Numerical index theory

Miguel Martín

http://www.ugr.es/local/mmartins

Advanced Training School in Mathematics

Workshop on Geometry of Banach spaces and its Applications

June 2009 - Indian Statistical Institute, Bangalore (India)

- Basic notation
- 2 Numerical range of operators
- Two results on surjective isometries
- Mumerical index of Banach spaces
- 5 The alternative Daugavet property
- 6 Lush spaces
- Slicely countably determined spaces
- 8 Remarks on two recent results
- Extremely non-complex Banach spaces

Miguel Martín (University of Granada (Spain))

Notation

Basic notation I

- K base field (R or C):
 - T modulus-one scalars,
 - Re z real part of z (Re z = z if $\mathbb{K} = \mathbb{R}$).
- $\bullet~H$ Hilbert space: $(\cdot \mid \cdot)$ denotes the inner product.
- X Banach space:
 - S_X unit sphere, B_X unit ball,
 - X* dual space,
 - L(X) bounded linear operators,
 - W(X) weakly compact linear operators,
 - Iso(X) surjective linear isometries,
- X Banach space, $T \in L(X)$:
 - Sp(T) spectrum of T.
 - $T^* \in L(X^*)$ adjoint operator of T.

Notation

Basic notation (II)

X Banach space, $B \subset X$, C convex subset of X:

- *B* is rounded if $\mathbb{T}B = B$,
- co(B) convex hull of B,
- $\overline{\operatorname{co}}(B)$ closed convex hull of *B*,
- $\operatorname{aconv}(B) = \operatorname{co}(\mathbb{T} B)$ absolutely convex hull of B,
- ext(C) extreme points of C,
- slice of C:

$$S(C, x^*, \alpha) = \{x \in C : \operatorname{Re} x^*(x) > \sup \operatorname{Re} x^*(C) - \alpha\}$$

where $x^* \in X^*$ and $0 < \alpha < \sup \operatorname{Re} x^*(C)$.

Miguel Martín (University of Granada (Spain))

Numerical range of operators

Numerical range of operators

2 Numerical range of operators

- Definitions and first properties
- The exponential function
- Numerical ranges and isometries

F. F. Bonsall and J. Duncan

Numerical Ranges. Vol I and II.

London Math. Soc. Lecture Note Series, 1971 & 1973.

Miguel Martín (University of Granada (Spain))

Numerical range: Hilbert spaces

Hilbert space numerical range (Toeplitz, 1918)

• $A \ n \times n$ real or complex matrix

$$W(A) = \{ (Ax \mid x) : x \in \mathbb{K}^n, (x \mid x) = 1 \}.$$

• H real or complex Hilbert space, $T \in L(H)$,

 $W(T) = \{ (Tx \mid x) : x \in H, \|x\| = 1 \}.$

Numerical range: Hilbert spaces

Hilbert space numerical range (Toeplitz, 1918)

• $A \ n \times n$ real or complex matrix

$$W(A) = \{ (Ax \mid x) : x \in \mathbb{K}^n, (x \mid x) = 1 \}.$$

• H real or complex Hilbert space, $T \in L(H)$,

$$W(T) = \{ (Tx \mid x) : x \in H, \|x\| = 1 \}.$$

Remark

★ Given $T \in L(H)$ we associate

- a sesquilinear form $\varphi_T(x,y) = (Tx \mid y)$ $(x,y \in H)$,
- a quadratic form $\widehat{\varphi_T}(x) = \varphi_T(x, x) = (Tx \mid x)$ $(x \in H).$

$$\bigstar$$
 Then, $W(T) = \widehat{\varphi_T}(S_H)$.

Numerical range: Hilbert spaces

Hilbert space numerical range (Toeplitz, 1918)

• $A \ n \times n$ real or complex matrix

$$W(A) = \{ (Ax \mid x) : x \in \mathbb{K}^n, (x \mid x) = 1 \}.$$

• H real or complex Hilbert space, $T \in L(H)$,

$$W(T) = \{ (Tx \mid x) : x \in H, \|x\| = 1 \}.$$

Remark

★ Given $T \in L(H)$ we associate

- a sesquilinear form $\varphi_T(x,y) = (Tx \mid y)$ $(x,y \in H)$,
- a quadratic form $\widehat{\varphi_T}(x) = \varphi_T(x, x) = (Tx \mid x)$ $(x \in H).$
- **†** Then, $W(T) = \widehat{\varphi_T}(S_H)$. Therefore:
 - $\widehat{\varphi}_T(B_H) = [0,1] W(T)$,
 - $\widehat{\varphi_T}(H) = \mathbb{R}^+ W(T).$
 - But we cannot get W(T) from $\widehat{\varphi_T}(B_H)$!

- H Hilbert space, $T \in L(H)$:
 - (Toeplitz-Hausdorff) W(T) is convex.

- H Hilbert space, $T \in L(H)$:
 - (Toeplitz-Hausdorff) W(T) is convex.
 - $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:

- H Hilbert space, $T \in L(H)$:
 - (Toeplitz-Hausdorff) W(T) is convex.
 - $T, S \in L(H)$, $\alpha, \beta \in \mathbb{K}$:
 - $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S);$

- H Hilbert space, $T \in L(H)$:
 - (Toeplitz-Hausdorff) W(T) is convex.
 - $T, S \in L(H)$, $\alpha, \beta \in \mathbb{K}$:
 - $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S);$
 - $W(\alpha \mathrm{Id} + S) = \alpha + W(S).$

- H Hilbert space, $T \in L(H)$:
 - (Toeplitz-Hausdorff) W(T) is convex.
 - $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
 - $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S);$
 - $W(\alpha \mathrm{Id} + S) = \alpha + W(S).$
 - $W(U^*TU) = W(T)$ for every $T \in L(H)$ and every U unitary.

- H Hilbert space, $T \in L(H)$:
 - (Toeplitz-Hausdorff) W(T) is convex.
 - $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
 - $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S);$
 - $W(\alpha \text{Id} + S) = \alpha + W(S)$.
 - $W(U^*TU) = W(T)$ for every $T \in L(H)$ and every U unitary.
 - $\operatorname{Sp}(T) \subseteq \overline{W(T)}$.

- H Hilbert space, $T \in L(H)$:
 - (Toeplitz-Hausdorff) W(T) is convex.
 - $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
 - $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S);$
 - $W(\alpha \text{Id} + S) = \alpha + W(S)$.
 - $W(U^*TU) = W(T)$ for every $T \in L(H)$ and every U unitary.
 - $\operatorname{Sp}(T) \subseteq \overline{W(T)}$.
 - If T is normal, then $\overline{W(T)} = \overline{\operatorname{co}}\operatorname{Sp}(T)$.

- H Hilbert space, $T \in L(H)$:
 - (Toeplitz-Hausdorff) W(T) is convex.
 - $T, S \in L(H), \alpha, \beta \in \mathbb{K}$:
 - $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S);$
 - $W(\alpha \text{Id} + S) = \alpha + W(S)$.
 - $W(U^*TU) = W(T)$ for every $T \in L(H)$ and every U unitary.
 - $\operatorname{Sp}(T) \subseteq \overline{W(T)}$.
 - If T is normal, then $\overline{W(T)} = \overline{\operatorname{co}}\operatorname{Sp}(T)$.
 - In the real case (dim(H) > 1), there is $T \in L(H)$, $T \neq 0$ with $W(T) = \{0\}$.

Some properties

- H Hilbert space, $T \in L(H)$:
 - (Toeplitz-Hausdorff) W(T) is convex.
 - $T, S \in L(H)$, $\alpha, \beta \in \mathbb{K}$:
 - $W(\alpha T + \beta S) \subseteq \alpha W(T) + \beta W(S);$
 - $W(\alpha \mathrm{Id} + S) = \alpha + W(S).$
 - $W(U^*TU) = W(T)$ for every $T \in L(H)$ and every U unitary.
 - $\operatorname{Sp}(T) \subseteq \overline{W(T)}$.
 - If T is normal, then $\overline{W(T)} = \overline{\operatorname{co}}\operatorname{Sp}(T)$.
 - In the real case (dim(H) > 1), there is $T \in L(H)$, $T \neq 0$ with $W(T) = \{0\}$.
 - In the complex case,

$$\sup\{|(Tx \mid x)| : x \in S_H\} \ge \frac{1}{2} ||T||.$$

If T is actually self-adjoint, then

 $\sup\{|(Tx \mid x)| : x \in S_H\} = ||T||.$

Miguel Martín (University of Granada (Spain))

H complex Hilbert space, $T \in L(H)$, then

$$M := \sup\{ |(Tx \mid x)| : x \in S_H \} \ge \frac{1}{2} ||T||.$$

H complex Hilbert space, $T \in L(H)$, then

$$M := \sup\{ |(Tx \mid x)| : x \in S_H \} \ge \frac{1}{2} ||T||.$$

• For $x, y \in S_H$ fixed, use the polarization formula:

$$(Tx \mid y) = \frac{1}{4} \Big[(T(x+y) \mid x+y) - (T(x-y) \mid x-y) \\ + i (T(x+iy) \mid x+iy) - i (T(x-iy) \mid x-iy) \Big].$$

۲

H complex Hilbert space, $T \in L(H)$, then

$$M := \sup\{ |(Tx \mid x)| : x \in S_H \} \ge \frac{1}{2} ||T||.$$

• For $x, y \in S_H$ fixed, use the polarization formula:

$$(Tx \mid y) = \frac{1}{4} \Big[(T(x+y) \mid x+y) - (T(x-y) \mid x-y) \\ + i (T(x+iy) \mid x+iy) - i (T(x-iy) \mid x-iy) \Big].$$
$$|(Tx \mid y)| \leq \frac{1}{4} M \big[||x+y||^2 + ||x-y||^2 + ||x+iy||^2 + ||x-iy||^2 \big].$$

H complex Hilbert space, $T \in L(H)$, then

$$M := \sup\{ |(Tx \mid x)| : x \in S_H \} \ge \frac{1}{2} ||T||.$$

• For $x, y \in S_H$ fixed, use the polarization formula:

$$(Tx \mid y) = \frac{1}{4} \Big[(T(x+y) \mid x+y) - (T(x-y) \mid x-y) \\ + i (T(x+iy) \mid x+iy) - i (T(x-iy) \mid x-iy) \Big].$$

•
$$|(Tx | y)| \leq \frac{1}{4} M[||x + y||^2 + ||x - y||^2 + ||x + iy||^2 + ||x - iy||^2].$$

• By the parallelogram's law:

$$|(Tx | y)| \leq \frac{1}{4} M[2||x||^2 + 2||y||^2 + 2||x||^2 + 2||iy||^2] = 2M.$$

Miguel Martín (University of Granada (Spain))

H complex Hilbert space, $T \in L(H)$, then

$$M := \sup\{ |(Tx \mid x)| : x \in S_H \} \ge \frac{1}{2} ||T||.$$

• For $x, y \in S_H$ fixed, use the polarization formula:

$$(Tx \mid y) = \frac{1}{4} \Big[(T(x+y) \mid x+y) - (T(x-y) \mid x-y) \\ + i (T(x+iy) \mid x+iy) - i (T(x-iy) \mid x-iy) \Big].$$

•
$$|(Tx | y)| \leq \frac{1}{4} M[||x + y||^2 + ||x - y||^2 + ||x + iy||^2 + ||x - iy||^2].$$

• By the parallelogram's law:

$$|(Tx | y)| \leq \frac{1}{4} M[2||x||^2 + 2||y||^2 + 2||x||^2 + 2||iy||^2] = 2M.$$

• We just take supremum on $x,y\in S_H$ 🗸

Miguel Martín (University of Granada (Spain))

Some reasons to study numerical ranges

Some reasons to study numerical ranges

• It gives a "picture" of the matrix/operator which allows to "see" many properties (algebraic or geometrical) of the matrix/operator.

Some reasons to study numerical ranges

- It gives a "picture" of the matrix/operator which allows to "see" many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.

Some reasons to study numerical ranges

- It gives a "picture" of the matrix/operator which allows to "see" many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.
- It is useful to estimate spectral radii of small perturbations of matrices.

Example

Consider
$$A = \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ \varepsilon & 0 \end{pmatrix}$.

•
$$\operatorname{Sp}(A) = \{0\}, \operatorname{Sp}(B) = \{0\}.$$

•
$$\operatorname{Sp}(A+B) = \{\pm \sqrt{M\varepsilon}\} \subseteq W(A+B) \subseteq W(A) + W(B),$$

• so the spectral radius of A + B is bounded above by $\frac{1}{2}(|M| + |\varepsilon|)$.

Some reasons to study numerical ranges

- It gives a "picture" of the matrix/operator which allows to "see" many properties (algebraic or geometrical) of the matrix/operator.
- It is a comfortable way to study the spectrum.
- It is useful to estimate spectral radii of small perturbations of matrices.
- It is useful to work with some concepts like hermitian operator, skew-hermitian operator, dissipative operator...

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \left\{ x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \right\}$$

- X Banach space, $T \in L(X)$.
 - V(T) is connected but not necessarily convex.

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

- X Banach space, $T \in L(X)$.
 - V(T) is connected but not necessarily convex.
 - $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

- X Banach space, $T \in L(X)$.
 - V(T) is connected but not necessarily convex.
 - $T, S \in L(X)$, $\alpha, \beta \in \mathbb{K}$:
 - $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S);$

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

- X Banach space, $T \in L(X)$.
 - V(T) is connected but not necessarily convex.
 - $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
 - $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S);$
 - $V(\alpha \text{Id} + S) = \alpha + V(S).$

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

- X Banach space, $T \in L(X)$.
 - V(T) is connected but not necessarily convex.
 - $T, S \in L(X), \alpha, \beta \in \mathbb{K}$:
 - $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S);$
 - $V(\alpha \mathrm{Id} + S) = \alpha + V(S).$
 - $\operatorname{Sp}(T) \subseteq \overline{V(T)}$.

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

- X Banach space, $T \in L(X)$.
 - V(T) is connected but not necessarily convex.

•
$$T, S \in L(X), \alpha, \beta \in \mathbb{K}$$
:

- $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S);$
- $V(\alpha \mathrm{Id} + S) = \alpha + V(S).$
- $\operatorname{Sp}(T) \subseteq \overline{V(T)}$.
- (Zenger–Crabb) Actually, $\overline{co}(Sp(T)) \subseteq \overline{V(T)}$.

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

Some properties

- X Banach space, $T \in L(X)$.
 - V(T) is connected but not necessarily convex.
 - $T, S \in L(X)$, $\alpha, \beta \in \mathbb{K}$:
 - $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S);$
 - $V(\alpha \mathrm{Id} + S) = \alpha + V(S).$
 - $\operatorname{Sp}(T) \subseteq \overline{V(T)}$.
 - (Zenger–Crabb) Actually, $\overline{co}(Sp(T)) \subseteq \overline{V(T)}$.
 - $\overline{\operatorname{co}}\operatorname{Sp}(T) = \bigcap \{V_p(T) : p \text{ equivalent norm}\}\$ where $V_p(T)$ is the numerical range of T in the Banach space (X, p).

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

Some properties

- X Banach space, $T \in L(X)$.
 - V(T) is connected but not necessarily convex.
 - $T, S \in L(X)$, $\alpha, \beta \in \mathbb{K}$:
 - $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S);$
 - $V(\alpha \mathrm{Id} + S) = \alpha + V(S).$
 - $\operatorname{Sp}(T) \subseteq \overline{V(T)}$.
 - (Zenger–Crabb) Actually, $\overline{co}(Sp(T)) \subseteq \overline{V(T)}$.
 - $\overline{\operatorname{co}}\operatorname{Sp}(T) = \bigcap \{V_p(T) : p \text{ equivalent norm}\}\$ where $V_p(T)$ is the numerical range of T in the Banach space (X, p).
 - $V(U^{-1}TU) = V(T)$ for every $T \in L(X)$ and every $U \in Iso(X)$.

Banach spaces numerical range (Bauer 1962; Lumer, 1961)

X Banach space, $T \in L(X)$,

$$V(T) = \{x^*(Tx) : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1\}$$

Some properties

- X Banach space, $T \in L(X)$.
 - V(T) is connected but not necessarily convex.
 - $T, S \in L(X)$, $\alpha, \beta \in \mathbb{K}$:
 - $V(\alpha T + \beta S) \subseteq \alpha V(T) + \beta V(S);$
 - $V(\alpha \mathrm{Id} + S) = \alpha + V(S).$
 - $\operatorname{Sp}(T) \subseteq \overline{V(T)}$.
 - (Zenger–Crabb) Actually, $\overline{co}(Sp(T)) \subseteq \overline{V(T)}$.
 - $\overline{\operatorname{co}}\operatorname{Sp}(T) = \bigcap \{V_p(T) : p \text{ equivalent norm}\}\$ where $V_p(T)$ is the numerical range of T in the Banach space (X, p).
 - $V(U^{-1}TU) = V(T)$ for every $T \in L(X)$ and every $U \in Iso(X)$.
 - $V(T) \subseteq V(T^*) \subseteq \overline{V(T)}$.

	Numerical range of operators	Definitions and first properties
Numerical range:	Banach spaces (II)	

Observation

The numerical range depends on the base field:

• X complex Banach space \implies X_R real space underlying X.

Observation

The numerical range depends on the base field:

- X complex Banach space \implies X_R real space underlying X.
- $T \in L(X) \implies T_{\mathbb{R}} \in L(X_{\mathbb{R}})$ is T view as a real operator.

Observation

The numerical range depends on the base field:

- X complex Banach space \implies $X_{\mathbb{R}}$ real space underlying X.
- $T \in L(X) \implies T_{\mathbb{R}} \in L(X_{\mathbb{R}})$ is T view as a real operator.
- Then $V(T_{\mathbb{R}}) = \operatorname{Re} V(T)$.

Observation

The numerical range depends on the base field:

- X complex Banach space \implies X_R real space underlying X.
- $T \in L(X) \implies T_{\mathbb{R}} \in L(X_{\mathbb{R}})$ is T view as a real operator.
- Then $V(T_{\mathbb{R}}) = \operatorname{Re} V(T)$.
- Consequence:

X complex, then there is $S \in L(X_{\mathbb{R}})$ with ||S|| = 1 and $V(S) = \{0\}$.

Observation

The numerical range depends on the base field:

- X complex Banach space \implies X_R real space underlying X.
- $T \in L(X) \implies T_{\mathbb{R}} \in L(X_{\mathbb{R}})$ is T view as a real operator.
- Then $V(T_{\mathbb{R}}) = \operatorname{Re} V(T)$.
- Consequence:

X complex, then there is $S \in L(X_{\mathbb{R}})$ with ||S|| = 1 and $V(S) = \{0\}$.

Some motivation for the numerical range

Observation

The numerical range depends on the base field:

- X complex Banach space \implies X_R real space underlying X.
- $T \in L(X) \implies T_{\mathbb{R}} \in L(X_{\mathbb{R}})$ is T view as a real operator.
- Then $V(T_{\mathbb{R}}) = \operatorname{Re} V(T)$.
- Consequence:

X complex, then there is $S \in L(X_{\mathbb{R}})$ with ||S|| = 1 and $V(S) = \{0\}$.

Some motivation for the numerical range

• It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators...

Observation

The numerical range depends on the base field:

- X complex Banach space \implies X_R real space underlying X.
- $T \in L(X) \implies T_{\mathbb{R}} \in L(X_{\mathbb{R}})$ is T view as a real operator.
- Then $V(T_{\mathbb{R}}) = \operatorname{Re} V(T)$.
- Consequence:

X complex, then there is $S \in L(X_{\mathbb{R}})$ with ||S|| = 1 and $V(S) = \{0\}$.

Some motivation for the numerical range

- It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators...
- It gives a description of the Lie algebra corresponding to the Lie group of all onto isometries on the space.

Observation

The numerical range depends on the base field:

- X complex Banach space \implies X_R real space underlying X.
- $T \in L(X) \implies T_{\mathbb{R}} \in L(X_{\mathbb{R}})$ is T view as a real operator.
- Then $V(T_{\mathbb{R}}) = \operatorname{Re} V(T)$.
- Consequence:

X complex, then there is $S \in L(X_{\mathbb{R}})$ with ||S|| = 1 and $V(S) = \{0\}$.

Some motivation for the numerical range

- It allows to carry to the general case the concepts of hermitian operator, skew-hermitian operator, dissipative operators...
- It gives a description of the Lie algebra corresponding to the Lie group of all onto isometries on the space.
- It gives an easy and quantitative proof of the fact that Id is an strongly extreme point of $B_{L(X)}$ (MLUR point).

Numerical radius

X real or complex Banach space, $T \in L(X)$,

$$v(T) = \sup \{ |\lambda| : \lambda \in V(T) \}$$

= sup { |x*(Tx)| : x* \in S_{X*}, x \in S_X, x*(x) = 1 }

Numerical radius

X real or complex Banach space, $T \in L(X)$,

$$v(T) = \sup \{ |\lambda| : \lambda \in V(T) \}$$

= sup { |x*(Tx)| : x* \in S_{X*}, x \in S_X, x*(x) = 1 }

Elementary properties

X Banach space, $T \in L(X)$

- $v(\cdot)$ is a seminorm, i.e.
 - $v(T+S) \leq v(T) + v(S)$ for every $T, S \in L(X)$.

Numerical radius

X real or complex Banach space, $T \in L(X)$,

$$v(T) = \sup \{ |\lambda| : \lambda \in V(T) \}$$

= sup { |x*(Tx)| : x* \in S_{X*}, x \in S_X, x*(x) = 1 }

Elementary properties

X Banach space, $T \in L(X)$

- $v(\cdot)$ is a seminorm, i.e.
 - $v(T+S) \leq v(T) + v(S)$ for every $T, S \in L(X)$.
 - $v(\lambda T) = |\lambda| v(T)$ for every $\lambda \in \mathbb{K}$, $T \in L(X)$.

Numerical radius

X real or complex Banach space, $T \in L(X)$,

$$v(T) = \sup \{ |\lambda| : \lambda \in V(T) \}$$

= sup $\{ |x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}$

Elementary properties

X Banach space, $T \in L(X)$

- $v(\cdot)$ is a seminorm, i.e.
 - $v(T+S) \leq v(T) + v(S)$ for every $T, S \in L(X)$.
 - $v(\lambda T) = |\lambda| v(T)$ for every $\lambda \in \mathbb{K}$, $T \in L(X)$.
- $\sup |\operatorname{Sp}(T)| \leq v(T)$.

Numerical radius

X real or complex Banach space, $T \in L(X)$,

$$v(T) = \sup \{ |\lambda| : \lambda \in V(T) \}$$

= sup { |x*(Tx)| : x* \in S_{X*}, x \in S_X, x*(x) = 1 }

Elementary properties

X Banach space, $T \in L(X)$

• $v(\cdot)$ is a seminorm, i.e.

•
$$v(T+S) \leq v(T) + v(S)$$
 for every $T, S \in L(X)$.

• $v(\lambda T) = |\lambda| v(T)$ for every $\lambda \in \mathbb{K}$, $T \in L(X)$.

•
$$\sup |\operatorname{Sp}(T)| \leq v(T)$$
.

• $v(U^{-1}TU) = v(T)$ for every $U \in Iso(X)$.

Numerical radius

X real or complex Banach space, $T \in L(X)$,

$$v(T) = \sup \{ |\lambda| : \lambda \in V(T) \}$$

= sup { |x*(Tx)| : x* \in S_{X*}, x \in S_X, x*(x) = 1 }

Elementary properties

X Banach space, $T \in L(X)$

• $v(\cdot)$ is a seminorm, i.e.

•
$$v(T+S) \leqslant v(T) + v(S)$$
 for every $T, S \in L(X)$

•
$$v(\lambda T) = |\lambda| v(T)$$
 for every $\lambda \in \mathbb{K}$, $T \in L(X)$.

•
$$\sup |\operatorname{Sp}(T)| \leq v(T)$$
.

•
$$v(U^{-1}TU) = v(T)$$
 for every $U \in \text{Iso}(X)$.

• $v(T^*) = v(T)$.

Some examples

• *H* real Hilbert space $\dim(H) > 1$ \implies exist $T \in L(X)$ with v(T) = 0 and ||T|| = 1.

- *H* real Hilbert space $\dim(H) > 1$ \implies exist $T \in L(X)$ with v(T) = 0 and ||T|| = 1.
- **2** H complex Hilbert space $\dim(H) > 1$

- *H* real Hilbert space $\dim(H) > 1$ \implies exist $T \in L(X)$ with v(T) = 0 and ||T|| = 1.
- $e H \text{ complex Hilbert space } \dim(H) > 1$
 - $v(T) \ge \frac{1}{2} \|T\|$,

- *H* real Hilbert space dim(*H*) > 1 \implies exist $T \in L(X)$ with v(T) = 0 and ||T|| = 1.
- $\textcircled{\ }H \text{ complex Hilbert space } \dim(H) > 1$

•
$$v(T) \ge \frac{1}{2} \|T\|$$
,

• the constant
$$\frac{1}{2}$$
 is optimal.

- *H* real Hilbert space dim(*H*) > 1 \implies exist $T \in L(X)$ with v(T) = 0 and ||T|| = 1.
- e H complex Hilbert space dim(H) > 1
 - $v(T) \ge \frac{1}{2} \|T\|$,
 - the constant $\frac{1}{2}$ is optimal.
- $\label{eq:constraint} { \begin{subarray}{ll} \bullet \\ X = L_1(\mu) & \Longrightarrow & v(T) = \|T\| \mbox{ for every } T \in L(X). \end{subarray}$

Some examples

• *H* real Hilbert space
$$\dim(H) > 1$$

 \implies exist $T \in L(X)$ with $v(T) = 0$ and $||T|| = 1$.

 $\textcircled{\ }H \text{ complex Hilbert space } \dim(H) > 1$

•
$$v(T) \ge \frac{1}{2} \|T\|$$
,

• the constant
$$\frac{1}{2}$$
 is optimal.

$$\ \, {\bf O} \ \, X=L_1(\mu) \implies v(T)=\|T\| \ \, {\rm for \ every} \ \, T\in L(X).$$

•
$$X^* \equiv L_1(\mu) \implies v(T) = ||T||$$
 for every $T \in L(X)$.

• In particular, this is the case for X = C(K).

$$X = C(K) \implies v(T) = ||T||$$
 for every $T \in L(X)$.

$$X = C(K) \implies v(T) = ||T||$$
 for every $T \in L(X)$.

• Fix $T \in L(C(K))$. Find $f_0 \in X(E)$ and $\xi_0 \in K$ such that $|[Tf_0](\xi_0)| \sim ||T||$.

$$X = C(K) \implies v(T) = ||T||$$
 for every $T \in L(X)$.

• Fix $T \in L(C(K))$. Find $f_0 \in X(E)$ and $\xi_0 \in K$ such that $|[Tf_0](\xi_0)| \sim ||T||$.

If $f_0(\xi_0) \sim 1$, then we were done. This our goal.

$$X = C(K) \implies v(T) = ||T||$$
 for every $T \in L(X)$.

• Fix $T \in L(C(K))$. Find $f_0 \in X(E)$ and $\xi_0 \in K$ such that $|[Tf_0](\xi_0)| \sim ||T||$.

Consider the non-empty open set

$$V = \{\xi \in]0,1] \times [0,1] : f_0(\xi) \sim f_0(\xi_0)\}$$

and find $\varphi: [0,1] \times [0,1] \longrightarrow [0,1]$ continuous with $\operatorname{supp}(\varphi) \subset V$ and $\varphi(\xi_0) = 1$.

$$X = C(K) \implies v(T) = ||T||$$
 for every $T \in L(X)$.

- Fix $T \in L(C(K))$. Find $f_0 \in X(E)$ and $\xi_0 \in K$ such that $|[Tf_0](\xi_0)| \sim ||T||$.
- Consider the non-empty open set

$$V = \{\xi \in]0,1] \times [0,1] : f_0(\xi) \sim f_0(\xi_0)\}$$

and find $\varphi: [0,1] \times [0,1] \longrightarrow [0,1]$ continuous with $\operatorname{supp}(\varphi) \subset V$ and $\varphi(\xi_0) = 1$.

• Write $f_0(\xi_0) = \lambda \omega_1 + (1 - \lambda)\omega_2$ with $|\omega_i| = 1$, and consider the functions $f_i = (1 - \varphi)f_0 + \varphi \omega_i$ for i = 1, 2.

$$X = C(K) \implies v(T) = ||T||$$
 for every $T \in L(X)$.

• Fix $T \in L(C(K))$. Find $f_0 \in X(E)$ and $\xi_0 \in K$ such that $|[Tf_0](\xi_0)| \sim ||T||$.

Consider the non-empty open set

$$V = \{\xi \in]0,1] \times [0,1] : f_0(\xi) \sim f_0(\xi_0)\}$$

and find $\varphi: [0,1] \times [0,1] \longrightarrow [0,1]$ continuous with $\operatorname{supp}(\varphi) \subset V$ and $\varphi(\xi_0) = 1$.

- Write $f_0(\xi_0) = \lambda \omega_1 + (1 \lambda)\omega_2$ with $|\omega_i| = 1$, and consider the functions $f_i = (1 \varphi)f_0 + \varphi \omega_i$ for i = 1, 2.
- Then, $f_i \in C(K)$, $||f_i|| \leq 1$, and

$$||f_0 - (\lambda f_1 + (1 - \lambda)f_2)|| = ||\varphi f_0 - \varphi f_0(\xi_0)|| \sim 0$$

$$X = C(K) \implies v(T) = ||T||$$
 for every $T \in L(X)$.

• Fix $T \in L(C(K))$. Find $f_0 \in X(E)$ and $\xi_0 \in K$ such that $|[Tf_0](\xi_0)| \sim ||T||$.

Consider the non-empty open set

$$V = \{\xi \in]0,1] \times [0,1] : f_0(\xi) \sim f_0(\xi_0)\}$$

and find $\varphi: [0,1] \times [0,1] \longrightarrow [0,1]$ continuous with $\operatorname{supp}(\varphi) \subset V$ and $\varphi(\xi_0) = 1$.

- Write $f_0(\xi_0) = \lambda \omega_1 + (1 \lambda)\omega_2$ with $|\omega_i| = 1$, and consider the functions $f_i = (1 \varphi)f_0 + \varphi \omega_i$ for i = 1, 2.
- Then, $f_i \in C(K)$, $||f_i|| \leq 1$, and

$$||f_0 - (\lambda f_1 + (1 - \lambda)f_2)|| = ||\varphi f_0 - \varphi f_0(\xi_0)|| \sim 0.$$

• Therefore, there is $i \in \{1,2\}$ such that $|[T(f_i)](\xi_0)| \sim ||T||$, but now $|f_i(\xi_0)| = 1$.

$$X = C(K) \implies v(T) = ||T||$$
 for every $T \in L(X)$.

- Fix $T \in L(C(K))$. Find $f_0 \in X(E)$ and $\xi_0 \in K$ such that $|[Tf_0](\xi_0)| \sim ||T||$.
- Consider the non-empty open set

$$V = \{\xi \in]0,1] \times [0,1] : f_0(\xi) \sim f_0(\xi_0)\}$$

and find $\varphi: [0,1] \times [0,1] \longrightarrow [0,1]$ continuous with $\operatorname{supp}(\varphi) \subset V$ and $\varphi(\xi_0) = 1$.

- Write $f_0(\xi_0) = \lambda \omega_1 + (1 \lambda)\omega_2$ with $|\omega_i| = 1$, and consider the functions $f_i = (1 \varphi)f_0 + \varphi \omega_i$ for i = 1, 2.
- Then, $f_i \in C(K)$, $||f_i|| \leq 1$, and

$$||f_0 - (\lambda f_1 + (1 - \lambda)f_2)|| = ||\varphi f_0 - \varphi f_0(\xi_0)|| \sim 0.$$

- Therefore, there is $i \in \{1,2\}$ such that $|[T(f_i)](\xi_0)| \sim ||T||$, but now $|f_i(\xi_0)| = 1$.
- Equivalently,

$$\left|\delta_{\xi_0}(T(f_i))\right| \sim \|T\|$$
 and $\left|\delta_{\xi_0}(f_i)\right| = 1$,

meaning that $v(T) \sim ||T||.\checkmark$

Miguel Martín (University of Granada (Spain))

$$X = C(K) \implies v(T) = ||T||$$
 for every $T \in L(X)$.

- Fix $T \in L(C(K))$. Find $f_0 \in X(E)$ and $\xi_0 \in K$ such that $|[Tf_0](\xi_0)| \sim ||T||$.
- Consider the non-empty open set

$$V = \{\xi \in]0,1] \times [0,1] : f_0(\xi) \sim f_0(\xi_0)\}$$

and find $\varphi: [0,1] \times [0,1] \longrightarrow [0,1]$ continuous with $\operatorname{supp}(\varphi) \subset V$ and $\varphi(\xi_0) = 1$.

- Write $f_0(\xi_0) = \lambda \omega_1 + (1 \lambda)\omega_2$ with $|\omega_i| = 1$, and consider the functions $f_i = (1 \varphi)f_0 + \varphi \omega_i$ for i = 1, 2.
- Then, $f_i \in C(K)$, $||f_i|| \leq 1$, and

$$||f_0 - (\lambda f_1 + (1 - \lambda)f_2)|| = ||\varphi f_0 - \varphi f_0(\xi_0)|| \sim 0.$$

- Therefore, there is $i \in \{1,2\}$ such that $|[T(f_i)](\xi_0)| \sim ||T||$, but now $|f_i(\xi_0)| = 1$.
- Equivalently,

$$\left. \delta_{\xi_0} \left(T(f_i)
ight) \right| \sim \|T\| \qquad ext{and} \qquad \left| \delta_{\xi_0} (f_i)
ight| = 1$$
 ,

meaning that $v(T) \sim ||T||.\checkmark$

If
$$X = L_1(\mu)$$
, then $X^* \equiv C(K_\mu)$. Therefore, $v(T) = v(T^*) = ||T^*|| = ||T|| \checkmark$

Numerical radius: real and complex spaces

Numerical radius: real and complex spaces

Example

X complex Banach space, define $T \in L(X_{\mathbb{R}})$ by

$$T(x) = i x \qquad (x \in X).$$

- ||T|| = 1 and v(T) = 0 if viewed in $X_{\mathbb{R}}$.
- ||T|| = 1 and $V(T) = \{i\}$, so v(T) = 1 if viewed in (complex) X.

Numerical radius: real and complex spaces

Example

X complex Banach space, define $T\in L(X_{\mathbb{R}})$ by

$$T(x) = i x \qquad (x \in X).$$

- ||T|| = 1 and v(T) = 0 if viewed in $X_{\mathbb{R}}$.
- ||T|| = 1 and $V(T) = \{i\}$, so v(T) = 1 if viewed in (complex) X.

Theorem (Bohnenblust-Karlin; Glickfeld)

X complex Banach space, $T \in L(X)$:

$$v(T) \ge \frac{1}{e} \|T\|.$$

The constant $\frac{1}{2}$ is optimal:

 $\exists X \text{ two-dimensional complex}, \exists T \in L(X) \text{ with } ||T|| = e \text{ and } v(T) = 1.$

Miguel Martín (University of Granada (Spain))

Numerical index

X real or complex Banach space

$$n(X) = \max\{k \ge 0 : K ||T|| \le v(T) \forall T \in L(X)\}$$

= inf {v(T) : T \in L(X), ||T|| = 1}.

Numerical index

X real or complex Banach space

$$n(X) = \max\{k \ge 0 : K ||T|| \le v(T) \ \forall T \in L(X)\}$$

= inf {v(T) : T \in L(X), ||T|| = 1}.

Elementary properties

- X Banach space.
 - In the real case, $0 \leq n(X) \leq 1$.
 - In the complex case, $1/e \leq n(X) \leq 1$.

Numerical index

X real or complex Banach space

$$n(X) = \max\{k \ge 0 : K ||T|| \le v(T) \ \forall T \in L(X)\}$$

= inf {v(T) : T \in L(X), ||T|| = 1}.

Elementary properties

X Banach space.

- In the real case, $0 \leq n(X) \leq 1$.
- In the complex case, $1/e \leq n(X) \leq 1$.
- Actually, the above inequalities are best possible:

 $\{n(X) : X \text{ complex Banach space } \} = [e^{-1}, 1],$ $\{n(X) : X \text{ real Banach space } \} = [0, 1].$

Miguel Martín (University of Granada (Spain))

Numerical index

X real or complex Banach space

$$n(X) = \max\{k \ge 0 : K ||T|| \le v(T) \ \forall T \in L(X)\}$$

= inf {v(T) : T \in L(X), ||T|| = 1}.

Elementary properties

X Banach space.

- In the real case, $0 \leq n(X) \leq 1$.
- In the complex case, $1/e \leq n(X) \leq 1$.
- Actually, the above inequalities are best possible:

 $\{n(X) : X \text{ complex Banach space } \} = [e^{-1}, 1],$ $\{n(X) : X \text{ real Banach space } \} = [0, 1].$

• v norm on L(X) equivalent to the given norm $\iff n(X) > 0$.

Numerical index

X real or complex Banach space

$$n(X) = \max\{k \ge 0 : K ||T|| \le v(T) \ \forall T \in L(X)\}$$

= inf {v(T) : T \in L(X), ||T|| = 1}.

Elementary properties

X Banach space.

- In the real case, $0 \leq n(X) \leq 1$.
- In the complex case, $1/e \leq n(X) \leq 1$.
- Actually, the above inequalities are best possible:

 $\{n(X) : X \text{ complex Banach space } \} = [e^{-1}, 1],$ $\{n(X) : X \text{ real Banach space } \} = [0, 1].$

- v norm on L(X) equivalent to the given norm $\iff n(X) > 0.$
- v(T) = ||T|| for every $T \in L(X) \iff n(X) = 1$.

Numerical index

X real or complex Banach space

$$n(X) = \max\{k \ge 0 : K ||T|| \le v(T) \ \forall T \in L(X)\}$$

= inf {v(T) : T \in L(X), ||T|| = 1}.

Elementary properties

X Banach space.

- In the real case, $0 \leq n(X) \leq 1$.
- In the complex case, $1/e \leq n(X) \leq 1$.
- Actually, the above inequalities are best possible:

 $\{n(X) : X \text{ complex Banach space } \} = [e^{-1}, 1],$ $\{n(X) : X \text{ real Banach space } \} = [0, 1].$

- v norm on L(X) equivalent to the given norm $\iff n(X) > 0$.
- v(T) = ||T|| for every $T \in L(X) \iff n(X) = 1$.
- $n(X^*) \leq n(X)$.

Miguel Martín (University of Granada (Spain))

Some examples

• *H* Hilbert, dim(*H*) > 1: $n(H) = \begin{cases} 0 & \text{real case,} \\ \frac{1}{2} & \text{complex case.} \end{cases}$ • *X* complex space $\implies n(X_{\mathbb{R}}) = 0.$

Some examples

• *H* Hilbert, $\dim(H) > 1$:

$$\mathfrak{n}(H) = \begin{cases} 0 & \text{real case,} \\ rac{1}{2} & \text{complex case.} \end{cases}$$

$$\textbf{@} X \text{ complex space } \implies n(X_{\mathbb{R}}) = 0.$$

• $n(L_1(\mu)) = 1$, μ positive measure.

Some examples

• *H* Hilbert, $\dim(H) > 1$:

$$\mathfrak{n}(H) = egin{cases} 0 & ext{ real case,} \ rac{1}{2} & ext{ complex case.} \end{cases}$$

•
$$n(L_1(\mu)) = 1$$
, μ positive measure.
• $X^* \equiv L_1(\mu) \implies n(X) = 1$.

Some examples

• *H* Hilbert, dim(*H*) > 1: $n(H) = \begin{cases} 0 & \text{real case,} \\ \frac{1}{2} & \text{complex case.} \end{cases}$ • *X* complex space $\implies n(X_{\mathbb{R}}) = 0$. • $n(L_1(\mu)) = 1$, μ positive measure. • $X^* \equiv L_1(\mu) \implies n(X) = 1$. • In particular, n(C(K)) = 1, $n(C_0(L)) = 1$, $n(L_{\infty}(\mu)) = 1$.

Some examples

• *H* Hilbert, dim(H) > 1:

$$n(H) = \begin{cases} 0 & \text{ real case,} \\ rac{1}{2} & \text{ complex case.} \end{cases}$$

$$X \text{ complex space } \implies n(X_{\mathbb{R}}) = 0.$$

•
$$n(L_1(\mu)) = 1$$
, μ positive measure

•
$$X^* \equiv L_1(\mu) \implies n(X) = 1$$

In particular,

$$n(C(K)) = 1$$
, $n(C_0(L)) = 1$, $n(L_{\infty}(\mu)) = 1$.

• $n(A(\mathbb{D})) = 1$ and $n(H^{\infty}) = 1$.

The exponential function

X Banach space, $T \in L(X)$:

$$\exp(T) = \sum_{n=0}^{\infty} \frac{1}{n!} T^n$$

where
$$T^0 = \text{Id}$$
 and $T^n = T \circ \stackrel{n)}{\cdots} \circ T$.

The exponential function

X Banach space, $T \in L(X)$:

$$\exp(T) = \sum_{n=0}^{\infty} \frac{1}{n!} T^n$$

where
$$T^0 = \text{Id}$$
 and $T^n = T \circ \stackrel{n}{\cdots} \circ T$.

• It is well-defined since the series is absolutely convergent.

The exponential function

X Banach space, $T \in L(X)$:

$$\exp(T) = \sum_{n=0}^{\infty} \frac{1}{n!} T^n$$

where
$$T^0 = \text{Id}$$
 and $T^n = T \circ \stackrel{n)}{\cdots} \circ T$.

- It is well-defined since the series is absolutely convergent.
- $\|\exp(T)\| \leq e^{\|T\|}$.

The exponential function

X Banach space, $T \in L(X)$:

$$\exp(T) = \sum_{n=0}^{\infty} \frac{1}{n!} T^n$$

where
$$T^0 = \text{Id}$$
 and $T^n = T \circ \stackrel{n}{\cdots} \circ T$.

- It is well-defined since the series is absolutely convergent.
- $\|\exp(T)\| \leq e^{\|T\|}$.
- We will improve this inequality in the sequel

Properties

X Banach space, $T, S \in L(X)$.

• $TS = ST \implies \exp(T + S) = \exp(T) \exp(S)$.

Properties

X Banach space, $T, S \in L(X)$.

- $TS = ST \implies \exp(T + S) = \exp(T) \exp(S)$.
- $\exp(T) \exp(-T) = \exp(0) = \text{Id} \implies \exp(T)$ surjective isomorphism.

Properties

X Banach space, $T, S \in L(X)$.

- $TS = ST \implies \exp(T + S) = \exp(T) \exp(S)$.
- $\exp(T) \exp(-T) = \exp(0) = \operatorname{Id} \implies \exp(T)$ surjective isomorphism.
- $\{\exp(\rho T) : \rho \in \mathbb{R}_0^+\}$ exponential one-parameter semigroup generated by T.

Properties

X Banach space, $T, S \in L(X)$.

- $TS = ST \implies \exp(T+S) = \exp(T) \exp(S)$.
- $\exp(T) \exp(-T) = \exp(0) = \text{Id} \implies \exp(T)$ surjective isomorphism.
- $\{\exp(\rho T) : \rho \in \mathbb{R}_0^+\}$ exponential one-parameter semigroup generated by T.

The exponential formula

X Banach space, $T \in L(X)$:

$$\sup \operatorname{Re} V(T) = \sup_{\alpha > 0} \frac{\log \| \exp(\alpha T) \|}{\alpha} = \lim_{\alpha \downarrow 0} \frac{\log \| \exp(\alpha T) \|}{\alpha}.$$

Properties

X Banach space, $T, S \in L(X)$.

- $TS = ST \implies \exp(T + S) = \exp(T) \exp(S)$.
- $\exp(T) \exp(-T) = \exp(0) = \operatorname{Id} \implies \exp(T)$ surjective isomorphism.
- $\{\exp(\rho T) : \rho \in \mathbb{R}_0^+\}$ exponential one-parameter semigroup generated by T.

The exponential formula

X Banach space, $T \in L(X)$:

$$\sup \operatorname{Re} V(T) = \sup_{\alpha > 0} \frac{\log \| \exp(\alpha T) \|}{\alpha} = \lim_{\alpha \downarrow 0} \frac{\log \| \exp(\alpha T) \|}{\alpha}$$

Consequence

- X Banach space, $T \in L(X)$:
 - $\|\exp(\lambda T)\| \leqslant e^{|\lambda| v(T)} \ (\lambda \in \mathbb{K}).$
 - v(T) is the best possible constant.

Semigroups of isometries: motivating example

A motivating example

A real or complex $n \times n$ matrix. TFAE:

- A is skew-adjoint (i.e. $A^* = -A$).
- $B = \exp(\rho A)$ is unitary for every $\rho \in \mathbb{R}$ (i.e. $B^*B = BB^* = \mathrm{Id}$).

Semigroups of isometries: motivating example

A motivating example

A real or complex $n \times n$ matrix. TFAE:

- A is skew-adjoint (i.e. $A^* = -A$).
- $\operatorname{Re}(Ax \mid x) = 0$ for every $x \in H$.
- $B = \exp(\rho A)$ is unitary for every $\rho \in \mathbb{R}$ (i.e. $B^*B = BB^* = \mathrm{Id}$).

In term of Hilbert spaces

H (*n*-dimensional) Hilbert space, $T \in L(H)$. TFAE:

•
$$\operatorname{Re} W(T) = \{0\}.$$

• $\exp(\rho T) \in \operatorname{Iso}(H)$ for every $\rho \in \mathbb{R}$.

Semigroups of isometries: motivating example

A motivating example

A real or complex $n \times n$ matrix. TFAE:

- A is skew-adjoint (i.e. $A^* = -A$).
- $\operatorname{Re}(Ax \mid x) = 0$ for every $x \in H$.
- $B = \exp(\rho A)$ is unitary for every $\rho \in \mathbb{R}$ (i.e. $B^*B = BB^* = \mathrm{Id}$).

In term of Hilbert spaces

H (*n*-dimensional) Hilbert space, $T \in L(H)$. TFAE:

•
$$\operatorname{Re} W(T) = \{0\}.$$

• $\exp(\rho T) \in \operatorname{Iso}(H)$ for every $\rho \in \mathbb{R}$.

For general Banach spaces

X Banach space, $T \in L(X)$. TFAE:

•
$$\operatorname{Re} V(T) = \{0\}.$$

•
$$\exp(
ho T)\in \mathrm{Iso}(X)$$
 for every $ho\in\mathbb{R}$

Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)

X real or complex Banach space, $T \in L(X)$. TFAE:

• Re $V(T) = \{0\}$ (T is skew-hermitian).

•
$$\|\exp(\rho T)\| \leqslant 1$$
 for every $\rho \in \mathbb{R}$.

•
$$\{\exp(\rho T) : \rho \in \mathbb{R}_0^+\} \subset \operatorname{Iso}(X).$$

• T belongs to the tangent space to Iso(X) at Id.

•
$$\lim_{\rho \to 0} \frac{\|\mathrm{Id} + \rho T\| - 1}{\rho} = 0.$$

Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)

X real or complex Banach space, $T \in L(X)$. TFAE:

• Re $V(T) = \{0\}$ (T is skew-hermitian).

•
$$\|\exp(\rho T)\| \leq 1$$
 for every $\rho \in \mathbb{R}$.

•
$$\{\exp(\rho T) : \rho \in \mathbb{R}_0^+\} \subset \operatorname{Iso}(X).$$

• T belongs to the tangent space to Iso(X) at Id.

•
$$\lim_{\rho \to 0} \frac{\|\mathrm{Id} + \rho \, T\| - 1}{\rho} = 0.$$

This follows from the exponential formula

$$\sup \operatorname{Re} V(T) = \lim_{\beta \downarrow 0} \frac{\|\operatorname{Id} + \beta T\| - 1}{\beta} = \sup_{\alpha > 0} \frac{\log \|\exp(\alpha T)\|}{\alpha}.$$

Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)

X real or complex Banach space, $T \in L(X)$. TFAE:

• Re $V(T) = \{0\}$ (T is skew-hermitian).

•
$$\|\exp(\rho T)\| \leqslant 1$$
 for every $\rho \in \mathbb{R}$.

•
$$\{\exp(\rho T) : \rho \in \mathbb{R}_0^+\} \subset \operatorname{Iso}(X).$$

• T belongs to the tangent space to Iso(X) at Id.

•
$$\lim_{\rho \to 0} \frac{\|\mathrm{Id} + \rho T\| - 1}{\rho} = 0.$$

Remark

If X is complex, there always exists exponential one-parameter semigroups of surjective isometries:

 $t \longmapsto e^{it} \operatorname{Id}$ generator: *i* Id.

Theorem (Bonsall-Duncan, 1970's; Rosenthal, 1984)

X real or complex Banach space, $T \in L(X)$. TFAE:

• Re $V(T) = \{0\}$ (T is skew-hermitian).

•
$$\|\exp(\rho T)\| \leqslant 1$$
 for every $\rho \in \mathbb{R}$.

•
$$\{\exp(\rho T) : \rho \in \mathbb{R}_0^+\} \subset \operatorname{Iso}(X).$$

• T belongs to the tangent space to Iso(X) at Id.

•
$$\lim_{\rho \to 0} \frac{\|\mathrm{Id} + \rho T\| - 1}{\rho} = 0.$$

Main consequence

If X is a real Banach space such that

$$V(T) = \{0\} \quad \Longrightarrow \quad T = 0,$$

then Iso(X) is "small":

- it does not contain any exponential one-parameter semigroup,
- the tangent space of Iso(X) at Id is zero.

Surjective isometries

Two results on surjective isometries

- Isometries on finite-dimensional spaces
- Isometries and duality

M. Martín

The group of isometries of a Banach space and duality. *J. Funct. Anal.* (2008).

M. Martín, J. Merí, and A. Rodríguez-Palacios. Finite-dimensional spaces with numerical index zero. *Indiana U. Math. J.* (2004).

H. P. Rosenthal

The Lie algebra of a Banach space. in: *Banach spaces* (Columbia, Mo., 1984), LNM, Springer, 1985.

Theorem

- X finite-dimensional real space. TFAE:
 - Iso(X) is infinite.
 - n(X) = 0.
 - There is $T \in L(X)$, $T \neq 0$, with v(T) = 0.

Theorem

- X finite-dimensional real space. TFAE:
 - Iso(X) is infinite.
 - n(X) = 0.
 - There is $T \in L(X)$, $T \neq 0$, with v(T) = 0.

Examples of spaces of this kind

Theorem

- X finite-dimensional real space. TFAE:
 - Iso(X) is infinite.
 - n(X) = 0.
 - There is $T \in L(X)$, $T \neq 0$, with v(T) = 0.

Examples of spaces of this kind

• Hilbert spaces.

Theorem

- X finite-dimensional real space. TFAE:
 - Iso(X) is infinite.
 - n(X) = 0.
 - There is $T \in L(X)$, $T \neq 0$, with v(T) = 0.

Examples of spaces of this kind

- Hilbert spaces.
- **2** $X_{\mathbb{R}}$, the real space subjacent to any complex space X.

Theorem

- X finite-dimensional real space. TFAE:
 - Iso(X) is infinite.
 - n(X) = 0.
 - There is $T \in L(X)$, $T \neq 0$, with v(T) = 0.

Examples of spaces of this kind

- Hilbert spaces.
- $\ \, {\bf O} \ \, X_{\mathbb R}, \ \, {\rm the \ real \ space \ subjacent \ to \ \, any \ \, complex \ \, space \ \, X.}$
- An absolute sum of any real space and one of the above.

Theorem

- X finite-dimensional real space. TFAE:
 - Iso(X) is infinite.
 - n(X) = 0.
 - There is $T \in L(X)$, $T \neq 0$, with v(T) = 0.

Examples of spaces of this kind

- Hilbert spaces.
- $\ \, {\bf O} \ \, X_{\mathbb R}, \ \, \text{the real space subjacent to any complex space } X_{\mathbb R}.$
- An absolute sum of any real space and one of the above.

$$\|x_0 + e^{i\theta} x_1\| = \|x_0 + x_1\|$$
 $(x_0 \in X_0, x_1 \in X_1, \theta \in \mathbb{R}).$

(Note that the other 3 cases are included here)

Theorem

- X finite-dimensional real space. TFAE:
 - Iso(X) is infinite.
 - n(X) = 0.
 - There is $T \in L(X)$, $T \neq 0$, with v(T) = 0.

Examples of spaces of this kind

- Hilbert spaces.
- $\ \, {\bf O} \ \, X_{\mathbb R}, \ \, {\rm the \ real \ space \ subjacent \ to \ \, any \ \, complex \ \, space \ \, X.}$
- An absolute sum of any real space and one of the above.
- $\begin{tabular}{ll} \bullet \\ \end{tabular} Moreover, \mbox{ if } X = X_0 \oplus X_1 \mbox{ where } X_1 \mbox{ is complex and } \\ \end{tabular} \end{tabular}$

$$\|x_0 + e^{i\theta} x_1\| = \|x_0 + x_1\|$$
 $(x_0 \in X_0, x_1 \in X_1, \theta \in \mathbb{R}).$

(Note that the other 3 cases are included here)

Question

Can every Banach space X with n(X) = 0 be decomposed as in \bigcirc ?

Infinite-dimensional case

There is an infinite-dimensional real Banach space X with n(X) = 0 but X is polyhedral. In particular, X does not contain \mathbb{C} isometrically.

Infinite-dimensional case

There is an infinite-dimensional real Banach space X with n(X) = 0 but X is polyhedral. In particular, X does not contain C isometrically.

An easy example is

$$\mathbf{X} = \left[\bigoplus_{n \ge 2} \mathbf{X}_n \right]_{c_0}$$

 X_{n} is the two-dimensional space whose unit ball is the regular polygon of 2n vertices.

Infinite-dimensional case

There is an infinite-dimensional real Banach space X with n(X) = 0 but X is polyhedral. In particular, X does not contain C isometrically.

An easy example is

$$X = \left[\bigoplus_{n \ge 2} X_n\right]_{c_0}$$

 X_{n} is the two-dimensional space whose unit ball is the regular polygon of 2n vertices.

Note

Such an example is not possible in the finite-dimensional case.

Miguel Martín (University of Granada (Spain))

Quasi affirmative answer

Quasi affirmative answer

Finite-dimensional case

X finite-dimensional real space. TFAE:

•
$$n(X) = 0.$$

- $X = X_0 \oplus X_1 \oplus \cdots \oplus X_n$ such that
 - X_0 is a (possible null) real space,
 - X_1, \ldots, X_n are non-null complex spaces,

there are ρ_1, \ldots, ρ_n rational numbers, such that

$$\|x_0 + e^{i\rho_1\theta}x_1 + \dots + e^{i\rho_n\theta}x_n\| = \|x_0 + x_1 + \dots + x_n\|$$

for every $x_i \in X_i$ and every $\theta \in \mathbb{R}$.

Quasi affirmative answer

Finite-dimensional case

X finite-dimensional real space. TFAE:

•
$$n(X) = 0.$$

- $X = X_0 \oplus X_1 \oplus \cdots \oplus X_n$ such that
 - X₀ is a (possible null) real space,
 - X_1, \ldots, X_n are non-null complex spaces,

there are ρ_1, \ldots, ρ_n rational numbers, such that

$$\|x_0 + e^{i\rho_1\theta}x_1 + \dots + e^{i\rho_n\theta}x_n\| = \|x_0 + x_1 + \dots + x_n\|$$

for every $x_i \in X_i$ and every $\theta \in \mathbb{R}$.

Remark

- The theorem is due to Rosenthal, but with real ρ 's.
- The fact that the ρ 's may be chosen as rational numbers is due to M.-Merí-Rodríguez-Palacios.

• Fix $T \in L(X)$ with ||T|| = 1 and v(T) = 0.

- Fix $T \in L(X)$ with ||T|| = 1 and v(T) = 0.
- We get that $\|\exp(
 ho T)\|=1$ for every $ho\in\mathbb{R}.$

- Fix $T \in L(X)$ with ||T|| = 1 and v(T) = 0.
- We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.
- A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in L(X) remains isometry in L(H).

- Fix $T \in L(X)$ with ||T|| = 1 and v(T) = 0.
- We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.
- A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in L(X) remains isometry in L(H).
- Apply the above to $\exp(\rho T)$ for every $\rho \in \mathbb{R}.$

- Fix $T \in L(X)$ with ||T|| = 1 and v(T) = 0.
- We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.
- A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in L(X) remains isometry in L(H).
- Apply the above to $\exp(\rho T)$ for every $\rho \in \mathbb{R}$.
- You get that T is skew-hermitian in L(H), so $T^* = -T$ and T^2 is self-adjoint. The X_j 's are the eigenspaces of T^2 .

- Fix $T \in L(X)$ with ||T|| = 1 and v(T) = 0.
- We get that $\|\exp(\rho T)\| = 1$ for every $\rho \in \mathbb{R}$.
- A Theorem by Auerbach: there exists a Hilbert space H with $\dim(H) = \dim(X)$ such that every surjective isometry in L(X) remains isometry in L(H).
- Apply the above to $\exp(\rho T)$ for every $\rho \in \mathbb{R}$.
- You get that T is skew-hermitian in L(H), so $T^* = -T$ and T^2 is self-adjoint. The X_j 's are the eigenspaces of T^2 .
- Use Kronecker's Approximation Theorem to change the eigenvalues of T^2 by rational numbers. \checkmark

• Let
$$X = X_0 \oplus X_1 \oplus X_2$$
 and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.

$$\|x_0 + e^{i\rho}x_1 + e^{i\alpha\rho}x_2\| = \|x_0 + x_1 + x_2\| \quad \forall \rho, \ \forall x_0, x_1, x_2.$$

• Let
$$X = X_0 \oplus X_1 \oplus X_2$$
 and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.

$$\|x_0 + e^{i\rho}x_1 + e^{i\alpha\rho}x_2\| = \|x_0 + x_1 + x_2\| \quad \forall \rho, \ \forall x_0, x_1, x_2.$$

 $\bullet \ \ \, {\rm Then} \ \, \left\|x_0+x_1+x_2\right\|=\left\|x_0+{\rm e}^{i\rho}\left(x_1+{\rm e}^{i(\alpha-1)\rho}x_2\right)\right\|\quad \forall\rho.$

• Let
$$X = X_0 \oplus X_1 \oplus X_2$$
 and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.

$$\left\| x_0 + e^{i\rho} x_1 + e^{i\alpha\rho} x_2 \right\| = \left\| x_0 + x_1 + x_2 \right\| \quad \forall \rho, \ \forall x_0, x_1, x_2.$$
• Then $\left\| x_0 + x_1 + x_2 \right\| = \left\| x_0 + e^{i\rho} \left(x_1 + e^{i(\alpha - 1)\rho} x_2 \right) \right\| \quad \forall \rho.$
• Take $\rho = \frac{2\pi k}{\alpha - 1}$ with $k \in \mathbb{Z}$.

• Let
$$X = X_0 \oplus X_1 \oplus X_2$$
 and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.
 $\|x_0 + e^{i\rho}x_1 + e^{i\alpha\rho}x_2\| = \|x_0 + x_1 + x_2\| \quad \forall \rho, \ \forall x_0, x_1, x_2.$
• Then $\|x_0 + x_1 + x_2\| = \|x_0 + e^{i\rho} (x_1 + e^{i(\alpha - 1)\rho}x_2)\| \quad \forall \rho.$
• Take $\rho = \frac{2\pi k}{\alpha - 1}$ with $k \in \mathbb{Z}$.
• Then $\|x_0 + (x_1 + x_2)\| = \|x_0 + e^{i\frac{2\pi k}{\alpha - 1}}(x_1 + x_2)\| \quad \forall k \in \mathbb{Z}$

• Let
$$X = X_0 \oplus X_1 \oplus X_2$$
 and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ s.t.

$$\left\| x_0 + e^{i\rho}x_1 + e^{i\alpha\rho}x_2 \right\| = \left\| x_0 + x_1 + x_2 \right\| \quad \forall \rho, \ \forall x_0, x_1, x_2.$$
• Then $\left\| x_0 + x_1 + x_2 \right\| = \left\| x_0 + e^{i\rho} \left(x_1 + e^{i(\alpha - 1)\rho}x_2 \right) \right\| \quad \forall \rho.$
• Take $\rho = \frac{2\pi k}{\alpha - 1}$ with $k \in \mathbb{Z}$.
• Then $\left\| x_0 + (x_1 + x_2) \right\| = \left\| x_0 + e^{i\frac{2\pi k}{\alpha - 1}}(x_1 + x_2) \right\| \quad \forall k \in \mathbb{Z}$
• But $\left\{ \frac{2\pi k}{\alpha - 1} : k \in \mathbb{Z} \right\}$ is dense in \mathbb{T} , so
 $\left\| x_0 + (x_1 + x_2) \right\| = \left\| x_0 + e^{i\rho}(x_1 + x_2) \right\| \quad \forall \rho \in \mathbb{R}$
and $X = X_0 \oplus Z$ where $Z = X_1 \oplus X_2$ is a complex space

Miguel Martín (University of Granada (Spain))

Corollary

X real space with n(X) = 0.

- If $\dim(X) = 2$, then $X \equiv \mathbb{C}$.
- If $\dim(X) = 3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum).

Corollary

X real space with n(X) = 0.

- If $\dim(X) = 2$, then $X \equiv \mathbb{C}$.
- If $\dim(X) = 3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum).

Natural question

Are all finite-dimensional X's with n(X) = 0 of the form $X = X_0 \oplus X_1$?

Corollary

X real space with n(X) = 0.

- If $\dim(X) = 2$, then $X \equiv \mathbb{C}$.
- If $\dim(X) = 3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum).

Natural question

Are all finite-dimensional X's with n(X) = 0 of the form $X = X_0 \oplus X_1$?

Answer

No.

Corollary

X real space with n(X) = 0.

- If $\dim(X) = 2$, then $X \equiv \mathbb{C}$.
- If $\dim(X) = 3$, then $X \equiv \mathbb{R} \oplus \mathbb{C}$ (absolute sum).

Natural question

Are all finite-dimensional X's with n(X) = 0 of the form $X = X_0 \oplus X_1$?

Answer

No.

Example

$$\begin{split} X &= (\mathbb{R}^4, \|\cdot\|), \|(a, b, c, d)\| = \frac{1}{4} \int_0^{2\pi} \left| \operatorname{Re} \left(\mathrm{e}^{2it}(a + ib) + \mathrm{e}^{it}(c + id) \right) \right| \, dt. \\ \text{Then } n(X) &= 0 \text{ but the unique possible decomposition is } X = \mathbb{C} \oplus \mathbb{C} \text{ with} \\ \left\| \mathrm{e}^{it} x_1 + \mathrm{e}^{2it} x_2 \right\| = \|x_1 + x_2\|. \end{split}$$

Miguel Martín (University of Granada (Spain))

The Lie-algebra of a Banach space

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X) = \{T \in L(X) : v(T) = 0\}.$

• When X is finite-dimensional, Iso(X) is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

The Lie-algebra of a Banach space

Lie-algebra

X real Banach space, $\mathcal{Z}(X) = \{T \in L(X) : v(T) = 0\}.$

• When X is finite-dimensional, Iso(X) is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Remark

•
$$\dim(X) = n \implies \dim(\mathcal{Z}(X)) \leq \frac{n(n-1)}{2}$$
.

• Equality holds \iff *H* Hilbert space.

Lie-algebra

X real Banach space, $\mathcal{Z}(X) = \{T \in L(X) : v(T) = 0\}.$

• When X is finite-dimensional, Iso(X) is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Remark

• dim
$$(X) = n \implies \dim(\mathcal{Z}(X)) \leq \frac{n(n-1)}{2}$$
.

• Equality holds \iff *H* Hilbert space.

An open problem

Given $n \ge 3$, which are the possible dim $(\mathcal{Z}(X))$ over all *n*-dimensional X's?

Lie-algebra

X real Banach space, $\mathcal{Z}(X) = \{T \in L(X) : v(T) = 0\}.$

• When X is finite-dimensional, Iso(X) is a Lie-group and $\mathcal{Z}(X)$ is the tangent space (i.e. its Lie-algebra).

Remark

•
$$\dim(X) = n \implies \dim(\mathcal{Z}(X)) \leq \frac{n(n-1)}{2}$$
.

• Equality holds \iff *H* Hilbert space.

An open problem

Given $n \ge 3$, which are the possible dim $(\mathcal{Z}(X))$ over all *n*-dimensional X's?

Observation (Javier Merí, PhD)

Lie-algebra

X real Banach space, $\mathcal{Z}(X) = \{T \in L(X) : v(T) = 0\}.$

• When X is finite-dimensional, $\mathrm{Iso}(X)$ is a Lie-group and $\mathcal{Z}(X)$ is the

Proof

Rer

If dim(X) = 3, n(X) = 0, then $X = \mathbb{C} \oplus \mathbb{R}$ (absolute sum).

An open problem

Given $n \ge 3$, which are the possible dim $(\mathcal{Z}(X))$ over all *n*-dimensional X's?

Observation (Javier Merí, PhD)

Lie-algebra

Rer

X real Banach space, $\mathcal{Z}(X) = \{T \in L(X) : v(T) = 0\}.$

• When X is finite-dimensional, Iso(X) is a Lie-group and $\mathcal{Z}(X)$ is the Proof

If dim
$$(X) = 3$$
, $n(X) = 0$, then $X = \mathbb{C} \oplus \mathbb{R}$ (absolute sum).

• If $\oplus = \oplus_2$, then X is a Hilbert space and $\dim(\mathcal{Z}(X)) = 3$.

An open problem

Given $n \ge 3$, which are the possible dim $(\mathcal{Z}(X))$ over all *n*-dimensional *X*'s?

Observation (Javier Merí, PhD)

Lie-algebra

Rer

X real Banach space, $\mathcal{Z}(X) = \{T \in L(X) : v(T) = 0\}.$

• When X is finite-dimensional, Iso(X) is a Lie-group and $\mathcal{Z}(X)$ is the Proof

If dim
$$(X) = 3$$
, $n(X) = 0$, then $X = \mathbb{C} \oplus \mathbb{R}$ (absolute sum).

- If $\oplus = \oplus_2$, then X is a Hilbert space and $\dim(\mathcal{Z}(X)) = 3$.
- If ⊕ ≠ ⊕₂, then isometries respect summands and dim(Z(X)) = 1. ✓

An open problem

Given $n \ge 3$, which are the possible dim $(\mathcal{Z}(X))$ over all *n*-dimensional *X*'s?

Observation (Javier Merí, PhD)

Remark

X Banach space.

- $T \in \operatorname{Iso}(X) \implies T^* \in \operatorname{Iso}(X^*).$
- $Iso(X^*)$ can be bigger than Iso(X).

Remark

X Banach space.

- $T \in \operatorname{Iso}(X) \implies T^* \in \operatorname{Iso}(X^*).$
- $Iso(X^*)$ can be bigger than Iso(X).

The problem

- How much bigger can be $Iso(X^*)$ than Iso(X)?
- Is it possible that $\mathcal{Z}(\operatorname{Iso}(X^*))$ is big while $\mathcal{Z}(\operatorname{Iso}(X))$ is trivial?

Remark

X Banach space.

- $T \in \operatorname{Iso}(X) \implies T^* \in \operatorname{Iso}(X^*).$
- $Iso(X^*)$ can be bigger than Iso(X).

The problem

- How much bigger can be $Iso(X^*)$ than Iso(X)?
- Is it possible that $\mathcal{Z}(\operatorname{Iso}(X^*))$ is big while $\mathcal{Z}(\operatorname{Iso}(X))$ is trivial?

The answer is yes. This is what we are going to present next.

Spaces $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K||L) = \{ f \in C(K) : f|_L \in E \}.$$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K||L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$$
 & $n(C_E(K||L)) = 1.$

Spaces $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K||L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$$
 & $n(C_E(K||L)) = 1.$

•
$$C_0(K||L)$$
 is an *M*-ideal of $C(K)$
 $\implies C_0(K||L)$ is an *M*-ideal of $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K||L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

 $C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$ & $n(C_E(K||L)) = 1.$

Proof.

•
$$C_0(K||L)$$
 is an *M*-ideal of $C(K)$
 $\implies C_0(K||L)$ is an *M*-ideal of $C_E(K||L)$.

• Meaning that $C_E(K||L)^* \equiv C_0(K||L)^{\perp} \oplus_1 C_0(K||L)^*$.

Spaces $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K||L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$$
 & $n(C_E(K||L)) = 1.$

- $C_0(K||L)$ is an *M*-ideal of C(K) $\implies C_0(K||L)$ is an *M*-ideal of $C_E(K||L)$.
- Meaning that $C_E(K||L)^* \equiv C_0(K||L)^{\perp} \oplus_1 C_0(K||L)^*$.
- $C_0(K||L)^{\perp} \equiv (C_E(K||L)/C_0(K||L))^* \equiv E^*$:

Spaces $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K||L) = \{f \in C(K) : f|_L \in E\}.$$

Theorem

$$C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$$
 & $n(C_E(K||L)) = 1.$

Proof.

- $C_0(K||L)$ is an *M*-ideal of C(K) $\implies C_0(K||L)$ is an *M*-ideal of $C_E(K||L)$.
- Meaning that $C_E(K||L)^* \equiv C_0(K||L)^{\perp} \oplus_1 C_0(K||L)^*$.
- $C_0(K||L)^{\perp} \equiv (C_E(K||L)/C_0(K||L))^* \equiv E^*$:

•
$$\Phi: C_E(K||L) \longrightarrow E, \ \Phi(f) = f|_L.$$

- $\|\Phi\| \leqslant 1$ and $\ker \Phi = C_0(K\|L)$.
- $\widetilde{\Phi}: C_E(K||L)/C_0(K||E) \longrightarrow E$ onto isometry:
- $\{g \in E : \|g\| < 1\} \subseteq \Phi(\{f \in C_E(K\|L) : \|f\| < 1\}).$

Miguel Martín (University of Granada (Spain))

Spaces $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K||L) = \{f \in C(K) : f|_L \in E\}.$$

Theorem

$$C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$$
 & $n(C_E(K||L)) = 1.$

- $C_0(K||L)$ is an *M*-ideal of C(K) $\implies C_0(K||L)$ is an *M*-ideal of $C_E(K||L)$.
- Meaning that $C_E(K\|L)^* \equiv C_0(K\|L)^{\perp} \oplus_1 C_0(K\|L)$
- $C_0(K||L)^{\perp} \equiv (C_E(K||L)/C_0(K||L))^* \equiv E^*$:

•
$$\Phi: C_E(K||L) \longrightarrow E, \ \Phi(f) = f|_L.$$

- $\|\Phi\| \leqslant 1$ and $\ker \Phi = C_0(K\|L)$.
- $\widetilde{\Phi}: C_E(K\|L)/C_0(K\|E) \longrightarrow E$ onto isometry:
- $\{g \in E : \|g\| < 1\} \subseteq \Phi(\{f \in C_E(K\|L) : \|f_{\| \sim \text{ for } f})$.

Spaces $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K||L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$$
 & $n(C_E(K||L)) = 1.$

Spaces $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K||L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$$
 & $n(C_E(K||L)) = 1.$

•
$$\mathcal{A} = \{(0, \delta_t) : t \in K \setminus L\} \subset S_{\mathcal{C}_E(K \parallel L)^*}$$
 is norming for $X = \mathcal{C}_E(K \parallel L)$.

Spaces $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K||L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$$
 & $n(C_E(K||L)) = 1.$

- $\mathcal{A} = \{(0, \delta_t) : t \in K \setminus L\} \subset S_{C_E(K \parallel L)^*}$ is norming for $X = C_E(K \parallel L)$.
- $|x^{**}(a^*)| = 1$ for every $x^{**} \in \text{ext}(B_{X^{**}})$ and every $a^* \in \mathcal{A}$.

Spaces $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K||L) = \{ f \in C(K) : f|_L \in E \}.$$

Theorem

$$C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$$
 & $n(C_E(K||L)) = 1.$

Proof.

- $\mathcal{A} = \{(0, \delta_t) : t \in K \setminus L\} \subset S_{C_E(K \parallel L)^*}$ is norming for $X = C_E(K \parallel L)$.
- $|x^{**}(a^*)| = 1$ for every $x^{**} \in \text{ext}(B_{X^{**}})$ and every $a^* \in \mathcal{A}$.

• This gives
$$n(C_E(K||L)) = 1$$
:

- $T \in L(X)$, $\varepsilon > 0$, take $a^* \in \mathcal{A}$ with $\|T^*(a^*)\| > \|T\| \varepsilon$,
- Take $x^{**} \in \operatorname{ext}\left(B_{X^{**}}\right)$ with $|x^{**}(T^*(a^*))| > \|T\| \varepsilon$,
- Since $|x^{**}(a^*)| = 1$, we have

$$v(T) = v(T^*) \ge |x^{**}(T^*(a^*))| > ||T|| - \varepsilon.\checkmark$$

Miguel Martín (University of Granada (Spain))

Spaces $C_E(K||L)$

K compact, $L \subset K$ closed nowhere dense, $E \subset C(L)$.

$$C_E(K||L) = \{f \in C(K) : f|_L \in E\}.$$

Theorem

$$C_E(K||L)^* \equiv E^* \oplus_1 C_0(K||L)^*$$
 & $n(C_E(K||L)) = 1.$

Consequence: the example

Take
$$K = [0,1]$$
, $L = \Delta$ (Cantor set), $E = \ell_2 \subset C(\Delta)$.

- $\operatorname{Iso}(C_{\ell_2}([0,1] \| \Delta))$ has no exponential one-parameter semigroups.
- $C_{\ell_2}([0,1]\|\Delta)^* \equiv \ell_2 \oplus_1 C_0([0,1]\|\Delta)^*$, so taken $S \in \mathrm{Iso}(\ell_2)$

$$\implies T = \begin{pmatrix} S & 0 \\ 0 & \mathrm{Id} \end{pmatrix} \in \mathrm{Iso}\big(C_{\ell_2}([0,1] \| \Delta)^*\big)$$

Then, $Iso\bigl(C_{\ell_2}([0,1]\|\Delta)^*\bigr)$ contains infinitely many exponential one-parameter semigroups.

Miguel Martín (University of Granada (Spain))

In terms of linear dynamical systems

In terms of linear dynamical systems

• In $C_{\ell_2}([0,1]\|\Delta)$ there is no $A\in L(X)$ such that the solution to the linear dynamical system

$$x' = A x$$
 $(x : \mathbb{R}^+_0 \longrightarrow C_{\ell_2}([0,1] \| \Delta))$

(which is $x(t) = \exp(t A)(x(0))$) is given by a semigroup of isometries.

In terms of linear dynamical systems

• In $C_{\ell_2}([0,1]\|\Delta)$ there is no $A\in L(X)$ such that the solution to the linear dynamical system

$$x' = A x$$
 $(x : \mathbb{R}^+_0 \longrightarrow C_{\ell_2}([0,1] \| \Delta))$

(which is $x(t) = \exp(t A)(x(0))$) is given by a semigroup of isometries.

• There are infinitely many such A's in $C_{\ell_2}([0,1] \| \Delta)^*$, in $C_{\ell_2}([0,1] \| \Delta)^{**}$...

In terms of linear dynamical systems

• In $C_{\ell_2}([0,1]\|\Delta)$ there is no $A\in L(X)$ such that the solution to the linear dynamical system

$$x' = A x$$
 $(x : \mathbb{R}^+_0 \longrightarrow C_{\ell_2}([0,1] \| \Delta))$

(which is $x(t) = \exp(t A)(x(0))$) is given by a semigroup of isometries.

• There are infinitely many such A's in $C_{\ell_2}([0,1]\|\Delta)^*$, in $C_{\ell_2}([0,1]\|\Delta)^{**}$...

Further results (Koszmider–M.–Merí., 2009)

In terms of linear dynamical systems

• In $C_{\ell_2}([0,1]\|\Delta)$ there is no $A\in L(X)$ such that the solution to the linear dynamical system

$$x' = A x$$
 $(x : \mathbb{R}_0^+ \longrightarrow C_{\ell_2}([0,1] \| \Delta))$

(which is $x(t) = \exp(t A)(x(0))$) is given by a semigroup of isometries.

• There are infinitely many such A's in $C_{\ell_2}([0,1]||\Delta)^*$, in $C_{\ell_2}([0,1]||\Delta)^{**}$...

Further results (Koszmider–M.–Merí., 2009)

 \bullet There are unbounded As on $C_{\ell_2}([0,1]\|\Delta)$ such that the solution to the linear dynamical system

$$x'(t) = A x(t)$$

is a one-parameter C_0 semigroup of isometries.

In terms of linear dynamical systems

• In $C_{\ell_2}([0,1]\|\Delta)$ there is no $A\in L(X)$ such that the solution to the linear dynamical system

$$x' = A x$$
 $(x : \mathbb{R}_0^+ \longrightarrow C_{\ell_2}([0,1] \| \Delta))$

(which is $x(t) = \exp(t A)(x(0))$) is given by a semigroup of isometries.

• There are infinitely many such A's in $C_{\ell_2}([0,1]||\Delta)^*$, in $C_{\ell_2}([0,1]||\Delta)^{**}$...

Further results (Koszmider–M.–Merí., 2009)

• There are unbounded $A{\rm s}$ on $C_{\ell_2}([0,1]\|\Delta)$ such that the solution to the linear dynamical system

$$x'(t) = A x(t)$$

is a one-parameter C_0 semigroup of isometries.

• There is X such that $Iso(X) = \{-Id, Id\}$ and $X^* = \ell_2 \oplus_1 L_1(\nu)$.

In terms of linear dynamical systems

• In $C_{\ell_2}([0,1]\|\Delta)$ there is no $A\in L(X)$ such that the solution to the linear dynamical system

$$x' = A x$$
 $(x : \mathbb{R}_0^+ \longrightarrow C_{\ell_2}([0,1] \| \Delta))$

(which is $x(t) = \exp(t A)(x(0))$) is given by a semigroup of isometries.

• There are infinitely many such A's in $C_{\ell_2}([0,1]||\Delta)^*$, in $C_{\ell_2}([0,1]||\Delta)^{**}$...

Further results (Koszmider–M.–Merí., 2009)

• There are unbounded $A{\rm s}$ on $C_{\ell_2}([0,1]\|\Delta)$ such that the solution to the linear dynamical system

$$x'(t) = A x(t)$$

is a one-parameter C_0 semigroup of isometries.

- There is X such that $Iso(X) = \{-Id, Id\}$ and $X^* = \ell_2 \oplus_1 L_1(\nu)$.
- Therefore, there is no semigroups in Iso(X), but there are infinitely many exponential one-parameter semigroups in $Iso(X^*)$.

Numerical index of Banach spaces

Mumerical index of Banach spaces

- Basic definitions and examples
- Stability properties
- Duality
- The isomorphic point of view
- Banach spaces with numerical index one
 - Isomorphic properties
 - Isometric properties
 - Asymptotic behavior
- How to deal with numerical index 1 property?

V. Kadets, M. Martín, and R. Payá.

Recent progress and open questions on the numerical index of Banach spaces. RACSAM (2006)

Numerical index of Banach spaces: definitions

Numerical radius

X Banach space, $T \in L(X)$. The numerical radius of T is

$$v(T) = \sup \{ |x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}$$

Numerical index of Banach spaces: definitions

Numerical radius

X Banach space, $T \in L(X)$. The numerical radius of T is

$$v(T) = \sup \{ |x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}$$

Remark

The numerical radius is a continuous seminorm in L(X). Actually, $v(\cdot) \leq \|\cdot\|$

Numerical index of Banach spaces: definitions

Numerical radius

X Banach space, $T \in L(X)$. The numerical radius of T is

$$v(T) = \sup \{ |x^*(Tx)| : x^* \in S_{X^*}, x \in S_X, x^*(x) = 1 \}$$

Remark

The numerical radius is a continuous seminorm in L(X). Actually, $v(\cdot) \leqslant \|\cdot\|$

Numerical index (Lumer, 1968)

 \boldsymbol{X} Banach space, the numerical index of \boldsymbol{X} is

$$\begin{split} n(X) &= \inf \left\{ v(T) : T \in L(X), \ \|T\| = 1 \right\} \\ &= \max \left\{ k \ge 0 : k \|T\| \leqslant v(T) \ \forall \ T \in L(X) \right\} \\ &= \inf \left\{ M \ge 0 \ : \ \exists T \in L(X), \ \|T\| = 1, \ \|\exp(\rho T)\| \leqslant e^{\rho M} \ \forall \rho \in \mathbb{R} \right\} \end{split}$$

Numerical index of Banach spaces: basic properties

Recalling some basic properties

Numerical index of Banach spaces: basic properties

Recalling some basic properties

- n(X) = 1 iff v and $\|\cdot\|$ coincide.
- n(X) = 0 iff v is not an equivalent norm in L(X)

Numerical index of Banach spaces: basic properties

Recalling some basic properties

- n(X) = 1 iff v and $\|\cdot\|$ coincide.
- n(X) = 0 iff v is not an equivalent norm in L(X)
- X complex \Rightarrow $n(X) \ge 1/e$.

(Bohnenblust-Karlin, 1955; Glickfeld, 1970)

Numerical index of Banach spaces: basic properties

Recalling some basic properties

- n(X) = 1 iff v and $\|\cdot\|$ coincide.
- n(X) = 0 iff v is not an equivalent norm in L(X)

• X complex
$$\Rightarrow n(X) \ge 1/e$$
.
(Bohnenblust-Karlin, 1955; Glickfeld, 1970)

• Actually,

{
$$n(X)$$
 : X complex, dim $(X) = 2$ } = [e⁻¹, 1]
{ $n(X)$: X real, dim $(X) = 2$ } = [0, 1]
(Duncan-McGregor-Pryce-White, 1970)

Some examples

• H Hilbert space, $\dim(H) > 1$,

n(H) = 0 if *H* is real n(H) = 1/2 if *H* is complex

Some examples

• *H* Hilbert space, $\dim(H) > 1$,

n(H) = 0 if H is real n(H) = 1/2 if H is complex

2 $n(L_1(\mu)) = 1$ μ positive measure

n(C(K)) = 1 K compact Hausdorff space (Duncan et al., 1970)

Some examples

• *H* Hilbert space, $\dim(H) > 1$,

n(H) = 0 if H is real n(H) = 1/2 if H is complex

Some examples

• *H* Hilbert space, $\dim(H) > 1$,

$$\begin{split} n(H) &= 0 & \text{if } H \text{ is real} \\ n(H) &= 1/2 & \text{if } H \text{ is complex} \end{split}$$

n(L₁(µ)) = 1 µ positive measure n(C(K)) = 1 K compact Hausdorff space (Duncan et al., 1970)
If A is a C*-algebra $\Rightarrow \begin{cases} n(A) = 1 & A \text{ commutative} \\ n(A) = 1/2 & A \text{ not commutative} \\ (Huruya, 1977; Kaidi-Morales-Rodríguez, 2000) \end{cases}$ If A is a function algebra $\Rightarrow n(A) = 1$ (Werner, 1997)

More examples

(9) For $n \ge 2$, the unit ball of X_n is a 2n regular polygon:

$$n(X_n) = \begin{cases} \tan\left(\frac{\pi}{2n}\right) & \text{if } n \text{ is even,} \\\\ \sin\left(\frac{\pi}{2n}\right) & \text{if } n \text{ is odd.} \end{cases}$$
(M.-Merí, 2007)

More examples

• For $n \ge 2$, the unit ball of X_n is a 2n regular polygon:

$$n(X_n) = \begin{cases} \tan\left(\frac{\pi}{2n}\right) & \text{if } n \text{ is even,} \\\\ \sin\left(\frac{\pi}{2n}\right) & \text{if } n \text{ is odd.} \end{cases}$$

$$(\mathsf{M}.-\mathsf{Merf}, 2007)$$

Every finite-codimensional subspace of C[0,1] has numerical index 1 (Boyko-Kadets-M.-Werner, 2007)

Even more examples

● Numerical index of L_p -spaces, 1 :

Even more examples

● Numerical index of L_p -spaces, 1 :

•
$$n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)}).$$

(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)

Even more examples

● Numerical index of
$$L_p$$
-spaces, $1 :$

•
$$n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)}).$$

(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)
• $n(\ell_p^{(2)})$?

Even more examples

● Numerical index of
$$L_p$$
-spaces, $1 :$

•
$$n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)}).$$

(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)

- $n(\ell_p^{(2)})$?
- In the real case,

$$\max \left\{ \frac{1}{2^{1/p}}, \frac{1}{2^{1/q}} \right\} M_p \leqslant n(\ell_p^{(2)}) \leqslant M$$

and $M_p = v \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}$
(M.-Merí, 2009)

Even more examples

● Numerical index of
$$L_p$$
-spaces, $1 :$

•
$$n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)}).$$

(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)

•
$$n(\ell_p^{(2)})$$
 ?

• In the real case,

$$\max \left\{ \frac{1}{2^{1/p}}, \frac{1}{2^{1/q}} \right\} M_p \leqslant n(\ell_p^{(2)}) \leqslant M_p$$

and $M_p = v \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}$
(M.-Merí, 2009)
In the real case, $n(L_p(\mu)) \ge \frac{M_p}{8e}$.

Even more examples

● Numerical index of
$$L_p$$
-spaces, $1 :$

•
$$n(L_p[0,1]) = n(\ell_p) = \lim_{m \to \infty} n(\ell_p^{(m)}).$$

(Ed-Dari, 2005 & Ed-Dari-Khamsi, 2006)

- $n(\ell_p^{(2)})$?
- In the real case,

$$\max\left\{\frac{1}{2^{1/p}}, \frac{1}{2^{1/q}}\right\} M_p \leqslant n(\ell_p^{(2)}) \leqslant M$$

and $M_p = v\begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}$
(M.-Merí, 2009)
b In the real case, $n(L_p(\mu)) \ge \frac{M_p}{8e}$.
b In particular, $n(L_p(\mu)) > 0$ for $p \neq 2$.

(M.-Merí-Popov, 2009)

Open problems

• Compute $n(L_p[0,1])$ for $1 , <math>p \neq 2$.

Open problems

• Compute
$$n(L_p[0,1])$$
 for $1 , $p \neq 2$.$

ls $n(\ell_p^{(2)}) = M_p$ (real case) ?

Open problems

• Compute
$$n(L_p[0,1])$$
 for $1 , $p \neq 2$.$

ls
$$n(\ell_p^{(2)}) = M_p$$
 (real case) ?

• Is
$$n(\ell_p^{(2)}) = (p^{\frac{1}{p}}q^{\frac{1}{q}})^{-1}$$
 (complex case) ?

Open problems

• Compute
$$n(L_p[0,1])$$
 for $1 , $p \neq 2$.$

ls
$$n(\ell_p^{(2)}) = M_p$$
 (real case) ?

• Is
$$n(\ell_p^{(2)}) = (p^{\frac{1}{p}} q^{\frac{1}{q}})^{-1}$$
 (complex case) ?

• Compute the numerical index of real C^* -algebras.

Open problems

• Compute
$$n(L_p[0,1])$$
 for $1 , $p \neq 2$.$

2 Is
$$n(\ell_p^{(2)}) = M_p$$
 (real case) 3

3 Is
$$n(\ell_p^{(2)}) = (p^{\frac{1}{p}}q^{\frac{1}{q}})^{-1}$$
 (complex case) **?**

• Compute the numerical index of real C^* -algebras.

Compute the numerical index of more classical Banach spaces: C^m[0,1], Lip(K), Lorentz spaces, Orlicz spaces...

Stability properties

Direct sums of Banach spaces (M.–Payá, 2000)

$$n\Big([\oplus_{\lambda\in\Lambda}X_{\lambda}]_{c_0}\Big) = n\Big([\oplus_{\lambda\in\Lambda}X_{\lambda}]_{\ell_1}\Big) = n\Big([\oplus_{\lambda\in\Lambda}X_{\lambda}]_{\ell_{\infty}}\Big) = \inf_{\lambda} n(X_{\lambda})$$

Stability properties

Direct sums of Banach spaces (M.–Payá, 2000)

$$n\Big([\oplus_{\lambda\in\Lambda}X_{\lambda}]_{c_0}\Big)=n\Big([\oplus_{\lambda\in\Lambda}X_{\lambda}]_{\ell_1}\Big)=n\Big([\oplus_{\lambda\in\Lambda}X_{\lambda}]_{\ell_{\infty}}\Big)=\inf_{\lambda}n(X_{\lambda})$$

Consequences

• There is a real Banach space X such that

v(T) > 0 when $T \neq 0$,

but n(X) = 0(i.e. $v(\cdot)$ is a norm on L(X) which is not equivalent to the operator norm).

Stability properties

Direct sums of Banach spaces (M.–Payá, 2000)

$$n\Big([\oplus_{\lambda\in\Lambda}X_{\lambda}]_{c_0}\Big)=n\Big([\oplus_{\lambda\in\Lambda}X_{\lambda}]_{\ell_1}\Big)=n\Big([\oplus_{\lambda\in\Lambda}X_{\lambda}]_{\ell_{\infty}}\Big)=\inf_{\lambda}n(X_{\lambda})$$

Consequences

• There is a real Banach space X such that

$$v(T) > 0$$
 when $T \neq 0$,

but n(X) = 0

- (i.e. $v(\cdot)$ is a norm on L(X) which is not equivalent to the operator norm).
- For every t ∈ [0, 1], there exist a real X_t isomorphic to c₀ (or ℓ₁ or ℓ_∞) with n(X_t) = t.
- For every $t \in [e^{-1}, 1]$, there exist a complex Y_t isomorphic to c_0 (or ℓ_1 or ℓ_{∞}) with $n(Y_t) = t$.

Stability properties (II)

Vector-valued function spaces (López-M.-Merí-Payá-Villena, 2000's)

E Banach space, μ positive $\sigma\text{-finite}$ measure, K compact space. Then

$$n(C(K,E)) = n(C_w(K,E)) = n(L_1(\mu,E)) = n(L_\infty(\mu,E)) = n(E),$$

and $n(C_{w^*}(K, E^*)) \leq n(E)$

Stability properties (II)

Vector-valued function spaces (López-M.-Merí-Payá-Villena, 2000's)

E Banach space, μ positive $\sigma\text{-finite}$ measure, K compact space. Then

$$n(C(K,E)) = n(C_w(K,E)) = n(L_1(\mu,E)) = n(L_\infty(\mu,E)) = n(E),$$

and $n(C_{w^*}(K, E^*)) \leq n(E)$

Tensor products (Lima, 1980)

There is no general formula for $n(X \widetilde{\otimes}_{\varepsilon} Y)$ nor for $n(X \widetilde{\otimes}_{\pi} Y)$:

•
$$n(\ell_1^{(4)} \widetilde{\otimes}_{\pi} \ell_1^{(4)}) = n(\ell_{\infty}^{(4)} \widetilde{\otimes}_{\varepsilon} \ell_{\infty}^{(4)}) = 1.$$

•
$$n(\ell_1^{(4)}\widetilde{\otimes}_{\varepsilon}\ell_1^{(4)}) = n(\ell_{\infty}^{(4)}\widetilde{\otimes}_{\pi}\ell_{\infty}^{(4)}) < 1.$$

Stability properties (II)

Vector-valued function spaces (López-M.-Merí-Payá-Villena, 2000's)

E Banach space, μ positive $\sigma\text{-finite}$ measure, K compact space. Then

$$n(C(K,E)) = n(C_w(K,E)) = n(L_1(\mu,E)) = n(L_\infty(\mu,E)) = n(E),$$

and $n(C_{w^*}(K, E^*)) \leq n(E)$

Tensor products (Lima, 1980)

There is no general formula for $n(X \widetilde{\otimes}_{\varepsilon} Y)$ nor for $n(X \widetilde{\otimes}_{\pi} Y)$:

•
$$n(\ell_1^{(4)} \widetilde{\otimes}_{\pi} \ell_1^{(4)}) = n(\ell_{\infty}^{(4)} \widetilde{\otimes}_{\varepsilon} \ell_{\infty}^{(4)}) = 1.$$

• $n(\ell_1^{(4)} \widetilde{\otimes}_{\varepsilon} \ell_1^{(4)}) = n(\ell_{\infty}^{(4)} \widetilde{\otimes}_{\pi} \ell_{\infty}^{(4)}) < 1.$

L_p -spaces (Askoy–Ed-Dari–Khamsi, 2007)

$$n(L_p([0,1],E)) = n(\ell_p(E)) = \lim_{m \to \infty} n(E \oplus_p \stackrel{m}{\cdots} \oplus_p E).$$

Proposition

X Banach space, $T \in L(X)$. Then

• sup Re
$$V(T) = \lim_{\alpha \to 0^+} \frac{\|\operatorname{Id} + \alpha T\| - 1}{\alpha}$$
.

(Duncan-McGregor-Pryce-White, 1970)

Proposition

X Banach space, $T \in L(X)$. Then

• sup Re
$$V(T) = \lim_{\alpha \to 0^+} \frac{\|\operatorname{Id} + \alpha T\| - 1}{\alpha}$$

• Then,
$$v(T^*) = v(T)$$
 for every $T \in L(X)$.

(Duncan-McGregor-Pryce-White, 1970)

Proposition

X Banach space, $T \in L(X)$. Then

• sup Re
$$V(T) = \lim_{\alpha \to 0^+} \frac{\|\operatorname{Id} + \alpha T\| - 1}{\alpha}$$

- Then, $v(T^*) = v(T)$ for every $T \in L(X)$.
- Therefore, $n(X^*) \leq n(X)$.

(Duncan-McGregor-Pryce-White, 1970)

Numerical index Duality

Numerical index and duality

Proposition

X Banach space, $T \in L(X)$. Then

• sup Re
$$V(T) = \lim_{\alpha \to 0^+} \frac{\|\operatorname{Id} + \alpha T\| - 1}{\alpha}$$

• Then,
$$v(T^*) = v(T)$$
 for every $T \in L(X)$.

• Therefore,
$$n(X^*) \leq n(X)$$
.

(Duncan-McGregor-Pryce-White, 1970)

Question (From the 1970's)

Is $n(X) = n(X^*)$?

Proposition

X Banach space, $T \in L(X)$. Then

• sup Re
$$V(T) = \lim_{\alpha \to 0^+} \frac{\|\operatorname{Id} + \alpha T\| - 1}{\alpha}$$

• Then,
$$v(T^*) = v(T)$$
 for every $T \in L(X)$.

• Therefore,
$$n(X^*) \leq n(X)$$
.

(Duncan-McGregor-Pryce-White, 1970)

Question (From the 1970's)

Is $n(X) = n(X^*)$?

Negative answer (Boyko-Kadets-M.-Werner, 2007)

Consider the space

$$X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}.$$

Then, n(X) = 1 but $n(X^*) < 1$.

Numerical index and duality. Proof of main example

$$\begin{split} X &= \big\{ (x,y,z) \in c \oplus_{\infty} c \oplus_{\infty} c \ : \ \lim x + \lim y + \lim z = 0 \big\} : \\ n(X) &= 1 \qquad \text{but} \qquad n(X^*) < 1. \end{split}$$

Numerical index and duality. Proof of main example

$$X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}:$$
$$n(X) = 1 \quad \text{but} \quad n(X^*) < 1.$$

Proof

Numerical index and duality. Proof of main example

$$\begin{split} X &= \big\{ (x,y,z) \in c \oplus_{\infty} c \oplus_{\infty} c \ : \ \lim x + \lim y + \lim z = 0 \big\} : \\ &n(X) = 1 \qquad \text{but} \qquad n(X^*) < 1. \end{split}$$

Proof

•
$$c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim).$$

$$\begin{split} X &= \big\{ (x,y,z) \in c \oplus_\infty c \oplus_\infty c \ : \ \lim x + \lim y + \lim z = 0 \big\} : \\ &n(X) = 1 \qquad \text{but} \qquad n(X^*) < 1. \end{split}$$

•
$$c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim).$$

• Then, writing
$$Z = \ell_1^{(3)} / (1, 1, 1)$$
, we can identify
 $X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z$, $X^{**} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^*$.

$$X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}:$$
$$n(X) = 1 \qquad \text{but} \qquad n(X^*) < 1.$$

•
$$c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim).$$

• Then, writing
$$Z = \ell_1^{(3)} / (1, 1, 1)$$
, we can identify
 $X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z$, $X^{**} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^*$.

•
$$A = \{(e_n, 0, 0, 0) : n \in \mathbb{N}\} \cup \{(0, e_n, 0, 0) : n \in \mathbb{N}\} \cup \{(0, 0, e_n, 0) : n \in \mathbb{N}\} \subset X^*.$$

$$X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}:$$
$$n(X) = 1 \qquad \text{but} \qquad n(X^*) < 1.$$

•
$$c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = \left[c^* \oplus_1 c^* \oplus_1 c^*\right] / (\lim, \lim, \lim).$$

• Then, writing
$$Z = \ell_1^{(3)} / (1, 1, 1)$$
, we can identify
 $X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z$, $X^{**} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^*$.

•
$$A = \{(e_n, 0, 0, 0) : n \in \mathbb{N}\} \cup \{(0, e_n, 0, 0) : n \in \mathbb{N}\} \cup \{(0, 0, e_n, 0) : n \in \mathbb{N}\} \subset X^*.$$

• Then $B_{X^*} = \overline{\operatorname{aco}}^{w^*}(A)$ and

$$|x^{**}(a)| = 1 \quad \forall \ x^{**} \in \mathsf{ext}(B_{X^{**}}) \ \forall \ a \in A.$$

$$X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}:$$
$$n(X) = 1 \qquad \text{but} \qquad n(X^*) < 1.$$

Proof

•
$$c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim).$$

• Then, writing
$$Z = \ell_1^{(3)} / (1, 1, 1)$$
, we can identify
 $X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z$, $X^{**} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^*$.

•
$$A = \{(e_n, 0, 0, 0) : n \in \mathbb{N}\} \cup \{(0, e_n, 0, 0) : n \in \mathbb{N}\} \cup \{(0, 0, e_n, 0) : n \in \mathbb{N}\} \subset X^*.$$

• Then
$$B_{X^*} = \overline{aco}^{w^*}(A)$$
 and

 $|x^{**}(a)| = 1 \quad \forall \ x^{**} \in \text{ext}(B_{X^{**}}) \ \forall \ a \in A.$

• Fix $T \in L(X)$, $\varepsilon > 0$. Find $a \in A$ with $||T^*(a)|| > ||T^*|| - \varepsilon$.

$$X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}:$$
$$n(X) = 1 \qquad \text{but} \qquad n(X^*) < 1.$$

Proof

•
$$c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim).$$

• Then, writing
$$Z = \ell_1^{(3)} / (1, 1, 1)$$
, we can identify
 $X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z$, $X^{**} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^*$.

•
$$A = \{(e_n, 0, 0, 0) : n \in \mathbb{N}\} \cup \{(0, e_n, 0, 0) : n \in \mathbb{N}\} \cup \{(0, 0, e_n, 0) : n \in \mathbb{N}\} \subset X^*.$$

• Then
$$B_{X^*} = \overline{aco}^{w^*}(A)$$
 and

 $|x^{**}(a)| = 1 \quad \forall \ x^{**} \in \text{ext}(B_{X^{**}}) \ \forall \ a \in A.$

- Fix $T \in L(X)$, $\varepsilon > 0$. Find $a \in A$ with $||T^*(a)|| > ||T^*|| \varepsilon$.
- Then we find $x^{**} \in \text{ext}(B_{X^{**}})$ such that

$$|x^{**}(T^{*}(a))| = ||T^{*}(a)|| > ||T^{*}|| - \varepsilon.$$

Miguel Martín (University of Granada (Spain))

$$X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}:$$
$$n(X) = 1 \qquad \text{but} \qquad n(X^*) < 1.$$

Proof

•
$$c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim).$$

• Then, writing
$$Z = \ell_1^{(3)} / (1, 1, 1)$$
, we can identify
 $X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z$, $X^{**} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^*$.

- $A = \{(e_n, 0, 0, 0) : n \in \mathbb{N}\} \cup \{(0, e_n, 0, 0) : n \in \mathbb{N}\} \cup \{(0, 0, e_n, 0) : n \in \mathbb{N}\} \subset X^*.$
- Then $B_{X^*} = \overline{aco}^{w^*}(A)$ and

 $|x^{**}(a)| = 1 \quad \forall \ x^{**} \in \mathsf{ext}(B_{X^{**}}) \ \forall \ a \in A.$

- Fix $T \in L(X)$, $\varepsilon > 0$. Find $a \in A$ with $||T^*(a)|| > ||T^*|| \varepsilon$.
- Then we find $x^{**} \in \text{ext}(B_{X^{**}})$ such that

$$|x^{**}(T^*(a))| = ||T^*(a)|| > ||T^*|| - \varepsilon.$$

• Since $|x^{**}(a)| = 1$, this gives that $v(T^*) > ||T^*|| - \varepsilon$, so v(T) = ||T|| and n(X) = 1.

$$X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}:$$
$$n(X) = 1 \qquad \text{but} \qquad n(X^*) < 1.$$

•
$$c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = \left[c^* \oplus_1 c^* \oplus_1 c^*\right] / (\lim, \lim, \lim).$$

• Then, writing
$$Z = \ell_1^{(3)} / (1, 1, 1)$$
, we can identify
 $X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z$, $X^{**} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^*$.

$$n(X^*) = n(Z).$$

$$X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}:$$
$$n(X) = 1 \qquad \text{but} \qquad n(X^*) < 1.$$

Proof

•
$$c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = \left[c^* \oplus_1 c^* \oplus_1 c^*\right] / (\lim, \lim, \lim).$$

• Then, writing
$$Z = \ell_1^{(3)} / (1, 1, 1)$$
, we can identify
 $X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z$, $X^{**} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^*$.

$$n(X^*) = n(Z).$$

• But n(Z) < 1 ! 🗸

$$X = \{(x, y, z) \in c \oplus_{\infty} c \oplus_{\infty} c : \lim x + \lim y + \lim z = 0\}:$$
$$n(X) = 1 \qquad \text{but} \qquad n(X^*) < 1.$$

Proof

•
$$c^* = \ell_1 \oplus_1 \mathbb{K} \lim \implies X^* = [c^* \oplus_1 c^* \oplus_1 c^*] / (\lim, \lim, \lim).$$

• Then, writing
$$Z = \ell_1^{(3)} / (1, 1, 1)$$
, we can identify
 $X^* \equiv \ell_1 \oplus_1 \ell_1 \oplus_1 \ell_1 \oplus_1 Z$, $X^{**} \equiv \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} \ell_{\infty} \oplus_{\infty} Z^*$.

(****)

 $\langle - - \rangle$

• But
$$n(Z) < 1 ! \checkmark$$

Figure: B_Z

Miguel Martín (University of Granada (Spain))

The above example can be squeezed to get more counterexamples.

The above example can be squeezed to get more counterexamples.

Example 1

- Exists X real with n(X) = 1 and $n(X^*) = 0$.
- Exists X complex with n(X) = 1 and $n(X^*) = 1/e$.

The above example can be squeezed to get more counterexamples.

Example 1

- Exists X real with n(X) = 1 and $n(X^*) = 0$.
- Exists X complex with n(X) = 1 and $n(X^*) = 1/e$.

Example 2

- Given $t \in]0,1]$, exists X real with n(X) = t and $n(X^*) = 0$.
- Given $t \in [1/e, 1]$, exists X complex with n(X) = 1 and $n(X^*) = 1/e$.

Numerical index Duality

Numerical index and duality (III)

Some positive partial answers

One has $n(X) = n(X^*)$ when

• X is reflexive (evident).

Some positive partial answers

- X is reflexive (evident).
- X is a C^* -algebra or a von Neumann predual (1970's 2000's).

Some positive partial answers

- X is reflexive (evident).
- X is a C^* -algebra or a von Neumann predual (1970's 2000's).
- X is L-embedded in X^{**} (M., 2009).

Some positive partial answers

- X is reflexive (evident).
- X is a C^* -algebra or a von Neumann predual (1970's 2000's).
- X is L-embedded in X^{**} (M., 2009).
- If X has RNP and n(X) = 1, then $n(X^*) = 1$ (M., 2002).

Some positive partial answers

- X is reflexive (evident).
- X is a C^* -algebra or a von Neumann predual (1970's 2000's).
- X is L-embedded in X^{**} (M., 2009).
- If X has RNP and n(X) = 1, then $n(X^*) = 1$ (M., 2002).

• If X is M-embedded in
$$X^{**}$$
 and $n(X) = 1$
 $\implies n(Y) = 1$ for $X \subseteq Y \subseteq X^{**}$.

Some positive partial answers

One has $n(X) = n(X^*)$ when

- X is reflexive (evident).
- X is a C^* -algebra or a von Neumann predual (1970's 2000's).
- X is L-embedded in X^{**} (M., 2009).
- If X has RNP and n(X) = 1, then $n(X^*) = 1$ (M., 2002).

• If X is M-embedded in
$$X^{**}$$
 and $n(X) = 1$
 $\implies n(Y) = 1$ for $X \subseteq Y \subseteq X^{**}$.

Example

$$\begin{split} X &= C_{K(\ell_2)}([0,1] \| \Delta). \text{ Then } n(X) = 1 \text{ and} \\ X^* &\equiv K(\ell_2)^* \oplus_1 C_0(K \| \Delta)^* \quad \text{and} \quad X^{**} \equiv L(\ell_2) \oplus_{\infty} C_0(K \| \Delta)^{**}. \end{split}$$

Therefore, X^{**} is a C^* -algebra, but $n(X^*) = 1/2 < n(X) = 1.$

Main question

Find isometric or isomorphic properties assuring that $n(X) = n(X^*)$.

Main question

Find isometric or isomorphic properties assuring that $n(X) = n(X^*)$.

Question 1

If Z has a unique predual X, does $n(X) = n(X^*)$?

Main question

Find isometric or isomorphic properties assuring that $n(X) = n(X^*)$.

Question 1

If Z has a unique predual X, does $n(X) = n(X^*)$?

Question 2

Z dual space, does there exists a predual X such that $n(X) = n(X^*)$?

Main question

Find isometric or isomorphic properties assuring that $n(X) = n(X^*)$.

Question 1

If Z has a unique predual X, does $n(X) = n(X^*)$?

Question 2

Z dual space, does there exists a predual X such that $n(X) = n(X^*)$?

Question 4

If X has the RNP, does $n(X) = n(X^*)$?

Miguel Martín (University of Granada (Spain))

Renorming and numerical index (Finet-M.-Payá, 2003)

 $(X,\|\cdot\|)$ (separable or reflexive) Banach space. Then

Renorming and numerical index (Finet-M.-Payá, 2003)

 $(X,\|\cdot\|)$ (separable or reflexive) Banach space. Then

• Real case:

 $[0,1[\subseteq \{n(X,|\cdot|) : |\cdot| \simeq ||\cdot|]\}$

• Complex case:

 $[e^{-1}, 1] \subseteq \{n(X, |\cdot|) : |\cdot| \simeq ||\cdot|\}$

Renorming and numerical index (Finet-M.-Payá, 2003)

 $(X,\|\cdot\|)$ (separable or reflexive) Banach space. Then

• Real case:

 $[0,1[\subseteq \{n(X,|\cdot|) : |\cdot| \simeq \|\cdot\|\}$

Complex case:

$$[\mathbf{e}^{-1}, \mathbf{1}] \subseteq \{ n(X, |\cdot|) : |\cdot| \simeq ||\cdot| \}$$

Open question

The result is known to be true when X has a long biorthogonal system. Is it true in general ?

Renorming and numerical index (Finet-M.-Payá, 2003)

 $(X,\|\cdot\|)$ (separable or reflexive) Banach space. Then

• Real case:

 $[0,1[\subseteq \{n(X,|\cdot|) : |\cdot| \simeq \|\cdot\|\}$

Complex case:

$$[e^{-1}, 1] \subseteq \{n(X, |\cdot|) : |\cdot| \simeq ||\cdot|\}$$

Open question

The result is known to be true when X has a long biorthogonal system. Is it true in general ?

Remark

In some sense, any other value of n(X) but 1 is isomorphically trivial.

Miguel Martín (University of Granada (Spain))

Renorming and numerical index (Finet-M.-Payá, 2003)

 $(X,\|\cdot\|)$ (separable or reflexive) Banach space. Then

• Real case:

 $[0,1[\subseteq \{n(X,|\cdot|) : |\cdot| \simeq \|\cdot\|\}$

Complex case:

$$[e^{-1}, 1] \subseteq \{n(X, |\cdot|) : |\cdot| \simeq ||\cdot|\}$$

Open question

The result is known to be true when X has a long biorthogonal system. Is it true in general ?

Remark

In some sense, any other value of n(X) but 1 is isomorphically trivial.

 \star What about the value 1 $\,$?

Banach spaces with numerical index one

Numerical index 1

Recall that X has numerical index one (n(X) = 1) iff

$$||T|| = \sup\{|x^*(Tx)| : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}$$

(i.e. v(T) = ||T||) for every $T \in L(X)$.

Banach spaces with numerical index one

Numerical index 1

Recall that X has numerical index one (n(X) = 1) iff

$$||T|| = \sup\{|x^*(Tx)| : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}$$

(i.e. v(T) = ||T||) for every $T \in L(X)$.

Observation

For Hilbert spaces, the above formula is equivalent to

$$||T|| = \sup \{ |\langle Tx, x \rangle| : x \in S_X \}$$

which is known to be valid for every self-adjoint operator T.

Banach spaces with numerical index one

Numerical index 1

Recall that X has numerical index one (n(X) = 1) iff

$$||T|| = \sup\{|x^*(Tx)| : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}$$

(i.e. v(T) = ||T||) for every $T \in L(X)$.

Observation

For Hilbert spaces, the above formula is equivalent to

$$||T|| = \sup \{ |\langle Tx, x \rangle| : x \in S_X \}$$

which is known to be valid for every self-adjoint operator T.

Examples

C(K), $L_1(\mu)$, $A(\mathbb{D})$, H^{∞} , finite-codimensional subspaces of C[0,1]...

Miguel Martín (University of Granada (Spain))

Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1 ?

Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1 ?

Negative answer (López-M.-Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1.

Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1 ?

Negative answer (López–M.–Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1. Concretely:

• If X is real, reflexive, and $\dim(X) = \infty$, then n(X) < 1.

Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1 ?

Negative answer (López–M.–Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1. Concretely:

- If X is real, reflexive, and $\dim(X) = \infty$, then n(X) < 1.
- Actually, if X is real, X^{**}/X separable and n(X) = 1, then X is finite-dimensional.

Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1 ?

Negative answer (López–M.–Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1. Concretely:

- If X is real, reflexive, and $\dim(X) = \infty$, then n(X) < 1.
- Actually, if X is real, X^{**}/X separable and n(X) = 1, then X is finite-dimensional.
- Moreover, if X is real, RNP, $\dim(X) = \infty$, and n(X) = 1, then $X \supset \ell_1$.

Isomorphic properties (prohibitive results)

Question

Does every Banach space admit an equivalent norm with numerical index 1 ?

Negative answer (López-M.-Payá, 1999)

Not every real Banach space can be renormed to have numerical index 1. Concretely:

- If X is real, reflexive, and $\dim(X) = \infty$, then n(X) < 1.
- Actually, if X is real, X^{**}/X separable and n(X) = 1, then X is finite-dimensional.

• Moreover, if X is real, RNP, $\dim(X) = \infty$, and n(X) = 1, then $X \supset \ell_1$.

A very recent result (Avilés–Kadets–M.–Merí–Shepelska)

If X is real, $\dim(X) = \infty$ and n(X) = 1, then $X^* \supset \ell_1$.

More details on this later on.

Miguel Martín (University of Granada (Spain))

Lemma

X Banach space, n(X) = 1

$$\implies |x_0^*(x_0)| = 1$$
 for all $x_0^* \in \operatorname{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in ext(B_{X^*})$ and all denting point x_0 of B_X .

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proof:

• Fix $\varepsilon > 0$. AS x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that

 $||z - x_0|| < \varepsilon$ whenever $z \in B_{X^*}$ satisfies $\operatorname{Re} y^*(z) > 1 - \alpha$.

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proof:

• Fix $\varepsilon > 0$. AS x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that

 $||z - x_0|| < \varepsilon$ whenever $z \in B_{X^*}$ satisfies $\operatorname{Re} y^*(z) > 1 - \alpha$.

• (Choquet's lemma): $x_0^* \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x_0^*(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\operatorname{Re} z^*(y) > 1 - \beta$.

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proof:

• Fix $\varepsilon > 0$. AS x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that

 $||z - x_0|| < \varepsilon$ whenever $z \in B_{X^*}$ satisfies $\operatorname{Re} y^*(z) > 1 - \alpha$.

• (Choquet's lemma): $x_0^* \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x_0^*(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\operatorname{Re} z^*(y) > 1 - \beta$.

• Let
$$T = y^* \otimes y \in L(X)$$
. $||T|| = 1 \implies v(T) = 1$.

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proof:

• Fix $\varepsilon > 0.$ AS x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that

 $||z - x_0|| < \varepsilon$ whenever $z \in B_{X^*}$ satisfies $\operatorname{Re} y^*(z) > 1 - \alpha$.

- (Choquet's lemma): $x_0^* \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x_0^*(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\operatorname{Re} z^*(y) > 1 - \beta$.
- Let $T = y^* \otimes y \in L(X)$. $||T|| = 1 \implies v(T) = 1$.
- We may find $x \in S_X$, $x^* \in S_{X^*}$, such that

 $x^*(x) = 1 \qquad \text{and} \qquad |x^*(Tx)| = |y^*(x)||x^*(y)| > 1 - \min\{\alpha, \beta\}.$

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proof:

• Fix $\varepsilon > 0$. AS x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that

 $||z - x_0|| < \varepsilon$ whenever $z \in B_{X^*}$ satisfies $\operatorname{Re} y^*(z) > 1 - \alpha$.

- (Choquet's lemma): $x_0^* \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x_0^*(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\operatorname{Re} z^*(y) > 1 - \beta$.
- Let $T = y^* \otimes y \in L(X)$. $||T|| = 1 \implies v(T) = 1$.
- We may find $x \in S_X$, $x^* \in S_{X^*}$, such that

$$x^*(x) = 1$$
 and $|x^*(Tx)| = |y^*(x)||x^*(y)| > 1 - \min\{\alpha, \beta\}.$

• By choosing suitable $s,t\in\mathbb{T}$ we have

$$\operatorname{Re} y^*(sx) = |y^*(x)| > 1 - \alpha$$
 & $\operatorname{Re} tx^*(y) = |x^*(y)| > 1 - \beta$

Miguel Martín (University of Granada (Spain))

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proof:

• Fix $\varepsilon > 0.$ AS x_0 denting point, $\exists y^* \in S_{X^*}$ and $\alpha > 0$ such that

 $||z - x_0|| < \varepsilon$ whenever $z \in B_{X^*}$ satisfies $\operatorname{Re} y^*(z) > 1 - \alpha$.

- (Choquet's lemma): $x_0^* \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x_0^*(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\operatorname{Re} z^*(y) > 1 - \beta$.
- Let $T = y^* \otimes y \in L(X)$. $||T|| = 1 \implies v(T) = 1$.
- We may find $x \in S_X$, $x^* \in S_{X^*}$, such that

 $x^*(x) = 1 \qquad \text{and} \qquad |x^*(Tx)| = |y^*(x)| |x^*(y)| > 1 - \min\{\alpha, \beta\}.$

• By choosing suitable $s, t \in \mathbb{T}$ we have

$$\operatorname{Re} y^*(sx) = |y^*(x)| > 1 - \alpha$$
 & $\operatorname{Re} tx^*(y) = |x^*(y)| > 1 - \beta$

• It follows that $\|sx-x_0\|<arepsilon$ and $|tx^*(x_0)-x_0^*(x_0)|<arepsilon$,

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proof:

• Fix $\varepsilon>0.$ AS x_0 denting point, $\exists y^*\in S_{X^*}$ and $\alpha>0$ such that

 $||z - x_0|| < \varepsilon$ whenever $z \in B_{X^*}$ satisfies $\operatorname{Re} y^*(z) > 1 - \alpha$.

• (Choquet's lemma): $x_0^* \in \text{ext}(B_{X^*})$, $\exists y \in S_X$ and $\beta > 0$ such that $|z^*(x_0) - x_0^*(x_0)| < \varepsilon$ whenever $z^* \in B_{X^*}$ satisfies $\operatorname{Re} z^*(y) > 1 - \beta$.

• Let
$$T = y^* \otimes y \in L(X)$$
. $||T|| = 1 \implies v(T) = 1$.

• We may find $x \in S_X$, $x^* \in S_{X^*}$, such that

$$x^*(x) = 1$$
 and $|x^*(Tx)| = |y^*(x)||x^*(y)| > 1 - \min\{\alpha, \beta\}.$

• By choosing suitable $s,t\in\mathbb{T}$ we have

$$\operatorname{Re} y^*(sx) = |y^*(x)| > 1 - \alpha$$
 & $\operatorname{Re} tx^*(y) = |x^*(y)| > 1 - \beta.$

• It follows that $\|sx-x_0\|<arepsilon$ and $|tx^*(x_0)-x_0^*(x_0)|<arepsilon$, and so

$$\begin{array}{rcl} 1 - |x_0^*(x_0)| & \leqslant & |tx^*(sx) - x_0^*(x_0)| \leqslant \\ & \leqslant & |tx^*(sx) - tx^*(x_0)| + |tx^*(x_0) - x_0^*(x_0)| < 2\varepsilon.\checkmark \end{array}$$

Miguel Martín (University of Granada (Spain))

Proposition

$$X \text{ real}, A \subset S_X \text{ infinite with } |x^*(a)| = 1 \quad \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A.$$

 $\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A$. $\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1$.

Proposition

 $X \text{ real}, A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A.$ $\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$

Proof:

• $X \supseteq \ell_1 \checkmark$

Proposition

 $\begin{array}{l} X \text{ real, } A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \operatorname{ext}(B_{X^*}), \, \forall a \in A. \\ \Longrightarrow \ X \supseteq c_0 \text{ or } X \supseteq \ell_1. \end{array}$

- $X \supseteq \ell_1 \checkmark$
- (Rosenthal ℓ_1 -theorem): Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy.

Proposition

 $\begin{array}{l} X \text{ real, } A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \operatorname{ext}(B_{X^*}), \, \forall a \in A. \\ \Longrightarrow \ X \supseteq c_0 \text{ or } X \supseteq \ell_1. \end{array}$

- $X \supseteq \ell_1 \checkmark$
- (Rosenthal ℓ_1 -theorem): Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}$.

Proposition

 $\begin{array}{l} X \text{ real, } A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \operatorname{ext}(B_{X^*}), \, \forall a \in A. \\ \Longrightarrow \ X \supseteq c_0 \text{ or } X \supseteq \ell_1. \end{array}$

- $X \supseteq \ell_1 \checkmark$
- (Rosenthal ℓ_1 -theorem): Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}$.
- $||a_n a_m|| = 2$ if $n \neq m \implies \dim(Y) = \infty$.

Proposition

 $\begin{array}{l} X \ \text{real,} \ A \subset S_X \ \text{infinite with} \ |x^*(a)| = 1 \ \forall x^* \in \operatorname{ext}(B_{X^*}), \ \forall a \in A. \\ \Longrightarrow \ X \supseteq c_0 \ \text{or} \ X \supseteq \ell_1. \end{array}$

- $X \supseteq \ell_1 \checkmark$
- (Rosenthal ℓ_1 -theorem): Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}$.
- $||a_n a_m|| = 2$ if $n \neq m \implies \dim(Y) = \infty$.
- (Krein-Milman theorem): every y^{*} ∈ ext (B_{Y*}) has an extension which belongs to ext (B_{X*}).

Proposition

 $\begin{array}{l} X \ \text{real,} \ A \subset S_X \ \text{infinite with} \ |x^*(a)| = 1 \ \forall x^* \in \operatorname{ext}(B_{X^*}), \ \forall a \in A. \\ \Longrightarrow \ X \supseteq c_0 \ \text{or} \ X \supseteq \ell_1. \end{array}$

- $X \supseteq \ell_1 \checkmark$
- (Rosenthal ℓ_1 -theorem): Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}$.
- $||a_n a_m|| = 2$ if $n \neq m \implies \dim(Y) = \infty$.
- (Krein-Milman theorem): every y^{*} ∈ ext (B_{Y*}) has an extension which belongs to ext (B_{X*}).
- So, $|y^*(a_n)| = 1 \ \forall y^* \in \operatorname{ext}(B_{Y^*}), \ \forall n \in \mathbb{N}.$

Proposition

 $\begin{array}{l} X \ \text{real,} \ A \subset S_X \ \text{infinite with} \ |x^*(a)| = 1 \ \forall x^* \in \operatorname{ext}(B_{X^*}), \ \forall a \in A. \\ \Longrightarrow \ X \supseteq c_0 \ \text{or} \ X \supseteq \ell_1. \end{array}$

- $X \supseteq \ell_1 \checkmark$
- (Rosenthal ℓ_1 -theorem): Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}$.
- $||a_n a_m|| = 2$ if $n \neq m \implies \dim(Y) = \infty$.
- (Krein-Milman theorem): every $y^* \in \text{ext}(B_{Y^*})$ has an extension which belongs to $\text{ext}(B_{X^*})$.
- So, $|y^*(a_n)| = 1 \ \forall y^* \in \operatorname{ext}(B_{Y^*}), \ \forall n \in \mathbb{N}.$
- $\{a_n\}$ weak Cauchy $\implies \{y^*(a_n)\}$ is eventually 1 or -1.

Proposition

 $\begin{array}{l} X \ \text{real,} \ A \subset S_X \ \text{infinite with} \ |x^*(a)| = 1 \ \forall x^* \in \operatorname{ext}(B_{X^*}), \ \forall a \in A. \\ \Longrightarrow \ X \supseteq c_0 \ \text{or} \ X \supseteq \ell_1. \end{array}$

Proof:

- $X \supseteq \ell_1 \checkmark$
- (Rosenthal ℓ_1 -theorem): Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}$.
- $||a_n a_m|| = 2$ if $n \neq m \implies \dim(Y) = \infty$.
- (Krein-Milman theorem): every $y^* \in ext(B_{Y^*})$ has an extension which belongs to $ext(B_{X^*})$.
- So, $|y^*(a_n)| = 1 \ \forall y^* \in \operatorname{ext}(B_{Y^*}), \ \forall n \in \mathbb{N}.$
- $\{a_n\}$ weak Cauchy $\implies \{y^*(a_n)\}$ is eventually 1 or -1.
- Then $\operatorname{ext}(B_{Y^*}) = \bigcup_{k \in \mathbb{N}} (E_k \cup -E_k)$ where

 $E_k = \{y^* \in \text{ext}(B_{Y^*}) : y^*(a_n) = 1 \text{ for } n \ge k\}.$

Proposition

 $\begin{array}{l} X \ \text{real,} \ A \subset S_X \ \text{infinite with} \ |x^*(a)| = 1 \ \forall x^* \in \operatorname{ext}(B_{X^*}), \ \forall a \in A. \\ \Longrightarrow \ X \supseteq c_0 \ \text{or} \ X \supseteq \ell_1. \end{array}$

Proof:

- $X \supseteq \ell_1 \checkmark$
- (Rosenthal ℓ_1 -theorem): Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}$.
- $||a_n a_m|| = 2$ if $n \neq m \implies \dim(Y) = \infty$.
- (Krein-Milman theorem): every $y^* \in ext(B_{Y^*})$ has an extension which belongs to $ext(B_{X^*})$.
- So, $|y^*(a_n)| = 1 \ \forall y^* \in \operatorname{ext}(B_{Y^*}), \ \forall n \in \mathbb{N}.$
- $\{a_n\}$ weak Cauchy $\implies \{y^*(a_n)\}$ is eventually 1 or -1.

• Then
$$\operatorname{ext}(B_{Y^*}) = \bigcup_{k \in \mathbb{N}} (E_k \cup -E_k)$$
 where
$$E_k = \{y^* \in \operatorname{ext}(B_{Y^*}) : y^*(a_n) = 1 \text{ for } n \ge k\}$$

• $\{a_n\}$ separates points of $Y^* \implies E_k$ finite, so $ext(B_{Y^*})$ countable.

Proposition

 $\begin{array}{l} X \ \text{real,} \ A \subset S_X \ \text{infinite with} \ |x^*(a)| = 1 \ \forall x^* \in \operatorname{ext}(B_{X^*}), \ \forall a \in A. \\ \Longrightarrow \ X \supseteq c_0 \ \text{or} \ X \supseteq \ell_1. \end{array}$

Proof:

- $X \supseteq \ell_1 \checkmark$
- (Rosenthal ℓ_1 -theorem): Otherwise, $\exists \{a_n\} \subseteq A$ non-trivial weak Cauchy.
- Consider Y the closed linear span of $\{a_n : n \in \mathbb{N}\}$.
- $||a_n a_m|| = 2$ if $n \neq m \implies \dim(Y) = \infty$.
- (Krein-Milman theorem): every $y^* \in ext(B_{Y^*})$ has an extension which belongs to $ext(B_{X^*})$.
- So, $|y^*(a_n)| = 1 \ \forall y^* \in \operatorname{ext}(B_{Y^*}), \ \forall n \in \mathbb{N}.$
- $\{a_n\}$ weak Cauchy $\implies \{y^*(a_n)\}$ is eventually 1 or -1.

• Then
$$\operatorname{ext}(B_{Y^*}) = \bigcup_{k \in \mathbb{N}} (E_k \cup -E_k)$$
 where
 $E_k = \{y^* \in \operatorname{ext}(B_{Y^*}) : y^*(a_n) = 1 \text{ for } n \ge k\}.$

{a_n} separates points of Y* ⇒ E_k finite, so ext (B_{Y*}) countable.
(Fonf): Y ⊃ c₀. So, X ⊃ c₀. √

Miguel Martín (University of Granada (Spain))

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in ext(B_{X^*})$ and all denting point x_0 of B_X .

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \quad \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A.$ $\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proposition

 $X \text{ real}, A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A.$ $\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$

Main consequence

X real, RNP, $\dim(X) = \infty$, and $n(X) = 1 \implies X \supseteq \ell_1$.

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proposition

 $X \text{ real}, A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A.$ $\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$

Main consequence

X real, RNP, $\dim(X) = \infty$, and $n(X) = 1 \implies X \supseteq \ell_1$.

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proposition

 $X \text{ real}, A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A.$ $\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$

Main consequence

$$X$$
 real, RNP, $\dim(X) = \infty$, and $n(X) = 1 \implies X \supseteq \ell_1$.

• X RNP,
$$\dim(X) = \infty \implies \exists$$
 infinitely many denting points of B_X .

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proposition

 $X \text{ real}, A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A.$ $\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$

Main consequence

$$X$$
 real, RNP, $\dim(X) = \infty$, and $n(X) = 1 \implies X \supseteq \ell_1$.

- X RNP, $\dim(X) = \infty \implies \exists$ infinitely many denting points of B_X .
- Therefore, $X \supseteq c_0$ or $X \supseteq \ell_1$.

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in ext(B_{X^*})$ and all denting point x_0 of B_X .

Proposition

 $X \text{ real}, A \subset S_X \text{ infinite with } |x^*(a)| = 1 \ \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A.$ $\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$

Main consequence

$$X$$
 real, RNP, $\dim(X) = \infty$, and $n(X) = 1 \implies X \supseteq \ell_1$.

- X RNP, $\dim(X) = \infty \implies \exists$ infinitely many denting points of B_X .
- Therefore, $X \supseteq c_0$ or $X \supseteq \ell_1$.
- If X RNP, then $X \not\supseteq c_0$.

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \quad \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A.$ $\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$

Main consequence

$$X$$
 real, RNP, $\dim(X) = \infty$, and $n(X) = 1 \implies X \supseteq \ell_1$.

Corollary

X real, $\dim(X) = \infty$, n(X) = 1.

- X is not reflexive.
- X^{**}/X is non-separable.

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \quad \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A.$ $\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$

Main consequence

$$X$$
 real, RNP, $\dim(X) = \infty$, and $n(X) = 1 \implies X \supseteq \ell_1$.

Corollary

X real, $\dim(X) = \infty$, n(X) = 1.

- X is not reflexive.
- X^{**}/X is non-separable.

Lemma

X Banach space,
$$n(X) = 1$$

 $\implies |x_0^*(x_0)| = 1$ for all $x_0^* \in \text{ext}(B_{X^*})$ and all denting point x_0 of B_X .

Proposition

X real, $A \subset S_X$ infinite with $|x^*(a)| = 1 \quad \forall x^* \in \text{ext}(B_{X^*}), \forall a \in A.$ $\implies X \supseteq c_0 \text{ or } X \supseteq \ell_1.$

Main consequence

$$X$$
 real, RNP, $\dim(X) = \infty$, and $n(X) = 1 \implies X \supseteq \ell_1$.

Corollary

X real, $\dim(X) = \infty$, n(X) = 1.

- X is not reflexive.
- X^{**}/X is non-separable.

Isomorphic properties (positive results)

A renorming result (Boyko-Kadets-M.-Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

A renorming result (Boyko-Kadets-M.-Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence

X separable containing $c_0 \implies$ there is $Z\simeq X$ such that

$$n(Z) = 1$$
 and $\begin{cases} n(Z^*) = 0 & \text{real case} \\ n(Z^*) = e^{-1} & \text{complex case} \end{cases}$

A renorming result (Boyko-Kadets-M.-Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence

X separable containing $c_0 \implies$ there is $Z \simeq X$ such that

$$n(Z) = 1$$
 and $\begin{cases} n(Z^*) = 0 & \text{real case} \\ n(Z^*) = e^{-1} & \text{complex case} \end{cases}$

Open questions

A renorming result (Boyko-Kadets-M.-Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence

X separable containing $c_0 \implies$ there is $Z \simeq X$ such that

$$n(Z) = 1$$
 and $\begin{cases} n(Z^*) = 0 & \text{real case} \\ n(Z^*) = e^{-1} & \text{complex case} \end{cases}$

Open questions

• Find isomorphic properties which assures renorming with numerical index 1

A renorming result (Boyko-Kadets-M.-Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence

X separable containing $c_0 \implies$ there is $Z \simeq X$ such that

$$n(Z) = 1$$
 and $\begin{cases} n(Z^*) = 0 & \text{real case} \\ n(Z^*) = e^{-1} & \text{complex case} \end{cases}$

Open questions

- Find isomorphic properties which assures renorming with numerical index 1
- In particular, if $X \supset \ell_1$, can X be renormed to have numerical index 1 ?

A renorming result (Boyko-Kadets-M.-Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed to have numerical index 1.

Consequence

X separable containing $c_0 \implies$ there is $Z \simeq X$ such that

$$n(Z) = 1$$
 and $\begin{cases} n(Z^*) = 0 & \text{real case} \\ n(Z^*) = e^{-1} & \text{complex case} \end{cases}$

Open questions

- Find isomorphic properties which assures renorming with numerical index 1
- In particular, if $X \supset \ell_1$, can X be renormed to have numerical index 1 ?

Negative result (Bourgain-Delbaen, 1980)

There is X such that $X^* \simeq \ell_1$ and X has the RNP. Then, X can not be renormed with numerical index 1 (in such a case, $X \supset \ell_1$!)

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

• n(X) = 1.

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

•
$$n(X) = 1$$
.

• $|x^*(x)| = 1$ for every $x^* \in \text{ext}(B_{X^*})$, $x \in \text{ext}(B_X)$.

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

•
$$n(X) = 1$$
.

- $|x^*(x)| = 1$ for every $x^* \in \text{ext}(B_{X^*})$, $x \in \text{ext}(B_X)$.
- $B_X = \operatorname{aconv}(F)$ for every maximal convex subset F of S_X (X is a CL-space).

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

•
$$n(X) = 1.$$

•
$$|x^*(x)| = 1$$
 for every $x^* \in \text{ext}(B_{X^*})$, $x \in \text{ext}(B_X)$.

 B_X = aconv(F) for every maximal convex subset F of S_X (X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index $1\!\!:$

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

•
$$n(X) = 1.$$

•
$$|x^*(x)| = 1$$
 for every $x^* \in \text{ext}(B_{X^*})$, $x \in \text{ext}(B_X)$.

 B_X = aconv(F) for every maximal convex subset F of S_X (X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index $1\!\!:$

- The space is not smooth.
- The space is not strictly convex.

Finite-dimensional spaces (McGregor, 1971; Lima, 1978)

X real or complex finite-dimensional space. TFAE:

•
$$n(X) = 1.$$

•
$$|x^*(x)| = 1$$
 for every $x^* \in \text{ext}(B_{X^*})$, $x \in \text{ext}(B_X)$.

 B_X = aconv(F) for every maximal convex subset F of S_X (X is a CL-space).

Remark

This shows a rough behavior of the norm of a finite-dimensional space with numerical index $1\!\!:$

- The space is not smooth.
- The space is not strictly convex.

Question

What is the situation in the infinite-dimensional case ?

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional Banach space, $n(X)=1.\ {\rm Then}$

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional Banach space, n(X) = 1. Then

• X^* is neither smooth nor strictly convex.

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional Banach space, n(X) = 1. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional Banach space, n(X) = 1. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X .

Theorem (Kadets-M.-Merí-Payá, 2009)

- X infinite-dimensional Banach space, n(X) = 1. Then
 - X^{*} is neither smooth nor strictly convex.
 - The norm of X cannot be Fréchet-smooth.
 - There is no WLUR points in S_X .

Proving that X^* is not smooth:

Theorem (Kadets-M.-Merí-Payá, 2009)

- X infinite-dimensional Banach space, n(X) = 1. Then
 - X^{*} is neither smooth nor strictly convex.
 - The norm of X cannot be Fréchet-smooth.
 - There is no WLUR points in S_X .

Proving that X^* is not smooth:

• dim(X) > 1, exists $x_0 \in S_X$ and $x_0^* \in S_{X^*}$ such that $x_0^*(x_0) = 0$. Then, consider $T = x_0^* \otimes x_0$ which satisfies $T^2 = 0$, ||T|| = 1.

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, n(X) = 1. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X .

Proving that X^* is not smooth:

- dim(X) > 1, exists $x_0 \in S_X$ and $x_0^* \in S_{X^*}$ such that $x_0^*(x_0) = 0$. Then, consider $T = x_0^* \otimes x_0$ which satisfies $T^2 = 0$, ||T|| = 1.
- (AcostaPayá1993): exists $\{T_n\} \longrightarrow T$ such that $||T_n|| = 1$, T_n^* attains its numerical radius $v(T_n^*) = v(T_n) = ||T_n|| = 1$.

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, n(X) = 1. Then

- X^* is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X .

Proving that X^* is not smooth:

- dim(X) > 1, exists $x_0 \in S_X$ and $x_0^* \in S_{X^*}$ such that $x_0^*(x_0) = 0$. Then, consider $T = x_0^* \otimes x_0$ which satisfies $T^2 = 0$, ||T|| = 1.
- (AcostaPayá1993): exists $\{T_n\} \longrightarrow T$ such that $\|T_n\| = 1$, T_n^* attains its numerical radius $v(T_n^*) = v(T_n) = \|T_n\| = 1$.
- We may find $\lambda_n \in \mathbb{T}$ and $(x_n^*, x_n^{**}) \in S_{X^*} imes S_{X^{**}}$ such that

$$\lambda_n x_n^{**}(x_n^*) = 1$$
 and $[T_n^{**}(x_n^{**})](x_n^*) = x_n^{**}(T_n^*(x_n^*)) = 1.$

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, n(X) = 1. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X .

Proving that X^* is not smooth:

- dim(X) > 1, exists $x_0 \in S_X$ and $x_0^* \in S_{X^*}$ such that $x_0^*(x_0) = 0$. Then, consider $T = x_0^* \otimes x_0$ which satisfies $T^2 = 0$, ||T|| = 1.
- (AcostaPayá1993): exists $\{T_n\} \longrightarrow T$ such that $\|T_n\| = 1$, T_n^* attains its numerical radius $v(T_n^*) = v(T_n) = \|T_n\| = 1$.
- We may find $\lambda_n \in \mathbb{T}$ and $(x_n^*, x_n^{**}) \in S_{X^*} imes S_{X^{**}}$ such that

$$\lambda_n x_n^{**}(x_n^*) = 1$$
 and $[T_n^{**}(x_n^{**})](x_n^*) = x_n^{**}(T_n^*(x_n^*)) = 1.$

• If
$$X^*$$
 is smooth: $T_n^{**}(x_n^{**}) = \lambda_n x_n^{**}$. Thus,

$$\left\| \left[T_n^{**} \right]^2 (x_n^{**}) \right\| = \left\| \lambda_n^2 x_n^{**} \right\| = 1.$$

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, n(X) = 1. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X .

Proving that X^* is not smooth:

- dim(X) > 1, exists $x_0 \in S_X$ and $x_0^* \in S_{X^*}$ such that $x_0^*(x_0) = 0$. Then, consider $T = x_0^* \otimes x_0$ which satisfies $T^2 = 0$, ||T|| = 1.
- (AcostaPayá1993): exists $\{T_n\} \longrightarrow T$ such that $||T_n|| = 1$, T_n^* attains its numerical radius $v(T_n^*) = v(T_n) = ||T_n|| = 1$.
- We may find $\lambda_n \in \mathbb{T}$ and $(x_n^*, x_n^{**}) \in S_{X^*} imes S_{X^{**}}$ such that

$$\lambda_n x_n^{**}(x_n^*) = 1$$
 and $[T_n^{**}(x_n^{**})](x_n^*) = x_n^{**}(T_n^*(x_n^*)) = 1.$

• If
$$X^*$$
 is smooth: $T_n^{**}(x_n^{**}) = \lambda_n x_n^{**}$. Thus,

$$\left\| \left[T_n^{**}\right]^2 (x_n^{**}) \right\| = \left\| \lambda_n^2 x_n^{**} \right\| = 1.$$

• But, since $T_n \longrightarrow T$ and $T^2 = 0$, then $\left[T_n^{**}\right]^2 \longrightarrow 0$!! \checkmark

Theorem (Kadets-M.-Merí-Payá, 2009)

X infinite-dimensional Banach space, n(X) = 1. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X .

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, n(X) = 1. Then

- *X*^{*} is neither smooth nor strictly convex.
- The norm of *X* cannot be Fréchet-smooth.
- There is no WLUR points in S_X .

Corollary

$$X = C(\mathbb{T}) / A(\mathbb{D}). \ X^* = H^1 \text{ is smooth } \implies n(X) < 1 \ \& \ n(H^1) < 1.$$

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, n(X) = 1. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X .

Corollary

$$X = \mathcal{C}(\mathbb{T}) / A(\mathbb{D}). \ X^* = H^1 \text{ is smooth } \implies n(X) < 1 \ \& \ n(H^1) < 1.$$

Example without completeness

- There is X (non-complete) strictly convex with $X^* \equiv L_1(\mu)$, so n(X) = 1.
- \widetilde{X} completion of X. For $F \subseteq S_{\widetilde{X}}$ maximal face, $B_{\widetilde{X}} = \overline{\operatorname{aconv}}(F)$.

Theorem (Kadets–M.–Merí–Payá, 2009)

X infinite-dimensional Banach space, n(X) = 1. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X .

Corollary

$$X = \mathcal{C}(\mathbb{T}) / A(\mathbb{D}). \ X^* = H^1 \text{ is smooth } \implies n(X) < 1 \ \& \ n(H^1) < 1.$$

Example without completeness

- There is X (non-complete) strictly convex with $X^* \equiv L_1(\mu)$, so n(X) = 1.
- \widetilde{X} completion of X. For $F \subseteq S_{\widetilde{X}}$ maximal face, $B_{\widetilde{X}} = \overline{\operatorname{aconv}}(F)$.

Open question

Is there X with n(X) = 1 which is smooth or strictly convex ?

Theorem (Oikhberg, 2005)

There is a universal constant c such that

$$\operatorname{dist}(X, \ell_2^{(m)}) \geqslant c \ m^{\frac{1}{4}}$$

for every $m \in \mathbb{N}$ and every *m*-dimensional *X* with n(X) = 1.

Theorem (Oikhberg, 2005)

There is a universal constant c such that

$$\operatorname{dist}(X, \ell_2^{(m)}) \geqslant c \ m^{\frac{1}{4}}$$

for every $m \in \mathbb{N}$ and every *m*-dimensional *X* with n(X) = 1.

Old examples

$${\rm dist}\big(\ell_1^{(m)},\ell_2^{(m)}\big)={\rm dist}\big(\ell_\infty^{(m)},\ell_2^{(m)}\big)=m^{\frac{1}{2}}$$

Theorem (Oikhberg, 2005)

There is a universal constant c such that

$$\operatorname{dist}(X, \ell_2^{(m)}) \geqslant c \ m^{\frac{1}{4}}$$

for every $m \in \mathbb{N}$ and every *m*-dimensional *X* with n(X) = 1.

Old examples

$$dist(\ell_1^{(m)}, \ell_2^{(m)}) = dist(\ell_{\infty}^{(m)}, \ell_2^{(m)}) = m^{\frac{1}{2}}$$

Open questions

• Is there a universal constant \widetilde{c} such that

$$\operatorname{dist}(X, \ell_2^{(m)}) \geqslant \widetilde{c} \ m^{\frac{1}{2}}$$

for every $m \in \mathbb{N}$ and every m-dimensional X's with n(X) = 1 ?

• What is the diameter of the set of all *m*-dimensional X's with n(X) = 1 ?

One the one hand: weaker properties

One the one hand: weaker properties

 In a general Banach space, we only can construct compact (actually, finite-rank) operators.

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- All the results given before for Banach spaces in which we use numerical index 1 only need

v(T) = ||T|| for every rank-one operator T.

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- $\bullet\,$ All the results given before for Banach spaces in which we use numerical index 1 only need

v(T) = ||T|| for every rank-one operator T.

• This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- $\bullet\,$ All the results given before for Banach spaces in which we use numerical index 1 only need

v(T) = ||T|| for every rank-one operator T.

• This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- $\bullet\,$ All the results given before for Banach spaces in which we use numerical index 1 only need

v(T) = ||T|| for every rank-one operator T.

• This is called the alternative Daugavet property (ADP) and we will present it in the next section.

One the other hand: stronger properties

• We do not know any operator-free characterization of Banach spaces with numerical index 1.

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- $\bullet\,$ All the results given before for Banach spaces in which we use numerical index 1 only need

v(T) = ||T|| for every rank-one operator T.

• This is called the alternative Daugavet property (ADP) and we will present it in the next section.

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
- When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more.

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- $\bullet\,$ All the results given before for Banach spaces in which we use numerical index 1 only need

v(T) = ||T|| for every rank-one operator T.

• This is called the alternative Daugavet property (ADP) and we will present it in the next section.

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
- When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more.
- Later we will study sufficient geometrical conditions.

One the one hand: weaker properties

- In a general Banach space, we only can construct compact (actually, finite-rank) operators.
- Actually, we only may easily calculate the norm of rank-one operators.
- $\bullet\,$ All the results given before for Banach spaces in which we use numerical index 1 only need

v(T) = ||T|| for every rank-one operator T.

• This is called the alternative Daugavet property (ADP) and we will present it in the next section.

- We do not know any operator-free characterization of Banach spaces with numerical index 1.
- When we know that a Banach space has numerical index 1 (or that it can be renormed with numerical index 1), we actually prove more.
- Later we will study sufficient geometrical conditions.
- The weakest property is called lushness.

Relationship between the properties

• One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent.

Relationship between the properties

- One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent.
- A very interesting property appears: the slicely countably determination.

Relationship between the properties

- One of the key ideas to get interesting results for Banach spaces with numerical index 1 is to study when the three properties below are equivalent.
- A very interesting property appears: the slicely countably determination.
- We will study this property later on.

The alternative Daugavet property

The alternative Daugavet property

5 The alternative Daugavet property

- The Daugavet property
- The alternative Daugavet property
 - Geometric characterizations
 - C*-algebras and preduals
 - Some results

M. Martín and T. Oikberg An alternative Daugavet property J. Math. Anal. Appl. (2004)

M. Martín

The alternative Daugavet property of C*-algebras and JB^* -triples Math. Nachr. (2008)

• In a Banach space X with the Radon-Nikodým property the unit ball has many denting points.

 x ∈ S_X is a denting point of B_X if for every ε > 0 one has

$$x \notin \overline{\operatorname{co}}(B_X \setminus (x + \varepsilon B_X)).$$

- In a Banach space X with the Radon-Nikodým property the unit ball has many denting points.
- x ∈ S_X is a denting point of B_X if for every ε > 0 one has

$$x \notin \overline{\operatorname{co}}(B_X \setminus (x + \varepsilon B_X)).$$

• C[0,1] and $L_1[0,1]$ have an extremely opposite property: for every $x \in S_X$ and every $\varepsilon > 0$

$$\overline{\operatorname{co}}\left(B_X\setminus (x+(2-\varepsilon)B_X)\right)=B_X$$

- In a Banach space X with the Radon-Nikodým property the unit ball has many denting points.
- x ∈ S_X is a denting point of B_X if for every ε > 0 one has

$$x\notin\overline{\mathrm{co}}(B_X\setminus(x+\varepsilon B_X)).$$

• C[0,1] and $L_1[0,1]$ have an extremely opposite property: for every $x \in S_X$ and every $\varepsilon > 0$

$$\overline{\operatorname{co}}\left(B_X\setminus \left(x+(2-\varepsilon)B_X\right)\right)=B_X.$$

• This geometric property is equivalent to a property of operators on the space.

The Daugavet property: definition

The Daugavet equation

X Banach space, $T \in L(X)$

 $\|Id + T\| = 1 + \|T\|$ (DE)

The Daugavet property: definition

The Daugavet equation

X Banach space, $T \in L(X)$

$$\|Id + T\| = 1 + \|T\|$$
 (DE)

Daugavet, 1963:

Every compact operator on C[0,1] satisfies (DE).

Lozanoskii, 1966:

Every compact operator on $L_1[0, 1]$ satisfies (DE).

Solution Abramovich, Holub, and more, 80's: X = C(K), K perfect compact space

or $X = L_1(\mu)$, μ atomless measure

 \implies every weakly compact $T \in L(X)$ satisfies (DE).

The Daugavet property: definition

The Daugavet equation

X Banach space, $T \in L(X)$

$$\|Id + T\| = 1 + \|T\|$$
 (DE)

The Daugavet property

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Then, every weakly compact operator on X satisfies (DE).

(Kadets-Shvidkoy-Sirotkin-Werner, 1997 & 2000)

The alternative Daugavet property The Daugavet property

The Daugavet property: geometric characterizations

Theorem [KSSW]

- \boldsymbol{X} Banach space. TFAE:
 - X has the Daugavet property.

Every rank-one operator $T \in L(X)$ satisfies

 $\|\mathrm{Id} + T\| = 1 + \|T\|.$

The Daugavet property: geometric characterizations

Theorem [KSSW]

- X Banach space. TFAE:
 - X has the Daugavet property.
 - For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that

Re $x^*(y) > 1 - \varepsilon$ and $||x - y|| \ge 2 - \varepsilon$.

• For every $x\in S_X,\ x^*\in S_{X^*},$ and $\varepsilon>0,$ there exists $y^*\in S_{X^*}$ such that

 $\operatorname{Re} y^*(x) > 1 - \varepsilon$ and $||x^* - y^*|| \ge 2 - \varepsilon$.

The Daugavet property: geometric characterizations

Theorem [KSSW]

- X Banach space. TFAE:
 - X has the Daugavet property.
 - For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that

Re $x^*(y) > 1 - \varepsilon$ and $||x - y|| \ge 2 - \varepsilon$.

• For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that

 $\operatorname{Re} y^*(x) > 1 - \varepsilon$ and $||x^* - y^*|| \ge 2 - \varepsilon$.

The Daugavet property: geometric characterizations

Theorem [KSSW]

- X Banach space. TFAE:
 - X has the Daugavet property.
 - For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that

Re $x^*(y) > 1 - \varepsilon$ and $||x - y|| \ge 2 - \varepsilon$.

• For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that

 $\operatorname{Re} y^*(x)>1-\varepsilon \quad \text{ and } \quad \|x^*-y^*\|\geqslant 2-\varepsilon.$

• For every $x \in S_X$ and every $\varepsilon > 0$, we have $\overline{\operatorname{co}} \left(B_X \setminus \left(x + (2 - \varepsilon) B_X \right) \right) = B_X$.

Some propaganda

X with the Daugavet property. Then:

• X does not have the Radon-Nikodým property.

(Wojtaszczyk, 1992)

Some propaganda

 \boldsymbol{X} with the Daugavet property. Then:

• X does not have the Radon-Nikodým property.

(Wojtaszczyk, 1992)

• Every weakly-open subset of *B*_X has diameter 2. (*Shvidkoy*, 2000)

Some propaganda

X with the Daugavet property. Then:

• X does not have the Radon-Nikodým property.

(Wojtaszczyk, 1992)

- Every weakly-open subset of *B_X* has diameter 2. (*Shvidkoy*, 2000)
- X contains a copy of ℓ_1 . X^{*} contains a copy of $L_1[0,1]$.

(Kadets-Shvidkoy-Sirotkin-Werner, 2000)

Some propaganda

X with the Daugavet property. Then:

• X does not have the Radon-Nikodým property.

(Wojtaszczyk, 1992)

- Every weakly-open subset of B_X has diameter 2. (Shvidkoy, 2000)
- X contains a copy of ℓ_1 . X^{*} contains a copy of $L_1[0,1]$. (Kadets-Shvidkoy-Sirotkin-Werner, 2000)
- X does not have unconditional basis.

(Kadets, 1996)

Some propaganda

X with the Daugavet property. Then:

• X does not have the Radon-Nikodým property.

(Wojtaszczyk, 1992)

- Every weakly-open subset of B_X has diameter 2. (Shvidkoy, 2000)
- X contains a copy of ℓ_1 . X^{*} contains a copy of $L_1[0,1]$. (Kadets-Shvidkoy-Sirotkin-Werner, 2000)
- X does not have unconditional basis.

(Kadets, 1996)

 $\bullet~X$ does not embed into a unconditional sum of Banach spaces without a copy of $\ell_1.$

(Shvidkoy, 2000)

Miguel Martín (University of Granada (Spain))

Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, $T \in L(X)$:

Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, $T \in L(X)$:

• sup Re
$$V(T) = ||T|| \iff ||Id + T|| = 1 + ||T||$$
.

Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, $T \in L(X)$:

• sup
$$\operatorname{Re} V(T) = ||T|| \iff ||\operatorname{Id} + T|| = 1 + ||T||$$
.

•
$$v(T) = ||T|| \iff \max_{\theta \in \mathbb{T}} ||\mathrm{Id} + \theta T|| = 1 + ||T||.$$

Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, $T \in L(X)$:

• sup
$$\operatorname{Re} V(T) = ||T|| \iff ||\operatorname{Id} + T|| = 1 + ||T||.$$

•
$$v(T) = ||T|| \iff \max_{\theta \in \mathbb{T}} ||\mathrm{Id} + \theta T|| = 1 + ||T||.$$

X Banach space:

• Daugavet property (DPr): every rank-one T satisfies

$$\|Id + T\| = 1 + \|T\|$$
 (DE)

Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, $T \in L(X)$:

• sup
$$\operatorname{Re} V(T) = ||T|| \iff ||\operatorname{Id} + T|| = 1 + ||T||.$$

•
$$v(T) = ||T|| \iff \max_{\theta \in \mathbb{T}} ||\mathrm{Id} + \theta T|| = 1 + ||T||.$$

X Banach space:

• Daugavet property (DPr): every rank-one T satisfies

$$\| \mathrm{Id} + T \| = 1 + \| T \|$$
 (DE)

• numerical index 1: EVERY T satisfies

$$\max_{\theta \in \mathbb{T}} \| \mathrm{Id} + \theta \, T \| = 1 + \| T \| \tag{aDE}$$

Miguel Martín (University of Granada (Spain))

Observation (Duncan-McGregor-Price-White, 1970)

X Banach space, $T \in L(X)$:

• sup Re
$$V(T) = ||T|| \iff ||Id + T|| = 1 + ||T||.$$

•
$$v(T) = ||T|| \iff \max_{\theta \in \mathbb{T}} ||\mathrm{Id} + \theta T|| = 1 + ||T||.$$

X Banach space:

• Daugavet property (DPr): every rank-one T satisfies

$$\|Id + T\| = 1 + \|T\|$$
 (DE)

• numerical index 1: EVERY T satisfies

$$\max_{\theta \in \mathbb{T}} \| \mathrm{Id} + \theta T \| = 1 + \| T \|$$
 (aDE)

The alternative Daugavet property (M.–Oikhberg, 2004)

alternative Daugavet property (ADP): every rank-one $T \in L(X)$ satisfies (aDE). \bigstar Then, every weakly compact operator satisfies (aDE).

Miguel Martín (University of Granada (Spain))

Relations between the properties

Relations between the properties

Examples

- $C([0,1], K(\ell_2))$ has DPr, but has not numerical index 1
- c_0 has numerical index 1, but has not DPr
- $c_0 \oplus_{\infty} C([0,1], K(\ell_2))$ has ADP, neither DPr nor numerical index 1

Relations between the properties

Examples

- $C([0,1], K(\ell_2))$ has DPr, but has not numerical index 1
- c_0 has numerical index 1, but has not DPr
- $c_0 \oplus_{\infty} C([0,1], K(\ell_2))$ has ADP, neither DPr nor numerical index 1

Remarks

• For RNP or Asplund spaces, ADP

>	\Longrightarrow	numerical	index	

• Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.

Miguel Martín (University of Granada (Spain))

Theorem

- \boldsymbol{X} Banach space. TFAE:
 - X has the ADP.

Every rank-one operator $T \in L(X)$ (equivalently, every weakly compact operator) satisfies

 $\max_{|\omega|=1} \| \mathrm{Id} + \omega \, T \| = 1 + \| T \|.$

Theorem

- \boldsymbol{X} Banach space. TFAE:
 - X has the ADP.
 - For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that

 $|x^*(y)| > 1 - \varepsilon$ and $||x - y|| \ge 2 - \varepsilon$.

• For every $x\in S_X,\ x^*\in S_{X^*}$, and $\varepsilon>0,$ there exists $y^*\in S_{X^*}$ such that

 $|y^*(x)| > 1 - \varepsilon$ and $||x^* - y^*|| \ge 2 - \varepsilon$.

Theorem

- \boldsymbol{X} Banach space. TFAE:
 - X has the ADP.
 - For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that

 $|x^*(y)| > 1 - \varepsilon$ and $||x - y|| \ge 2 - \varepsilon$.

• For every $x\in S_X,\ x^*\in S_{X^*}$, and $\varepsilon>0,$ there exists $y^*\in S_{X^*}$ such that

 $|y^*(x)| > 1 - \varepsilon$ and $||x^* - y^*|| \ge 2 - \varepsilon$.

Theorem

- \boldsymbol{X} Banach space. TFAE:
 - X has the ADP.
 - For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y \in S_X$ such that

 $|x^*(y)| > 1 - \varepsilon$ and $||x - y|| \ge 2 - \varepsilon$.

• For every $x \in S_X$, $x^* \in S_{X^*}$, and $\varepsilon > 0$, there exists $y^* \in S_{X^*}$ such that

 $|y^*(x)|>1-\varepsilon \quad \text{ and } \quad \|x^*-y^*\|\geqslant 2-\varepsilon.$

• For every $x \in S_X$ and every $\varepsilon > 0$, we have $B_X = \overline{\operatorname{co}} \left(\mathbb{T} \left\{ y \in B_X : ||x - y|| \ge 2 - \varepsilon \right\} \right).$

$\{y \in B_X : x+y > 2 - \varepsilon\}$	<i>x</i>	
$\{y \in B_X : x - y > 2 - \varepsilon\}$		

Let V_* be the predual of the von Neumann algebra V.

Let V_* be the predual of the von Neumann algebra V.

The Daugavet property of V_* is equivalent to:

- V has no atomic projections, or
- the unit ball of V_* has no extreme points.

Let V_* be the predual of the von Neumann algebra V.

The Daugavet property of V_* is equivalent to:

- V has no atomic projections, or
- the unit ball of V_* has no extreme points.

V_* has numerical index 1 iff:

- V is commutative, or
- $|v^*(v)| = 1$ for $v \in \text{ext}(B_V)$ and $v^* \in \text{ext}(B_{V^*})$.

Let V_* be the predual of the von Neumann algebra V.

The Daugavet property of V_* is equivalent to:

- V has no atomic projections, or
- the unit ball of V_* has no extreme points.

V_* has numerical index 1 iff:

• V is commutative, or

• $|v^*(v)| = 1$ for $v \in \operatorname{ext}(B_V)$ and $v^* \in \operatorname{ext}(B_{V^*})$.

The alternative Daugavet property of V_* is equivalent to:

- the atomic projections of V are central, or
- $|v(v_*)| = 1$ for $v \in \operatorname{ext}{(B_V)}$ and $v_* \in \operatorname{ext}{(B_{V_*})}$, or
- $V = C \oplus_{\infty} N$, where C is commutative and N has no atomic projections.

Let X be a C^* -algebra.

Let X be a C^* -algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^* does not have any w^* -strongly exposed point.

Let X be a C^* -algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^* does not have any w^* -strongly exposed point.

X has numerical index 1 iff:

• X is commutative, or

•
$$|x^{**}(x^*)| = 1$$
 for $x^{**} \in ext(B_{X^{**}})$ and $x^* \in ext(B_{X^*})$.

Let X be a C^* -algebra.

The Daugavet property of X is equivalent to:

- X does not have any atomic projection, or
- the unit ball of X^* does not have any w^* -strongly exposed point.

X has numerical index 1 iff:

• X is commutative, or

•
$$|x^{**}(x^*)| = 1$$
 for $x^{**} \in ext(B_{X^{**}})$ and $x^* \in ext(B_{X^*})$.

The alternative Daugavet property of X is equivalent to:

- the atomic projections of X are central, or
- $|x^{**}(x^*)| = 1$, for $x^{**} \in \text{ext}(B_{X^{**}})$, and $x^* \in B_{X^*}$ w^* -strongly exposed, or
- \exists a commutative ideal Y such that X/Y has the Daugavet property.

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)

Not every real Banach space can be renormed with the ADP.

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)

Not every real Banach space can be renormed with the ADP.

• X real reflexive with ADP \implies X finite-dimensional.

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)

Not every real Banach space can be renormed with the ADP.

- X real reflexive with ADP \implies X finite-dimensional.
- Moreover, X real, RNP, $\dim(X) = \infty$, and ADP, then $X \supset \ell_1$.

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)

Not every real Banach space can be renormed with the ADP.

- X real reflexive with ADP \implies X finite-dimensional.
- Moreover, X real, RNP, $\dim(X) = \infty$, and ADP, then $X \supset \ell_1$.

A very recent result (Avilés-Kadets-M.-Merí-Shepelska)

If X is real, $\dim(X) = \infty$ and X has the ADP, then $X^* \supset \ell_1$.

Remark

Since when we use the numerical index 1 only rank-one operators may be used, most of the known results are valid for the ADP.

Theorem (López–M.–Payá, 1999)

Not every real Banach space can be renormed with the ADP.

- X real reflexive with ADP \implies X finite-dimensional.
- Moreover, X real, RNP, $\dim(X) = \infty$, and ADP, then $X \supset \ell_1$.

A very recent result (Avilés-Kadets-M.-Merí-Shepelska)

If X is real, $\dim(X) = \infty$ and X has the ADP, then $X^* \supset \ell_1$.

A renorming result (Boyko-Kadets-M.-Merí, 2009)

If X is separable, $X \supset c_0$, then X can be renormed with the ADP.

Miguel Martín (University of Granada (Spain))

Remark

Also some isometric properties of Banach spaces with numerical index $1\ {\rm are}$ actually true for ADP.

Remark

Also some isometric properties of Banach spaces with numerical index $1\ {\rm are}$ actually true for ADP.

Theorem (Kadets–M.–Merí–Payá, 2009)

 \boldsymbol{X} infinite-dimensional with the ADP. Then

- X^* is neither smooth nor strictly convex.
- The norm of *X* cannot be Fréchet-smooth.
- There is no WLUR points in S_X .

Remark

Also some isometric properties of Banach spaces with numerical index $1\ {\rm are}$ actually true for ADP.

Theorem (Kadets–M.–Merí–Payá, 2009)

 \boldsymbol{X} infinite-dimensional with the ADP. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X .

Corollary

 $X=C(\mathbb{T})/A(\mathbb{D}).$ Since $X^*=H^1$ is smooth \implies nor X nor H^1 have the ADP.

Remark

Also some isometric properties of Banach spaces with numerical index $1\ {\rm are}$ actually true for ADP.

Theorem (Kadets–M.–Merí–Payá, 2009)

 \boldsymbol{X} infinite-dimensional with the ADP. Then

- X^{*} is neither smooth nor strictly convex.
- The norm of X cannot be Fréchet-smooth.
- There is no WLUR points in S_X .

Corollary

 $X=C(\mathbb{T})/A(\mathbb{D}).$ Since $X^*=H^1$ is smooth \implies nor X nor H^1 have the ADP.

Open question

Is there X with the ADP which is smooth or strictly convex ?

Miguel Martín (University of Granada (Spain))

Lush spaces

6 Lush spaces

- Definition and examples
- Lush renorming
- Reformulations of lushness and applications
- Lushness is not equivalent to numerical index one

K. Boyko, V. Kadets, M. Martín, and J. Merí.

Properties of lush spaces and applications to Banach spaces with numerical index 1. *Studia Math.* (2009).

K. Boyko, V. Kadets, M. Martín, and D. Werner.

Numerical index of Banach spaces and duality. *Math. Proc. Cambridge Philos. Soc.* (2007).

V. Kadets, M. Martín, J. Merí, and R. Payá.

Convexity and smoothnes of Banach spaces with numerical index one. *Illinois J. Math.* (to appear).

V. Kadets, M. Martín, J. Merí, and V. Shepelska. Lushness, numerical index one and duality. *J. Math. Anal. Appl.* (2009). Lush spaces

Motivation

Lush spaces

Motivation

Remark

• Usually, when we show that a Banach space has numerical index 1, we actually prove more.

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

(a) Lindenstrauss, 1964: X has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

- (a) **Lindenstrauss, 1964:** *X* has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.
- (b) **Fullerton, 1961:** X is a CL-space if B_X is the absolutely convex hull of every maximal face of S_X .

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

- (a) **Lindenstrauss, 1964:** *X* has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.
- (b) **Fullerton, 1961:** X is a CL-space if B_X is the absolutely convex hull of every maximal face of S_X .
- (c) Lima, 1978: X is an almost-CL-space if B_X is the closed absolutely convex hull of every maximal face of S_X .

Remark

- Usually, when we show that a Banach space has numerical index 1, we actually prove more.
- We do not have an operator-free characterization of the spaces with numerical index 1.
- Hence, it makes sense to study geometrical sufficient conditions.

Some sufficient conditions

Let X be a Banach space. Consider:

- (a) **Lindenstrauss, 1964:** *X* has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.
- (b) **Fullerton, 1961:** X is a CL-space if B_X is the absolutely convex hull of every maximal face of S_X .
- (c) Lima, 1978: X is an almost-CL-space if B_X is the closed absolutely convex hull of every maximal face of S_X .

(a)
$$\overrightarrow{\qquad}$$
 (b) $\overrightarrow{\qquad}$ (c) $\overrightarrow{\qquad}$ $n(X) = 1$

Miguel Martín (University of Granada (Spain))

Motivation

Some sufficient conditions

Let X be a Banach space. Consider:

- (a) **Lindenstrauss, 1964:** *X* has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.
- (b) **Fullerton, 1961:** X is a CL-space if B_X is the absolutely convex hull of every maximal face of S_X .
- (c) Lima, 1978: X is an almost-CL-space if B_X is the closed absolutely convex hull of every maximal face of S_X .

(a)
$$\xrightarrow{\longrightarrow}$$
 (b) $\xrightarrow{\longrightarrow}$ (c) $\xrightarrow{\longrightarrow}$ $n(X) = 1$

Motivation

Some sufficient conditions

Let X be a Banach space. Consider:

- (a) **Lindenstrauss, 1964:** *X* has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.
- (b) **Fullerton, 1961:** X is a CL-space if B_X is the absolutely convex hull of every maximal face of S_X .
- (c) Lima, 1978: X is an almost-CL-space if B_X is the closed absolutely convex hull of every maximal face of S_X .

Observation

Showing that (c) $\implies n(X) = 1$, one realizes that (c) is too much.

Motivation

Some sufficient conditions

Let X be a Banach space. Consider:

- (a) **Lindenstrauss, 1964:** *X* has the 3.2.I.P. if the intersection of every family of three mutually intersecting balls is not empty.
- (b) **Fullerton, 1961:** X is a CL-space if B_X is the absolutely convex hull of every maximal face of S_X .
- (c) Lima, 1978: X is an almost-CL-space if B_X is the closed absolutely convex hull of every maximal face of S_X .

(a)
$$\xrightarrow{\longrightarrow}$$
 (b) $\xrightarrow{\longrightarrow}$ (c) $\xrightarrow{\longrightarrow}$ $n(X) = 1$

Observation

Showing that (c) $\implies n(X) = 1$, one realizes that (c) is too much.

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

 $x \in S(B_X, x^*, \varepsilon)$ and $dist(y, aconv(S(B_X, x^*, \varepsilon))) < \varepsilon$.

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

 $x \in S(B_X, x^*, \varepsilon)$ and $dist(y, aconv(S(B_X, x^*, \varepsilon))) < \varepsilon$.

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon)$$
 and $dist(y, aconv(S(B_X, x^*, \varepsilon))) < \varepsilon$.

Theorem

 $X \text{ lush } \implies n(X) = 1.$

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon)$$
 and $dist(y, aconv(S(B_X, x^*, \varepsilon))) < \varepsilon$.

Theorem

 $X \text{ lush } \implies n(X) = 1.$

Proof.

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon)$$
 and $dist(y, aconv(S(B_X, x^*, \varepsilon))) < \varepsilon$.

Theorem

 $X \text{ lush } \implies n(X) = 1.$

Proof.

•
$$T \in L(X)$$
 with $||T|| = 1$, $\varepsilon > 0$. Find $y_0 \in S_X$ which $||Ty_0|| > 1 - \varepsilon$.

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

 $x \in S(B_X, x^*, \varepsilon)$ and $dist(y, aconv(S(B_X, x^*, \varepsilon))) < \varepsilon$.

Theorem

 $X \text{ lush } \implies n(X) = 1.$

Proof.

- $T \in L(X)$ with ||T|| = 1, $\varepsilon > 0$. Find $y_0 \in S_X$ which $||Ty_0|| > 1 \varepsilon$.
- Use lushness for $x_0 = Ty_0 / \|Ty_0\|$ and y_0 to get $x^* \in S_{X^*}$ and

$$\begin{split} v &= \sum_{i=1}^n \lambda_i \theta_i x_i \quad \text{ where } \ x_i \in S(B_X, x^*, \varepsilon), \ \lambda_i \in [0, 1], \ \sum \lambda_i = 1, \ \theta_i \in \mathbb{T}, \\ \text{with} \quad \operatorname{Re} x^*(x_0) > 1 - \varepsilon \quad \text{ and } \quad \|v - y_0\| < \varepsilon. \end{split}$$

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

 $x \in S(B_X, x^*, \varepsilon)$ and $dist(y, aconv(S(B_X, x^*, \varepsilon))) < \varepsilon$.

Theorem

 $X \text{ lush } \implies n(X) = 1.$

Proof.

۲

- $T \in L(X)$ with ||T|| = 1, $\varepsilon > 0$. Find $y_0 \in S_X$ which $||Ty_0|| > 1 \varepsilon$.
- Use lushness for $x_0 = Ty_0 / \|Ty_0\|$ and y_0 to get $x^* \in S_{X^*}$ and

$$\begin{split} v &= \sum_{i=1}^n \lambda_i \theta_i x_i \quad \text{where} \quad x_i \in S(B_X, x^*, \varepsilon), \ \lambda_i \in [0, 1], \ \sum \lambda_i = 1, \ \theta_i \in \mathbb{T}, \\ \text{with} \quad \operatorname{Re} x^*(x_0) > 1 - \varepsilon \quad \text{and} \quad \|v - y_0\| < \varepsilon. \\ \text{Then} \ |x^*(Tv)| &= \left| x^*(x_0) - x^* \left(T\left(\frac{y_0}{\|Ty_0\|} - v \right) \right) \right| \sim \|T\|. \end{split}$$

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

 $x \in S(B_X, x^*, \varepsilon)$ and $dist(y, aconv(S(B_X, x^*, \varepsilon))) < \varepsilon$.

Theorem

 $X \text{ lush } \implies n(X) = 1.$

Proof.

- $T \in L(X)$ with ||T|| = 1, $\varepsilon > 0$. Find $y_0 \in S_X$ which $||Ty_0|| > 1 \varepsilon$.
- Use lushness for $x_0 = Ty_0 / \|Ty_0\|$ and y_0 to get $x^* \in S_{X^*}$ and

$$\begin{split} v &= \sum_{i=1}^n \lambda_i \theta_i x_i \quad \text{where} \quad x_i \in S(B_X, x^*, \varepsilon), \ \lambda_i \in [0, 1], \ \sum \lambda_i = 1, \ \theta_i \in \mathbb{T}, \\ \text{with} \quad \operatorname{Re} x^*(x_0) > 1 - \varepsilon \quad \text{and} \quad \|v - y_0\| < \varepsilon. \end{split}$$

$$\bullet \quad \text{Then} \ |x^*(Tv)| &= \left| x^*(x_0) - x^* \left(T\left(\frac{y_0}{\|Ty_0\|} - v \right) \right) \right| \sim \|T\|. \end{split}$$

• By a convexity argument, $\exists i \text{ such that } |x^*(Tx_i)| \sim ||T||$ and $\operatorname{Re} x^*(x_i) \sim 1$.

Lushness (Boyko–Kadets–M.–Werner, 2007)

X is lush if given $x, y \in S_X$, $\varepsilon > 0$, there is $x^* \in S_{X^*}$ such that

 $x \in S(B_X, x^*, \varepsilon)$ and $dist(y, aconv(S(B_X, x^*, \varepsilon))) < \varepsilon$.

Theorem

 $X \text{ lush } \implies n(X) = 1.$

Proof.

- $T \in L(X)$ with ||T|| = 1, $\varepsilon > 0$. Find $y_0 \in S_X$ which $||Ty_0|| > 1 \varepsilon$.
- Use lushness for $x_0 = Ty_0 / ||Ty_0||$ and y_0 to get $x^* \in S_{X^*}$ and

$$v = \sum_{i=1}^{n} \lambda_i \theta_i x_i \quad \text{where} \quad x_i \in S(B_X, x^*, \varepsilon), \ \lambda_i \in [0, 1], \ \sum \lambda_i = 1, \ \theta_i \in \mathbb{T},$$

with $\operatorname{Re} x^*(x_0) > 1 - \varepsilon$ and $\|v - y_0\| < \varepsilon$.

- Then $|x^*(Tv)| = \left|x^*(x_0) x^*\left(T\left(\frac{y_0}{\|Ty_0\|} v\right)\right)\right| \sim \|T\|.$
- By a convexity argument, $\exists i$ such that $|x^*(Tx_i)| \sim ||T||$ and $\operatorname{Re} x^*(x_i) \sim 1$.
- Then $\max_{\omega \in \mathbb{T}} \| \mathrm{Id} + \omega T \| \sim 1 + \| T \| \implies v(T) \sim \| T \|.$

Lush spaces Definition and examples

Examples of lush spaces

Examples of lush spaces

Almost-CL-spaces.

Examples of lush spaces

- Almost-CL-spaces.
- **2** In particular, C(K), $L_1(\mu)$, $C_0(L)$...

Examples of lush spaces

- Almost-CL-spaces.
- ② In particular, C(K), $L_1(\mu)$, $C_0(L)$...
- **③** Preduals of $L_1(\mu)$ -spaces.

Examples of lush spaces

- Almost-CL-spaces.
- **2** In particular, C(K), $L_1(\mu)$, $C_0(L)$...
- **③** Preduals of $L_1(\mu)$ -spaces.

C-rich subspaces

K compact, *X* subspace of C(K) is C-rich iff $\forall U$ open nonempty and $\forall \varepsilon > 0$

 $\text{exists} \quad h: K \longrightarrow [0,1] \text{ continuous, } \text{supp}(h) \subseteq U \quad \text{such that} \quad \operatorname{dist}(h,X) < \varepsilon.$

Examples of lush spaces

- Almost-CL-spaces.
- $\$ In particular, C(K), $L_1(\mu)$, $C_0(L)$...
- **③** Preduals of $L_1(\mu)$ -spaces.

C-rich subspaces

K compact, *X* subspace of *C*(*K*) is C-rich iff $\forall U$ open nonempty and $\forall \varepsilon > 0$

exists $h: K \longrightarrow [0,1]$ continuous, $supp(h) \subseteq U$ such that $dist(h, X) < \varepsilon$.

More examples of lush spaces

• C-rich subspaces of C(K).

Examples of lush spaces

- Almost-CL-spaces.
- $\$ In particular, C(K), $L_1(\mu)$, $C_0(L)$...
- **③** Preduals of $L_1(\mu)$ -spaces.

C-rich subspaces

K compact, *X* subspace of *C*(*K*) is C-rich iff $\forall U$ open nonempty and $\forall \varepsilon > 0$

exists $h: K \longrightarrow [0,1]$ continuous, $\operatorname{supp}(h) \subseteq U$ such that $\operatorname{dist}(h, X) < \varepsilon$.

More examples of lush spaces

- C-rich subspaces of C(K).
- **(**) In particular, finite-codimensional subspaces of C[0, 1].

Examples of lush spaces

- Almost-CL-spaces.
- **2** In particular, C(K), $L_1(\mu)$, $C_0(L)$...
- **③** Preduals of $L_1(\mu)$ -spaces.

C-rich subspaces

K compact, *X* subspace of *C*(*K*) is C-rich iff $\forall U$ open nonempty and $\forall \varepsilon > 0$ exists $h: K \longrightarrow [0, 1]$ continuous, supp $(h) \subseteq U$ such that $dist(h, X) < \varepsilon$.

More examples of lush spaces

- C-rich subspaces of C(K).
- In particular, finite-codimensional subspaces of C[0, 1].
- $C_E(K||L)$, where L nowhere dense in K and $E \subseteq C(L)$.

Examples of lush spaces

- Almost-CL-spaces.
- $\$ In particular, C(K), $L_1(\mu)$, $C_0(L)$...
- **③** Preduals of $L_1(\mu)$ -spaces.

C-rich subspaces

K compact, *X* subspace of *C*(*K*) is C-rich iff $\forall U$ open nonempty and $\forall \varepsilon > 0$ exists $h: K \longrightarrow [0, 1]$ continuous, supp $(h) \subseteq U$ such that $dist(h, X) < \varepsilon$.

More examples of lush spaces

- C-rich subspaces of C(K).
- In particular, finite-codimensional subspaces of C[0, 1].
- $C_E(K||L)$, where L nowhere dense in K and $E \subseteq C(L)$.
- Y if $c_0 \subseteq Y \subseteq \ell_{\infty}$ (canonical copies).

The goal

When we may get a lush equivalent norm?

The goal

When we may get a lush equivalent norm?

Proposition

The goal

When we may get a lush equivalent norm?

Proposition

Recall this family of examples of lush spaces

• Y if $c_0 \subseteq Y \subseteq \ell_{\infty}$ (canonical copies).

The goal

When we may get a lush equivalent norm?

Proposition

Recall this family of examples of lush spaces

• Y if $c_0 \subseteq Y \subseteq \ell_{\infty}$ (canonical copies).

Theorem

X separable, $X \supseteq c_0 \implies X$ admits an equivalent lush norm.

The goal

When we may get a lush equivalent norm?

Proposition

Recall this family of examples of lush spaces

• Y if $c_0 \subseteq Y \subseteq \ell_{\infty}$ (canonical copies).

Theorem

X separable, $X \supseteq c_0 \implies X$ admits an equivalent lush norm.

Corollary

Every closed subspace of c_0 admits an equivalent lush norm.

The goal

When we may get a lush equivalent norm?

Theorem

X separable, $X \supseteq c_0 \implies X$ admits an equivalent lush norm.

Corollary

Every closed subspace of c_0 admits an equivalent lush norm.

The goal

When we may get a lush equivalent norm?

Theorem

X separable, $X \supseteq c_0 \implies X$ admits an equivalent lush norm.

Corollary

Every closed subspace of c_0 admits an equivalent lush norm.

The goal

When we may get a lush equivalent norm?

Proposition X s Open problems T is • Find more sufficient conditions to get equivalent lush norms. • When $X \supseteq \ell_1$? Rec • Y if $c_0 \subseteq Y \subseteq \ell_{\infty}$ (canonical copies).

Theorem

X separable, $X \supseteq c_0 \implies X$ admits an equivalent lush norm.

Corollary

Every closed subspace of c_0 admits an equivalent lush norm.

The goal

When we may get a lush equivalent norm?

Proposition

X s Open problems

- *T* is Find more sufficient conditions to get equivalent lush norms.
 - When $X \supseteq \ell_1$?

• When
$$X \supseteq \ell_{\infty}$$
 ?

• Y if $c_0 \subseteq Y \subseteq \ell_{\infty}$ (canonical copies).

Theorem

X separable, $X \supseteq c_0 \implies X$ admits an equivalent lush norm.

Corollary

Every closed subspace of c_0 admits an equivalent lush norm.

Observation

X Banach space. Consider the following assertions.

(a) Exists
$$A \subset B_{X^*}$$
 norming, $|x^{**}(a^*)| = 1 \quad \forall a^* \in A \text{ and } \forall x^{**} \in \text{ext}(B_{X^{**}})$.

(b) For
$$x \in S_X$$
 and $\varepsilon > 0$, exists $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon)$$
 and $B_X = \overline{\operatorname{aconv}}(S(B_X, x^*, \varepsilon)).$
(a) \longrightarrow (b) \longrightarrow lushness

Observation

X Banach space. Consider the following assertions.

(a) Exists
$$A \subset B_{X^*}$$
 norming, $|x^{**}(a^*)| = 1 \quad \forall a^* \in A \text{ and } \forall x^{**} \in \text{ext}(B_{X^{**}}).$

(b) For
$$x \in S_X$$
 and $\varepsilon > 0$, exists $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon)$$
 and $B_X = \overline{\operatorname{aconv}}(S(B_X, x^*, \varepsilon)).$

$$(a) \longrightarrow (b) \longrightarrow lushness$$

Definition (Werner, 1997)

2

X is nicely embedded in $C_b(\Omega)$ if exists $J : X \longrightarrow C_b(\Omega)$ linear isometry with (N1) $||J^*\delta_s|| = 1 \ \forall s \in \Omega$, (N2) span $(J^*\delta_s)$ L-summand in $X^* \ \forall s \in \Omega$.

Observation

 \boldsymbol{X} Banach space. Consider the following assertions.

(a) Exists
$$A \subset B_{X^*}$$
 norming, $|x^{**}(a^*)| = 1 \quad \forall a^* \in A \text{ and } \forall x^{**} \in \text{ext}(B_{X^{**}})$.

(b) For
$$x \in S_X$$
 and $\varepsilon > 0$, exists $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon)$$
 and $B_X = \overline{\operatorname{aconv}}(S(B_X, x^*, \varepsilon))$

$$(a) \longrightarrow (b) \longrightarrow lushness$$

Definition (Werner, 1997)

X is nicely embedded in $C_b(\Omega)$ if exists $J: X \longrightarrow C_b(\Omega)$ linear isometry with

(N1)
$$||J^*\delta_s|| = 1 \quad \forall s \in \Omega,$$

(N2) span $(J^*\delta_s)$ *L*-summand in $X^* \forall s \in \Omega$.

Even more examples of lush spaces

Observation

 \boldsymbol{X} Banach space. Consider the following assertions.

(a) Exists
$$A \subset B_{X^*}$$
 norming, $|x^{**}(a^*)| = 1 \quad \forall a^* \in A \text{ and } \forall x^{**} \in \text{ext}(B_{X^{**}}).$

(b) For
$$x \in S_X$$
 and $\varepsilon > 0$, exists $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon)$$
 and $B_X = \overline{\operatorname{aconv}}(S(B_X, x^*, \varepsilon))$

$$(a) \longrightarrow (b) \longrightarrow lushness$$

Definition (Werner, 1997)

X is nicely embedded in $C_b(\Omega)$ if exists $J: X \longrightarrow C_b(\Omega)$ linear isometry with

(N1) $||J^*\delta_s|| = 1 \ \forall s \in \Omega$,

(N2) span $(J^*\delta_s)$ *L*-summand in $X^* \forall s \in \Omega$.

Even more examples of lush spaces

O Nicely embedded Banach spaces (they fulfil (a)).

Observation

 \boldsymbol{X} Banach space. Consider the following assertions.

(a) Exists
$$A \subset B_{X^*}$$
 norming, $|x^{**}(a^*)| = 1 \quad \forall a^* \in A \text{ and } \forall x^{**} \in \text{ext}(B_{X^{**}}).$

(b) For
$$x \in S_X$$
 and $\varepsilon > 0$, exists $x^* \in S_{X^*}$ such that

$$x \in S(B_X, x^*, \varepsilon)$$
 and $B_X = \overline{\operatorname{aconv}}(S(B_X, x^*, \varepsilon))$

$$(a) \longrightarrow (b) \longrightarrow lushness$$

Definition (Werner, 1997)

X is nicely embedded in $C_b(\Omega)$ if exists $J: X \longrightarrow C_b(\Omega)$ linear isometry with

(N1) $||J^*\delta_s|| = 1 \ \forall s \in \Omega$,

(N2) span $(J^*\delta_s)$ *L*-summand in $X^* \forall s \in \Omega$.

Even more examples of lush spaces

Nicely embedded Banach spaces (they fulfil (a)).

() In particular, function algebras (as $A(\mathbb{D})$ and H^{∞}).

Some reformulations of lushness

Proposition

- X Banach space. TFAE:
 - X is lush,
 - Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Proposition

\boldsymbol{X} Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Separable lush spaces

X separable. TFAE:

- X is lush.
- There is $G \subseteq S_{X^*}$ norming such that

$$B_X = \overline{\operatorname{aconv}(S(B_X, x^*, \varepsilon)))}$$

for every $\varepsilon > 0$ and every $x^* \in G$.

• There is $G \subseteq \operatorname{ext}(B_{X^*})$ norming such that

$$|x^{**}(x^*)| = 1$$
 $(x^{**} \in \text{ext}(B_{X^{**}}), x^* \in G).$

Proposition

\boldsymbol{X} Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Separable lush spaces (real case)

X real separable. TFAE:

- X is lush.
- There is $G \subseteq S_{X^*}$ norming such that

$$B_X = \overline{\operatorname{aconv}}\left(\left\{x \in B_X : x^*(x) = 1\right\}\right) \qquad (x^* \in G).$$

Therefore, $|x^{**}(x^*)| = 1 \quad \forall x^{**} \in \operatorname{ext}(B_{X^{**}}) \quad \forall x^* \in G.$

Proposition

\boldsymbol{X} Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Separable lush spaces (real case)

X real separable. TFAE:

- X is lush.
- There is $G \subseteq S_{X^*}$ norming such that

$$B_X = \overline{\operatorname{aconv}}\left(\left\{x \in B_X : x^*(x) = 1\right\}\right) \qquad (x^* \in G).$$

Therefore, $|x^{**}(x^*)| = 1 \ \forall x^{**} \in \text{ext}(B_{X^{**}}) \ \forall x^* \in G.$

We almost returned to the almost-CL-space definition !!

Miguel Martín (University of Granada (Spain))

Proposition

\boldsymbol{X} Banach space. TFAE:

- X is lush,
- Every separable $E \subset X$ is contained in a separable lush Y with $E \subset Y \subset X$.

Separable lush spaces (real case)

X real separable. TFAE:

- X is lush.
- There is $G \subseteq S_{X^*}$ norming such that

$$B_X = \overline{\operatorname{aconv}}\left(\left\{x \in B_X : x^*(x) = 1\right\}\right) \qquad (x^* \in G).$$

Therefore, $|x^{**}(x^*)| = 1 \ \forall x^{**} \in \text{ext}(B_{X^{**}}) \ \forall x^* \in G.$

Consequence (real case)

 $X \subseteq C[0,1]$ strictly convex or smooth $\implies C[0,1]/X$ contains C[0,1].

Miguel Martín (University of Granada (Spain))

Remark

X lush separable, $\dim(X)=\infty \implies$ there is $G\in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1$$
 $(x^{**} \in \operatorname{ext}(B_{X^{**}}), x^* \in G).$

Remark

X lush separable, $\dim(X)=\infty \implies$ there is $G\in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1$$
 $(x^{**} \in \operatorname{ext}(B_{X^{**}}), x^* \in G).$

Proposition (López–M.–Payá, 1999)

X real, $A \subset S_X$ infinite such that

$$|x^*(a)| = 1$$
 $(x^* \in ext(B_{X^*}), a \in A).$

Then, $X \supseteq c_0$ or $X \supseteq \ell_1$.

Remark

X lush separable, $\dim(X)=\infty \implies$ there is $G\in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1$$
 $(x^{**} \in \operatorname{ext}(B_{X^{**}}), x^* \in G).$

Proposition (López–M.–Payá, 1999)

X real, $A \subset S_X$ infinite such that

$$|x^*(a)| = 1$$
 $(x^* \in ext(B_{X^*}), a \in A).$

Then, $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

 $X \text{ real lush, } \dim(X) = \infty \implies X^* \supseteq \ell_1.$

Remark

X lush separable, $\dim(X)=\infty \implies$ there is $G\in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1$$
 $(x^{**} \in \operatorname{ext}(B_{X^{**}}), x^* \in G).$

Proposition (López–M.–Payá, 1999)

X real, $A \subset S_X$ infinite such that

$$|x^*(a)| = 1$$
 $(x^* \in ext(B_{X^*}), a \in A).$

Then, $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

 $X \text{ real lush, } \dim(X) = \infty \implies X^* \supseteq \ell_1.$

Remark

X lush separable, $\dim(X)=\infty \implies$ there is $G\in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1$$
 $(x^{**} \in \operatorname{ext}(B_{X^{**}}), x^* \in G).$

Proposition (López–M.–Payá, 1999)

X real, $A \subset S_X$ infinite such that

$$|x^*(a)| = 1$$
 $(x^* \in ext(B_{X^*}), a \in A).$

Then, $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

X real lush, $\dim(X) = \infty \implies X^* \supseteq \ell_1$.

Proof.

• There is $E \subseteq X$ separable and lush.

Remark

X lush separable, $\dim(X)=\infty \implies$ there is $G\in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1$$
 $(x^{**} \in \operatorname{ext}(B_{X^{**}}), x^* \in G).$

Proposition (López–M.–Payá, 1999)

X real, $A \subset S_X$ infinite such that

$$|x^*(a)| = 1$$
 $(x^* \in ext(B_{X^*}), a \in A).$

Then, $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

X real lush, $\dim(X) = \infty \implies X^* \supseteq \ell_1$.

- There is $E \subseteq X$ separable and lush.
- Then $E^* \supseteq c_0$ or $E^* \supseteq \ell_1 \implies E^* \supseteq \ell_1$.

Remark

X lush separable, $\dim(X)=\infty \implies$ there is $G\in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1$$
 $(x^{**} \in \operatorname{ext}(B_{X^{**}}), x^* \in G).$

Proposition (López–M.–Payá, 1999)

X real, $A \subset S_X$ infinite such that

$$|x^*(a)| = 1$$
 $(x^* \in ext(B_{X^*}), a \in A).$

Then, $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

 $X \text{ real lush, } \dim(X) = \infty \implies X^* \supseteq \ell_1.$

Proof.

- There is $E \subseteq X$ separable and lush.
- Then $E^* \supseteq c_0$ or $E^* \supseteq \ell_1 \implies E^* \supseteq \ell_1$.
- By "lifting" property of $\ell_1 \implies X^* \supseteq \ell_1$. \checkmark

Miguel Martín (University of Granada (Spain))

Remark

X lush separable, $\dim(X)=\infty \implies$ there is $G\in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1$$
 $(x^{**} \in \operatorname{ext}(B_{X^{**}}), x^* \in G).$

Proposition (López–M.–Payá, 1999)

X real, $A \subset S_X$ infinite such that

$$|x^*(a)| = 1$$
 $(x^* \in ext(B_{X^*}), a \in A).$

Then, $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

$$X \text{ real lush, } \dim(X) = \infty \implies X^* \supseteq \ell_1.$$

Question

What happens if just n(X) = 1 ?

Remark

X lush separable, $\dim(X)=\infty \implies$ there is $G\in S_{X^*}$ infinite such that

$$|x^{**}(x^*)| = 1$$
 $(x^{**} \in \operatorname{ext}(B_{X^{**}}), x^* \in G).$

Proposition (López–M.–Payá, 1999)

X real, $A \subset S_X$ infinite such that

$$|x^*(a)| = 1$$
 $(x^* \in ext(B_{X^*}), a \in A).$

Then, $X \supseteq c_0$ or $X \supseteq \ell_1$.

Main consequence

$$X \text{ real lush, } \dim(X) = \infty \implies X^* \supseteq \ell_1.$$

Question

What happens if just n(X) = 1? The same, we will prove later.

Miguel Martín (University of Granada (Spain))

Example

There is a separable Banach space ${\mathcal X}$ such that

• \mathcal{X}^* is lush but \mathcal{X} is not lush.

Example

There is a separable Banach space ${\mathcal X}$ such that

- \mathcal{X}^* is lush but \mathcal{X} is not lush.
- Since $n(\mathcal{X}^*) = 1$, also $n(\mathcal{X}) = 1$.

Example

There is a separable Banach space ${\mathcal X}$ such that

• \mathcal{X}^* is lush but \mathcal{X} is not lush.

• Since
$$n(\mathcal{X}^*) = 1$$
, also $n(\mathcal{X}) = 1$.

• The set

$$\{x^* \in S_{\mathcal{X}^*} : |x^{**}(x^*)| = 1 \text{ for every } x^{**} \in \text{ext}(B_{\mathcal{X}^{**}})\}$$

is empty.

Example

There is a separable Banach space ${\mathcal X}$ such that

• \mathcal{X}^* is lush but \mathcal{X} is not lush.

• Since
$$n(\mathcal{X}^*) = 1$$
, also $n(\mathcal{X}) = 1$.

• The set

$$\{x^* \in S_{\mathcal{X}^*} \, : \, |x^{**}(x^*)| = 1 \text{ for every } x^{**} \in \operatorname{ext}(B_{\mathcal{X}^{**}})\}$$

is empty.

Consequence

Example

There is a separable Banach space $\mathcal X$ such that

• \mathcal{X}^* is lush but \mathcal{X} is not lush.

• Since
$$n(\mathcal{X}^*) = 1$$
, also $n(\mathcal{X}) = 1$.

• The set

$$\{x^* \in S_{\mathcal{X}^*} \, : \, |x^{**}(x^*)| = 1 \text{ for every } x^{**} \in \operatorname{ext}(B_{\mathcal{X}^{**}})\}$$

is empty.

Consequence

Proposition X^{**} lush X lush

Miguel Martín (University of Granada (Spain))

Slicely countably determined spaces

Slicely countably determined spaces

Slicely countably determined spaces

- Slicely Countably Determined sets and spaces
- Applications to numerical index 1 spaces
- SCD operators
- Open questions

A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska Slicely Countably Determined Banach spaces *Trans. Amer. Math. Soc.* (to appear)

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is Slicely Countably Determined (SCD) if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is Slicely Countably Determined (SCD) if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

• every slice of A contains one of the S_n 's,

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is Slicely Countably Determined (SCD) if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_n 's,
- $A \subseteq \overline{\operatorname{conv}}(B)$ if $B \subseteq A$ satisfies $B \cap S_n \neq \emptyset \ \forall n$,

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is Slicely Countably Determined (SCD) if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_n 's,
- $A \subseteq \overline{\operatorname{conv}}(B)$ if $B \subseteq A$ satisfies $B \cap S_n \neq \emptyset \ \forall n$,
- given $\{x_n\}_{n\in\mathbb{N}}$ with $x_n\in S_n$ $\forall n\in\mathbb{N}$, $A\subseteq \overline{\operatorname{conv}}(\{x_n:n\in\mathbb{N}\})$.

X Banach space, $A \subset X$ bounded and convex.

SCD sets

A is Slicely Countably Determined (SCD) if there is a sequence $\{S_n : n \in \mathbb{N}\}$ of slices of A satisfying one of the following equivalent conditions:

- every slice of A contains one of the S_n 's,
- $A \subseteq \overline{\operatorname{conv}}(B)$ if $B \subseteq A$ satisfies $B \cap S_n \neq \emptyset \ \forall n$,
- given $\{x_n\}_{n\in\mathbb{N}}$ with $x_n\in S_n$ $\forall n\in\mathbb{N}$, $A\subseteq \overline{\operatorname{conv}}(\{x_n:n\in\mathbb{N}\})$.

Remarks

- A is SCD iff \overline{A} is SCD.
- If A is SCD, then it is separable.

Example

A separable and $A = \overline{\operatorname{conv}}(\operatorname{dent}(A)) \Longrightarrow A$ is SCD.

Example

A separable and $A = \overline{\operatorname{conv}}(\operatorname{dent}(A)) \Longrightarrow A$ is SCD.

Example

A separable and $A = \overline{\operatorname{conv}}(\operatorname{dent}(A)) \Longrightarrow A$ is SCD.

Proof.

• Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\operatorname{conv}}(\{a_n : n \in \mathbb{N}\}).$

Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \Longrightarrow A$ is SCD.

- Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\operatorname{conv}}(\{a_n : n \in \mathbb{N}\}).$
- For every $n, m \in \mathbb{N}$, take a slice $S_{n,m}$ containing a_n and of diameter 1/m.

Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \Longrightarrow A$ is SCD.

- Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\operatorname{conv}}(\{a_n : n \in \mathbb{N}\}).$
- For every $n, m \in \mathbb{N}$, take a slice $S_{n,m}$ containing a_n and of diameter 1/m.
- If $B \cap S_{n,m} \neq \emptyset \ \forall n, m \in \mathbb{N} \implies a_n \in \overline{B} \ \forall n \in \mathbb{N}$.

Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \Longrightarrow A$ is SCD.

- Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\operatorname{conv}}(\{a_n : n \in \mathbb{N}\}).$
- For every $n, m \in \mathbb{N}$, take a slice $S_{n,m}$ containing a_n and of diameter 1/m.
- If $B \cap S_{n,m} \neq \emptyset \ \forall n, m \in \mathbb{N} \implies a_n \in \overline{B} \ \forall n \in \mathbb{N}$.
- Therefore, $A = \overline{\operatorname{conv}}(\{a_n : n \in \mathbb{N}\}) \subseteq \overline{\operatorname{conv}}(\overline{B}) = \overline{\operatorname{conv}}(B)$.

Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \Longrightarrow A$ is SCD.

Proof.

- Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\operatorname{conv}}(\{a_n : n \in \mathbb{N}\}).$
- For every $n, m \in \mathbb{N}$, take a slice $S_{n,m}$ containing a_n and of diameter 1/m.
- If $B \cap S_{n,m} \neq \emptyset \ \forall n, m \in \mathbb{N} \implies a_n \in \overline{B} \ \forall n \in \mathbb{N}$.
- Therefore, $A = \overline{\operatorname{conv}}(\{a_n : n \in \mathbb{N}\}) \subseteq \overline{\operatorname{conv}}(\overline{B}) = \overline{\operatorname{conv}}(B)$.

Example

In particular, A RNP separable \implies A SCD.

Example

A separable and $A = \overline{\text{conv}}(\text{dent}(A)) \Longrightarrow A$ is SCD.

Proof.

- Take $\{a_n : n \in \mathbb{N}\}$ denting points with $A = \overline{\operatorname{conv}}(\{a_n : n \in \mathbb{N}\}).$
- For every $n, m \in \mathbb{N}$, take a slice $S_{n,m}$ containing a_n and of diameter 1/m.
- If $B \cap S_{n,m} \neq \emptyset \ \forall n, m \in \mathbb{N} \implies a_n \in \overline{B} \ \forall n \in \mathbb{N}$.
- Therefore, $A = \overline{\operatorname{conv}}(\{a_n : n \in \mathbb{N}\}) \subseteq \overline{\operatorname{conv}}(\overline{B}) = \overline{\operatorname{conv}}(B)$.

Example

In particular, A RNP separable \implies A SCD.

Corollary

- If X is separable LUR \Longrightarrow B_X is SCD.
- So, every separable space can be renormed such that $B_{(X_i|\cdot|)}$ is SCD.

Example

If X^* is separable $\implies A$ is SCD.

Example

If X^* is separable $\implies A$ is SCD.

Example

If X^* is separable $\Longrightarrow A$ is SCD.

Proof.

• Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*} .

Example

```
If X^* is separable \Longrightarrow A is SCD.
```

- Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*} .
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.

Example

```
If X^* is separable \Longrightarrow A is SCD.
```

- Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*} .
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$.

Example

```
If X^* is separable \Longrightarrow A is SCD.
```

Proof.

- Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*} .
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$.

Negative example

If X has the Daugavet property $\implies B_X$ is not SCD. Therefore, $B_{C[0,1]}$, $B_{L_1[0,1]}$ are not SCD.

Example

```
If X^* is separable \Longrightarrow A is SCD.
```

Proof.

- Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*} .
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$.

Negative example

If X has the Daugavet property $\implies B_X$ is not SCD. Therefore, $B_{C[0,1]}$, $B_{L_1[0,1]}$ are not SCD.

Example

```
If X^* is separable \Longrightarrow A is SCD.
```

Proof.

- Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*} .
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$.

Negative example

If X has the Daugavet property $\implies B_X$ is not SCD. Therefore, $B_{C[0,1]}$, $B_{L_1[0,1]}$ are not SCD.

Proof.

• Fix $x_0 \in B_X$ and $\{S_n\}$ sequence of slices of B_X .

Example

```
If X^* is separable \Longrightarrow A is SCD.
```

Proof.

- Take $\{x_n^* : n \in \mathbb{N}\}$ dense in S_{X^*} .
- For every $n, m \in \mathbb{N}$, consider $S_{n,m} = S(A, x_n^*, 1/m)$.
- It is easy to show that any slice of A contains one of the $S_{n,m}$.

Negative example

If X has the Daugavet property $\implies B_X$ is not SCD. Therefore, $B_{C[0,1]}$, $B_{L_1[0,1]}$ are not SCD.

- Fix $x_0 \in B_X$ and $\{S_n\}$ sequence of slices of B_X .
- By [KSSW] there is a sequence $(x_n) \subset B_X$ such that
 - $x_n \in S_n$ for every $n \in \mathbb{N}$,
 - $(x_n)_{n \ge 0}$ is equivalent to the basis of ℓ_1 ,

• so
$$x_0 \notin \overline{\lim} \{x_n : n \in \mathbb{N}\}$$
.

Convex combination of slices

$$W = \sum_{k=1}^{m} \lambda_k S_k \subset A$$
 where $\lambda_k \ge 0$, $\sum \lambda_k = 1$, S_k slices.

Convex combination of slices

$$W = \sum_{k=1}^{m} \lambda_k S_k \subset A$$
 where $\lambda_k \ge 0$, $\sum \lambda_k = 1$, S_k slices.

Proposition

In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of convex combination of slices.

Convex combination of slices

$$W = \sum_{k=1}^{m} \lambda_k S_k \subset A$$
 where $\lambda_k \ge 0$, $\sum \lambda_k = 1$, S_k slices.

Proposition

In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of convex combination of slices.

Small combinations of slices

A has small combinations of slices iff every slice of A contains convex combinations of slices of A with arbitrary small diameter.

Convex combination of slices

$$W = \sum_{k=1}^{m} \lambda_k S_k \subset A$$
 where $\lambda_k \ge 0$, $\sum \lambda_k = 1$, S_k slices.

Proposition

In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of convex combination of slices.

Small combinations of slices

A has small combinations of slices iff every slice of A contains convex combinations of slices of A with arbitrary small diameter.

Example

If A has small combinations of slices + separable \implies A is SCD.

Convex combination of slices

$$W = \sum_{k=1}^{m} \lambda_k S_k \subset A$$
 where $\lambda_k \ge 0$, $\sum \lambda_k = 1$, S_k slices.

Proposition

In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of convex combination of slices.

Small combinations of slices

A has small combinations of slices iff every slice of A contains convex combinations of slices of A with arbitrary small diameter.

Example

If A has small combinations of slices + separable \Longrightarrow A is SCD.

Particular case

A strongly regular + separable \implies A is SCD.

Miguel Martín (University of Granada (Spain))

Bourgain's lemma

Every relative weak open subset of A contains a convex combination of slices.

Bourgain's lemma

Every relative weak open subset of A contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of relative weak open subsets.

Bourgain's lemma

Every relative weak open subset of A contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of relative weak open subsets.

π -bases

A π -base of the weak topology of A is a family $\{V_i : i \in I\}$ of weak open sets of A such that every weak open subset of A contains one of the V_i 's.

Bourgain's lemma

Every relative weak open subset of A contains a convex combination of slices.

Corollary

In the definition of SCD we can use a sequence $\{S_n : n \in \mathbb{N}\}$ of relative weak open subsets.

π -bases

A π -base of the weak topology of A is a family $\{V_i : i \in I\}$ of weak open sets of A such that every weak open subset of A contains one of the V_i 's.

Proposition

If $(A, \sigma(X, X^*))$ has a countable π -base $\Longrightarrow A$ is SCD.

Theorem

A separable without ℓ_1 -sequences $\implies (A, \sigma(X, X^*))$ has a countable π -base.

Theorem

A separable without ℓ_1 -sequences $\implies (A, \sigma(X, X^*))$ has a countable π -base.

Theorem

A separable without ℓ_1 -sequences $\implies (A, \sigma(X, X^*))$ has a countable π -base.

• We see
$$(A, \sigma(X, X^*)) \subset C(T)$$
 where $T = (B_{X^*}, \sigma(X^*, X))$.

Theorem

A separable without ℓ_1 -sequences $\implies (A, \sigma(X, X^*))$ has a countable π -base.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.

Theorem

A separable without ℓ_1 -sequences $\implies (A, \sigma(X, X^*))$ has a countable π -base.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $(A, \sigma(X, X^*))$ has a σ -disjoint π -base.

Theorem

A separable without ℓ_1 -sequences $\implies (A, \sigma(X, X^*))$ has a countable π -base.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $(A, \sigma(X, X^*))$ has a σ -disjoint π -base.
- $\{V_i : i \in I\}$ is σ -disjoint if $I = \bigcup_{n \in \mathbb{N}} I_n$ and each $\{V_i : i \in I_n\}$ is pairwise disjoint.

Theorem

A separable without ℓ_1 -sequences $\implies (A, \sigma(X, X^*))$ has a countable π -base.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $(A, \sigma(X, X^*))$ has a σ -disjoint π -base.
- $\{V_i : i \in I\}$ is σ -disjoint if $I = \bigcup_{n \in \mathbb{N}} I_n$ and each $\{V_i : i \in I_n\}$ is pairwise disjoint.
- A σ -disjoint family of open subsets in a separable space is countable. \checkmark

Theorem

A separable without ℓ_1 -sequences $\implies (A, \sigma(X, X^*))$ has a countable π -base.

Proof.

- We see $(A, \sigma(X, X^*)) \subset C(T)$ where $T = (B_{X^*}, \sigma(X^*, X))$.
- By Rosenthal ℓ_1 theorem, $(A, \sigma(X, X^*))$ is a relatively compact subset of the space of first Baire class functions on T.
- By a result of Todorčević, $(A, \sigma(X, X^*))$ has a σ -disjoint π -base.
- $\{V_i : i \in I\}$ is σ -disjoint if $I = \bigcup_{n \in \mathbb{N}} I_n$ and each $\{V_i : i \in I_n\}$ is pairwise disjoint.
- A σ -disjoint family of open subsets in a separable space is countable. \checkmark

Example

A separable without ℓ_1 -sequences $\Longrightarrow A$ is SCD.

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

X separable strongly regular. In particular, RNP, CPCP spaces.

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

• X separable strongly regular. In particular, RNP, CPCP spaces.

2 X separable $X \not\supseteq \ell_1$. In particular, if X^* is separable.

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

• X separable strongly regular. In particular, RNP, CPCP spaces.

2 X separable $X \not\supseteq \ell_1$. In particular, if X^* is separable.

Examples of NOT SCD spaces

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

• X separable strongly regular. In particular, RNP, CPCP spaces.

2 X separable $X \not\supseteq \ell_1$. In particular, if X^* is separable.

Examples of NOT SCD spaces

X having the Daugavet property.

 \bigcirc In particular, C[0,1], $L_1[0,1]$

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

• X separable strongly regular. In particular, RNP, CPCP spaces.

2 X separable $X \not\supseteq \ell_1$. In particular, if X^* is separable.

Examples of NOT SCD spaces

- X having the Daugavet property.
- **2** In particular, C[0,1], $L_1[0,1]$
- **③** There is X with the Schur property which is not SCD.

SCD space

X is Slicely Countably Determined (SCD) if so are its convex bounded subsets.

Examples of SCD spaces

• X separable strongly regular. In particular, RNP, CPCP spaces.

2 X separable $X \not\supseteq \ell_1$. In particular, if X^* is separable.

Examples of NOT SCD spaces

- X having the Daugavet property.
- **2** In particular, C[0,1], $L_1[0,1]$
- **③** There is X with the Schur property which is not SCD.

Remark

- Every subspace of a SCD space is SCD.
- This is false for quotients.

Theorem

 $Z \subset X$. If Z and X/Z are SCD \Longrightarrow X is SCD.

Theorem

 $Z \subset X$. If Z and X/Z are SCD $\Longrightarrow X$ is SCD.

Corollary

 \boldsymbol{X} separable NOT SCD

Theorem

 $Z \subset X$. If Z and X/Z are SCD $\Longrightarrow X$ is SCD.

Corollary

X separable NOT SCD

• If $\ell_1 \simeq Y \subset X \Longrightarrow X/Y$ contains a copy of ℓ_1 .

Theorem

 $Z \subset X$. If Z and X/Z are SCD $\Longrightarrow X$ is SCD.

Corollary

X separable NOT SCD

- If $\ell_1 \simeq Y \subset X \Longrightarrow X/Y$ contains a copy of ℓ_1 .
- If $\ell_1 \simeq Y_1 \subset X \Longrightarrow$ there is $\ell_1 \simeq Y_2 \subset X$ with $Y_1 \cap Y_2 = 0$.

Theorem

 $Z \subset X$. If Z and X/Z are SCD $\Longrightarrow X$ is SCD.

Corollary

X separable NOT SCD

- If $\ell_1 \simeq Y \subset X \Longrightarrow X/Y$ contains a copy of ℓ_1 .
- If $\ell_1 \simeq Y_1 \subset X \Longrightarrow$ there is $\ell_1 \simeq Y_2 \subset X$ with $Y_1 \cap Y_2 = 0$.

Corollary

$$X_1,\ldots,X_m$$
 SCD \Longrightarrow $X_1\oplus\cdots\oplus X_m$ SCD.

Theorem

 X_1, X_2, \ldots SCD, E with unconditional basis.

- $E \not\supseteq c_0 \Longrightarrow [\bigoplus_{n \in \mathbb{N}} X_n]_E$ SCD.
- $E \not\supseteq \ell_1 \Longrightarrow [\bigoplus_{n \in \mathbb{N}} X_n]_E$ SCD.

Theorem

 X_1, X_2, \ldots SCD, E with unconditional basis.

- $E \not\supseteq c_0 \Longrightarrow [\bigoplus_{n \in \mathbb{N}} X_n]_E$ SCD.
- $E \not\supseteq \ell_1 \Longrightarrow [\bigoplus_{n \in \mathbb{N}} X_n]_E$ SCD.

Examples

- $c_0(\ell_1)$ and $\ell_1(c_0)$ are SCD.
- **③** $K(c_0)$ and $K(c_0, \ell_1)$ are SCD.
- $\ell_2 \otimes_{\epsilon} \ell_2 \equiv K(\ell_2)$ and $\ell_2 \oplus_{\pi} \ell_2 \equiv \mathcal{L}_1(\ell_2)$ are SCD

Recalling the properties

Kadets-Shvidkoy-Sirotkin-Werner, 1997: X has the Daugavet property (DPr) if

 $\|Id + T\| = 1 + \|T\|$ (DE)

for every rank-one $T \in L(X)$.

 \star Then every weakly compact T also satisfies (DE).

Recalling the properties

```
• Kadets-Shvidkoy-Sirotkin-Werner, 1997:

X has the Daugavet property (DPr) if

\|Id + T\| = 1 + \|T\| (DE)
```

for every rank-one $T \in L(X)$. Then every weakly compact T also satisfies (DE).

Q Lumer, 1968: X has numerical index 1 if EVERY operator on X satisfies

 $\max_{\theta \in \mathbb{T}} \| \mathrm{Id} + \theta \, T \| = 1 + \| T \| \tag{aDE}$

★ Equivalently, v(T) = ||T|| for EVERY $T \in L(X)$.

Recalling the properties

• Kadets-Shvidkoy-Sirotkin-Werner, 1997: X has the Daugavet property (DPr) if

```
\|Id + T\| = 1 + \|T\| (DE)
```

for every rank-one $T \in L(X)$. Then every weakly compact T also satisfies (DE).

Q Lumer, 1968: X has numerical index 1 if EVERY operator on X satisfies

 $\max_{\theta \in \mathbb{T}} \| \mathrm{Id} + \theta \, T \| = 1 + \| T \| \tag{aDE}$

★ Equivalently, v(T) = ||T|| for EVERY $T \in L(X)$.

Oikhberg, 2004: X has the alternative Daugavet property (ADP) if every rank-one T ∈ L(X) satisfies (aDE).
 ★Then every weakly compact T also satisfies (aDE).

Relations between these properties

Relations between these properties

Examples

- $C([0,1], K(\ell_2))$ has DPr, but has not numerical index 1
- c_0 has numerical index 1, but has not DPr
- $c_0 \oplus_{\infty} C([0,1], K(\ell_2))$ has ADP, neither DPr nor numerical index 1

Relations between these properties

Examples

- $C([0,1], K(\ell_2))$ has DPr, but has not numerical index 1
- c_0 has numerical index 1, but has not DPr
- $c_0 \oplus_{\infty} C([0,1], K(\ell_2))$ has ADP, neither DPr nor numerical index 1

Remarks

• For RNP or Asplund spaces, ADP

• Every Banach space with the ADP can be renormed still having the ADP but failing the Daugavet property.

Miguel Martín (University of Granada (Spain))

Characterizations of the ADP

X Banach space. TFAE:

• X has ADP (i.e. $\max_{\theta \in \mathbb{T}} \| \mathrm{Id} + \theta T \| = 1 + \| T \|$ for all T rank-one).

Characterizations of the ADP

X Banach space. TFAE:

- X has ADP (i.e. $\max_{\theta \in \mathbb{T}} \| \mathrm{Id} + \theta T \| = 1 + \| T \|$ for all T rank-one).
- Given $x \in S_X$, a slice S of B_X and $\varepsilon > 0$, there is $y \in S$ with

$$\max_{\theta \in \mathbb{T}} \|x + \theta y\| > 2 - \varepsilon.$$

Characterizations of the ADP

X Banach space. TFAE:

- X has ADP (i.e. $\max_{\theta \in \mathbb{T}} \| \operatorname{Id} + \theta T \| = 1 + \| T \|$ for all T rank-one).
- Given $x \in S_X$, a slice S of B_X and $\varepsilon > 0$, there is $y \in S$ with

$$\max_{\theta \in \mathbb{T}} \|x + \theta y\| > 2 - \varepsilon.$$

• Given $x \in S_X$, a sequence $\{S_n\}$ of slices of B_X , and $\varepsilon > 0$, there is $y^* \in S_{X^*}$ such that $x \in S(B_X, y^*, \varepsilon)$ and

$$\overline{\operatorname{conv}}\big(\mathbb{T}\,S(B_X,y^*,\varepsilon)\big)\bigcap S_n\neq \emptyset \qquad (n\in\mathbb{N}).$$

Characterizations of the ADP

X Banach space. TFAE:

- X has ADP (i.e. $\max_{\theta \in \mathbb{T}} \| \mathrm{Id} + \theta T \| = 1 + \| T \|$ for all T rank-one).
- Given $x \in S_X$, a slice S of B_X and $\varepsilon > 0$, there is $y \in S$ with

$$\max_{\theta \in \mathbb{T}} \|x + \theta y\| > 2 - \varepsilon.$$

• Given $x \in S_X$, a sequence $\{S_n\}$ of slices of B_X , and $\varepsilon > 0$, there is $y^* \in S_{X^*}$ such that $x \in S(B_X, y^*, \varepsilon)$ and

$$\overline{\operatorname{conv}}(\mathbb{T} S(B_X, y^*, \varepsilon)) \bigcap S_n \neq \emptyset \qquad (n \in \mathbb{N}).$$

Theorem

 $X \text{ ADP} + B_X \text{ SCD} \Longrightarrow$ given $x \in S_X$ and $\varepsilon > 0$, there is $y^* \in S_{X^*}$ such that

$$x \in S(B_X, y^*, \varepsilon)$$
 and $B_X = \overline{\operatorname{conv}}(\mathbb{T} S(B_X, y^*, \varepsilon)).$

 \star This implies lushness and so, numerical index 1.

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\supseteq \ell_1 \implies$ numerical index 1 (actually, lushness).

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\supseteq \ell_1 \implies$ numerical index 1 (actually, lushness).

Corollary

 $X \text{ real} + \dim(X) = \infty + \mathsf{ADP} \implies X^* \supseteq \ell_1.$

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\supseteq \ell_1 \implies$ numerical index 1 (actually, lushness).

Corollary

 $X \operatorname{\mathsf{real}} + \dim(X) = \infty + \mathsf{ADP} \implies X^* \supseteq \ell_1.$

Proof.

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\supseteq \ell_1 \implies$ numerical index 1 (actually, lushness).

Corollary

 $X \text{ real} + \dim(X) = \infty + \mathsf{ADP} \implies X^* \supseteq \ell_1.$

Proof.

• If $X \supseteq \ell_1 \implies X^*$ contains ℓ_{∞} as a quotient, so X^* contains ℓ_1 as a quotient, and the lifting property gives $X^* \supseteq \ell_1 \checkmark$

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\supseteq \ell_1 \implies$ numerical index 1 (actually, lushness).

Corollary

$$X \text{ real} + \dim(X) = \infty + \mathsf{ADP} \implies X^* \supseteq \ell_1.$$

Proof.

- If $X \supseteq \ell_1 \implies X^*$ contains ℓ_{∞} as a quotient, so X^* contains ℓ_1 as a quotient, and the lifting property gives $X^* \supseteq \ell_1 \checkmark$
- If $X \not\supseteq \ell_1 \implies X$ is SCD + ADP, so X is lush.

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\supseteq \ell_1 \implies$ numerical index 1 (actually, lushness).

Corollary

$$X \text{ real} + \dim(X) = \infty + \mathsf{ADP} \implies X^* \supseteq \ell_1.$$

Proof.

- If $X \supseteq \ell_1 \implies X^*$ contains ℓ_{∞} as a quotient, so X^* contains ℓ_1 as a quotient, and the lifting property gives $X^* \supseteq \ell_1 \checkmark$
- If $X \not\supseteq \ell_1 \implies X$ is SCD + ADP, so X is lush.
- Lush + dim $(X) = \infty \implies X^* \supseteq \ell_1 \checkmark$

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\supseteq \ell_1 \implies$ numerical index 1 (actually, lushness).

Corollary

 $X \operatorname{\mathsf{real}} + \dim(X) = \infty + \mathsf{ADP} \implies X^* \supseteq \ell_1.$

In particular,

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\supseteq \ell_1 \implies$ numerical index 1 (actually, lushness).

Corollary

$$X \operatorname{\mathsf{real}} + \dim(X) = \infty + \mathsf{ADP} \implies X^* \supseteq \ell_1.$$

In particular,

Corollary X real + dim(X) = ∞ + numerical index 1 \implies X^{*} $\supset \ell_1$.

Corollary

- ADP + strongly regular \implies numerical index 1 (actually, lushness).
- ADP + $X \not\supseteq \ell_1 \implies$ numerical index 1 (actually, lushness).

Corollary

$$X \operatorname{\mathsf{real}} + \dim(X) = \infty + \mathsf{ADP} \implies X^* \supseteq \ell_1.$$

In particular,

Corollary

 $X \text{ real} + \dim(X) = \infty + \text{ numerical index } 1 \implies X^* \supseteq \ell_1.$

Open question

$$X$$
 real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

Miguel Martín (University of Granada (Spain))

SCD operators

SCD operator

 $T \in L(X)$ is an SCD-operator if $T(B_X)$ is an SCD-set.

SCD operator

 $T \in L(X)$ is an SCD-operator if $T(B_X)$ is an SCD-set.

Examples

T is an SCD-operator when $T(B_X)$ is separable and

- $T(B_X)$ is RPN,
- **2** $T(B_X)$ has no ℓ_1 sequences,
- $\textcircled{O} T \text{ does not fix copies of } \ell_1$

SCD operator

 $T \in L(X)$ is an SCD-operator if $T(B_X)$ is an SCD-set.

Examples

T is an SCD-operator when $T(B_X)$ is separable and

- $T(B_X)$ is RPN,
- **2** $T(B_X)$ has no ℓ_1 sequences,
- $\textcircled{O} T \text{ does not fix copies of } \ell_1$

Theorem

- X ADP + T SCD-operator $\implies \max_{\theta \in \mathbb{T}} \| \mathrm{Id} + \theta T \| = 1 + \| T \|.$
- X DPr + T SCD-operator \implies ||Id + T|| = 1 + ||T||.

SCD operator

 $T \in L(X)$ is an SCD-operator if $T(B_X)$ is an SCD-set.

Examples

T is an SCD-operator when $T(B_{\rm X})$ is separable and

- $T(B_X)$ is RPN,
- **2** $T(B_X)$ has no ℓ_1 sequences,
- $\textcircled{O} T \text{ does not fix copies of } \ell_1$

Theorem

- X ADP + T SCD-operator $\implies \max_{\theta \in \mathbb{T}} \| \mathrm{Id} + \theta T \| = 1 + \| T \|.$
- X DPr + T SCD-operator \implies ||Id + T|| = 1 + ||T||.

Main corollary

X ADP + T does not fix copies of $\ell_1 \implies \max_{\theta \in \mathbb{T}} \| \text{Id} + \theta T \| = 1 + \| T \|$.

Miguel Martín (University of Granada (Spain))

SCD operator

 $T \in L(X)$ is an SCD-operator if $T(B_X)$ is an SCD-set.

Examples

T is an SCD-operator when $T(B_X)$ is separable and

- $T(B_X)$ is RPN,
- **2** $T(B_X)$ has no ℓ_1 sequences,
- $\textcircled{O} T \text{ does not fix copies of } \ell_1$

Theorem

• X DPr + T Remark

Separability is not needed !

Main corollary

 $X \text{ ADP} + T \text{ does not fix copies of } \ell_1 \implies \max_{\theta \in \mathbb{T}} \| \text{Id} + \theta T \| = 1 + \| T \|.$

Open questions

On SCD-sets

- Find more sufficient conditions for a set to be SCD.
- For instance, if X has 1-symmetric basis, is B_X an SCD-set ?
- Is SCD equivalent to the existence of a countable $\pi\text{-base}$ for the weak topology ?

Open questions

On SCD-sets

- Find more sufficient conditions for a set to be SCD.
- For instance, if X has 1-symmetric basis, is B_X an SCD-set ?
- Is SCD equivalent to the existence of a countable π -base for the weak topology ?

On SCD-spaces

- *E* with unconditional basis. Is *E* SCD ?
- X, Y SCD. Are $X \otimes_{\varepsilon} Y$ and $X \otimes_{\pi} Y$ SCD ?

Open questions

On SCD-sets

- Find more sufficient conditions for a set to be SCD.
- For instance, if X has 1-symmetric basis, is B_X an SCD-set ?
- Is SCD equivalent to the existence of a countable $\pi\text{-base}$ for the weak topology ?

On SCD-spaces

- E with unconditional basis. Is E SCD ?
- X, Y SCD. Are $X \otimes_{\varepsilon} Y$ and $X \otimes_{\pi} Y$ SCD ?

On SCD-operators

- T_1 , T_2 SCD-operators, is $T_1 + T_2$ an SCD-operator ?
- $T: X \longrightarrow Y$ hereditary SCD, is there Z SCD-space such that T factor through Z ?

Miguel Martín (University of Granada (Spain))

Remarks on two recent results

8 Remarks on two recent results

- Containment of c_0 or ℓ_1
- On the numerical index of $L_p(\mu)$

A. Avilés, V. Kadets, M. Martín, J. Merí, and V. Shepelska. Slicely countably determined Banach spaces. *Trans. Amer. Math. Soc.* (to appear).

V. Kadets, M. Martín, J. Merí, and R. Payá. Smoothness and convexity for Banach spaces with numerical index 1. *Illinois J. Math.* (to appear).

M. Martín, J. Merí, and M. Popov. On the numerical index of real $L_p(\mu)$ -spaces. *Preprint*.

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

• López-M.-Payá, 1999: X real, RNP, dim $(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López-M.-Payá, 1999: X real, RNP, dim $(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.
- Kadets–M.–Merí–Payá, 2009:

X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López-M.-Payá, 1999: *X* real, RNP, dim(X) = ∞, n(X) = 1 ⇒ X ⊃ ℓ₁.

 Kadets-M.-Merí-Payá, 2009:
- X real lush, dim $(X) = \infty \implies X^* \supset \ell_1$.
- Avilés-Kadets-M.-Merí-Shepelska, 2010: X real, dim $(X) = \infty \implies X^* \supset \ell_1$.

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López-M.-Payá, 1999: *X* real, RNP, dim(*X*) = ∞, *n*(*X*) = 1 ⇒ *X* ⊃ ℓ₁.
 Kadets-M.-Merí-Payá, 2009:
- X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.
- Avilés–Kadets–M.–Merí–Shepelska, 2010: X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López-M.-Payá, 1999: X real, RNP, dim $(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.
- Kadets-M.-Merí-Payá, 2009: X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.
- Avilés–Kadets–M.–Merí–Shepelska, 2010: X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

Proof of the last statement:

• If $X \supseteq \ell_1$ we use the "lifting" property of $\ell_1 \checkmark$

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López-M.-Payá, 1999: X real, RNP, dim $(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.
- Kadets-M.-Merí-Payá, 2009: X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.
- Avilés–Kadets–M.–Merí–Shepelska, 2010: X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- If $X \supseteq \ell_1$ we use the "lifting" property of $\ell_1 \checkmark$
- (AKMMS 2010): If $X \not\supseteq \ell_1 \implies X$ is lush.

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López-M.-Payá, 1999: X real, RNP, dim $(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.
- Kadets-M.-Merí-Payá, 2009: X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.
- Avilés–Kadets–M.–Merí–Shepelska, 2010: X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- If $X \supseteq \ell_1$ we use the "lifting" property of $\ell_1 \checkmark$
- (AKMMS 2010): If $X \not\supseteq \ell_1 \implies X$ is lush.
- (BKMM 2009): Lushness reduces to the separable case.

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López-M.-Payá, 1999: X real, RNP, dim $(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.
- Kadets-M.-Merí-Payá, 2009: X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.
- Avilés–Kadets–M.–Merí–Shepelska, 2010: X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- If $X \supseteq \ell_1$ we use the "lifting" property of $\ell_1 \checkmark$
- (AKMMS 2010): If $X \not\supseteq \ell_1 \implies X$ is lush.
- (BKMM 2009): Lushness reduces to the separable case.
- (KMMP 2009): In the separable case, lushness implies |x^{**}(x^{*})| = 1 for every x^{**} ∈ ext (B_{X^{**}}) and every x^{*} ∈ G, G norming for X.

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López-M.-Payá, 1999: X real, RNP, dim $(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.
- Kadets-M.-Merí-Payá, 2009: X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.
- Avilés–Kadets–M.–Merí–Shepelska, 2010: X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

- If $X \supseteq \ell_1$ we use the "lifting" property of $\ell_1 \checkmark$
- (AKMMS 2010): If $X \not\supseteq \ell_1 \implies X$ is lush.
- (BKMM 2009): Lushness reduces to the separable case.
- (KMMP 2009): In the separable case, lushness implies $|x^{**}(x^*)| = 1$ for every $x^{**} \in \text{ext}(B_{X^{**}})$ and every $x^* \in G$, G norming for X.
- (LMP 1999): This gives $X^* \supseteq c_0$ or $X^* \supseteq \ell_1 \implies X^* \supseteq \ell_1 \checkmark$

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López-M.-Payá, 1999: *X* real, RNP, dim(X) = ∞, n(X) = 1 ⇒ X ⊃ ℓ₁.

 Kadets-M.-Merí-Payá, 2009:
- X real lush, dim $(X) = \infty \implies X^* \supset \ell_1$.
- Avilés-Kadets-M.-Merí-Shepelska, 2010: X real, dim $(X) = \infty \implies X^* \supset \ell_1$.

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López-M.-Payá, 1999: *X* real, RNP, dim(*X*) = ∞, *n*(*X*) = 1 ⇒ *X* ⊃ ℓ₁.
 Kadets-M.-Merí-Payá, 2009:
- X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.
- Avilés–Kadets–M.–Merí–Shepelska, 2010: X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

★ Equivalent reformulation of the problem:

Open question (Godefroy, private communication)

X real, $\dim(X) = \infty$, $n(X) = 1 \implies X \supset c_0$ or $X \supset \ell_1$?

★ Old approaches to this problem:

- López-M.-Payá, 1999: X real, RNP, dim $(X) = \infty$, $n(X) = 1 \implies X \supset \ell_1$.
- Kadets-M.-Merí-Payá, 2009: X real lush, $\dim(X) = \infty \implies X^* \supset \ell_1$.
- Avilés–Kadets–M.–Merí–Shepelska, 2010: X real, $\dim(X) = \infty \implies X^* \supset \ell_1$.

★ Equivalent reformulation of the problem:

Equivalent open problem

X real separable, $X \not\supseteq \ell_1$, exists $G \subseteq S_{X^*}$ norming with

$$B_X = \overline{\operatorname{aconv}}\left(\left\{x \in B_X : x^*(x) = 1\right\}\right) \qquad (x^* \in G).$$

Does $X \supseteq c_0$?

Miguel Martín (University of Granada (Spain))

The numerical radius for $L_p(\mu)$

For $T \in L(L_p(\mu))$, 1 , one has

$$v(T) = \sup\left\{ \left| \int_{\Omega} x^{\#} T x \, d\mu \right| : x \in L_p(\mu), \|x\|_p = 1 \right\}.$$

where for $x \in L_p(\mu)$, $x^{\#} = |x|^{p-1} \operatorname{sign}(x) \in L_q(\mu)$ satisfies (unique)

$$\|x\|_p^p = \|x^{\#}\|_q^q$$
 and $\int_{\Omega} x \, x^{\#} \, d\mu = \|x\|_p \, \|x^{\#}\|_q = \|x\|_p^p.$

The numerical radius for $L_p(\mu)$

For $T \in L(L_p(\mu))$, 1 , one has

$$v(T) = \sup\left\{ \left| \int_{\Omega} x^{\#} T x \, d\mu \right| : x \in L_p(\mu), \|x\|_p = 1 \right\}.$$

where for $x \in L_p(\mu)$, $x^{\#} = |x|^{p-1} \operatorname{sign}(x) \in L_q(\mu)$ satisfies (unique)

$$\|x\|_p^p = \|x^{\#}\|_q^q$$
 and $\int_{\Omega} x \, x^{\#} \, d\mu = \|x\|_p \, \|x^{\#}\|_q = \|x\|_p^p$

The absolute numerical radius

For $T \in L(L_p(\mu))$ we write

$$\begin{split} |v|(T) &:= \sup \left\{ \int_{\Omega} |x^{\#}Tx| \, d\mu \; : \; x \in L_p(\mu), \, \|x\|_p = 1 \right\} \\ &= \sup \left\{ \int_{\Omega} |x|^{p-1} |Tx| \, d\mu \; : \; x \in L_p(\mu), \, \|x\|_p = 1 \right\} \end{split}$$

Miguel Martín (University of Granada (Spain))

Theorem

For
$$T \in L(L_p(\mu))$$
, $1 , one has$

$$v(T) \ge \frac{M_p}{4} |v|(T),$$
 where $M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}.$

Theorem

For $T \in L(L_p(\mu))$, 1 , one has

$$v(T) \ge \frac{M_p}{4} |v|(T),$$
 where $M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}$

Theorem

For $T \in L(L_p(\mu))$, 1 , one has

$$2|v|(T) \geq v(T_{\mathbb{C}}) \geq n(L_p^{\mathbb{C}}(\mu)) ||T||,$$

• $T_{\mathbb{C}}$ complexification of T, $n(L_p^{\mathbb{C}}(\mu))$ numerical index *complex case*.

Theorem

For $T \in L(L_p(\mu))$, 1 , one has

$$v(T) \ge \frac{M_p}{4} |v|(T),$$
 where $M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p}$

Theorem

For $T \in L(L_p(\mu))$, 1 , one has

$$2 |v|(T) \geq v(T_{\mathbb{C}}) \geq n(L_p^{\mathbb{C}}(\mu)) ||T||,$$

• $T_{\mathbb{C}}$ complexification of T, $n(L_p^{\mathbb{C}}(\mu))$ numerical index *complex case*.

Consequence

For
$$1 , $n(L_p(\mu)) \ge \frac{M_p}{8e}$.
• If $p \ne 2$, then $n(L_p(\mu)) > 0$, so v and $\|\cdot\|$ are equivalent in $L(L_p(\mu))$.$$

Miguel Martín (University of Granada (Spain))

Extremely non-complex Banach spaces

Extremely non-complex Banach spaces

- Motivation
- Extremely non-complex Banach spaces
- Surjective isometries

V. Kadets, M. Martín, and J. Merí.

Norm equalities for operators on Banach spaces. *Indiana U. Math. J.* (2007).

P. Koszmider, M. Martín, and J. Merí. Extremely non-complex C(K) spaces. J. Math. Anal. Appl. (2009).

P. Koszmider, M. Martín, and J. Merí. Isometries on extremely non-complex Banach spaces. *Preprint* (2008).

Example (produced with numerical ranges)

There is a Banach space X such that

- Iso(X) has no exponential one-parameter semigroups.
- $Iso(X^*)$ contains infinitely many exponential one-parameter semigroups.

Example (produced with numerical ranges)

There is a Banach space X such that

- Iso(X) has no exponential one-parameter semigroups.
- $Iso(X^*)$ contains infinitely many exponential one-parameter semigroups.

★ In terms of linear dynamical systems:

• There is no $A \in L(X)$ such that

$$x' = A x \qquad (x : \mathbb{R}^+_0 \longrightarrow X)$$

is given by a semigroup of isometries.

• There are infinitely many such A's on X^*

Example (produced with numerical ranges)

There is a Banach space X such that

- Iso(X) has no exponential one-parameter semigroups.
- $Iso(X^*)$ contains infinitely many exponential one-parameter semigroups.

★ In terms of linear dynamical systems:

• There is no $A \in L(X)$ such that

$$x' = A x \qquad (x : \mathbb{R}^+_0 \longrightarrow X)$$

is given by a semigroup of isometries.

- There are infinitely many such A's on X^*
- But there are unbounded As on X such that the solution of the linear dynamical system is a one-parameter C₀ semigroup of isometries.

Example (produced with numerical ranges)

There is a Banach space X such that

- Iso(X) has no exponential one-parameter semigroups.
- $Iso(X^*)$ contains infinitely many exponential one-parameter semigroups.

 \star In terms of linear dynamical systems:

• There is no $A \in L(X)$ such that

$$x' = A x \qquad (x : \mathbb{R}_0^+ \longrightarrow X)$$

is given by a semigroup of isometries.

- There are infinitely many such A's on X^*
- But there are unbounded As on X such that the solution of the linear dynamical system is a one-parameter C_0 semigroup of isometries.

We would like to find ${\mathcal X}$ such that

- $\operatorname{Iso}(\mathcal{X})$ has no C_0 semigroup of isometries.
- $\bullet~\mathrm{Iso}(\mathcal{X}^*)$ has exponential semigroup of isometries

Numerical range of unbounded operators (1960's)

X Banach space,
$$T: D(T) \longrightarrow X$$
 linear,

$$V(T) = \{x^*(Tx) : x^* \in X^*, x \in D(T), x^*(x) = ||x^*|| = ||x|| = 1\}.$$

Numerical range of unbounded operators (1960's)

X Banach space,
$$T: D(T) \longrightarrow X$$
 linear,

$$V(T) = \{x^*(Tx) : x^* \in X^*, x \in D(T), x^*(x) = ||x^*|| = ||x|| = 1\}.$$

Teorema (Stone, 1932)

H Hilbert space, A densely defined operator. TFAE:

- A generates an strongly continuous one-parameter semigroup of unitary operators (onto isometries).
- $A^* = -A$.
- $\operatorname{Re}(Ax \mid x) = 0$ for every $x \in D(A)$.

Difficulty

Which Banach spaces have unbounded operators with numerical range zero?

Difficulty

Which Banach spaces have unbounded operators with numerical range zero?

Examples

- In $C_0(\mathbb{R})$, $\Phi(t)(f)(s) = f(t+s)$ is an strongly continuous one-parameter semigroup of isometries (generated by the derivative).
- In $C_E([0,1]||\Delta)$ there are also strongly continuous one-parameter semigroup of isometries.

Difficulty

Which Banach spaces have unbounded operators with numerical range zero?

Examples

- In $C_0(\mathbb{R})$, $\Phi(t)(f)(s) = f(t+s)$ is an strongly continuous one-parameter semigroup of isometries (generated by the derivative).
- In $C_E([0,1]||\Delta)$ there are also strongly continuous one-parameter semigroup of isometries.

Consequence

We have to completely change our approach to the problem.

Definition

X has complex structure if there is $T \in L(X)$ such that $T^2 = -Id$.

Definition

X has complex structure if there is $T \in L(X)$ such that $T^2 = -Id$.

Some remarks

• This gives a structure of vector space over \mathbb{C} :

$$(\alpha + i\beta) x = \alpha x + \beta T(x)$$
 $(\alpha + i\beta \in \mathbb{C}, x \in X)$

Definition

X has complex structure if there is $T \in L(X)$ such that $T^2 = -Id$.

Some remarks

• This gives a structure of vector space over \mathbb{C} :

$$(\alpha + i\beta) x = \alpha x + \beta T(x)$$
 $(\alpha + i\beta \in \mathbb{C}, x \in X)$

• Defining

$$|||x||| = \max\{||e^{i\theta}x|| : \theta \in [0, 2\pi]\}$$
 $(x \in X)$

one gets that $(X, \|\cdot\|)$ is a complex Banach space.

Definition

X has complex structure if there is $T \in L(X)$ such that $T^2 = -Id$.

Some remarks

• This gives a structure of vector space over \mathbb{C} :

$$(\alpha + i\beta) x = \alpha x + \beta T(x)$$
 $(\alpha + i\beta \in \mathbb{C}, x \in X)$

Defining

$$||x|| = \max\{||e^{i\theta}x|| : \theta \in [0, 2\pi]\}$$
 $(x \in X)$

one gets that $(X, || \cdot ||)$ is a complex Banach space.

• If T is an isometry, then actually the given norm of X is complex.

Definition

X has complex structure if there is $T \in L(X)$ such that $T^2 = -Id$.

Some remarks

• This gives a structure of vector space over \mathbb{C} :

$$(\alpha + i\beta) x = \alpha x + \beta T(x)$$
 $(\alpha + i\beta \in \mathbb{C}, x \in X)$

Defining

$$||x||| = \max\{||e^{i\theta}x|| : \theta \in [0, 2\pi]\}$$
 $(x \in X)$

one gets that $(X, ||| \cdot |||)$ is a complex Banach space.

- If T is an isometry, then actually the given norm of X is complex.
- \bullet Conversely, if X is a complex Banach space, then

$$T(x) = i x \qquad (x \in X)$$

satisfies $T^2 = -Id$ and T is an isometry.

Miguel Martín (University of Granada (Spain))

• If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.

- If $dim(X) < \infty$, X has complex structure iff dim(X) is even.
- **②** If $X \simeq Z \oplus Z$ (in particular, $X \simeq X^2$), then X has complex structure.

- If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.
- **9** If $X \simeq Z \oplus Z$ (in particular, $X \simeq X^2$), then X has complex structure.
- There are infinite-dimensional Banach spaces without complex structure:
 - Dieudonné, 1952: the James' space \mathcal{J} (since $\mathcal{J}^{**} \equiv \mathcal{J} \oplus \mathbb{R}$).
 - Szarek, 1986: uniformly convex examples.
 - Gowers-Maurey, 1993: their H.I. space.
 - Ferenczi-Medina Galego, 2007: there are odd and even infinite-dimensional spaces *X*.
 - X is even if admits a complex structure but its hyperplanes does not.
 - X is odd if its hyperplanes are even (and so X does not admit a complex structure).

- If $\dim(X) < \infty$, X has complex structure iff $\dim(X)$ is even.
- **9** If $X \simeq Z \oplus Z$ (in particular, $X \simeq X^2$), then X has complex structure.
- There are infinite-dimensional Banach spaces without complex structure:
 - Dieudonné, 1952: the James' space \mathcal{J} (since $\mathcal{J}^{**} \equiv \mathcal{J} \oplus \mathbb{R}$).
 - Szarek, 1986: uniformly convex examples.
 - Gowers-Maurey, 1993: their H.I. space.
 - Ferenczi-Medina Galego, 2007: there are odd and even infinite-dimensional spaces *X*.
 - X is even if admits a complex structure but its hyperplanes does not.
 - X is odd if its hyperplanes are even (and so X does not admit a complex structure).

Definition

X is extremely non-complex if $dist(T^2, -Id)$ is the maximum possible, i.e.

$$\|\mathrm{Id} + T^2\| = 1 + \|T^2\|$$
 $(T \in L(X))$

The Daugavet equation

What Daugavet did in 1963

The norm equality

$$|\mathrm{Id} + T|| = 1 + ||T||$$

holds for every compact $T \in L(C[0,1])$.

The Daugavet equation

What Daugavet did in 1963

The norm equality

$$\|\mathrm{Id} + T\| = 1 + \|T\|$$

holds for every compact $T \in L(C[0,1])$.

The Daugavet equation

X Banach space, $T \in L(X)$, ||Id + T|| = 1 + ||T||

Miguel Martín (University of Granada (Spain))

(DE).

The Daugavet equation

What Daugavet did in 1963

The norm equality

$$|\mathrm{Id} + T|| = 1 + ||T||$$

holds for every compact $T \in L(C[0,1])$.

The Daugavet equation

X Banach space,
$$T \in L(X)$$
, $\|\operatorname{Id} + T\| = 1 + \|T\|$

Classical examples

(DE).

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let \boldsymbol{X} be a Banach space with the Daugavet property. Then

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let \boldsymbol{X} be a Banach space with the Daugavet property. Then

• Every weakly compact operator on *X* satisfies (DE).

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let \boldsymbol{X} be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).
- X contains ℓ_1 .

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let \boldsymbol{X} be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).
- X contains ℓ_1 .
- X does not embed into a Banach space with unconditional basis.

The Daugavet property (Kadets–Shvidkoy–Sirotkin–Werner, 1997)

A Banach space X is said to have the Daugavet property iff every rank-one operator on X satisfies (DE).

Some results

Let \boldsymbol{X} be a Banach space with the Daugavet property. Then

- Every weakly compact operator on X satisfies (DE).
- X contains ℓ_1 .
- X does not embed into a Banach space with unconditional basis.
- Geometric characterization: X has the Daugavet property iff for each x ∈ S_X

$$\overline{\operatorname{co}}\left(B_X\setminus (x+(2-\varepsilon)B_X)\right)=B_X.$$

More examples

The following spaces have the Daugavet property.

- Wojtaszczyk, 1992: The disk algebra and H[∞].
- Werner, 1997:

"Nonatomic" function algebras.

• Oikhberg, 2005:

Non-atomic C^* -algebras and preduals of non-atomic von Neumann algebras.

• Becerra–M., 2005:

Non-atomic JB^* -triples and their preduals.

• Becerra–M., 2006:

Preduals of $L_1(\mu)$ without Fréchet-smooth points.

• Ivankhno, Kadets, Werner, 2007: Lip(K) when $K \subset \mathbb{R}^n$ is compact and convex.

Some examples

• Benyamini-Lin, 1985:

For every $1 there exists <math display="inline">\psi_p: (0,\infty) \longrightarrow (0,\infty)$ such that

 $\|\mathrm{Id} + T\| \ge 1 + \psi_p(\|T\|)$

for every compact operator T on $L_p[0, 1]$.

Some examples

• Benyamini–Lin, 1985:

For every $1 there exists <math display="inline">\psi_p: (0,\infty) \longrightarrow (0,\infty)$ such that

 $\|\mathrm{Id} + T\| \ge 1 + \psi_p(\|T\|)$

for every compact operator T on $L_p[0, 1]$.

• If p = 2, then there is a non-null compact T on $L_2[0, 1]$ such that

 $\| \mathrm{Id} + T \| = 1.$

Some examples

• Benyamini-Lin, 1985:

For every $1 there exists <math display="inline">\psi_p: (0,\infty) \longrightarrow (0,\infty)$ such that

 $\|\mathrm{Id} + T\| \ge 1 + \psi_p(\|T\|)$

for every compact operator T on $L_p[0, 1]$.

• If p = 2, then there is a non-null compact T on $L_2[0,1]$ such that

 $\|\mathrm{Id} + T\| = 1.$

• Boyko-Kadets, 2004:

If ψ_p is the best possible function above, then

$$\lim_{p\to 1^+}\psi_p(t)=t\qquad (t>0).$$

Miguel Martín (University of Granada (Spain))

Some examples

• Benyamini–Lin, 1985:

For every $1 there exists <math display="inline">\psi_p: (0,\infty) \longrightarrow (0,\infty)$ such that

 $\|\mathrm{Id} + T\| \ge 1 + \psi_p(\|T\|)$

for every compact operator T on $L_p[0, 1]$.

• If p = 2, then there is a non-null compact T on $L_2[0,1]$ such that

||Id + T|| = 1.

• Boyko-Kadets, 2004:

If ψ_p is the best possible function above, then

$$\lim_{p \to 1^+} \psi_p(t) = t \qquad (t > 0).$$

• Oikhberg, 2005:

If $K(\ell_2) \subseteq X \subseteq L(\ell_2)$, then

$$\|\mathrm{Id} + T\| \ge 1 + \frac{1}{8\sqrt{2}} \|T\|$$

for every compact T on X.

Miguel Martín (University of Granada (Spain))

Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces $\ \ ?$

Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces $\ ?$

Concretely

We looked for non-trivial norm equalities of the forms

 $\|\mathrm{Id} + T\| = f(\|T\|)$ or $\|g(T)\| = f(\|T\|)$ or $\|\mathrm{Id} + g(T)\| = f(\|g(T)\|)$

(g analytic, f arbitrary) satisfied by all rank-one operators on a Banach space.

Motivating question

Are there other norm equalities which could define interesting properties of Banach spaces $\ ?$

Concretely

We looked for non-trivial norm equalities of the forms

 $\|\mathrm{Id} + T\| = f(\|T\|)$ or $\|g(T)\| = f(\|T\|)$ or $\|\mathrm{Id} + g(T)\| = f(\|g(T)\|)$

(g analytic, f arbitrary) satisfied by all rank-one operators on a Banach space.

Solution

We proved that there are few possibilities...

Equalities of the form ||Id + T|| = f(||T||)

Equalities of the form ||Id + T|| = f(||T||)

Proposition

X real or complex, $f : \mathbb{R}_0^+ \longrightarrow \mathbb{R}$ arbitrary, $a, b \in \mathbb{K}$. If the norm equality $\|a \operatorname{Id} + b T\| = f(\|T\|)$

holds for every rank-one operator $T \in L(X)$, then

$$f(t) = |a| + |b|t$$
 $(t \in \mathbb{R}_0^+).$

If $a \neq 0$, $b \neq 0$, then X has the Daugavet property.

Equalities of the form ||Id + T|| = f(||T||)

Proposition

X real or complex, $f: \mathbb{R}^+_0 \longrightarrow \mathbb{R}$ arbitrary, $a, b \in \mathbb{K}$. If the norm equality

 $||a \operatorname{Id} + b T|| = f(||T||)$

holds for every rank-one operator $T \in L(X)$, then

$$f(t) = |a| + |b|t$$
 $(t \in \mathbb{R}_0^+).$

If $a \neq 0$, $b \neq 0$, then X has the Daugavet property.

Then, we have to look for Daugavet-type equalities in which Id + T is replaced by something different.

Proof

We have...

 $||a \operatorname{Id} + b T|| = f(||T||) \ \forall T \in L(X) \text{ rank-one}$

• Trivial if $a \cdot b = 0$. Suppose $a \neq 0$ and $b \neq 0$ and write $\omega_0 = \frac{\overline{b}}{|b|} \frac{a}{|a|} \in \mathbb{T}$.

- Trivial if $a \cdot b = 0$. Suppose $a \neq 0$ and $b \neq 0$ and write $\omega_0 = \frac{b}{|b|} \frac{a}{|a|} \in \mathbb{T}$.
- Fix $x_0 \in S_X$, $x_0^* \in S_{X^*}$ with $x_0^*(x_0) = \omega_0$ and consider

 $T_t = t \, x_0^* \otimes x_0 \in L(X) \qquad (t \in \mathbb{R}_0^+).$

ProofWe have... $||a \operatorname{Id} + b T|| = f(||T||) \ \forall T \in L(X) \text{ rank-one}$ f(t) = |a| + |b| tf(t) = |a| + |b| t $(t \in \mathbb{R}_0^+).$

- Trivial if $a \cdot b = 0$. Suppose $a \neq 0$ and $b \neq 0$ and write $\omega_0 = \frac{\overline{b}}{|b|} \frac{a}{|a|} \in \mathbb{T}$.
- Fix $x_0 \in S_X$, $x_0^* \in S_{X^*}$ with $x_0^*(x_0) = \omega_0$ and consider

$$T_t = t \, x_0^* \otimes x_0 \in L(X) \qquad (t \in \mathbb{R}_0^+).$$

• Since $||T_t|| = t$, we have

$$f(t) = \|a\mathrm{Id} + b\,T_t\| \qquad (t \in \mathbb{R}^+_0).$$

Proof

 $\|a \operatorname{Id} + b T\| = f(\|T\|) \ \forall T \in L(X) \text{ rank-one}$

- Trivial if $a \cdot b = 0$. Suppose $a \neq 0$ and $b \neq 0$ and write $\omega_0 = \frac{b}{|b|} \frac{a}{|a|} \in \mathbb{T}$.
- Fix $x_0 \in S_X$, $x_0^* \in S_{X^*}$ with $x_0^*(x_0) = \omega_0$ and consider

$$T_t = t \, x_0^* \otimes x_0 \in L(X) \qquad (t \in \mathbb{R}_0^+).$$

• Since
$$||T_t|| = t$$
, we have

$$f(t) = \|a\mathrm{Id} + b\,T_t\| \qquad (t \in \mathbb{R}^+_0).$$

It follows that

 $|a| + |b| t \ge f(t) = ||a \mathrm{Id} + b T_t|| \ge ||[a \mathrm{Id} + b T_t](x_0)||$ = $||a x_0 + b \omega_0 t x_0|| = |a + b \omega_0 t| ||x_0|| = \left|a + b \frac{\overline{b}}{|b|} \frac{a}{|a|} t\right| = |a| + b \frac{\overline{b}}{|b|} \frac{a}{|a|} t$

Miguel Martín (University of Granada (Spain))

Proof

 $\|a \operatorname{Id} + b T\| = f(\|T\|) \ \forall T \in L(X) \text{ rank-one}$

- Trivial if $a \cdot b = 0$. Suppose $a \neq 0$ and $b \neq 0$ and write $\omega_0 = \frac{b}{|b|} \frac{a}{|a|} \in \mathbb{T}$.
- Fix $x_0 \in S_X$, $x_0^* \in S_{X^*}$ with $x_0^*(x_0) = \omega_0$ and consider

$$T_t = t \, x_0^* \otimes x_0 \in L(X) \qquad (t \in \mathbb{R}_0^+).$$

• Since
$$||T_t|| = t$$
, we have

$$f(t) = \|a\mathrm{Id} + b\,T_t\| \qquad (t \in \mathbb{R}^+_0).$$

It follows that

$$|a| + |b| t \ge f(t) = ||a \operatorname{Id} + b T_t|| \ge ||[a \operatorname{Id} + b T_t](x_0)||$$

= $||a x_0 + b \omega_0 t x_0|| = |a + b \omega_0 t| ||x_0|| = \left|a + b \frac{\overline{b}}{|b|} \frac{a}{|a|} t\right| = |a| + b \frac{\overline{b}}{|b|} \frac{a}{|a|} t$

• Finally, for rank-one $T \in L(X)$, write $S = \frac{a}{b}T$ and observe $|a|(1 + ||T||) = |a| + |b| ||S|| = ||aId + bS|| = |a| ||Id + T||.\checkmark$

Miguel Martín (University of Granada (Spain))

Equalities of the form ||g(T)|| = f(||T||)

Equalities of the form ||g(T)|| = f(||T||)

Theorem

X real or complex with $dim(X) \ge 2$. Suppose that the norm equality

||g(T)|| = f(||T||)

holds for every rank-one operator $T \in L(X)$, where

- $g: \mathbb{K} \longrightarrow \mathbb{K}$ is analytic,
- $f: \mathbb{R}^+_0 \longrightarrow \mathbb{R}$ is arbitrary.

Then, there are $a, b \in \mathbb{K}$ such that

 $g(\zeta) = a + b \zeta$ $(\zeta \in \mathbb{K}).$

Equalities of the form ||g(T)|| = f(||T||)

Theorem

X real or complex with $dim(X) \ge 2$. Suppose that the norm equality

||g(T)|| = f(||T||)

holds for every rank-one operator $T \in L(X)$, where

- $g: \mathbb{K} \longrightarrow \mathbb{K}$ is analytic,
- $f: \mathbb{R}^+_0 \longrightarrow \mathbb{R}$ is arbitrary.

Then, there are $a, b \in \mathbb{K}$ such that

 $g(\zeta) = a + b \zeta$ $(\zeta \in \mathbb{K}).$

Corollary

Only three norm equalities of the form

||g(T)|| = f(||T||)

are possible:

•
$$b = 0$$
: $||a \operatorname{Id}|| = |a|$,

•
$$a = 0$$
: $||bT|| = |b| ||T||$,
(trivial cases)

•
$$a \neq 0, b \neq 0$$
:
 $||a \operatorname{Id} + b T|| = |a| + |b| ||T||,$

(Daugavet property)

We have...

 $||g(T)|| = f(||T||) \ \forall T \in L(X) \text{ rank-one}$

We want...

g is affine

We have...

 $||g(T)|| = f(||T||) \ \forall T \in L(X) \text{ rank-one}$

• Write
$$g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k$$
 y $\tilde{g} = g - a_0$.

$$\stackrel{?}{\Rightarrow}$$

We have...

 $\|g(T)\| = f(\|T\|) \ \forall T \in L(X)$ rank-one

$$\stackrel{?}{\Rightarrow}$$

We want. . . g is affine

• Write
$$g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k$$
 y $\tilde{g} = g - a_0$.

• Take
$$x_0$$
, $x_1 \in S_X$ and x_0^* , $x_1^* \in S_{X^*}$ such that

 $x_0^*(x_0) = 0$ and $x_1^*(x_1) = 1$,

and define the operators $T_0 = x_0^* \otimes x_0$ and $T_1 = x_1^* \otimes x_1$.

We have...

 $\|g(T)\| = f(\|T\|) \ \forall T \in L(X)$ rank-one

$$\stackrel{?}{\Rightarrow}$$

• Write
$$g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k$$
 y $\tilde{g} = g - a_0$.

• Take
$$x_0$$
, $x_1 \in S_X$ and x_0^* , $x_1^* \in S_{X^*}$ such that

 $x_0^*(x_0) = 0$ and $x_1^*(x_1) = 1$,

and define the operators $T_0 = x_0^* \otimes x_0$ and $T_1 = x_1^* \otimes x_1$.

• Then $g(\lambda T_0) = a_0 \mathrm{Id} + a_1 \lambda T_0$ and $g(\lambda T_1) = a_0 \mathrm{Id} + \widetilde{g}(\lambda) T_1$ $(\lambda \in \mathbb{C}).$

We have...

 $\|g(T)\| = f(\|T\|) \ \forall T \in L(X)$ rank-one

$$\stackrel{?}{\Rightarrow}$$

We want. . . g is affine

• Write
$$g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k$$
 y $\tilde{g} = g - a_0$.

• Take
$$x_0$$
, $x_1 \in S_X$ and x_0^* , $x_1^* \in S_{X^*}$ such that

 $x_0^*(x_0) = 0$ and $x_1^*(x_1) = 1$,

and define the operators $T_0 = x_0^* \otimes x_0$ and $T_1 = x_1^* \otimes x_1$.

- Then $g(\lambda T_0) = a_0 \operatorname{Id} + a_1 \lambda T_0$ and $g(\lambda T_1) = a_0 \operatorname{Id} + \widetilde{g}(\lambda) T_1$ $(\lambda \in \mathbb{C}).$
- Therefore, for $\lambda \in \mathbb{C}$ we have

 $||a_0 \mathrm{Id} + \widetilde{g}(\lambda)T_1|| = ||g(\lambda T_1)|| = f(|\lambda|) = ||g(\lambda T_0)|| = ||a_0 \mathrm{Id} + a_1 \lambda T_0||.$

We have...

 $\|g(T)\|=f(\|T\|) \ \forall T\in L(X)$ rank-one

$$\stackrel{?}{\Rightarrow}$$

We want. . . g is affine

• Write
$$g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k$$
 y $\tilde{g} = g - a_0$.

• Take
$$x_0$$
, $x_1 \in S_X$ and x_0^* , $x_1^* \in S_{X^*}$ such that

 $x_0^*(x_0) = 0$ and $x_1^*(x_1) = 1$,

and define the operators $T_0 = x_0^* \otimes x_0$ and $T_1 = x_1^* \otimes x_1$.

- Then $g(\lambda T_0) = a_0 \operatorname{Id} + a_1 \lambda T_0$ and $g(\lambda T_1) = a_0 \operatorname{Id} + \widetilde{g}(\lambda) T_1$ $(\lambda \in \mathbb{C}).$
- Therefore, for $\lambda \in \mathbb{C}$ we have

 $||a_0 \mathrm{Id} + \widetilde{g}(\lambda)T_1|| = ||g(\lambda T_1)|| = f(|\lambda|) = ||g(\lambda T_0)|| = ||a_0 \mathrm{Id} + a_1 \lambda T_0||.$

• We use the triangle inequality to get

 $|\widetilde{g}(\lambda)| \leq 2|a_0| + |a_1||\lambda| \qquad (\lambda \in \mathbb{C}),$

Miguel Martín (University of Granada (Spain))

We have...

 $\|g(T)\|=f(\|T\|) \ \forall T\in L(X)$ rank-one

$$\stackrel{?}{\Rightarrow}$$

We want... g is affine

• Write
$$g(\zeta) = \sum_{k=0}^{\infty} a_k \zeta^k$$
 y $\tilde{g} = g - a_0$.

• Take
$$x_0$$
, $x_1 \in S_X$ and x_0^* , $x_1^* \in S_{X^*}$ such that

 $x_0^*(x_0) = 0$ and $x_1^*(x_1) = 1$,

and define the operators $T_0 = x_0^* \otimes x_0$ and $T_1 = x_1^* \otimes x_1$.

- Then $g(\lambda T_0) = a_0 \operatorname{Id} + a_1 \lambda T_0$ and $g(\lambda T_1) = a_0 \operatorname{Id} + \widetilde{g}(\lambda) T_1$ $(\lambda \in \mathbb{C}).$
- Therefore, for $\lambda \in \mathbb{C}$ we have

 $||a_0 \mathrm{Id} + \widetilde{g}(\lambda)T_1|| = ||g(\lambda T_1)|| = f(|\lambda|) = ||g(\lambda T_0)|| = ||a_0 \mathrm{Id} + a_1 \lambda T_0||.$

• We use the triangle inequality to get

$$|\tilde{g}(\lambda)| \leq 2|a_0| + |a_1||\lambda| \qquad (\lambda \in \mathbb{C}),$$

• and so \widetilde{g} is a degree-one polynomial by Cauchy inequalities. \checkmark

Miguel Martín (University of Granada (Spain))

Numerical index theory

Equalities of the form ||Id + g(T)|| = f(||g(T)||)

Equalities of the form ||Id + g(T)|| = f(||g(T)||)

Remark

If X has the Daugavet property and g is analytic, then

 $\| \text{Id} + g(T) \| = |1 + g(0)| - |g(0)| + \|g(T)\|$

for every rank-one $T \in L(X)$.

Equalities of the form ||Id + g(T)|| = f(||g(T)||)

Remark

If X has the Daugavet property and g is analytic, then

 $\|\mathrm{Id} + g(T)\| = |1 + g(0)| - |g(0)| + \|g(T)\|$

for every rank-one $T \in L(X)$.

• Our aim here is not to show that g has a suitable form,

Equalities of the form ||Id + g(T)|| = f(||g(T)||)

Remark

If X has the Daugavet property and g is analytic, then

 $\| \mathrm{Id} + g(T) \| = |1 + g(0)| - |g(0)| + \|g(T)\|$

for every rank-one $T \in L(X)$.

- Our aim here is not to show that g has a suitable form,
- but it is to see that for every g another simpler equation can be found.

Equalities of the form ||Id + g(T)|| = f(||g(T)||)

Remark

If X has the Daugavet property and g is analytic, then

 $\| \mathrm{Id} + g(T) \| = |1 + g(0)| - |g(0)| + \|g(T)\|$

for every rank-one $T \in L(X)$.

- Our aim here is not to show that g has a suitable form,
- but it is to see that for every g another simpler equation can be found.
- From now on, we have to separate the complex and the real case.

Equalities of the form ||Id + g(T)|| = f(||g(T)||)

• Complex case:

Equalities of the form ||Id + g(T)|| = f(||g(T)||)

• Complex case:

Proposition

X complex, $\dim(X) \ge 2$. Suppose that

 $\| \text{Id} + g(T) \| = f(\| g(T) \|)$

for every rank-one $T \in L(X)$, where

- $g: \mathbb{C} \longrightarrow \mathbb{C}$ analytic non-constant,
- $f : \mathbb{R}_0^+ \longrightarrow \mathbb{R}$ continuous.

Then

 $\|(1+g(0))\mathrm{Id}+T\|$ = |1 + g(0)| - |g(0)| + ||g(0)Id + T||for every rank-one $T \in L(X)$.

Equalities of the form ||Id + g(T)|| = f(||g(T)||)

• Complex case:

Proposition

X complex, $\dim(X) \ge 2$. Suppose that

 $\| \text{Id} + g(T) \| = f(\| g(T) \|)$

for every rank-one $T \in L(X)$, where

- $g: \mathbb{C} \longrightarrow \mathbb{C}$ analytic non-constant,
- $f : \mathbb{R}_0^+ \longrightarrow \mathbb{R}$ continuous.

Then

 $\|(1+g(0))\mathrm{Id}+T\|$ = |1 + g(0)| - |g(0)| + ||g(0)Id + T||for every rank-one $T \in L(X)$.

We obtain two different cases:

• $|1+g(0)| - |g(0)| \neq 0$ or

•
$$|1+g(0)| - |g(0)| = 0.$$

Equalities of the form ||Id + g(T)|| = f(||g(T)||). Complex case

Theorem

If $\operatorname{Re} g(0) \neq -1/2$ and

 $\| \text{Id} + g(T) \| = f(\| g(T) \|)$

for every rank-one T, then X has the Daugavet property.

Equalities of the form ||Id + g(T)|| = f(||g(T)||). Complex case

Theorem

If $\operatorname{Re} g(0) \neq -1/2$ and

 $\| \text{Id} + g(T) \| = f(\| g(T) \|)$

for every rank-one T, then X has the Daugavet property.

Theorem

If $\text{Re}\,g(0) = -1/2$ and

 $\| \mathrm{Id} + g(T) \| = f(\| g(T) \|)$

for every rank-one T, then exists $\theta_0 \in \mathbb{R}$ s.t.

 $\| \mathrm{Id} + \mathrm{e}^{i\,\theta_0}\,T \| = \| \mathrm{Id} + T \|$

for every rank-one $T \in L(X)$.

Equalities of the form ||Id + g(T)|| = f(||g(T)||). Complex case

Theorem

If $\operatorname{Re} g(0) \neq -1/2$ and

 $\| \mathrm{Id} + g(T) \| = f(\| g(T) \|)$

for every rank-one T, then X has the Daugavet property.

Theorem

If Reg(0) = -1/2 and

 $\| \mathrm{Id} + g(T) \| = f(\| g(T) \|)$

for every rank-one T, then exists $\theta_0 \in \mathbb{R}$ s.t.

 $\| \text{Id} + e^{i\theta_0} T \| = \| \text{Id} + T \|$

for every rank-one $T \in L(X)$.

Example

If $X = C[0, 1] \oplus_2 C[0, 1]$, then

- $\|\operatorname{Id} + e^{i\theta} T\| = \|\operatorname{Id} + T\|$ for every $\theta \in \mathbb{R}$, rank-one $T \in L(X)$.
- X does not have the Daugavet property.

Equalities of the form ||Id + g(T)|| = f(||g(T)||). Real case

• REAL CASE:

Equalities of the form ||Id + g(T)|| = f(||g(T)||). Real case

• REAL CASE:

Remarks

• The proofs are not valid (we use Picard's Theorem).

Equalities of the form ||Id + g(T)|| = f(||g(T)||). Real case

• REAL CASE:

Remarks

- The proofs are not valid (we use Picard's Theorem).
- They work when g is onto.

Equalities of the form ||Id + g(T)|| = f(||g(T)||). Real case

• REAL CASE:

Remarks

- The proofs are not valid (we use Picard's Theorem).
- They work when g is onto.
- But we do not know what is the situation when g is not onto, even in the easiest examples:
 - $\| \mathrm{Id} + T^2 \| = 1 + \| T^2 \|,$

•
$$\| \mathrm{Id} - T^2 \| = 1 + \| T^2 \|.$$

Equalities of the form ||Id + g(T)|| = f(||g(T)||). Real case

• REAL CASE:

Remarks

- The proofs are not valid (we use Picard's Theorem).
- They work when g is onto.
- But we do not know what is the situation when g is not onto, even in the easiest examples:
 - $\| \mathrm{Id} + T^2 \| = 1 + \| T^2 \|,$

•
$$\| \mathrm{Id} - T^2 \| = 1 + \| T^2 \|.$$

$$g(0) = -1/2$$

Example

f
$$X = C[0,1] \oplus_2 C[0,1]$$
, then

- $\| \text{Id} T \| = \| \text{Id} + T \|$ for every rank-one $T \in L(X)$.
- X does not have the Daugavet property.

The question

Godefroy, private communication

Is there any real Banach space X (with dim(X) > 1) such that

$$\|\mathrm{Id} + T^2\| = 1 + \|T^2\|$$

for every operator $T \in L(X)$?

In other words, are there extremely non-complex spaces other than ${\mathbb R}$ $\$?

The first idea

We may try to check whether the known spaces without complex structure are actually extremely non-complex.

The first idea

We may try to check whether the known spaces without complex structure are actually extremely non-complex.

Some examples

- If $dim(X) < \infty$, X has complex structure iff dim(X) is even.
- **② Dieudonné**, **1952**: the James' space \mathcal{J} (since $\mathcal{J}^{**} \equiv \mathcal{J} \oplus \mathbb{R}$).

Szarek, 1986: uniformly convex examples.

- Gowers-Maurey, 1993: their H.I. space.
- **Ferenczi-Medina Galego, 2007:** there are odd and even infinite-dimensional spaces *X*.
 - X is even if admits a complex structure but its hyperplanes does not.
 - X is odd if its hyperplanes are even (and so X does not admit a complex structure).

The first idea

We may try to check whether the known spaces without complex structure are actually extremely non-complex.

Some examples

- If $dim(X) < \infty$, X has complex structure iff dim(X) is even.
- **② Dieudonné**, **1952**: the James' space \mathcal{J} (since $\mathcal{J}^{**} \equiv \mathcal{J} \oplus \mathbb{R}$).

Szarek, 1986: uniformly convex examples.

- Gowers-Maurey, 1993: their H.I. space.
- **Ferenczi-Medina Galego, 2007:** there are odd and even infinite-dimensional spaces *X*.
 - X is even if admits a complex structure but its hyperplanes does not.
 - X is odd if its hyperplanes are even (and so X does not admit a complex structure).

(Un)fortunately...

This did not work and we moved to C(K) spaces.

Miguel Martín (University of Granada (Spain))

The first example: weak multiplications

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

 $T = g \operatorname{Id} + S$

where $g \in C(K)$ and S is weakly compact.

The first example: weak multiplications

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

 $T = g \operatorname{Id} + S$

where $g \in C(K)$ and S is weakly compact.

Theorem

$$\begin{split} &K \text{ perfect, } T = g \operatorname{Id} + S \in L\big(C(K)\big) \text{ weak multiplication} \\ \Longrightarrow \quad \|\operatorname{Id} + T^2\| = 1 + \|T^2\| \end{aligned}$$

We have X = C(K), K perfect, T = gId + S

- max $\|\operatorname{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|Id + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

We have X = C(K), K perfect, T = gId + S

- max $\|\operatorname{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|Id + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

• If T = gId + S, then $T^2 = g^2Id + S'$ with S' weakly compact.

We have X = C(K), K perfect, T = gId + S

- max $\|\operatorname{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|Id + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If T = gId + S, then $T^2 = g^2Id + S'$ with S' weakly compact.
- We will prove that $||Id + g^2 Id + S|| = 1 + ||g^2 Id + S||$ for $g \in C(K)$ and S weakly compact.

We have X = C(K), K perfect, T = gId + S

- max $\|\operatorname{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|Id + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If T = gId + S, then $T^2 = g^2Id + S'$ with S' weakly compact.
- We will prove that $||Id + g^2 Id + S|| = 1 + ||g^2 Id + S||$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $\|g^2\| \leqslant 1$ and $\min g^2(K) > 0$.

We have X = C(K), K perfect, T = gId + S

- max $\|\operatorname{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|Id + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If T = gId + S, then $T^2 = g^2Id + S'$ with S' weakly compact.
- We will prove that $\|\operatorname{Id} + g^2 \operatorname{Id} + S\| = 1 + \|g^2 \operatorname{Id} + S\|$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $||g^2|| \leq 1$ and $\min g^2(K) > 0$.

Proof • It is enough to show that $\left\| \mathrm{Id} - (g^2 \, \mathrm{Id} + S) \right\| \, < \, 1 + \|g^2 \, \mathrm{Id} + S\|.$

We have X = C(K), K perfect, T = gId + S

- max $\|\operatorname{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|Id + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If T = gId + S, then $T^2 = g^2Id + S'$ with S' weakly compact.
- We will prove that $||Id + g^2 Id + S|| = 1 + ||g^2 Id + S||$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $||g^2|| \leq 1$ and $\min g^2(K) > 0$.

Proof

• It is enough to show that $\left\| \text{Id} - (g^2 \text{Id} + S) \right\| < 1 + \|g^2 \text{Id} + S\|.$ • $\| \text{Id} - (g^2 \text{Id} + S) \| \leq \|(1 - g^2) \text{Id}\| + \|S\| = 1 - \min g^2(K) + \|S\|.$

Miguel Martín (University of Granada (Spain))

We have X = C(K), K perfect, T = gId + S

- max $\|\operatorname{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|Id + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If T = gId + S, then $T^2 = g^2Id + S'$ with S' weakly compact.
- We will prove that $||Id + g^2 Id + S|| = 1 + ||g^2 Id + S||$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $||g^2|| \leq 1$ and $\min g^2(K) > 0$.

Proof

• It is enough to show that $\begin{aligned} \left\| \mathrm{Id} - (g^2 \operatorname{Id} + S) \right\| &< 1 + \|g^2 \operatorname{Id} + S\|. \end{aligned}$ • $\| \mathrm{Id} - (g^2 \operatorname{Id} + S) \| \leq \|(1 - g^2) \operatorname{Id}\| + \|S\| = 1 - \min g^2(K) + \|S\|.$ • $\|g^2 \operatorname{Id} + S\| = \| \operatorname{Id} + S + (g^2 \operatorname{Id} - \operatorname{Id}) \| \geq \| \operatorname{Id} + S\| - \|g^2 \operatorname{Id} - \operatorname{Id}\| \\ &= 1 + \|S\| - (1 - \min g^2(K)) = \|S\| + \min g^2(K). \end{aligned}$

We have X = C(K), K perfect, T = gId + S

- max $\|\operatorname{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|Id + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If T = gId + S, then $T^2 = g^2Id + S'$ with S' weakly compact.
- We will prove that $||Id + g^2 Id + S|| = 1 + ||g^2 Id + S||$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $||g^2|| \leq 1$ and $\min g^2(K) > 0$.
- Step 2: We can avoid the assumption that min $g^2(K) > 0$.

We have X = C(K), K perfect, T = gId + S

- max $\|\operatorname{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|Id + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If T = gId + S, then $T^2 = g^2Id + S'$ with S' weakly compact.
- We will prove that $||Id + g^2 Id + S|| = 1 + ||g^2 Id + S||$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $||g^2|| \leq 1$ and $\min g^2(K) > 0$.
- Step 2: We can avoid the assumption that $\min g^2(K) > 0$.

Proof

Just think that the set of operators satisfying (DE) is closed.

We have X = C(K), K perfect, T = gId + S

- max $\|\operatorname{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|Id + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If T = gId + S, then $T^2 = g^2Id + S'$ with S' weakly compact.
- We will prove that $||Id + g^2 Id + S|| = 1 + ||g^2 Id + S||$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $||g^2|| \leq 1$ and $\min g^2(K) > 0$.
- Step 2: We can avoid the assumption that $\min g^2(K) > 0$.
- Step 3: Finally, for every g the above gives

$$\left\| \mathrm{Id} + \frac{1}{\|g^2\|} \left(g^2 \, \mathrm{Id} + S \right) \right\| = 1 + \frac{1}{\|g^2\|} \|g^2 \, \mathrm{Id} + S\|$$

which gives us the result. \checkmark

We have X = C(K), K perfect, T = gId + S

- max $\|\operatorname{Id} \pm T\| = 1 + \|T\|$ (true for every K and every T)
- $\|Id + S\| = 1 + \|S\|$ (if $S \in W(X)$, K perfect)

- If T = gId + S, then $T^2 = g^2Id + S'$ with S' weakly compact.
- We will prove that $||Id + g^2 Id + S|| = 1 + ||g^2 Id + S||$ for $g \in C(K)$ and S weakly compact.
- Step 1: We assume $||g^2|| \leq 1$ and $\min g^2(K) > 0$.
- Step 2: We can avoid the assumption that $\min g^2(K) > 0$.
- Step 3: Finally, for every g the above gives

$$\left\| \mathrm{Id} + \frac{1}{\|g^2\|} \left(g^2 \mathrm{Id} + S \right) \right\| = 1 + \frac{1}{\|g^2\|} \|g^2 \mathrm{Id} + S\|$$

which gives us the result. \checkmark

Proof

If
$$||u + v|| = ||u|| + ||v|| \implies ||\alpha u + \beta v|| = \alpha ||u|| + \beta ||v||$$
 for $\alpha, \beta \in \mathbb{R}_0^+$.

Miguel Martín (University of Granada (Spain))

The first example: weak multiplications. II

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

 $T = g \operatorname{Id} + S$

where $g \in C(K)$ and S is weakly compact.

Theorem

$$\begin{split} & K \text{ perfect, } T = g \operatorname{Id} + S \in L\big(C(K)\big) \text{ weak multiplication} \\ \implies \|\operatorname{Id} + T^2\| = 1 + \|T^2\| \end{split}$$

The first example: weak multiplications. II

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

 $T = g \operatorname{Id} + S$

where $g \in C(K)$ and S is weakly compact.

Theorem

K perfect, $T = g \operatorname{Id} + S \in L(C(K))$ weak multiplication $\implies ||\operatorname{Id} + T^2|| = 1 + ||T^2||$

Example (Koszmider, 2004; Plebanek, 2004)

There are perfect compact spaces K such that all operators on C(K) are weak multiplications.

The first example: weak multiplications. II

Weak multiplication

Let K be a compact space. $T \in L(C(K))$ is a weak multiplication if

 $T = g \operatorname{Id} + S$

where $g \in C(K)$ and S is weakly compact.

Theorem

K perfect, $T = g \operatorname{Id} + S \in L(C(K))$ weak multiplication $\implies ||\operatorname{Id} + T^2|| = 1 + ||T^2||$

Example (Koszmider, 2004; Plebanek, 2004)

There are perfect compact spaces K such that all operators on C(K) are weak multiplications.

Consequence

Therefore, there are extremely non-complex C(K) spaces.

Miguel Martín (University of Granada (Spain))

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$T^* = g \operatorname{Id} + S$$

where g is a Borel function and S is weakly compact.

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$T^* = g \operatorname{Id} + S$$

where g is a Borel function and S is weakly compact.

Theorem

If K is perfect and all operators on C(K) are weak multipliers, then C(K) is extremely non-complex.

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$T^* = g \operatorname{Id} + S$$

where g is a Borel function and S is weakly compact.

Theorem

If K is perfect and all operators on C(K) are weak multipliers, then C(K) is extremely non-complex.

Example (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all operators on C(K) are weak multipliers.

Weak multiplier

Let K be a compact space. $T \in L(C(K))$ is a weak multiplier if

$$T^* = g \operatorname{Id} + S$$

where g is a Borel function and S is weakly compact.

Theorem

If K is perfect and all operators on C(K) are weak multipliers, then C(K) is extremely non-complex.

Example (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all operators on C(K) are weak multipliers.

Corollary

There are infinitely many non-isomorphic extremely non-complex Banach spaces.

Miguel Martín (University of Granada (Spain))

Further examples

Further examples

Proposition

There is a compact infinite totally disconnected and perfect space K such that all operators on C(K) are weak multipliers.

Proposition

There is a compact infinite totally disconnected and perfect space K such that all operators on C(K) are weak multipliers.

Consequence

There is a family $(K_i)_{i\in I}$ of pairwise disjoint perfect and totally disconnected compact spaces such that

- every operator on $C(K_i)$ is a weak multiplier,
- for $i \neq j$, every $T \in L(C(K_i), C(K_j))$ is weakly compact.

Proposition

There is a compact infinite totally disconnected and perfect space K such that all operators on C(K) are weak multipliers.

Consequence

There is a family $(K_i)_{i\in I}$ of pairwise disjoint perfect and totally disconnected compact spaces such that

- every operator on $C(K_i)$ is a weak multiplier,
- for $i \neq j$, every $T \in L(C(K_i), C(K_j))$ is weakly compact.

Theorem

There are some compactifications \widetilde{K} of the above family $(K_i)_{i \in I}$ such that the corresponding $C(\widetilde{K})$'s are extremely non-complex.

Further examples II

Further examples II

Main consequence

There are perfect compact spaces K_1 , K_2 such that:

- $C(K_1)$ and $C(K_2)$ are extremely non-complex,
- $C(K_1)$ contains a complemented copy of $C(\Delta)$.
- $C(K_2)$ contains a 1-complemented isometric copy of ℓ_{∞} .

Further examples II

Main consequence

There are perfect compact spaces K_1 , K_2 such that:

- $C(K_1)$ and $C(K_2)$ are extremely non-complex,
- $C(K_1)$ contains a complemented copy of $C(\Delta)$.
- $C(K_2)$ contains a 1-complemented isometric copy of ℓ_{∞} .

Observation

- $C(K_1)$ and $C(K_2)$ have operators which are not weak multipliers.
- They are not indecomposable spaces.

Question 1

Find topological characterization of the compact Hausdorff spaces K such that the spaces C(K) are extremely non-complex.

Question 1

Find topological characterization of the compact Hausdorff spaces K such that the spaces C(K) are extremely non-complex.

Question 2

Find topological consequences on K when C(K) is extremely non-complex. For instance: If C(K) is extremely non-complex and $\psi: K \longrightarrow K$ is continuous, are there an

open subset U of K such that $\psi|_U = id$ and $\psi(K \setminus U)$ is finite ?

Question 1

Find topological characterization of the compact Hausdorff spaces K such that the spaces C(K) are extremely non-complex.

Question 2

Find topological consequences on K when C(K) is extremely non-complex. For instance:

If C(K) is extremely non-complex and $\psi: K \longrightarrow K$ is continuous, are there an open subset U of K such that $\psi|_U = \text{id}$ and $\psi(K \setminus U)$ is finite ?

• We will show latter than $\varphi: K \longrightarrow K$ homeomorphism $\implies \varphi = id$.

Extremely non-complex Banach spaces

Definition

X is extremely non-complex if $dist(T^2, -Id)$ is the maximum possible, i.e.

$$\|\mathrm{Id} + T^2\| = 1 + \|T^2\|$$
 $(T \in L(X))$

Extremely non-complex Banach spaces

Definition

X is extremely non-complex if $dist(T^2, -Id)$ is the maximum possible, i.e.

$$\|\mathrm{Id} + T^2\| = 1 + \|T^2\|$$
 $(T \in L(X))$

Examples

There are several extremely non-complex C(K) spaces:

- If T = gId + S for every $T \in L(C(K))$ (K Koszmider).
- If $T^* = gId + S$ for every $T \in L(C(K))$ (K weak Koszmider).
- One C(K) containing a complemented copy of $C(\Delta)$.
- One C(K) containing an isometric (1-complemented) copy of ℓ_{∞} .

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$
- $T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{\operatorname{Id}\}.$

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$
- $T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{\operatorname{Id}\}.$

Theorem

X extremely non-complex.

• $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$

•
$$T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$$

•
$$T_1, T_2 \in \text{Iso}(X) \implies ||T_1 - T_2|| \in \{0, 2\}.$$

• $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{\operatorname{Id}\}.$

• Take
$$S = \frac{1}{\sqrt{2}} (T - T^{-1}) \implies S^2 = \frac{1}{2}T^2 - \mathrm{Id} + \frac{1}{2}T^{-2}.$$

Theorem

X extremely non-complex.

• $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$

•
$$T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$$

•
$$T_1, T_2 \in \text{Iso}(X) \implies ||T_1 - T_2|| \in \{0, 2\}.$$

• $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{\operatorname{Id}\}.$

• Take
$$S = \frac{1}{\sqrt{2}} (T - T^{-1}) \implies S^2 = \frac{1}{2}T^2 - \mathrm{Id} + \frac{1}{2}T^{-2}.$$

• $1 + \|S^2\| = \|\mathrm{Id} + S^2\| = \left\|\frac{1}{2}T^2 + \frac{1}{2}T^{-2}\right\| \le 1 \implies S^2 = 0.$

Theorem

X extremely non-complex.

• $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$

•
$$T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$$

•
$$T_1, T_2 \in \text{Iso}(X) \implies ||T_1 - T_2|| \in \{0, 2\}.$$

• $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{\operatorname{Id}\}.$

• Take
$$S = \frac{1}{\sqrt{2}} (T - T^{-1}) \implies S^2 = \frac{1}{2}T^2 - \mathrm{Id} + \frac{1}{2}T^{-2}.$$

• $1 + ||S^2|| = ||\mathrm{Id} + S^2|| = \left\|\frac{1}{2}T^2 + \frac{1}{2}T^{-2}\right\| \le 1 \implies S^2 = 0.$
• Then $\mathrm{Id} = \frac{1}{2}T^2 + \frac{1}{2}T^{-2}.$

Theorem

X extremely non-complex.

• $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$

•
$$T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$$

•
$$T_1, T_2 \in \text{Iso}(X) \implies ||T_1 - T_2|| \in \{0, 2\}.$$

• $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{\operatorname{Id}\}.$

Proof.

• Take
$$S = \frac{1}{\sqrt{2}} (T - T^{-1}) \implies S^2 = \frac{1}{2}T^2 - \mathrm{Id} + \frac{1}{2}T^{-2}.$$

•
$$1 + ||S^2|| = ||\mathrm{Id} + S^2|| = \left\|\frac{1}{2}T^2 + \frac{1}{2}T^{-2}\right\| \le 1 \implies S^2 = 0.$$

• Then Id
$$= \frac{1}{2}T^2 + \frac{1}{2}T^{-2}$$
.

• Since Id is an extreme point of
$$B_{L(X)} \implies T^2 = T^{-2} = \text{Id.}$$

Miguel Martín (University of Granada (Spain))

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$
- $T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{\operatorname{Id}\}.$

$$Id = (T_1T_2)(T_1T_2) \implies T_1T_2 = T_1(T_1T_2T_1T_2)T_2 = (T_1T_1)T_2T_1(T_2T_2) = T_2T_1. \checkmark$$

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$
- $T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{\operatorname{Id}\}.$

•
$$(\mathrm{Id} - T)^2 = 2(\mathrm{Id} - T) \implies 2\|\mathrm{Id} - T\| = \|(\mathrm{Id} - T)^2\| \le \|\mathrm{Id} - T\|^2.$$

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$
- $T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{\operatorname{Id}\}.$

•
$$(\mathrm{Id} - T)^2 = 2(\mathrm{Id} - T) \implies 2\|\mathrm{Id} - T\| = \|(\mathrm{Id} - T)^2\| \le \|\mathrm{Id} - T\|^2.$$

• So $\|\mathrm{Id} - T\| \in \{0, 2\}.$

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$
- $T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{\operatorname{Id}\}.$

Proof.

•
$$(\mathrm{Id} - T)^2 = 2(\mathrm{Id} - T) \implies 2\|\mathrm{Id} - T\| = \|(\mathrm{Id} - T)^2\| \le \|\mathrm{Id} - T\|^2.$$

• So
$$\|\operatorname{Id} - T\| \in \{0, 2\}.$$

• $||T_1 - T_2|| = ||T_1(\mathrm{Id} - T_1T_2)|| = ||\mathrm{Id} - T_1T_2|| \in \{0, 2\}.$

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$
- $T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\Phi: \mathbb{R}^+_0 \longrightarrow Iso(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{Id\}.$

$$\Phi(t) = \Phi(t/2 + t/2) = \Phi(t/2)^2 = \text{Id.}$$

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$
- $T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\Phi : \mathbb{R}_0^+ \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}_0^+) = \{\operatorname{Id}\}.$

Consequences

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$
- $T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{\operatorname{Id}\}.$

Consequences

• Iso(X) is a Boolean group for the composition operation.

130 / 136

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$
- $T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{\operatorname{Id}\}.$

Consequences

- Iso(X) is a Boolean group for the composition operation.
- Iso(X) identifies with the set Unc(X) of unconditional projections on X:

$$P \in \text{Unc}(X) \iff P^2 = P, \ 2P - \text{Id} \in \text{Iso}(X)$$

 $\iff P = \frac{1}{2}(\text{Id} - T), \ T \in \text{Iso}(X), \ T^2 = \text{Id}$

Theorem

X extremely non-complex.

- $T \in \operatorname{Iso}(X) \implies T^2 = \operatorname{Id}.$
- $T_1, T_2 \in \operatorname{Iso}(X) \implies T_1T_2 = T_2T_1.$
- $T_1, T_2 \in \text{Iso}(X) \implies ||T_1 T_2|| \in \{0, 2\}.$
- $\Phi: \mathbb{R}^+_0 \longrightarrow \operatorname{Iso}(X)$ one-parameter semigroup $\implies \Phi(\mathbb{R}^+_0) = \{\operatorname{Id}\}.$

Consequences

- Iso(X) is a Boolean group for the composition operation.
- Iso(X) identifies with the set Unc(X) of unconditional projections on X:

$$P \in \text{Unc}(X) \iff P^2 = P, \ 2P - \text{Id} \in \text{Iso}(X)$$

 $\iff P = \frac{1}{2}(\text{Id} - T), \ T \in \text{Iso}(X), \ T^2 = \text{Id}.$

• $\operatorname{Iso}(X) \equiv \operatorname{Unc}(X)$ is a Boolean algebra $\iff P_1P_2 \in \operatorname{Unc}(X)$ when $P_1, P_2 \in \operatorname{Unc}(X)$ $\iff \left\| \frac{1}{2} \left(\operatorname{Id} + T_1 + T_2 - T_1T_2 \right) \right\| = 1$ for every $T_1, T_2 \in \operatorname{Iso}(X)$.

Miguel Martín (University of Granada (Spain))

Numerical index theory

Theorem

K perfect weak Koszmider, *L* closed nowhere dense, $E \subset C(L)$ $\implies C_E(K||L)$ is extremely non-complex.

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$ $\implies C_E(K||L)$ is extremely non-complex.

Proposition

K perfect $\implies \exists L \subset K$ closed nowhere dense with $C[0,1] \subset C(L)$.

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$ $\implies C_E(K||L)$ is extremely non-complex.

Proposition

 $K \text{ perfect} \implies \exists L \subset K \text{ closed nowhere dense with } C[0,1] \subset C(L).$

Observation: exists a non C(K) extremely non-complex space

 $C_{\ell_2}(K\|L) \text{ is not isomorphic to a } C(K') \text{ space since } \ell_2 \stackrel{\text{comp}}{\longrightarrow} C_{\ell_2}(K\|L)^*.$

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$ $\implies C_E(K||L)$ is extremely non-complex.

Proposition

 $K \text{ perfect} \implies \exists L \subset K \text{ closed nowhere dense with } C[0,1] \subset C(L).$

Observation: exists a non C(K) extremely non-complex space

 $C_{\ell_2}(K\|L) \text{ is not isomorphic to a } C(K') \text{ space since } \ell_2 \stackrel{\text{comp}}{\longrightarrow} C_{\ell_2}(K\|L)^*.$

Important consequence: Example

Take K perfect weak Koszmider, $L \subset K$ closed nowhere dense with $E = \ell_2 \subset C[0,1] \subset C(L)$:

- $C_{\ell_2}(K||L)$ has no non-trivial one-parameter semigroup of isometries.
- $C_{\ell_2}(K \| L)^* = \ell_2 \oplus_1 C_0(K \| L)^*$, so $\mathrm{Iso}(C_{\ell_2}(K \| L)^*) \supset \mathrm{Iso}(\ell_2)$.

Theorem

K perfect weak Koszmider, L closed nowhere dense, $E \subset C(L)$ $\implies C_E(K||L)$ is extremely non-complex.

Proposition

 $K \text{ perfect} \implies \exists L \subset K \text{ closed nowhere dense with } C[0,1] \subset C(L).$

Observation: exists a non C(K) extremely non-complex space

 $C_{\ell_2}(K\|L) \text{ is not isomorphic to a } C(K') \text{ space since } \ell_2 \stackrel{\text{comp}}{\longrightarrow} C_{\ell_2}(K\|L)^*.$

Important consequence: Example

Take K perfect weak Koszmider, $L \subset K$ closed nowhere dense with $E = \ell_2 \subset C[0,1] \subset C(L)$:

• $C_{\ell_2}(K||L)$ has no non-trivial one-parameter semigroup of isometries.

• $C_{\ell_2}(K\|L)^* = \ell_2 \oplus_1 C_0(K\|L)^*$, so $\operatorname{Iso}(C_{\ell_2}(K\|L)^*) \supset \operatorname{Iso}(\ell_2)$.

But we are able to give a better result...

Miguel Martín (University of Granada (Spain))

Numerical index theory

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

 $[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, \ f \in C_E(K||L))$

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

 $[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, f \in C_E(K||L))$

Sketch of the proof.

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, f \in C_E(K||L))$$

Sketch of the proof.

• $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0 \delta_y\}$ dense in K.

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, f \in C_E(K||L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0 \delta_y\}$ dense in K.
- Consider $\phi: D_0 \longrightarrow D_0$ and $\theta: D_0 \longrightarrow \{-1, 1\}$ with

$$T^*(\delta_x) = \theta(x) \, \delta_{\phi(x)}$$

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, f \in C_E(K||L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0 \delta_y\}$ dense in K.
- Consider $\phi: D_0 \longrightarrow D_0$ and $\theta: D_0 \longrightarrow \{-1, 1\}$ with

$$T^*(\delta_x) = \theta(x) \, \delta_{\phi(x)}$$

• $\phi^2 = \mathrm{id}$, $\theta(x) \theta(\phi(x)) = 1$, ϕ homeomorphism.

Miguel Martín (University of Granada (Spain))

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, f \in C_E(K||L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0 \delta_y\}$ dense in K.
- Consider $\phi: D_0 \longrightarrow D_0$ and $\theta: D_0 \longrightarrow \{-1, 1\}$ with

$$T^*(\delta_x) = \theta(x) \, \delta_{\phi(x)}$$

• $\phi^2 = \text{id}, \ \theta(x) \ \theta(\phi(x)) = 1, \ \phi$ homeomorphism.

•
$$\phi(x) = x$$
 for all $x \in D_0$.

Miguel Martín (University of Granada (Spain))

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, f \in C_E(K||L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0 \delta_y\}$ dense in K.
- Consider $\phi: D_0 \longrightarrow D_0$ and $\theta: D_0 \longrightarrow \{-1, 1\}$ with

$$T^*(\delta_x) = \theta(x) \, \delta_{\phi(x)}$$

- $\phi^2 = \mathrm{id}, \ \theta(x) \ \theta(\phi(x)) = 1, \ \phi$ homeomorphism.
- $\phi(x) = x$ for all $x \in D_0$.
- $D_0 = K \setminus L$.

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, f \in C_E(K||L))$$

Sketch of the proof.

- $D_0 = \{x \in K \setminus L : \exists y \in K \setminus L, \theta_0 \in \{-1, 1\} \text{ with } T^*(\delta_x) = \theta_0 \delta_y\}$ dense in K.
- Consider $\phi: D_0 \longrightarrow D_0$ and $\theta: D_0 \longrightarrow \{-1, 1\}$ with

$$T^*(\delta_x) = \theta(x) \, \delta_{\phi(x)}$$

- $\phi^2 = \mathrm{id}, \ \theta(x) \ \theta(\phi(x)) = 1, \ \phi$ homeomorphism.
- $\phi(x) = x$ for all $x \in D_0$.
- $D_0 = K \setminus L$.
- θ is continuous. \checkmark

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, f \in C_E(K||L))$$

Consequences: cases E = C(L) and E = 0

- C(K) extremely non-complex, $\varphi: K \longrightarrow K$ homeomorphism $\implies \varphi = \mathrm{id}$
- $C_0(K \setminus L) \equiv C_0(K \| L)$ extremely non-complex, $\varphi : K \setminus L \longrightarrow K \setminus L$ homeomorphism $\implies \varphi = id$
- In both cases, the group of surjective isometries identifies with a Boolean algebra of clopen sets.

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, f \in C_E(K||L))$$

Consequences: general case

• If for every $x \in L$, there is $f \in E$ with $f(x) \neq 0$ $\implies \theta$ extends to the whole K and

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K, \ f \in C_E(K||L))$$

for every surjective isometry T.

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, f \in C_E(K||L))$$

Consequences: general case

• If for every $x \in L$, there is $f \in E$ with $f(x) \neq 0$ $\implies \theta$ extends to the whole K and

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K, \ f \in C_E(K||L))$$

for every surjective isometry T.

• If this happens, then $0 \notin \overline{\operatorname{ext}(B_{E^*})}^{w^*}$ (V. Kadets).

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, f \in C_E(K||L))$$

Consequences: general case

• If for every
$$x \in L$$
, there is $f \in E$ with $f(x) \neq 0$
 $\implies \theta$ extends to the whole K and

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K, \ f \in C_E(K||L))$$

for every surjective isometry T.

- If this happens, then $0 \notin \overline{\operatorname{ext}(B_{E^*})}^{w^*}$ (V. Kadets).
- But for $E = \ell_2$, $0 \in \overline{\operatorname{ext}(B_{E^*})}^{w^*}$.

Isometries on extremely non-complex $C_E(K||L)$ spaces

Theorem

 $C_E(K||L)$ extremely non-complex, $T \in \text{Iso}(C_E(K||L))$ \implies exists $\theta: K \setminus L \longrightarrow \{-1, 1\}$ continuous such that

$$[T(f)](x) = \theta(x)f(x) \qquad (x \in K \setminus L, f \in C_E(K||L))$$

Consequence: connected case

If K and $K \setminus L$ are connected, then

$$\operatorname{Iso}(C_E(K||L)) = \{-\operatorname{Id}, +\operatorname{Id}\}\$$

Koszmider, 2004

 $\exists \mathcal{K}$ weak Koszmider space such that $\mathcal{K} \setminus F$ is connected if $|F| < \infty$.

Koszmider, 2004

 $\exists \ \mathcal{K} \text{ weak Koszmider space such that } \mathcal{K} \setminus F \text{ is connected if } |F| < \infty.$

Observation on the above construction

There is $\mathcal{L} \subset \mathcal{K}$ closed nowhere dense with

- $\mathcal{K} \setminus \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

Koszmider, 2004

 $\exists \ \mathcal{K} \text{ weak Koszmider space such that } \mathcal{K} \setminus F \text{ is connected if } |F| < \infty.$

Observation on the above construction

There is $\mathcal{L} \subset \mathcal{K}$ closed nowhere dense with

- $\mathcal{K} \setminus \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

The best example

Consider $X = C_{\ell_2}(\mathcal{K} \| \mathcal{L})$. Then:

 $\operatorname{Iso}(X) = \{-\operatorname{Id}, +\operatorname{Id}\}$ and $\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2)$

Koszmider, 2004

 $\exists \ \mathcal{K} \text{ weak Koszmider space such that } \mathcal{K} \setminus F \text{ is connected if } |F| < \infty.$

Observation on the above construction

There is $\mathcal{L} \subset \mathcal{K}$ closed nowhere dense with

- $\mathcal{K} \setminus \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

The best example

Consider $X = C_{\ell_2}(\mathcal{K} \| \mathcal{L})$. Then:

 $\operatorname{Iso}(X) = \{-\operatorname{Id}, +\operatorname{Id}\}$ and $\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2)$

Proof.

Koszmider, 2004

 $\exists \ \mathcal{K} \text{ weak Koszmider space such that } \mathcal{K} \setminus F \text{ is connected if } |F| < \infty.$

Observation on the above construction

There is $\mathcal{L} \subset \mathcal{K}$ closed nowhere dense with

- $\mathcal{K} \setminus \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

The best example

Consider $X = C_{\ell_2}(\mathcal{K} \| \mathcal{L})$. Then:

 $\operatorname{Iso}(X) = \{-\operatorname{Id}, +\operatorname{Id}\}$ and $\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2)$

Proof.

- \mathcal{K} weak Koszmider, \mathcal{L} nowhere dense, $\ell_2 \subset C(\mathcal{L})$
 - \implies X well-defined and extremely non-complex.

Koszmider, 2004

 $\exists \ \mathcal{K} \text{ weak Koszmider space such that } \mathcal{K} \setminus F \text{ is connected if } |F| < \infty.$

Observation on the above construction

There is $\mathcal{L} \subset \mathcal{K}$ closed nowhere dense with

- $\mathcal{K} \setminus \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

The best example

Consider $X = C_{\ell_2}(\mathcal{K} \| \mathcal{L})$. Then:

 $\operatorname{Iso}(X) = \{-\operatorname{Id}, +\operatorname{Id}\}$ and $\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2)$

Proof.

- \mathcal{K} weak Koszmider, \mathcal{L} nowhere dense, $\ell_2 \subset C(\mathcal{L})$ $\implies X$ well-defined and extremely non-complex.
- $\mathcal{K} \setminus \mathcal{L}$ connected \implies Iso $(X) = \{-Id, +Id\}$.

Koszmider, 2004

 $\exists \ \mathcal{K} \text{ weak Koszmider space such that } \mathcal{K} \setminus F \text{ is connected if } |F| < \infty.$

Observation on the above construction

There is $\mathcal{L} \subset \mathcal{K}$ closed nowhere dense with

- $\mathcal{K} \setminus \mathcal{L}$ connected
- $C[0,1] \subseteq C(\mathcal{L})$

The best example

Consider $X = C_{\ell_2}(\mathcal{K} \| \mathcal{L})$. Then:

 $\operatorname{Iso}(X) = \{-\operatorname{Id}, +\operatorname{Id}\}$ and $\operatorname{Iso}(X^*) \supset \operatorname{Iso}(\ell_2)$

Proof.

- \mathcal{K} weak Koszmider, \mathcal{L} nowhere dense, $\ell_2 \subset C(\mathcal{L})$ $\implies X$ well-defined and extremely non-complex.
- $\mathcal{K} \setminus \mathcal{L}$ connected \implies Iso $(X) = \{-\mathrm{Id}, +\mathrm{Id}\}.$

•
$$X^* = \ell_2 \oplus_1 C_0(\mathcal{K} \| \mathcal{L})^*$$
, so $\operatorname{Iso}(\ell_2) \subset \operatorname{Iso}(X^*)$.

Miguel Martín (University of Granada (Spain))

Questions

- X extremely non complex
 - Does X have the Daugavet property ?

Questions

- X extremely non complex
 - Does X have the Daugavet property ?
 - Stronger: Does Y have the Daugavet property if

 $\|\mathrm{Id} + T^2\| = 1 + \|T^2\|$ for every rank-one $T \in L(Y)$?

Questions

- X extremely non complex
 - Does X have the Daugavet property ?
 - Stronger: Does Y have the Daugavet property if

 $\|\mathrm{Id}+T^2\|=1+\|T^2\|$ for every rank-one $T\in L(Y)$?

• Is it true that
$$n(X) = 1$$
 ?

Questions

- X extremely non complex
 - Does X have the Daugavet property ?
 - Stronger: Does Y have the Daugavet property if

 $\|\mathrm{Id} + T^2\| = 1 + \|T^2\|$ for every rank-one $T \in L(Y)$?

- Is it true that n(X) = 1 ?
 - We actually know that $n(X) \ge C > 0$.

Questions

- X extremely non complex
 - Does X have the Daugavet property ?
 - Stronger: Does Y have the Daugavet property if

 $\|\mathrm{Id} + T^2\| = 1 + \|T^2\|$ for every rank-one $T \in L(Y)$?

• Is it true that
$$n(X) = 1$$
 ?

• We actually know that $n(X) \ge C > 0$.

• Is $Iso(X) \equiv Unc(X)$ a Boolean algebra ?

Questions

- X extremely non complex
 - Does X have the Daugavet property ?
 - Stronger: Does Y have the Daugavet property if

 $\|\mathrm{Id} + T^2\| = 1 + \|T^2\|$ for every rank-one $T \in L(Y)$?

• Is it true that
$$n(X) = 1$$
 ?

• We actually know that $n(X) \ge C > 0$.

- Is $Iso(X) \equiv Unc(X)$ a Boolean algebra ?
- If $Y \leq X$ is 1-codimensional, is Y extremely non complex ?

Questions

- X extremely non complex
 - Does X have the Daugavet property ?
 - Stronger: Does Y have the Daugavet property if

 $\|\mathrm{Id} + T^2\| = 1 + \|T^2\|$ for every rank-one $T \in L(Y)$?

• Is it true that
$$n(X) = 1$$
 ?

- We actually know that $n(X) \ge C > 0$.
- Is $Iso(X) \equiv Unc(X)$ a Boolean algebra ?
- If $Y \leq X$ is 1-codimensional, is Y extremely non complex ?
- Is it possible that $X \simeq Z \oplus Z \oplus Z$?

- 2 Numerical range of operators
- 3 Two results on surjective isometries
- Mumerical index of Banach spaces
- 5 The alternative Daugavet property
- 6 Lush spaces
- Slicely countably determined spaces
- 8 Remarks on two recent results
- Extremely non-complex Banach spaces