta} T\right\|=\|\mathrm{Id}+T\|$ for every $\theta \in \mathbb{R}$, rank-one $T \in L(X)$.
- X does not have the Daugavet property.

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$. Real case

- Real case:

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$. Real case

- Real case:

Remarks

- The proofs are not valid (we use Picard's Theorem).

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$. Real case

- Real case:

Remarks

- The proofs are not valid (we use Picard's Theorem).
- They work when g is onto.

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$. Real case

- Real case:

Remarks

- The proofs are not valid (we use Picard's Theorem).
- They work when g is onto.
- But we do not know what is the situation when g is not onto, even in the easiest examples:
- $\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|$,
- $\left\|\operatorname{Id}-T^{2}\right\|=1+\left\|T^{2}\right\|$.

Equalities of the form $\|\operatorname{Id}+g(T)\|=f(\|g(T)\|)$. Real case

- Real case:

Remarks

- The proofs are not valid (we use Picard's Theorem).
- They work when g is onto.
- But we do not know what is the situation when g is not onto, even in the easiest examples:
- $\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|$,
- $\left\|\operatorname{Id}-T^{2}\right\|=1+\left\|T^{2}\right\|$.

$$
g(0)=-1 / 2
$$

Example

If $X=C[0,1] \oplus_{2} C[0,1]$, then

- $\|\operatorname{Id}-T\|=\|\operatorname{Id}+T\|$ for every rank-one $T \in L(X)$.
- X does not have the Daugavet property.

The question

Godefroy, private communication

Is there any real Banach space X (with $\operatorname{dim}(X)>1)$ such that

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

for every operator $T \in L(X) \quad$?
In other words, are there extremely non-complex spaces other than \mathbb{R} ?

The first attempts

The first attempts

The first idea
We may try to check whether the known spaces without complex structure are actually extremely non-complex.

The first attempts

The first idea

We may try to check whether the known spaces without complex structure are actually extremely non-complex.

Some examples

(1) If $\operatorname{dim}(X)<\infty, X$ has complex structure iff $\operatorname{dim}(X)$ is even.
(2) Dieudonné, 1952: the James' space \mathcal{J} (since $\mathcal{J}^{* *} \equiv \mathcal{J} \oplus \mathbb{R}$).
(3) Szarek, 1986: uniformly convex examples.
(1) Gowers-Maurey, 1993: their H.I. space.
(6) Ferenczi-Medina Galego, 2007: there are odd and even infinite-dimensional spaces X.

- X is even if admits a complex structure but its hyperplanes does not.
- X is odd if its hyperplanes are even (and so X does not admit a complex structure).

The first attempts

The first idea

We may try to check whether the known spaces without complex structure are actually extremely non-complex.

Some examples

(1) If $\operatorname{dim}(X)<\infty, X$ has complex structure iff $\operatorname{dim}(X)$ is even.
(2) Dieudonné, 1952: the James' space \mathcal{J} (since $\left.\mathcal{J}^{* *} \equiv \mathcal{J} \oplus \mathbb{R}\right)$.
(3) Szarek, 1986: uniformly convex examples.
(1) Gowers-Maurey, 1993: their H.I. space.
(6) Ferenczi-Medina Galego, 2007: there are odd and even infinite-dimensional spaces X.

- X is even if admits a complex structure but its hyperplanes does not.
- X is odd if its hyperplanes are even (and so X does not admit a complex structure).

(Un)fortunately...

This did not work and we moved to $C(K)$ spaces.

The first example: weak multiplications

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

$$
T=g \mathrm{Id}+S
$$

where $g \in C(K)$ and S is weakly compact.

The first example: weak multiplications

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

$$
T=g \mathrm{Id}+S
$$

where $g \in C(K)$ and S is weakly compact.

Theorem

K perfect, $T=g \mathrm{Id}+S \in L(C(K))$ weak multiplication $\Longrightarrow\left\|\mathrm{Id}+\mathrm{T}^{2}\right\|=1+\left\|T^{2}\right\|$

Proof of the theorem

Proof of the theorem

We have $X=C(K), K$ perfect, $T=g I d+S$

- max $\|\operatorname{Id} \pm T\|=1+\|T\|$ (true for every K and every T)
- $\|\operatorname{Id}+S\|=1+\|S\|$ (if $S \in W(X), K$ perfect)

We need

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

Proof of the theorem

We have $X=C(K), K$ perfect, $T=g I d+S$

- max $\|\operatorname{Id} \pm T\|=1+\|T\|$ (true for every K and every T)
- $\|\operatorname{Id}+S\|=1+\|S\|$ (if $S \in W(X), K$ perfect)

We need

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

- If $T=g \mathrm{Id}+S$, then $T^{2}=g^{2} \mathrm{Id}+S^{\prime}$ with S^{\prime} weakly compact.

Proof of the theorem

We have $X=C(K), K$ perfect, $T=g I d+S$

- max $\|\operatorname{Id} \pm T\|=1+\|T\|$ (true for every K and every T)
- $\|\operatorname{Id}+S\|=1+\|S\|$ (if $S \in W(X), K$ perfect)

We need

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

- If $T=g \mathrm{Id}+S$, then $T^{2}=g^{2} \mathrm{Id}+S^{\prime}$ with S^{\prime} weakly compact.
- We will prove that $\left\|\mathrm{Id}+g^{2} \mathrm{Id}+S\right\|=1+\left\|g^{2} \mathrm{Id}+S\right\|$ for $g \in C(K)$ and S weakly compact.

Proof of the theorem

We have $X=C(K), K$ perfect, $T=g I d+S$

- max $\|\operatorname{Id} \pm T\|=1+\|T\|$ (true for every K and every T)
- $\|\operatorname{Id}+S\|=1+\|S\|$ (if $S \in W(X), K$ perfect)

We need

$$
\left\|\mathrm{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

- If $T=g \mathrm{Id}+S$, then $T^{2}=g^{2} \mathrm{Id}+S^{\prime}$ with S^{\prime} weakly compact.
- We will prove that $\left\|\operatorname{Id}+g^{2} \operatorname{Id}+S\right\|=1+\left\|g^{2} \operatorname{Id}+S\right\|$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $\left\|g^{2}\right\| \leqslant 1$ and $\min g^{2}(K)>0$.

Proof of the theorem

We have $X=C(K), K$ perfect, $T=g I d+S$

- max $\|\operatorname{Id} \pm T\|=1+\|T\|$ (true for every K and every T)
- $\|\operatorname{Id}+S\|=1+\|S\|$ (if $S \in W(X), K$ perfect)

We need

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

- If $T=g \mathrm{Id}+S$, then $T^{2}=g^{2} \mathrm{Id}+S^{\prime}$ with S^{\prime} weakly compact.
- We will prove that $\left\|\operatorname{Id}+g^{2} \mathrm{Id}+S\right\|=1+\left\|g^{2} \mathrm{Id}+S\right\|$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $\left\|g^{2}\right\| \leqslant 1$ and $\min g^{2}(K)>0$.

Proof

- It is enough to show that

$$
\left\|\operatorname{Id}-\left(g^{2} \operatorname{Id}+S\right)\right\|<1+\left\|g^{2} \operatorname{Id}+S\right\| .
$$

Proof of the theorem

We have $X=C(K), K$ perfect, $T=g I d+S$

- max $\|\operatorname{Id} \pm T\|=1+\|T\|$ (true for every K and every T)
- $\|\operatorname{Id}+S\|=1+\|S\|$ (if $S \in W(X), K$ perfect)

We need

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

- If $T=g \mathrm{Id}+S$, then $T^{2}=g^{2} \mathrm{Id}+S^{\prime}$ with S^{\prime} weakly compact.
- We will prove that $\left\|\operatorname{Id}+g^{2} \mathrm{Id}+S\right\|=1+\left\|g^{2} \mathrm{Id}+S\right\|$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $\left\|g^{2}\right\| \leqslant 1$ and $\min g^{2}(K)>0$.

Proof

- It is enough to show that

$$
\left\|\operatorname{Id}-\left(g^{2} \operatorname{Id}+S\right)\right\|<1+\left\|g^{2} \operatorname{Id}+S\right\| .
$$

- $\left\|\operatorname{Id}-\left(g^{2} \operatorname{Id}+S\right)\right\| \leqslant\left\|\left(1-g^{2}\right) \operatorname{Id}\right\|+\|S\|=1-\min g^{2}(K)+\|S\|$.

Proof of the theorem

We have $X=C(K), K$ perfect, $T=g I d+S$

- max $\|\operatorname{Id} \pm T\|=1+\|T\|$ (true for every K and every T)
- $\|\operatorname{Id}+S\|=1+\|S\|$ (if $S \in W(X), K$ perfect)

We need

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

- If $T=g \mathrm{Id}+S$, then $T^{2}=g^{2} \mathrm{Id}+S^{\prime}$ with S^{\prime} weakly compact.
- We will prove that $\| \mathrm{Id}+g^{2}$ Id $+S\|=1+\| g^{2}$ Id $+S \|$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $\left\|g^{2}\right\| \leqslant 1$ and $\min g^{2}(K)>0$.

Proof

- It is enough to show that

$$
\left\|\operatorname{Id}-\left(g^{2} \operatorname{Id}+S\right)\right\|<1+\left\|g^{2} \operatorname{Id}+S\right\|
$$

- $\left\|\operatorname{Id}-\left(g^{2} \operatorname{Id}+S\right)\right\| \leqslant\left\|\left(1-g^{2}\right) \mathrm{Id}\right\|+\|S\|=1-\min g^{2}(K)+\|S\|$.
- $\left\|g^{2} \mathrm{Id}+S\right\|=\left\|\mathrm{Id}+S+\left(g^{2} \mathrm{Id}-\mathrm{Id}\right)\right\| \geqslant\|\mathrm{Id}+S\|-\left\|g^{2} \mathrm{Id}-\mathrm{Id}\right\|$

$$
=1+\|S\|-\left(1-\min g^{2}(K)\right)=\|S\|+\min g^{2}(K)
$$

Proof of the theorem

We have $X=C(K), K$ perfect, $T=g I d+S$

- max $\|\operatorname{Id} \pm T\|=1+\|T\|$ (true for every K and every T)
- $\|\operatorname{Id}+S\|=1+\|S\|$ (if $S \in W(X), K$ perfect)

We need

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

- If $T=g \mathrm{Id}+S$, then $T^{2}=g^{2} \mathrm{Id}+S^{\prime}$ with S^{\prime} weakly compact.
- We will prove that $\left\|\operatorname{Id}+g^{2} \mathrm{Id}+S\right\|=1+\left\|g^{2} \mathrm{Id}+S\right\|$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $\left\|g^{2}\right\| \leqslant 1$ and $\min g^{2}(K)>0$.
- Step 2: We can avoid the assumption that $\min g^{2}(K)>0$.

Proof of the theorem

We have $X=C(K), K$ perfect, $T=g I d+S$

- max $\|\operatorname{Id} \pm T\|=1+\|T\|$ (true for every K and every T)
- $\|\operatorname{Id}+S\|=1+\|S\|$ (if $S \in W(X), K$ perfect)

We need

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

- If $T=g \mathrm{Id}+S$, then $T^{2}=g^{2} \mathrm{Id}+S^{\prime}$ with S^{\prime} weakly compact.
- We will prove that $\left\|\operatorname{Id}+g^{2} \mathrm{Id}+S\right\|=1+\left\|g^{2} \mathrm{Id}+S\right\|$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $\left\|g^{2}\right\| \leqslant 1$ and $\min g^{2}(K)>0$.
- Step 2: We can avoid the assumption that $\min g^{2}(K)>0$.

Proof

Just think that the set of operators satisfying (DE) is closed.

Proof of the theorem

We have $X=C(K), K$ perfect, $T=g I d+S$

- max $\|\operatorname{Id} \pm T\|=1+\|T\|$ (true for every K and every T)
- $\|\operatorname{Id}+S\|=1+\|S\|$ (if $S \in W(X), K$ perfect)

We need

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

- If $T=g \mathrm{Id}+S$, then $T^{2}=g^{2} \mathrm{Id}+S^{\prime}$ with S^{\prime} weakly compact.
- We will prove that $\left\|\operatorname{Id}+g^{2} \mathrm{Id}+S\right\|=1+\left\|g^{2} \mathrm{Id}+S\right\|$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $\left\|g^{2}\right\| \leqslant 1$ and $\min g^{2}(K)>0$.
- Step 2: We can avoid the assumption that $\min g^{2}(K)>0$.
- Step 3: Finally, for every g the above gives

$$
\left\|\operatorname{Id}+\frac{1}{\left\|g^{2}\right\|}\left(g^{2} \operatorname{Id}+S\right)\right\|=1+\frac{1}{\left\|g^{2}\right\|}\left\|g^{2} \operatorname{Id}+S\right\|
$$

which gives us the result. \checkmark

Proof of the theorem

We have $X=C(K), K$ perfect, $T=g I d+S$

- max $\|\operatorname{Id} \pm T\|=1+\|T\|$ (true for every K and every T)
- $\|$ Id $+S\|=1+\| S \|$ (if $S \in W(X), K$ perfect)

We need

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|
$$

- If $T=g \mathrm{Id}+S$, then $T^{2}=g^{2} \mathrm{Id}+S^{\prime}$ with S^{\prime} weakly compact.
- We will prove that $\left\|\operatorname{Id}+g^{2} \operatorname{Id}+S\right\|=1+\left\|g^{2} \operatorname{Id}+S\right\|$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $\left\|g^{2}\right\| \leqslant 1$ and $\min g^{2}(K)>0$.
- Step 2: We can avoid the assumption that $\min g^{2}(K)>0$.
- Step 3: Finally, for every g the above gives

$$
\left\|\operatorname{Id}+\frac{1}{\left\|g^{2}\right\|}\left(g^{2} \operatorname{Id}+S\right)\right\|=1+\frac{1}{\left\|g^{2}\right\|}\left\|g^{2} \operatorname{Id}+S\right\|
$$

which gives us the result. \checkmark

$$
\begin{aligned}
& \text { Proof } \\
& \text { If }\|u+v\|=\|u\|+\|v\| \Longrightarrow\|\alpha u+\beta v\|=\alpha\|u\|+\beta\|v\| \text { for } \alpha, \beta \in \mathbb{R}_{0}^{+} \text {. }
\end{aligned}
$$

The first example: weak multiplications. II

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

$$
T=g \mathrm{Id}+S
$$

where $g \in C(K)$ and S is weakly compact.

Theorem

K perfect, $T=g \mathrm{Id}+S \in L(C(K))$ weak multiplication $\Longrightarrow\left\|\mathrm{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|$

The first example: weak multiplications. II

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

$$
T=g \mathrm{Id}+S
$$

where $g \in C(K)$ and S is weakly compact.

Theorem

K perfect, $T=g \mathrm{Id}+S \in L(C(K))$ weak multiplication $\Longrightarrow\left\|\mathrm{Id}+T^{2}\right\|=1+\left\|T^{2}\right\|$

Example (Koszmider, 2004; Plebanek, 2004)

There are perfect compact spaces K such that all operators on $C(K)$ are weak multiplications.

The first example: weak multiplications. II

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

$$
T=g \mathrm{Id}+S
$$

where $g \in C(K)$ and S is weakly compact.

Theorem

K perfect, $T=g \mathrm{Id}+S \in L(C(K))$ weak multiplication $\Longrightarrow\left\|I d+T^{2}\right\|=1+\left\|T^{2}\right\|$

Example (Koszmider, 2004; Plebanek, 2004)

There are perfect compact spaces K such that all operators on $C(K)$ are weak multiplications.

Consequence

Therefore, there are extremely non-complex $C(K)$ spaces.

More examples: weak multipliers

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$
T^{*}=g \operatorname{Id}+S
$$

where g is a Borel function and S is weakly compact.

More examples: weak multipliers

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$
T^{*}=g \mathrm{Id}+S
$$

where g is a Borel function and S is weakly compact.

Theorem

If K is perfect and all operators on $C(K)$ are weak multipliers, then $C(K)$ is extremely non-complex.

More examples: weak multipliers

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$
T^{*}=g \mathrm{Id}+S
$$

where g is a Borel function and S is weakly compact.

Theorem

If K is perfect and all operators on $C(K)$ are weak multipliers, then $C(K)$ is extremely non-complex.

Example (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all operators on $C(K)$ are weak multipliers.

More examples: weak multipliers

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$
T^{*}=g \mathrm{Id}+S
$$

where g is a Borel function and S is weakly compact.

Theorem

If K is perfect and all operators on $C(K)$ are weak multipliers, then $C(K)$ is extremely non-complex.

Example (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all operators on $C(K)$ are weak multipliers.

Corollary

There are infinitely many non-isomorphic extremely non-complex Banach spaces.

Further examples

Further examples

Proposition

There is a compact infinite totally disconnected and perfect space K such that all operators on $C(K)$ are weak multipliers.

Further examples

Proposition

There is a compact infinite totally disconnected and perfect space K such that all operators on $C(K)$ are weak multipliers.

Consequence

There is a family $\left(K_{i}\right)_{i \in I}$ of pairwise disjoint perfect and totally disconnected compact spaces such that

- every operator on $C\left(K_{i}\right)$ is a weak multiplier,
- for $i \neq j$, every $T \in L\left(C\left(K_{i}\right), C\left(K_{j}\right)\right)$ is weakly compact.

Further examples

Proposition

There is a compact infinite totally disconnected and perfect space K such that all operators on $C(K)$ are weak multipliers.

Consequence

There is a family $\left(K_{i}\right)_{i \in I}$ of pairwise disjoint perfect and totally disconnected compact spaces such that

- every operator on $C\left(K_{i}\right)$ is a weak multiplier,
- for $i \neq j$, every $T \in L\left(C\left(K_{i}\right), C\left(K_{j}\right)\right)$ is weakly compact.

Theorem

There are some compactifications \widetilde{K} of the above family $\left(K_{i}\right)_{i \in I}$ such that the corresponding $C(\widetilde{K})$'s are extremely non-complex.

Further examples II

Further examples II

Main consequence

There are perfect compact spaces K_{1}, K_{2} such that:

- $C\left(K_{1}\right)$ and $C\left(K_{2}\right)$ are extremely non-complex,
- $C\left(K_{1}\right)$ contains a complemented copy of $C(\Delta)$.
- $C\left(K_{2}\right)$ contains a 1-complemented isometric copy of ℓ_{∞}.

Further examples II

Main consequence

There are perfect compact spaces K_{1}, K_{2} such that:

- $C\left(K_{1}\right)$ and $C\left(K_{2}\right)$ are extremely non-complex,
- $C\left(K_{1}\right)$ contains a complemented copy of $C(\Delta)$.
- $C\left(K_{2}\right)$ contains a 1-complemented isometric copy of ℓ_{∞}.

Observation

- $C\left(K_{1}\right)$ and $C\left(K_{2}\right)$ have operators which are not weak multipliers.
- They are not indecomposable spaces.

Related open questions

Related open questions

Question 1

Find topological characterization of the compact Hausdorff spaces K such that the spaces $C(K)$ are extremely non-complex.

Related open questions

Question 1

Find topological characterization of the compact Hausdorff spaces K such that the spaces $C(K)$ are extremely non-complex.

Question 2

Find topological consequences on K when $C(K)$ is extremely non-complex. For instance:
If $C(K)$ is extremely non-complex and $\psi: K \longrightarrow K$ is continuous, are there an open subset U of K such that $\left.\psi\right|_{U}=\mathrm{id}$ and $\psi(K \backslash U)$ is finite ?

Related open questions

Question 1

Find topological characterization of the compact Hausdorff spaces K such that the spaces $C(K)$ are extremely non-complex.

Question 2

Find topological consequences on K when $C(K)$ is extremely non-complex. For instance:
If $C(K)$ is extremely non-complex and $\psi: K \longrightarrow K$ is continuous, are there an open subset U of K such that $\left.\psi\right|_{U}=$ id and $\psi(K \backslash U)$ is finite ?

- We will show latter than $\varphi: K \longrightarrow K$ homeomorphism $\Longrightarrow \varphi=\mathrm{id}$.

Extremely non-complex Banach spaces

Definition

X is extremely non-complex if $\operatorname{dist}\left(T^{2},-\mathrm{Id}\right)$ is the maximum possible, i.e.

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\| \quad(T \in L(X))
$$

Extremely non-complex Banach spaces

Definition

X is extremely non-complex if $\operatorname{dist}\left(T^{2},-\mathrm{Id}\right)$ is the maximum possible, i.e.

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\| \quad(T \in L(X))
$$

Examples

There are several extremely non-complex $C(K)$ spaces:

- If $T=g \mathrm{Id}+S$ for every $T \in L(C(K))$ (K Koszmider).
- If $T^{*}=g \mathrm{Id}+S$ for every $T \in L(C(K))$ (K weak Koszmider).
- One $C(K)$ containing a complemented copy of $C(\Delta)$.
- One $C(K)$ containing an isometric (1-complemented) copy of ℓ_{∞}.

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow$ Iso (X) one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{$Id $\}$.

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{\operatorname{Id}\}$.

Proof.

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow$ Iso (X) one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{$Id $\}$.

Proof.

- Take $S=\frac{1}{\sqrt{2}}\left(T-T^{-1}\right) \Longrightarrow S^{2}=\frac{1}{2} T^{2}-\mathrm{Id}+\frac{1}{2} T^{-2}$.

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow$ Iso (X) one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{$Id $\}$.

Proof.

- Take $S=\frac{1}{\sqrt{2}}\left(T-T^{-1}\right) \Longrightarrow S^{2}=\frac{1}{2} T^{2}-\mathrm{Id}+\frac{1}{2} T^{-2}$.
- $1+\left\|S^{2}\right\|=\left\|\operatorname{Id}+S^{2}\right\|=\left\|\frac{1}{2} T^{2}+\frac{1}{2} T^{-2}\right\| \leqslant 1 \Longrightarrow S^{2}=0$.

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow$ Iso (X) one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{$Id $\}$.

Proof.

- Take $S=\frac{1}{\sqrt{2}}\left(T-T^{-1}\right) \Longrightarrow S^{2}=\frac{1}{2} T^{2}-\mathrm{Id}+\frac{1}{2} T^{-2}$.
- $1+\left\|S^{2}\right\|=\left\|\operatorname{Id}+S^{2}\right\|=\left\|\frac{1}{2} T^{2}+\frac{1}{2} T^{-2}\right\| \leqslant 1 \Longrightarrow S^{2}=0$.
- Then Id $=\frac{1}{2} T^{2}+\frac{1}{2} T^{-2}$.

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow$ Iso (X) one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{\operatorname{Id}\}$.

Proof.

- Take $S=\frac{1}{\sqrt{2}}\left(T-T^{-1}\right) \Longrightarrow S^{2}=\frac{1}{2} T^{2}-\mathrm{Id}+\frac{1}{2} T^{-2}$.
- $1+\left\|S^{2}\right\|=\left\|\operatorname{Id}+S^{2}\right\|=\left\|\frac{1}{2} T^{2}+\frac{1}{2} T^{-2}\right\| \leqslant 1 \Longrightarrow S^{2}=0$.
- Then Id $=\frac{1}{2} T^{2}+\frac{1}{2} T^{-2}$.
- Since Id is an extreme point of $B_{L(X)} \Longrightarrow T^{2}=T^{-2}=$ Id. \checkmark

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{\operatorname{Id}\}$.

Proof.

```
\(\mathrm{Id}=\left(T_{1} T_{2}\right)\left(T_{1} T_{2}\right)\)
\(\Longrightarrow T_{1} T_{2}=T_{1}\left(T_{1} T_{2} T_{1} T_{2}\right) T_{2}=\left(T_{1} T_{1}\right) T_{2} T_{1}\left(T_{2} T_{2}\right)=T_{2} T_{1} . \checkmark\)
```


Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{\operatorname{Id}\}$.

Proof.

- $(\mathrm{Id}-T)^{2}=2(\mathrm{Id}-T) \Longrightarrow 2\|\operatorname{Id}-T\|=\left\|(\mathrm{Id}-T)^{2}\right\| \leqslant\|\operatorname{Id}-T\|^{2}$.

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{\operatorname{Id}\}$.

Proof.

- $(\operatorname{Id}-T)^{2}=2(\operatorname{Id}-T) \Longrightarrow 2\|\operatorname{Id}-T\|=\left\|(\operatorname{Id}-T)^{2}\right\| \leqslant\|\operatorname{Id}-T\|^{2}$.
- So $\|\mathrm{Id}-T\| \in\{0,2\}$.

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{$Id $\}$.

Proof.

- $(\operatorname{Id}-T)^{2}=2(\operatorname{Id}-T) \Longrightarrow 2\|\operatorname{Id}-T\|=\left\|(\operatorname{Id}-T)^{2}\right\| \leqslant\|\operatorname{Id}-T\|^{2}$.
- So $\|\mathrm{Id}-T\| \in\{0,2\}$.
- $\left\|T_{1}-T_{2}\right\|=\left\|T_{1}\left(\operatorname{Id}-T_{1} T_{2}\right)\right\|=\left\|\operatorname{Id}-T_{1} T_{2}\right\| \in\{0,2\} . \checkmark$

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow$ Iso (X) one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{\mathrm{Id}\}$.

Proof.

$$
\Phi(t)=\Phi(t / 2+t / 2)=\Phi(t / 2)^{2}=\text { Id. } \checkmark
$$

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow$ Iso (X) one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{\operatorname{Id}\}$.

Consequences

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow$ Iso (X) one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{\operatorname{Id}\}$.

Consequences

- Iso (X) is a Boolean group for the composition operation.

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow$ Iso (X) one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{\operatorname{Id}\}$.

Consequences

- Iso (X) is a Boolean group for the composition operation.
- Iso (X) identifies with the set $\operatorname{Unc}(X)$ of unconditional projections on X :

$$
\begin{aligned}
P \in \operatorname{Unc}(X) & \Longleftrightarrow P^{2}=P, 2 P-\mathrm{Id} \in \operatorname{Iso}(X) \\
& \Longleftrightarrow P=\frac{1}{2}(\operatorname{Id}-T), T \in \operatorname{Iso}(X), T^{2}=\mathrm{Id}
\end{aligned}
$$

Isometries on extremely non-complex spaces. I

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \Longrightarrow T^{2}=$ Id.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow T_{1} T_{2}=T_{2} T_{1}$.
- $T_{1}, T_{2} \in \operatorname{Iso}(X) \Longrightarrow\left\|T_{1}-T_{2}\right\| \in\{0,2\}$.
- $\Phi: \mathbb{R}_{0}^{+} \longrightarrow$ Iso (X) one-parameter semigroup $\Longrightarrow \Phi\left(\mathbb{R}_{0}^{+}\right)=\{$Id $\}$.

Consequences

- Iso (X) is a Boolean group for the composition operation.
- Iso (X) identifies with the set $\operatorname{Unc}(X)$ of unconditional projections on X :

$$
\begin{aligned}
P \in \operatorname{Unc}(X) & \Longleftrightarrow P^{2}=P, 2 P-\operatorname{Id} \in \operatorname{Iso}(X) \\
& \Longleftrightarrow P=\frac{1}{2}(\operatorname{Id}-T), T \in \operatorname{Iso}(X), T^{2}=\mathrm{Id}
\end{aligned}
$$

- $\operatorname{Iso}(X) \equiv \operatorname{Unc}(X)$ is a Boolean algebra
$\Longleftrightarrow P_{1} P_{2} \in \operatorname{Unc}(X)$ when $P_{1}, P_{2} \in \operatorname{Unc}(X)$
$\Longleftrightarrow\left\|\frac{1}{2}\left(\operatorname{Id}+T_{1}+T_{2}-T_{1} T_{2}\right)\right\|=1$ for every $T_{1}, T_{2} \in \operatorname{Iso}(X)$.

Extremely non-complex $C_{E}(K \| L)$ spaces.

Extremely non-complex $C_{E}(K \| L)$ spaces.

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$ $\Longrightarrow C_{E}(K \| L)$ is extremely non-complex.

Extremely non-complex $C_{E}(K \| L)$ spaces.

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$ $\Longrightarrow C_{E}(K \| L)$ is extremely non-complex.

Proposition

K perfect $\Longrightarrow \exists L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.

Extremely non-complex $C_{E}(K \| L)$ spaces.

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$ $\Longrightarrow C_{E}(K \| L)$ is extremely non-complex.

Proposition

K perfect $\Longrightarrow \exists L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.
Observation: exists a non $C(K)$ extremely non-complex space
$\mathrm{C}_{\ell_{2}}(K \| L)$ is not isomorphic to a $C\left(K^{\prime}\right)$ space since $\ell_{2} \xrightarrow{\text { comp }} C_{\ell_{2}}(K \| L)^{*}$.

Extremely non-complex $C_{E}(K \| L)$ spaces.

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$ $\Longrightarrow C_{E}(K \| L)$ is extremely non-complex.

Proposition

K perfect $\Longrightarrow \exists L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.
Observation: exists a non $C(K)$ extremely non-complex space
$C_{\ell_{2}}(K \| L)$ is not isomorphic to a $C\left(K^{\prime}\right)$ space since $\ell_{2} \xrightarrow{\text { comp }} C_{\ell_{2}}(K \| L)^{*}$.

Important consequence: Example

Take K perfect weak Koszmider, $L \subset K$ closed nowhere dense with
$E=\ell_{2} \subset C[0,1] \subset C(L):$

- $C_{\ell_{2}}(K \| L)$ has no non-trivial one-parameter semigroup of isometries.
- $C_{\ell_{2}}(K \| L)^{*}=\ell_{2} \oplus_{1} C_{0}(K \| L)^{*}$, so $\operatorname{Iso}\left(C_{\ell_{2}}(K \| L)^{*}\right) \supset \operatorname{Iso}\left(\ell_{2}\right)$.

Extremely non-complex $C_{E}(K \| L)$ spaces.

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$ $\Longrightarrow C_{E}(K \| L)$ is extremely non-complex.

Proposition

K perfect $\Longrightarrow \exists L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.
Observation: exists a non $C(K)$ extremely non-complex space
$C_{\ell_{2}}(K \| L)$ is not isomorphic to a $C\left(K^{\prime}\right)$ space since $\ell_{2} \xrightarrow{\text { comp }} C_{\ell_{2}}(K \| L)^{*}$.

Important consequence: Example

Take K perfect weak Koszmider, $L \subset K$ closed nowhere dense with
$E=\ell_{2} \subset C[0,1] \subset C(L):$

- $C_{\ell_{2}}(K \| L)$ has no non-trivial one-parameter semigroup of isometries.
- $C_{\ell_{2}}(K \| L)^{*}=\ell_{2} \oplus_{1} C_{0}(K \| L)^{*}$, so $\operatorname{Iso}\left(C_{\ell_{2}}(K \| L)^{*}\right) \supset \operatorname{Iso}\left(\ell_{2}\right)$.

But we are able to give a better result...

Extremely non-complex Surjective isometries

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Theorem

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$ \Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Theorem

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$ \Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Sketch of the proof.

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Theorem

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$ \Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Sketch of the proof.

- $D_{0}=\left\{x \in K \backslash L: \exists y \in K \backslash L, \theta_{0} \in\{-1,1\}\right.$ with $\left.T^{*}\left(\delta_{x}\right)=\theta_{0} \delta_{y}\right\}$ dense in K.

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Theorem

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$ \Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Sketch of the proof.

- $D_{0}=\left\{x \in K \backslash L: \exists y \in K \backslash L, \theta_{0} \in\{-1,1\}\right.$ with $\left.T^{*}\left(\delta_{x}\right)=\theta_{0} \delta_{y}\right\}$ dense in K.
- Consider $\phi: D_{0} \longrightarrow D_{0}$ and $\theta: D_{0} \longrightarrow\{-1,1\}$ with

$$
T^{*}\left(\delta_{x}\right)=\theta(x) \delta_{\phi(x)}
$$

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Theorem

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$ \Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Sketch of the proof.

- $D_{0}=\left\{x \in K \backslash L: \exists y \in K \backslash L, \theta_{0} \in\{-1,1\}\right.$ with $\left.T^{*}\left(\delta_{x}\right)=\theta_{0} \delta_{y}\right\}$ dense in K.
- Consider $\phi: D_{0} \longrightarrow D_{0}$ and $\theta: D_{0} \longrightarrow\{-1,1\}$ with

$$
T^{*}\left(\delta_{x}\right)=\theta(x) \delta_{\phi(x)}
$$

- $\phi^{2}=\mathrm{id}, \theta(x) \theta(\phi(x))=1, \phi$ homeomorphism.

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Theorem

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$ \Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Sketch of the proof.

- $D_{0}=\left\{x \in K \backslash L: \exists y \in K \backslash L, \theta_{0} \in\{-1,1\}\right.$ with $\left.T^{*}\left(\delta_{x}\right)=\theta_{0} \delta_{y}\right\}$ dense in K.
- Consider $\phi: D_{0} \longrightarrow D_{0}$ and $\theta: D_{0} \longrightarrow\{-1,1\}$ with

$$
T^{*}\left(\delta_{x}\right)=\theta(x) \delta_{\phi(x)}
$$

- $\phi^{2}=\mathrm{id}, \theta(x) \theta(\phi(x))=1, \phi$ homeomorphism.
- $\phi(x)=x$ for all $x \in D_{0}$.

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Theorem

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$ \Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Sketch of the proof.

- $D_{0}=\left\{x \in K \backslash L: \exists y \in K \backslash L, \theta_{0} \in\{-1,1\}\right.$ with $\left.T^{*}\left(\delta_{x}\right)=\theta_{0} \delta_{y}\right\}$ dense in K.
- Consider $\phi: D_{0} \longrightarrow D_{0}$ and $\theta: D_{0} \longrightarrow\{-1,1\}$ with

$$
T^{*}\left(\delta_{x}\right)=\theta(x) \delta_{\phi(x)}
$$

- $\phi^{2}=\mathrm{id}, \theta(x) \theta(\phi(x))=1, \phi$ homeomorphism.
- $\phi(x)=x$ for all $x \in D_{0}$.
- $D_{0}=K \backslash L$.

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Theorem

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$ \Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Sketch of the proof.

- $D_{0}=\left\{x \in K \backslash L: \exists y \in K \backslash L, \theta_{0} \in\{-1,1\}\right.$ with $\left.T^{*}\left(\delta_{x}\right)=\theta_{0} \delta_{y}\right\}$ dense in K.
- Consider $\phi: D_{0} \longrightarrow D_{0}$ and $\theta: D_{0} \longrightarrow\{-1,1\}$ with

$$
T^{*}\left(\delta_{x}\right)=\theta(x) \delta_{\phi(x)}
$$

- $\phi^{2}=\mathrm{id}, \theta(x) \theta(\phi(x))=1, \phi$ homeomorphism.
- $\phi(x)=x$ for all $x \in D_{0}$.
- $D_{0}=K \backslash L$.
- θ is continuous. \checkmark

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Theorem

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$ \Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Consequences: cases $E=C(L)$ and $E=0$

- $C(K)$ extremely non-complex, $\varphi: K \longrightarrow K$ homeomorphism $\Longrightarrow \varphi=\mathrm{id}$
- $C_{0}(K \backslash L) \equiv C_{0}(K \| L)$ extremely non-complex, $\varphi: K \backslash L \longrightarrow K \backslash L$ homeomorphism $\Longrightarrow \varphi=\mathrm{id}$
- In both cases, the group of surjective isometries identifies with a Boolean algebra of clopen sets.

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Theorem

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$ \Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Consequences: general case

- If for every $x \in L$, there is $f \in E$ with $f(x) \neq 0$
$\Longrightarrow \theta$ extends to the whole K and

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K, f \in C_{E}(K \| L)\right)
$$

for every surjective isometry T.

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Theorem

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$ \Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Consequences: general case

- If for every $x \in L$, there is $f \in E$ with $f(x) \neq 0$
$\Longrightarrow \theta$ extends to the whole K and

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K, f \in C_{E}(K \| L)\right)
$$

for every surjective isometry T.

- If this happens, then $0 \notin{\overline{\operatorname{ext}\left(B_{E^{*}}\right)}}^{2 \omega^{*}}$ (V. Kadets).

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Theorem

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$
\Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Consequences: general case

- If for every $x \in L$, there is $f \in E$ with $f(x) \neq 0$ $\Longrightarrow \theta$ extends to the whole K and

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K, f \in C_{E}(K \| L)\right)
$$

for every surjective isometry T.

- If this happens, then $0 \notin \overline{\operatorname{ext}\left(B_{E^{*}}\right)}{ }^{w w^{*}}$ (V. Kadets).
- But for $E=\ell_{2}, 0 \in \overline{\operatorname{ext}\left(B_{E^{*}}\right)}{ }^{w^{*}}$.

Isometries on extremely non-complex $C_{E}(K \| L)$ spaces

Theorem

$C_{E}(K \| L)$ extremely non-complex, $T \in \operatorname{Iso}\left(C_{E}(K \| L)\right)$ \Longrightarrow exists $\theta: K \backslash L \longrightarrow\{-1,1\}$ continuous such that

$$
[T(f)](x)=\theta(x) f(x) \quad\left(x \in K \backslash L, f \in C_{E}(K \| L)\right)
$$

Consequence: connected case
If K and $K \backslash L$ are connected, then

$$
\operatorname{Iso}\left(C_{E}(K \| L)\right)=\{-\mathrm{Id},+\operatorname{Id}\}
$$

The main example

The main example

Koszmider, 2004

$\exists \mathcal{K}$ weak Koszmider space such that $\mathcal{K} \backslash F$ is connected if $|F|<\infty$.

The main example

Koszmider, 2004

$\exists \mathcal{K}$ weak Koszmider space such that $\mathcal{K} \backslash F$ is connected if $|F|<\infty$.
Observation on the above construction
There is $\mathcal{L} \subset \mathcal{K}$ closed nowhere dense with

- $\mathcal{K} \backslash \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

The main example

Koszmider, 2004

$\exists \mathcal{K}$ weak Koszmider space such that $\mathcal{K} \backslash F$ is connected if $|F|<\infty$.
Observation on the above construction
There is $\mathcal{L} \subset \mathcal{K}$ closed nowhere dense with

- $\mathcal{K} \backslash \mathcal{L}$ connected
- $\mathrm{C}[0,1] \subseteq C(\mathcal{L})$

The best example

Consider $X=C_{\ell_{2}}(\mathcal{K} \| \mathcal{L})$. Then:

$$
\operatorname{Iso}(X)=\{-\mathrm{Id},+\mathrm{Id}\} \quad \text { and } \quad \operatorname{Iso}\left(X^{*}\right) \supset \operatorname{Iso}\left(\ell_{2}\right)
$$

The main example

Koszmider, 2004

$\exists \mathcal{K}$ weak Koszmider space such that $\mathcal{K} \backslash F$ is connected if $|F|<\infty$.
Observation on the above construction
There is $\mathcal{L} \subset \mathcal{K}$ closed nowhere dense with

- $\mathcal{K} \backslash \mathcal{L}$ connected
- $\mathrm{C}[0,1] \subseteq C(\mathcal{L})$

The best example

Consider $X=C_{\ell_{2}}(\mathcal{K} \| \mathcal{L})$. Then:

$$
\operatorname{Iso}(X)=\{-\mathrm{Id},+\mathrm{Id}\} \quad \text { and } \quad \operatorname{Iso}\left(X^{*}\right) \supset \operatorname{Iso}\left(\ell_{2}\right)
$$

Proof.

The main example

Koszmider, 2004

$\exists \mathcal{K}$ weak Koszmider space such that $\mathcal{K} \backslash F$ is connected if $|F|<\infty$.

Observation on the above construction

There is $\mathcal{L} \subset \mathcal{K}$ closed nowhere dense with

- $\mathcal{K} \backslash \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

The best example

Consider $X=C_{\ell_{2}}(\mathcal{K} \| \mathcal{L})$. Then:

$$
\operatorname{Iso}(X)=\{-\mathrm{Id},+\mathrm{Id}\} \quad \text { and } \quad \operatorname{Iso}\left(X^{*}\right) \supset \operatorname{Iso}\left(\ell_{2}\right)
$$

Proof.

- \mathcal{K} weak Koszmider, \mathcal{L} nowhere dense, $\ell_{2} \subset C(\mathcal{L})$ $\Longrightarrow X$ well-defined and extremely non-complex.

The main example

Koszmider, 2004

$\exists \mathcal{K}$ weak Koszmider space such that $\mathcal{K} \backslash F$ is connected if $|F|<\infty$.

Observation on the above construction

There is $\mathcal{L} \subset \mathcal{K}$ closed nowhere dense with

- $\mathcal{K} \backslash \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

The best example

Consider $X=C_{\ell_{2}}(\mathcal{K} \| \mathcal{L})$. Then:

$$
\operatorname{Iso}(X)=\{-\mathrm{Id},+\mathrm{Id}\} \quad \text { and } \quad \operatorname{Iso}\left(X^{*}\right) \supset \operatorname{Iso}\left(\ell_{2}\right)
$$

Proof.

- \mathcal{K} weak Koszmider, \mathcal{L} nowhere dense, $\ell_{2} \subset C(\mathcal{L})$ $\Longrightarrow X$ well-defined and extremely non-complex.
- $\mathcal{K} \backslash \mathcal{L}$ connected $\Longrightarrow \operatorname{Iso}(X)=\{-\mathrm{Id},+\mathrm{Id}\}$.

The main example

Koszmider, 2004

$\exists \mathcal{K}$ weak Koszmider space such that $\mathcal{K} \backslash F$ is connected if $|F|<\infty$.

Observation on the above construction

There is $\mathcal{L} \subset \mathcal{K}$ closed nowhere dense with

- $\mathcal{K} \backslash \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

The best example

Consider $X=C_{\ell_{2}}(\mathcal{K} \| \mathcal{L})$. Then:

$$
\operatorname{Iso}(X)=\{-\mathrm{Id},+\operatorname{Id}\} \quad \text { and } \quad \operatorname{Iso}\left(X^{*}\right) \supset \operatorname{Iso}\left(\ell_{2}\right)
$$

Proof.

- \mathcal{K} weak Koszmider, \mathcal{L} nowhere dense, $\ell_{2} \subset C(\mathcal{L})$ $\Longrightarrow X$ well-defined and extremely non-complex.
- $\mathcal{K} \backslash \mathcal{L}$ connected $\Longrightarrow \operatorname{Iso}(X)=\{-\mathrm{Id},+\mathrm{Id}\}$.
- $X^{*}=\ell_{2} \oplus_{1} C_{0}(\mathcal{K} \| \mathcal{L})^{*}$, so $\operatorname{Iso}\left(\ell_{2}\right) \subset \operatorname{Iso}\left(X^{*}\right)$. \checkmark

Open questions on extremely non-complex Banach spaces

Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex

- Does X have the Daugavet property ?

Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex

- Does X have the Daugavet property ?
- Stronger: Does Y have the Daugavet property if

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\| \quad \text { for every rank-one } T \in L(Y) ?
$$

Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex

- Does X have the Daugavet property ?
- Stronger: Does Y have the Daugavet property if

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\| \quad \text { for every rank-one } T \in L(Y) ?
$$

- Is it true that $n(X)=1$?

Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex

- Does X have the Daugavet property ?
- Stronger: Does Y have the Daugavet property if

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\| \quad \text { for every rank-one } T \in L(Y) ?
$$

- Is it true that $n(X)=1$?
- We actually know that $n(X) \geqslant C>0$.

Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex

- Does X have the Daugavet property ?
- Stronger: Does Y have the Daugavet property if

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\| \quad \text { for every rank-one } T \in L(Y) ?
$$

- Is it true that $n(X)=1$?
- We actually know that $n(X) \geqslant C>0$.
- Is $\operatorname{Iso}(X) \equiv \operatorname{Unc}(X)$ a Boolean algebra ?

Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex

- Does X have the Daugavet property ?
- Stronger: Does Y have the Daugavet property if

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\| \quad \text { for every rank-one } T \in L(Y) ?
$$

- Is it true that $n(X)=1$?
- We actually know that $n(X) \geqslant C>0$.
- Is $\operatorname{Iso}(X) \equiv \operatorname{Unc}(X)$ a Boolean algebra ?
- If $Y \leqslant X$ is 1-codimensional, is Y extremely non complex ?

Open questions on extremely non-complex Banach spaces

Questions

X extremely non complex

- Does X have the Daugavet property ?
- Stronger: Does Y have the Daugavet property if

$$
\left\|\operatorname{Id}+T^{2}\right\|=1+\left\|T^{2}\right\| \quad \text { for every rank-one } T \in L(Y) ?
$$

- Is it true that $n(X)=1$?
- We actually know that $n(X) \geqslant C>0$.
- Is $\operatorname{Iso}(X) \equiv \operatorname{Unc}(X)$ a Boolean algebra ?
- If $Y \leqslant X$ is 1 -codimensional, is Y extremely non complex ?
- Is it possible that $X \simeq Z \oplus Z \oplus Z$?
(1) Basic notation
(2) Numerical range of operators
(3) Two results on surjective isometries
(4) Numerical index of Banach spaces
(5) The alternative Daugavet property
(6) Lush spaces
(7) Slicely countably determined spaces
(8) Remarks on two recent results
(9) Extremely non-complex Banach spaces

