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Abstract

We show that there exist infinite-dimensional extremely non-complex Banach spaces, i.e. spaces X such that the norm equality
[[1d+ T2 =1+ 72 || holds for every bounded linear operator T : X — X. This answers in the positive Question 4.11 of [V. Kadets,
M. Martin, J. Meri, Norm equalities for operators on Banach spaces, Indiana Univ. Math. J. 56 (2007) 2385-2411]. More concretely,
we show that this is the case of some C(K) spaces with few operators constructed in [P. Koszmider, Banach spaces of continuous
functions with few operators, Math. Ann. 330 (2004) 151-183] and [G. Plebanek, A construction of a Banach space C(K) with
few operators, Topology Appl. 143 (2004) 217-239]. We also construct compact spaces K| and K7 such that C (K1) and C(K3)
are extremely non-complex, C(K) contains a complemented copy of C(2) and C(K3) contains a (1-complemented) isometric
copy of £o.
© 2008 Elsevier Inc. All rights reserved.
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Our objective

Main Objective

We show that there exist (Hausdorff) compact topological spaces K such that
IId+T2|| = 14|72 (for every T € L(C(K))).

Actually, there are many different such a K's:
o Connected and with few operators.
o Totally disconnected, perfect and with few operators.
@ Such that C(K) contains a complemented copy of C(A).

@ Such that C'(K) contains a (1-complemented) isometric copy of {oo.
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Outline
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Complex structures

X has complex structure if there is T' € L(X) such that T2 = —Id.

v

Some remarks

@ This gives a structure of vector space over C:

(a+if)z=az+LT(x) (a—HﬂEC, a:EX)

@ Defining )
lell = max{||le“z|| : 9 €[0,27]}  (z€X)
one gets that (X, || -||) is a complex Banach space.
o If T is an isometry, then actually the given norm of X is complex.

o Conversely, if X is a complex Banach space, then

T(x) =iz (mGX)

satisfies T2 = —Id and T is an isometry.




Motivation The examples Consequences and open problems
O@0000000 00000 (oo}

Complex structures Il

Some examples

Q If dim(X) < oo, X has complex structure iff dim(X) is even.

Q If X ~ Z® Z (in particular, X ~ X?), then X has complex structure.
© There are infinite-dimensional Banach spaces without complex structure:
Dieudonné, 1952: the James’ space J (since J** = J & R).
Szarek, 1986: uniformly convex examples.
Gowers-Maurey, 1993: their H.I. space.
Ferenczi-Medina Galego, 2007: there are odd and even
infinite-dimensional spaces X.

o X is even if admits a complex structure but its hyperplanes does not.

e X is odd if its hyperplanes are even (and so X does not admit a complex

structure).

X is extremely non-complex if dist(T2,—Id) is the maximum possible, i.e.

2 2
ITd+77|| =147 (T € L(X))
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The Daugavet equation

What Daugavet did in 1963

The norm equality

Hd+T| =1+7
holds for every compact 7" on C0,1].

X Banach space, T € L(X), |[Id+T|| =1+ T (DE).

v

Classical examples

© Daugavet, 1963:
Every compact operator on C|0,1] satisfies (DE).
@ Lozanoskii, 1966:
Every compact operator on L1 [0,1] satisfies (DE).
© Abramovich, Holub, and more, 80’s:
X =C(K), K perfect compact space
or X = Li(p), u atomless measure
= every weakly compact T € L(X) satisfies (DE).

N,




Motivation The examples Consequences and open problems
000800000 00000 oo

The Daugavet property

A Banach space X is said to have the Daugavet property iff every rank-one
operator on X satisfies (DE).

Some results

Let X be a Banach space with the Daugavet
property. Then

@ Every weakly compact operator on X
satisfies (DE).

@ X contains /7.

@ X does not embed into a Banach space —_— —
with unconditional basis.

o Geometric characterization: X has the Bx \ (z+(2~€)Bx)

Daugavet property iff for each z € Sx

@(Bx\($+(2*€)Bx)>:Bx. /
(Kadets—Shvidkoy—Sirotkin—-Werner, 1997 & 2000)
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The Daugavet property |l

For C(K) spaces

K compact space, C(K) has the Daugavet property if and only if K is perfect.

A related result

For every compact space K and every T € L(C(K)),

IId+ T =1+ || or |IId—T| =147

More examples

The following spaces have the Daugavet property.

o Wojtaszczyk, 1992:
The disk algebra A and H™.

o Oikhberg, 2005:
Non-atomic C*-algebras and preduals of non-atomic von Neumann
algebras.

o lvankhno, Kadets, Werner, 2007:
Lip(K) when K CR" is compact and convex.

\
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Norm equalities for operators

[§ V. Kadets, M. Martin, J. Meri,
Norm equalities for operators.
Indiana U. Math. J. (2007).

Are there other norm equalities which could define interesting properties of
Banach spaces ?

v

We looked for non-trivial norm equalities of the forms

lgMI=£ATI)  or  [Id+g(D)II = fllg(T)I)

(g analytic, f arbitrary) satisfied by all rank-one operators on a Banach space.

We proved that there are few possibilities. . . \
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Norm equalities for operators: Occlusive results

Corolary

X real or complex with dim(X) > 2. Only three norm equalities of the form
Suppose that the norm equality
lg(m)Il = FAITI)
lg(D)Il = £UITI) :
are possible:
holds for every rank-one operator e b=0: |jald| =al,

T € L(X), where

I o a=0: [oT] = ol |7,
o g: K — K is analytic,

(trivial cases)

0 a#0,b#0:
Then, there are a,b € K such that laId+bT| = |a| + b | T,

° f: Rar — R is arbitrary.

g(O)=a+b¢ (C €K). (Daugavet property)
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Norm equalities for operators: Occlusive results |l

X complex with dim(X') > 2. Suppose @ We do not know if the result is true
that the norm equality in the real case.

[1d+g(T)[l = £(llg(TI)

o It is true if g is onto.

o Even the simplest case, g(t) = t2, is

holds for every rank-one operator not solved. The only known thing
T € L(X), where is that, in this case, f(t) =1+¢,
o g:K — K is analytic, non leading to the equation

constant and with g(0) =0, 1d+T2|| =1+ |7

o f: R(‘)F — R is continuous.

Then, X has the Daugavet property y
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The question

Godefroy, private communication

Is there any real Banach space X (with dim(X) > 1) such that

I1d+T2|| = 14|17

for every operator T' € L(X) ?

In other words, are there extremely non-complex Banach spaces other than R ?
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The first attempts

The first idea

We may try to check whether the known spaces without complex structure are
actually extremely non-complex.

”
Some examples

If dim(X) < oo, X has complex structure iff dim(X) is even.
Dieudonné, 1952: the James’ space J (since J** = J & R).

Szarek, 1986: uniformly convex examples.

Gowers-Maurey, 1993: their H.I. space.
Ferenczi-Medina Galego, 2007: there are odd and even
infinite-dimensional spaces X.
o X is even if admits a complex structure but its hyperplanes does not.
o X is odd if its hyperplanes are even (and so X does not admit a complex
structure).

00 00O

(Un)fortunately. . .

This did not work and we moved to C'(K) spaces.
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The first example: weak multiplications

Let K be a compact space. T € L(C’(K)) is a weak multiplication if
T=gld+S

where g € C(K) and S is weakly compact.

Theorem

| \

If K is perfect and all operators on C'(K) are weak multiplications, then C(K)
is extremely non-complex.

\

Example (Koszmider, 2004; Plebanek, 2004)

There are perfect compact spaces K such that all operators on C(K) are weak
multiplications.

v

Consequence

Therefore, there are extremely non-complex C(K) spaces.
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More examples: weak multipliers

Let K be a compact space. T € L(C’(K)) is a weak multiplier if
T" =gld+ S

where g is a Borel function and S is weakly compact.

Theorem

| A

If K is perfect and all operators on C'(K) are weak multipliers, then C'(K) is
extremely non-complex.

A,

Example (Koszmider, 2004)

There are infinitely many different perfect compact spaces K such that all
operators on C(K) are weak multipliers.

Corollary

| A\

There are infinitely many non-isomorphic extremely non-complex Banach
spaces.

\
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Further examples

Proposition

There is a compact infinite totally disconnected and perfect space K such that
all operators on C(K) are weak multipliers.

Consequence

| A\

There is a family (K;);cs of pairwise disjoint perfect and totally disconnected
compact spaces such that

@ every operator on C(Kj;) is a weak multiplier,
o fori#j, every T € L(C(K;),C(Kj,)) is weakly compact.

Theorem

| A\

There are some compactifications K of the above family (K;);cr such that the
corresponding C'(K)'s are extremely non-complex.

\
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Further examples Il

Main consequence

There are perfect compact spaces K1, K9 such that:
o C(K1) and C(K3) are extremely non-complex,
e C(K1) contains a complemented copy of C(A).

o C(K3) contains a 1-complemented isometric copy of oo.

Consequences

o C(K1) and C(K3) have operators which are not weak multipliers.
@ There are perfect compact spaces K and L such that

o C(K)~C(L),

o C(K) is extremely non-complex but C(L) is not.
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Consequences and open problems J
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Consequences

Consequences

Suppose that C'(K) is extremely non-complex. Then
o If T € L(C(K)) is an onto isometry, then T2 = Id.
e So, if ¢ : K — K is an homeomorphism, then ¢? = id.
e If : K — K is continuous, U C K is open, and (d;|U)2 =id|y, then
¢lu =id|y.
@ Therefore, the only homeomorphism of K is id.

@ No finite-codimensional subspace of C'(K) admits a complex structure.
So C(K) is not odd nor even.
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Open Questions

Find topological characterization of the compact Hausdorff spaces K such that
the spaces C'(K) are extremely non-complex.

Question 2

Find topological consequences on K when C(K) is extremely non-complex.
For instance:

If C(K) is extremely non-complex and ¢ : K — K is continuous, are there an
open subset U of K such that ¢|y =id and (K \ U) is finite ?

Find extremely non-complex Banach spaces which are not C'(K) spaces.
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